Learning-induced gene expression in the heads of two Nasonia species that differ in long-term memory formation

Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is common. The genetic basis of this fascinating phenomenon is poorly understood. Closely related species of Nasonia parasitic wasps differ in lon...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 16; no. 1; p. 162
Main Authors Hoedjes, Katja M, Smid, Hans M, Schijlen, Elio G W M, Vet, Louise E M, van Vugt, Joke J F A
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 10.03.2015
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is common. The genetic basis of this fascinating phenomenon is poorly understood. Closely related species of Nasonia parasitic wasps differ in long-term memory (LTM) formation: N. vitripennis will form transcription-dependent LTM after a single conditioning trial, whereas the closely-related species N. giraulti will not. Genes that were differentially expressed (DE) after conditioning in N. vitripennis, but not in N. giraulti, were identified as candidate genes that may regulate LTM formation. RNA was collected from heads of both species before and immediately, 4 or 24 hours after conditioning, with 3 replicates per time point. It was sequenced strand-specifically, which allows distinguishing sense from antisense transcripts and improves the quality of expression analyses. We determined conditioning-induced DE compared to naïve controls for both species. These expression patterns were then analysed with GO enrichment analyses for each species and time point, which demonstrated an enrichment of signalling-related genes immediately after conditioning in N. vitripennis only. Analyses of known LTM genes and genes with an opposing expression pattern between the two species revealed additional candidate genes for the difference in LTM formation. These include genes from various signalling cascades, including several members of the Ras and PI3 kinase signalling pathways, and glutamate receptors. Interestingly, several other known LTM genes were exclusively differentially expressed in N. giraulti, which may indicate an LTM-inhibitory mechanism. Among the DE transcripts were also antisense transcripts. Furthermore, antisense transcripts aligning to a number of known memory genes were detected, which may have a role in regulating these genes. This study is the first to describe and compare expression patterns of both protein-coding and antisense transcripts, at different time points after conditioning, of two closely related animal species that differ in LTM formation. Several candidate genes that may regulate differences in LTM have been identified. This transcriptome analysis is a valuable resource for future in-depth studies to elucidate the role of candidate genes and antisense transcription in natural variation in LTM formation.
AbstractList Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is common. The genetic basis of this fascinating phenomenon is poorly understood. Closely related species of Nasonia parasitic wasps differ in long-term memory (LTM) formation: N. vitripennis will form transcription-dependent LTM after a single conditioning trial, whereas the closely-related species N. giraulti will not. Genes that were differentially expressed (DE) after conditioning in N. vitripennis, but not in N. giraulti, were identified as candidate genes that may regulate LTM formation. RNA was collected from heads of both species before and immediately, 4 or 24 hours after conditioning, with 3 replicates per time point. It was sequenced strand-specifically, which allows distinguishing sense from antisense transcripts and improves the quality of expression analyses. We determined conditioning-induced DE compared to naïve controls for both species. These expression patterns were then analysed with GO enrichment analyses for each species and time point, which demonstrated an enrichment of signalling-related genes immediately after conditioning in N. vitripennis only. Analyses of known LTM genes and genes with an opposing expression pattern between the two species revealed additional candidate genes for the difference in LTM formation. These include genes from various signalling cascades, including several members of the Ras and PI3 kinase signalling pathways, and glutamate receptors. Interestingly, several other known LTM genes were exclusively differentially expressed in N. giraulti, which may indicate an LTM-inhibitory mechanism. Among the DE transcripts were also antisense transcripts. Furthermore, antisense transcripts aligning to a number of known memory genes were detected, which may have a role in regulating these genes. This study is the first to describe and compare expression patterns of both protein-coding and antisense transcripts, at different time points after conditioning, of two closely related animal species that differ in LTM formation. Several candidate genes that may regulate differences in LTM have been identified. This transcriptome analysis is a valuable resource for future in-depth studies to elucidate the role of candidate genes and antisense transcription in natural variation in LTM formation.
Background Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is common. The genetic basis of this fascinating phenomenon is poorly understood. Closely related species of Nasonia parasitic wasps differ in long-term memory (LTM) formation: N. vitripennis will form transcription-dependent LTM after a single conditioning trial, whereas the closely-related species N. giraulti will not. Genes that were differentially expressed (DE) after conditioning in N. vitripennis, but not in N. giraulti, were identified as candidate genes that may regulate LTM formation. Results RNA was collected from heads of both species before and immediately, 4 or 24 hours after conditioning, with 3 replicates per time point. It was sequenced strand-specifically, which allows distinguishing sense from antisense transcripts and improves the quality of expression analyses. We determined conditioning-induced DE compared to naïve controls for both species. These expression patterns were then analysed with GO enrichment analyses for each species and time point, which demonstrated an enrichment of signalling-related genes immediately after conditioning in N. vitripennis only. Analyses of known LTM genes and genes with an opposing expression pattern between the two species revealed additional candidate genes for the difference in LTM formation. These include genes from various signalling cascades, including several members of the Ras and PI3 kinase signalling pathways, and glutamate receptors. Interestingly, several other known LTM genes were exclusively differentially expressed in N. giraulti, which may indicate an LTM-inhibitory mechanism. Among the DE transcripts were also antisense transcripts. Furthermore, antisense transcripts aligning to a number of known memory genes were detected, which may have a role in regulating these genes. Conclusion This study is the first to describe and compare expression patterns of both protein-coding and antisense transcripts, at different time points after conditioning, of two closely related animal species that differ in LTM formation. Several candidate genes that may regulate differences in LTM have been identified. This transcriptome analysis is a valuable resource for future in-depth studies to elucidate the role of candidate genes and antisense transcription in natural variation in LTM formation.
Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is common. The genetic basis of this fascinating phenomenon is poorly understood. Closely related species of Nasonia parasitic wasps differ in long-term memory (LTM) formation: N. vitripennis will form transcription-dependent LTM after a single conditioning trial, whereas the closely-related species N. giraulti will not. Genes that were differentially expressed (DE) after conditioning in N. vitripennis, but not in N. giraulti, were identified as candidate genes that may regulate LTM formation. RNA was collected from heads of both species before and immediately, 4 or 24 hours after conditioning, with 3 replicates per time point. It was sequenced strand-specifically, which allows distinguishing sense from antisense transcripts and improves the quality of expression analyses. We determined conditioning-induced DE compared to naïve controls for both species. These expression patterns were then analysed with GO enrichment analyses for each species and time point, which demonstrated an enrichment of signalling-related genes immediately after conditioning in N. vitripennis only. Analyses of known LTM genes and genes with an opposing expression pattern between the two species revealed additional candidate genes for the difference in LTM formation. These include genes from various signalling cascades, including several members of the Ras and PI3 kinase signalling pathways, and glutamate receptors. Interestingly, several other known LTM genes were exclusively differentially expressed in N. giraulti, which may indicate an LTM-inhibitory mechanism. Among the DE transcripts were also antisense transcripts. Furthermore, antisense transcripts aligning to a number of known memory genes were detected, which may have a role in regulating these genes. This study is the first to describe and compare expression patterns of both protein-coding and antisense transcripts, at different time points after conditioning, of two closely related animal species that differ in LTM formation. Several candidate genes that may regulate differences in LTM have been identified. This transcriptome analysis is a valuable resource for future in-depth studies to elucidate the role of candidate genes and antisense transcription in natural variation in LTM formation.
Background Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is common. The genetic basis of this fascinating phenomenon is poorly understood. Closely related species of Nasonia parasitic wasps differ in long-term memory (LTM) formation: N. vitripennis will form transcription-dependent LTM after a single conditioning trial, whereas the closely-related species N. giraulti will not. Genes that were differentially expressed (DE) after conditioning in N. vitripennis, but not in N. giraulti, were identified as candidate genes that may regulate LTM formation. Results RNA was collected from heads of both species before and immediately, 4 or 24 hours after conditioning, with 3 replicates per time point. It was sequenced strand-specifically, which allows distinguishing sense from antisense transcripts and improves the quality of expression analyses. We determined conditioning-induced DE compared to naïve controls for both species. These expression patterns were then analysed with GO enrichment analyses for each species and time point, which demonstrated an enrichment of signalling-related genes immediately after conditioning in N. vitripennis only. Analyses of known LTM genes and genes with an opposing expression pattern between the two species revealed additional candidate genes for the difference in LTM formation. These include genes from various signalling cascades, including several members of the Ras and PI3 kinase signalling pathways, and glutamate receptors. Interestingly, several other known LTM genes were exclusively differentially expressed in N. giraulti, which may indicate an LTM-inhibitory mechanism. Among the DE transcripts were also antisense transcripts. Furthermore, antisense transcripts aligning to a number of known memory genes were detected, which may have a role in regulating these genes. Conclusion This study is the first to describe and compare expression patterns of both protein-coding and antisense transcripts, at different time points after conditioning, of two closely related animal species that differ in LTM formation. Several candidate genes that may regulate differences in LTM have been identified. This transcriptome analysis is a valuable resource for future in-depth studies to elucidate the role of candidate genes and antisense transcription in natural variation in LTM formation. Keywords: Antisense, Illumina Hi-Seq, Learning, Long-term memory, Strand-specific sequencing
BACKGROUNDCellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is common. The genetic basis of this fascinating phenomenon is poorly understood. Closely related species of Nasonia parasitic wasps differ in long-term memory (LTM) formation: N. vitripennis will form transcription-dependent LTM after a single conditioning trial, whereas the closely-related species N. giraulti will not. Genes that were differentially expressed (DE) after conditioning in N. vitripennis, but not in N. giraulti, were identified as candidate genes that may regulate LTM formation.RESULTSRNA was collected from heads of both species before and immediately, 4 or 24 hours after conditioning, with 3 replicates per time point. It was sequenced strand-specifically, which allows distinguishing sense from antisense transcripts and improves the quality of expression analyses. We determined conditioning-induced DE compared to naïve controls for both species. These expression patterns were then analysed with GO enrichment analyses for each species and time point, which demonstrated an enrichment of signalling-related genes immediately after conditioning in N. vitripennis only. Analyses of known LTM genes and genes with an opposing expression pattern between the two species revealed additional candidate genes for the difference in LTM formation. These include genes from various signalling cascades, including several members of the Ras and PI3 kinase signalling pathways, and glutamate receptors. Interestingly, several other known LTM genes were exclusively differentially expressed in N. giraulti, which may indicate an LTM-inhibitory mechanism. Among the DE transcripts were also antisense transcripts. Furthermore, antisense transcripts aligning to a number of known memory genes were detected, which may have a role in regulating these genes.CONCLUSIONThis study is the first to describe and compare expression patterns of both protein-coding and antisense transcripts, at different time points after conditioning, of two closely related animal species that differ in LTM formation. Several candidate genes that may regulate differences in LTM have been identified. This transcriptome analysis is a valuable resource for future in-depth studies to elucidate the role of candidate genes and antisense transcription in natural variation in LTM formation.
ArticleNumber 162
Audience Academic
Author van Vugt, Joke J F A
Hoedjes, Katja M
Smid, Hans M
Schijlen, Elio G W M
Vet, Louise E M
Author_xml – sequence: 1
  givenname: Katja M
  surname: Hoedjes
  fullname: Hoedjes, Katja M
  email: katja.hoedjes@unil.ch, katja.hoedjes@unil.ch
  organization: Department of Ecology and Evolution, University of Lausanne, Le Biophore, CH-1015, Lausanne, Switzerland. katja.hoedjes@unil.ch
– sequence: 2
  givenname: Hans M
  surname: Smid
  fullname: Smid, Hans M
  email: hansm.smid@wur.nl
  organization: Laboratory of Entomology, Plant Sciences Group, Wageningen University, P.O. box 8031, 6700AP, Wageningen, The Netherlands. hansm.smid@wur.nl
– sequence: 3
  givenname: Elio G W M
  surname: Schijlen
  fullname: Schijlen, Elio G W M
  email: elio.schijlen@wur.nl
  organization: PRI Bioscience, Plant Research International, P.O. box 619, 6700AP, Wageningen, The Netherlands. elio.schijlen@wur.nl
– sequence: 4
  givenname: Louise E M
  surname: Vet
  fullname: Vet, Louise E M
  email: l.vet@nioo.knaw.nl, l.vet@nioo.knaw.nl
  organization: Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands. l.vet@nioo.knaw.nl
– sequence: 5
  givenname: Joke J F A
  surname: van Vugt
  fullname: van Vugt, Joke J F A
  email: j.f.a.vanvugt-2@umcutrecht.nl, j.f.a.vanvugt-2@umcutrecht.nl
  organization: Department of Neurology, University Medical Center Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands. j.f.a.vanvugt-2@umcutrecht.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25888126$$D View this record in MEDLINE/PubMed
BookMark eNptkl1rHCEUhoeS0ny0P6A3RehNezGpx9EZ04tACP0ILC3041ocPe5aZnSrM93k39dh05CFInjk-LwvHnlPq6MQA1bVS6DnALJ9l4HJltcURA2NKNuT6gR4BzWDlh89Oh9Xpzn_ohQ6ycSz6pgJKSWw9qQKK9Qp-LCufbCzQUvWGJDg7TZhzj4G4gOZNkg2qG0m0ZFpF8kXnWPwmuQtGo-5AHoi1juHaeGHWPwmTCMZcYzpjriYRj0Vt-fVU6eHjC_u61n18-OHH9ef69XXTzfXV6vatAymWoAFlLSjTWsdk1YgGicbY3u4YOWRHUguTddzdF2nRUFZL6xw1umea82as-r93nenyzxlPAwq6GR8VlF7Nfg-6XSndnNSYVjKdu6z4hdUyKaIL_fi0hzRGgxT0oPaJj8uosXg8Cb4jVrHP4pzTgWFYvDm3iDF3zPmSY0-GxwGHTDOWUErmZSdgIuCvt6jaz2g8sHF4mgWXF0JDk3LKZeFOv8PVZbF0ZsSCudL_0Dw9kBQmAlvp7Wec1Y3378dsrBnTYo5J3QPkwJVS87UPmeq5EwtOVPLhK8ef9GD4l-wmr-M99KB
CitedBy_id crossref_primary_10_1534_g3_115_021220
crossref_primary_10_1016_j_cois_2020_09_003
crossref_primary_10_1111_imb_12333
crossref_primary_10_1016_j_asd_2019_100878
crossref_primary_10_1128_mbio_02362_22
crossref_primary_10_1093_database_bav103
crossref_primary_10_1186_s12859_017_1741_6
crossref_primary_10_1016_j_jneumeth_2018_09_012
crossref_primary_10_1186_s12864_018_5310_9
crossref_primary_10_3389_fnbeh_2015_00255
crossref_primary_10_1186_s12864_016_2886_9
crossref_primary_10_1111_evo_13498
crossref_primary_10_1371_journal_pgen_1008518
crossref_primary_10_3389_fnbeh_2018_00014
crossref_primary_10_1111_brv_12641
crossref_primary_10_1038_s41598_017_18836_3
Cites_doi 10.1002/bies.10332
10.1021/pr500325q
10.1016/j.conb.2005.04.002
10.1016/j.tins.2005.01.004
10.1371/journal.pone.0039615
10.1016/S0960-9822(03)00064-2
10.1038/nbt.1883
10.1016/S0959-4388(00)00237-3
10.1098/rspb.2007.0305
10.1016/j.neuron.2012.04.007
10.1016/S0896-6273(00)80376-1
10.1523/JNEUROSCI.5333-07.2008
10.1007/s00114-008-0490-9
10.1016/j.neuropharm.2014.01.026
10.1016/S0166-4328(02)00272-3
10.1016/j.cell.2009.12.044
10.1016/0092-8674(94)90398-0
10.1371/journal.pone.0068608
10.1242/jcs.131144
10.1038/nprot.2006.70
10.1111/j.1601-183X.2012.00823.x
10.1523/JNEUROSCI.4387-12.2013
10.1111/mec.12146
10.1007/s003590050392
10.1186/1471-2164-9-169
10.1126/science.1178028
10.1098/rspb.2010.2199
10.1126/science.1111331
10.1111/j.1570-7458.2012.01253.x
10.1016/j.cub.2005.02.059
10.1098/rspb.2007.1652
10.1016/j.cub.2005.08.024
10.1023/A:1007763525685
10.1126/science.275.5299.543
10.1038/nrg3594
10.1016/0896-6273(89)90046-9
10.1126/science.1112009
10.1016/S0166-2236(98)01306-X
10.1016/S0165-0173(97)00050-7
10.1073/pnas.95.22.13278
10.1523/JNEUROSCI.6369-09.2010
10.1254/jphs.91.267
10.1016/j.cub.2011.08.058
10.1016/j.neurobiolaging.2013.07.018
10.1186/1471-2199-7-3
10.1371/journal.pone.0076903
10.1016/j.beproc.2014.02.014
10.1007/BF00979616
10.1016/j.nlm.2013.09.011
10.1007/s00018-006-6026-6
ContentType Journal Article
Copyright COPYRIGHT 2015 BioMed Central Ltd.
Hoedjes et al.; licensee BioMed Central. 2015
Wageningen University & Research
Copyright_xml – notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Hoedjes et al.; licensee BioMed Central. 2015
– notice: Wageningen University & Research
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7X8
5PM
QVL
DOI 10.1186/s12864-015-1355-1
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
NARCIS:Publications
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 162
ExternalDocumentID oai_library_wur_nl_wurpubs_490583
A541364048
10_1186_s12864_015_1355_1
25888126
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-A0
0R~
23N
2WC
2XV
3V.
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
AIXEN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
AFGXO
7X8
5PM
-
1AW
A0
AAPBV
ABPTK
ADACO
BBAFP
C1A
IPNFZ
LI0
O0-
PQEST
PQUKI
PRINS
QVL
RIG
ID FETCH-LOGICAL-c621t-51d1e807036df28d5eecf83cdb192ced71848c7b4ef77a5e802b5d5fdfab4aa23
IEDL.DBID RPM
ISSN 1471-2164
IngestDate Thu Jul 22 20:30:50 EDT 2021
Tue Sep 17 21:25:31 EDT 2024
Fri Oct 25 08:12:14 EDT 2024
Wed Aug 14 18:53:09 EDT 2024
Tue Aug 13 05:22:40 EDT 2024
Sat Sep 28 21:31:17 EDT 2024
Thu Sep 12 16:42:43 EDT 2024
Sat Sep 28 07:54:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c621t-51d1e807036df28d5eecf83cdb192ced71848c7b4ef77a5e802b5d5fdfab4aa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440501/
PMID 25888126
PQID 1682887519
PQPubID 23479
PageCount 1
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_490583
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4440501
proquest_miscellaneous_1682887519
gale_infotracmisc_A541364048
gale_infotracacademiconefile_A541364048
gale_incontextgauss_ISR_A541364048
crossref_primary_10_1186_s12864_015_1355_1
pubmed_primary_25888126
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate 2015-03-10
PublicationDateYYYYMMDD 2015-03-10
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2015
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References 24146943 - PLoS One. 2013;8(10):e76903
24312012 - Front Cell Neurosci. 2013 Nov 21;7:222
24486712 - Neuropharmacology. 2014 May;80:61-9
14505360 - Bioessays. 2003 Oct;25(10):930-9
24217315 - Nat Rev Genet. 2013 Dec;14(12):880-93
18354013 - J Neurosci. 2008 Mar 19;28(12):3103-13
25052416 - Heredity (Edinb). 2014 Dec;113(6):542-50
2627380 - Neuron. 1989 Jun;2(6):1577-86
23894324 - PLoS One. 2013;8(7):e68608
24076013 - Neurobiol Learn Mem. 2013 Nov;106:230-7
9331353 - Neuron. 1997 Sep;19(3):625-34
16596331 - Cell Mol Life Sci. 2006 May;63(9):1009-16
17406271 - Nat Protoc. 2006;1(1):486-94
16139203 - Curr Biol. 2005 Sep 6;15(17):R700-13
23205699 - Mol Ecol. 2013 Jan;22(2):397-408
22000105 - Curr Biol. 2011 Oct 25;21(20):1704-15
17439855 - Proc Biol Sci. 2007 Jun 22;274(1617):1539-46
23902691 - J Cell Sci. 2013 Oct 15;126(Pt 20):4732-45
20463240 - J Neurosci. 2010 May 12;30(19):6782-92
16448564 - BMC Mol Biol. 2006;7:3
10088998 - Trends Neurosci. 1999 Jan;22(1):38-44
24607391 - Behav Processes. 2014 Jun;105:40-5
20178749 - Cell. 2010 Feb 19;140(4):579-89
7923375 - Cell. 1994 Oct 7;79(1):35-47
15749165 - Trends Neurosci. 2005 Mar;28(3):127-32
8999801 - Science. 1997 Jan 24;275(5299):543-7
21572440 - Nat Biotechnol. 2011 Jul;29(7):644-52
12593794 - Curr Biol. 2003 Feb 18;13(4):286-96
11502395 - Curr Opin Neurobiol. 2001 Aug;11(4):475-80
15823532 - Curr Biol. 2005 Apr 12;15(7):603-15
24983411 - J Proteome Res. 2014 Jul 10;:null
21106587 - Proc Biol Sci. 2011 Mar 22;278(1707):889-97
24263300 - J Chem Ecol. 1990 Nov;16(11):3137-50
18410680 - BMC Genomics. 2008;9:169
23616553 - J Neurosci. 2013 Apr 24;33(17):7475-87
15905396 - Science. 2005 May 20;308(5725):1148
15961039 - Curr Opin Neurobiol. 2005 Jun;15(3):358-63
12719654 - J Pharmacol Sci. 2003 Apr;91(4):267-70
19130028 - Naturwissenschaften. 2009 Mar;96(3):383-91
22936971 - PLoS One. 2012;7(8):e39615
23969180 - Neurobiol Aging. 2014 Jan;35(1):159-68
9651552 - Brain Res Brain Res Rev. 1998 May;26(2-3):360-78
16141073 - Science. 2005 Sep 2;309(5740):1564-6
22578504 - Neuron. 2012 May 10;74(3):530-42
20075255 - Science. 2010 Jan 15;327(5963):343-8
22804968 - Genes Brain Behav. 2012 Oct;11(7):879-87
18198141 - Proc Biol Sci. 2008 Apr 7;275(1636):803-8
9789079 - Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13278-83
12644276 - Behav Brain Res. 2003 Mar 18;140(1-2):1-47
SC Iyer (1355_CR31) 2013; 126
S Xia (1355_CR28) 2005; 15
M Klappenbach (1355_CR40) 2013; 106
JH Werren (1355_CR13) 2010; 327
D Schurmann (1355_CR15) 2012; 143
R Threadgill (1355_CR25) 1997; 19
JA Lynch (1355_CR50) 2006; 1
A Schroeder (1355_CR51) 2006; 7
S Katayama (1355_CR20) 2005; 309
G Riedel (1355_CR29) 2003; 140
VV Pravosudov (1355_CR38) 2013; 22
SB Laughlin (1355_CR6) 2001; 11
P Banerjee (1355_CR46) 2010; 30
HJ Armbrecht (1355_CR39) 2014; 35
T Tully (1355_CR10) 1994; 79
H Kawasaki (1355_CR27) 1998; 95
T Abel (1355_CR37) 1998; 26
CR Sanna (1355_CR21) 2008; 9
BJ Saab (1355_CR22) 2014; 80
MG Grabherr (1355_CR52) 2011; 29
D Lipscombe (1355_CR44) 2005; 15
J Dubnau (1355_CR33) 2003; 13
KM Hoedjes (1355_CR2) 2011; 278
V Pelechano (1355_CR48) 2013; 14
K Yamada (1355_CR35) 2003; 91
1355_CR53
HM Smid (1355_CR9) 2007; 274
YC Shuai (1355_CR34) 2010; 140
Y Zhang (1355_CR42) 2014; 13
JM Levenson (1355_CR49) 2006; 63
A Barzilai (1355_CR23) 1989; 2
DR Papaj (1355_CR3) 1990; 16
C Margulies (1355_CR8) 2005; 15
JB Zhang (1355_CR32) 2013; 7
G Hermey (1355_CR45) 2013; 8
F Mery (1355_CR7) 2005; 308
KM Hoedjes (1355_CR14) 2012; 11
TC Tubon Jr (1355_CR30) 2013; 33
1355_CR17
D Schurmann (1355_CR19) 2009; 96
BA Pannebakker (1355_CR43) 2013; 8
MJ Krashes (1355_CR11) 2008; 28
NE Raine (1355_CR4) 2008; 275
M Sone (1355_CR26) 1997; 275
SE Oliai (1355_CR18) 2000; 13
JA Berry (1355_CR41) 2012; 74
HM Kruidhof (1355_CR12) 2012; 7
CC Chan (1355_CR36) 2011; 21
JS Mattick (1355_CR47) 2003; 25
KM Hoedjes (1355_CR16) 2014; 105C
EA Brenowitz (1355_CR1) 2005; 28
R Menzel (1355_CR5) 1999; 185
PC Orban (1355_CR24) 1999; 22
References_xml – volume: 25
  start-page: 930
  year: 2003
  ident: 1355_CR47
  publication-title: Bioessays
  doi: 10.1002/bies.10332
  contributor:
    fullname: JS Mattick
– volume: 13
  start-page: 3763
  year: 2014
  ident: 1355_CR42
  publication-title: J Proteome Res
  doi: 10.1021/pr500325q
  contributor:
    fullname: Y Zhang
– volume: 15
  start-page: 358
  year: 2005
  ident: 1355_CR44
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2005.04.002
  contributor:
    fullname: D Lipscombe
– volume: 28
  start-page: 127
  year: 2005
  ident: 1355_CR1
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2005.01.004
  contributor:
    fullname: EA Brenowitz
– volume: 7
  start-page: e39615
  year: 2012
  ident: 1355_CR12
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039615
  contributor:
    fullname: HM Kruidhof
– volume: 13
  start-page: 286
  year: 2003
  ident: 1355_CR33
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(03)00064-2
  contributor:
    fullname: J Dubnau
– volume: 29
  start-page: 644
  year: 2011
  ident: 1355_CR52
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1883
  contributor:
    fullname: MG Grabherr
– volume: 11
  start-page: 475
  year: 2001
  ident: 1355_CR6
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/S0959-4388(00)00237-3
  contributor:
    fullname: SB Laughlin
– volume: 274
  start-page: 1539
  year: 2007
  ident: 1355_CR9
  publication-title: Proc R Soc B
  doi: 10.1098/rspb.2007.0305
  contributor:
    fullname: HM Smid
– volume: 74
  start-page: 530
  year: 2012
  ident: 1355_CR41
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.04.007
  contributor:
    fullname: JA Berry
– volume: 19
  start-page: 625
  year: 1997
  ident: 1355_CR25
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80376-1
  contributor:
    fullname: R Threadgill
– volume: 28
  start-page: 3103
  year: 2008
  ident: 1355_CR11
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5333-07.2008
  contributor:
    fullname: MJ Krashes
– volume: 96
  start-page: 383
  year: 2009
  ident: 1355_CR19
  publication-title: Naturwissenschaften
  doi: 10.1007/s00114-008-0490-9
  contributor:
    fullname: D Schurmann
– volume: 80
  start-page: 61
  year: 2014
  ident: 1355_CR22
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2014.01.026
  contributor:
    fullname: BJ Saab
– volume: 140
  start-page: 1
  year: 2003
  ident: 1355_CR29
  publication-title: Behav Brain Res
  doi: 10.1016/S0166-4328(02)00272-3
  contributor:
    fullname: G Riedel
– volume: 140
  start-page: 579
  year: 2010
  ident: 1355_CR34
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.044
  contributor:
    fullname: YC Shuai
– volume: 79
  start-page: 35
  year: 1994
  ident: 1355_CR10
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90398-0
  contributor:
    fullname: T Tully
– volume: 8
  start-page: e68608
  year: 2013
  ident: 1355_CR43
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068608
  contributor:
    fullname: BA Pannebakker
– volume: 126
  start-page: 4732
  year: 2013
  ident: 1355_CR31
  publication-title: J Cell Sci
  doi: 10.1242/jcs.131144
  contributor:
    fullname: SC Iyer
– volume: 1
  start-page: 486
  year: 2006
  ident: 1355_CR50
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2006.70
  contributor:
    fullname: JA Lynch
– volume: 11
  start-page: 879
  year: 2012
  ident: 1355_CR14
  publication-title: Genes Brain Behav
  doi: 10.1111/j.1601-183X.2012.00823.x
  contributor:
    fullname: KM Hoedjes
– volume: 33
  start-page: 7475
  year: 2013
  ident: 1355_CR30
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4387-12.2013
  contributor:
    fullname: TC Tubon Jr
– volume: 7
  start-page: 222
  year: 2013
  ident: 1355_CR32
  publication-title: Front Cell Neurosci
  contributor:
    fullname: JB Zhang
– volume: 22
  start-page: 397
  year: 2013
  ident: 1355_CR38
  publication-title: Mol Ecol
  doi: 10.1111/mec.12146
  contributor:
    fullname: VV Pravosudov
– volume: 185
  start-page: 323
  year: 1999
  ident: 1355_CR5
  publication-title: J Comp Physiol A
  doi: 10.1007/s003590050392
  contributor:
    fullname: R Menzel
– volume: 9
  start-page: 169
  year: 2008
  ident: 1355_CR21
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-169
  contributor:
    fullname: CR Sanna
– volume: 327
  start-page: 343
  year: 2010
  ident: 1355_CR13
  publication-title: Science
  doi: 10.1126/science.1178028
  contributor:
    fullname: JH Werren
– volume: 278
  start-page: 889
  year: 2011
  ident: 1355_CR2
  publication-title: Proc R Soc B
  doi: 10.1098/rspb.2010.2199
  contributor:
    fullname: KM Hoedjes
– ident: 1355_CR53
– volume: 308
  start-page: 1148
  year: 2005
  ident: 1355_CR7
  publication-title: Science
  doi: 10.1126/science.1111331
  contributor:
    fullname: F Mery
– volume: 143
  start-page: 199
  year: 2012
  ident: 1355_CR15
  publication-title: Entomol Exp Appl
  doi: 10.1111/j.1570-7458.2012.01253.x
  contributor:
    fullname: D Schurmann
– volume: 15
  start-page: 603
  year: 2005
  ident: 1355_CR28
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.02.059
  contributor:
    fullname: S Xia
– volume: 275
  start-page: 803
  year: 2008
  ident: 1355_CR4
  publication-title: Proc R Soc B
  doi: 10.1098/rspb.2007.1652
  contributor:
    fullname: NE Raine
– volume: 15
  start-page: R700
  year: 2005
  ident: 1355_CR8
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.08.024
  contributor:
    fullname: C Margulies
– volume: 13
  start-page: 55
  year: 2000
  ident: 1355_CR18
  publication-title: J Insect Behav
  doi: 10.1023/A:1007763525685
  contributor:
    fullname: SE Oliai
– volume: 275
  start-page: 543
  year: 1997
  ident: 1355_CR26
  publication-title: Science
  doi: 10.1126/science.275.5299.543
  contributor:
    fullname: M Sone
– volume: 14
  start-page: 880
  year: 2013
  ident: 1355_CR48
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3594
  contributor:
    fullname: V Pelechano
– volume: 2
  start-page: 1577
  year: 1989
  ident: 1355_CR23
  publication-title: Neuron
  doi: 10.1016/0896-6273(89)90046-9
  contributor:
    fullname: A Barzilai
– volume: 309
  start-page: 1564
  year: 2005
  ident: 1355_CR20
  publication-title: Science
  doi: 10.1126/science.1112009
  contributor:
    fullname: S Katayama
– volume: 22
  start-page: 38
  year: 1999
  ident: 1355_CR24
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(98)01306-X
  contributor:
    fullname: PC Orban
– volume: 26
  start-page: 360
  year: 1998
  ident: 1355_CR37
  publication-title: Brain Res Rev
  doi: 10.1016/S0165-0173(97)00050-7
  contributor:
    fullname: T Abel
– volume: 95
  start-page: 13278
  year: 1998
  ident: 1355_CR27
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.22.13278
  contributor:
    fullname: H Kawasaki
– volume: 30
  start-page: 6782
  year: 2010
  ident: 1355_CR46
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.6369-09.2010
  contributor:
    fullname: P Banerjee
– volume: 91
  start-page: 267
  year: 2003
  ident: 1355_CR35
  publication-title: J Pharmacol Sci
  doi: 10.1254/jphs.91.267
  contributor:
    fullname: K Yamada
– volume: 21
  start-page: 1704
  year: 2011
  ident: 1355_CR36
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.08.058
  contributor:
    fullname: CC Chan
– volume: 35
  start-page: 159
  year: 2014
  ident: 1355_CR39
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2013.07.018
  contributor:
    fullname: HJ Armbrecht
– volume: 7
  start-page: 3
  year: 2006
  ident: 1355_CR51
  publication-title: BMC Mol Biol
  doi: 10.1186/1471-2199-7-3
  contributor:
    fullname: A Schroeder
– volume: 8
  start-page: e76903
  year: 2013
  ident: 1355_CR45
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0076903
  contributor:
    fullname: G Hermey
– volume: 105C
  start-page: 40
  year: 2014
  ident: 1355_CR16
  publication-title: Behav Process
  doi: 10.1016/j.beproc.2014.02.014
  contributor:
    fullname: KM Hoedjes
– ident: 1355_CR17
– volume: 16
  start-page: 3137
  year: 1990
  ident: 1355_CR3
  publication-title: J Chem Ecol
  doi: 10.1007/BF00979616
  contributor:
    fullname: DR Papaj
– volume: 106
  start-page: 230
  year: 2013
  ident: 1355_CR40
  publication-title: Neurobiol Learn Mem
  doi: 10.1016/j.nlm.2013.09.011
  contributor:
    fullname: M Klappenbach
– volume: 63
  start-page: 1009
  year: 2006
  ident: 1355_CR49
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-006-6026-6
  contributor:
    fullname: JM Levenson
SSID ssj0017825
Score 2.2721748
Snippet Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is...
Background Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or...
BACKGROUNDCellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or...
SourceID wageningen
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 162
SubjectTerms Alternative Splicing
Analysis
Animals
antisense transcription
Brain - metabolism
consolidation
drosophila
Female
Flavoring Agents - pharmacology
foraging success
Genetic aspects
Genetic research
Genetic transcription
Hymenoptera - genetics
Hymenoptera - metabolism
Memory, Long-Term - drug effects
Memory, Long-Term - physiology
natural variation
Odorants
Oligoribonucleotides, Antisense - metabolism
opportunities
parasitic wasps
pathway
Physiological aspects
protein-synthesis
RNA - analysis
RNA - isolation & purification
RNA - metabolism
RNA Interference
RNA, Long Noncoding - analysis
RNA, Long Noncoding - isolation & purification
RNA, Long Noncoding - metabolism
Sequence Analysis, RNA
Transcriptome
vitripennis
Wasps
SummonAdditionalLinks – databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Ni9QwFA_LirAX8dvqKlEEQahO0yTtHEQWcVkF96AO7C2kTboOjKlOO8zOf-_vtZ3Z7bIHTz3kJaR5X7_XvrzH2OtcVpWrPPRbujKWzmex1ZmOUyeqqfTCJgV97_h2qk9m8uuZOttj2_ZWwwE2N4Z21E9qtly8u_i7-QiF_9ApfK7fN7CxmnIpVJzAfcYIhm4JiUCdMvnk5U8FOEM1_Ni8cdrINV030Fc81PXsyYM1VD90d6Gu-Kbju-zOACr5US8F99ieD_fZ7b7N5OYBC0MR1fMYAThY6TjW8NxfDEmwgc8DBxDkMMyu4XXF23XNTy2g-NxyuouJcBoEtuV9PxWiX9RYj-w6_03Juhu-uwb5kM2OP__8dBIPfRbiUoukjVXiEp-T7mtXidwp78sqT0tXAP5hU3BfMi-zQvoqy6wCqSiUU-CxLaS1In3E9kMd_BPGCQ5abYER00zqFBIiisxC00vtJ6UUEXu7PWLzpy-nYbowJNem54cBPwzxwyQRe0VMMFSmIlAezLldNY358uO7OVJwvlrC_ETszUBU1WBHaYdrBdgPVbYaUR6OKKFH5Wj45ZbXhoYo-Sz4etWYRCMsRVyXTCP2uOf9bvNC5Tkwko5YNpKKHQGV7x6PhPmvroy3lADLE7xleik_JlAHqaabNXzGM-vV0oQFPbBOY-R0ovL06X_s9hk7ECTdXfbhIdtvlyv_HBCqLV50ivEPOwodrQ
  priority: 102
  providerName: Scholars Portal
Title Learning-induced gene expression in the heads of two Nasonia species that differ in long-term memory formation
URI https://www.ncbi.nlm.nih.gov/pubmed/25888126
https://search.proquest.com/docview/1682887519
https://pubmed.ncbi.nlm.nih.gov/PMC4440501
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F490583
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtx6Avo_v22gVtDAYDN5Etyc5jVlq6QEJpV8ibkCW5DSRyqR2y_ve780eW9HEv8YMuish9y7-7I-RbyvPc5g70m1sTcuuSUMtEhrGN8iF3kWYZ3ndMpvLylo9nYrZHRFcLU4P2TTY_9YvlqZ_f19jKh6Xpdzix_tXkjHMIMwasv0_2QUC7FL19dQAuT7SvL1kq-yUYYIlACxEy8K0hjoaJBOR9DPspbPmi5xZ5yyU9h0serkHXfV38tOWMLo7IqzaKpKPmtK_JnvNvyMtmruTTW-Lbrql3IWTcwDtLYQ9H3Z8W9erp3FOI_ChYYlvSIqfVuqBTDbH3XFMsvoT8GQh0RZsBKki_KGA_NOR0iejcJ7qpe3xHbi_Of59dhu1ghdDIiFWhYJa5FJVd2jxKrXDO5GlsbAbxHhwK_BVPTZJxlyeJFkAaZcIKYKrOuNZR_J4c-MK7j4Ri_KelhqAwTriMQSSiLNGg2ka6geFRQH50f7F6aPpnqDrvSKVqWKOANQpZo1hAviITFPal8Ah8udOrslS_bq7VSIC3lRzsTUC-t0R5Aewwuq0jgPNgK6sdypMdSlAcs7P8peO1wiVEm3lXrErFJOShkMixYUA-NLzfHL6TnYAkO1KxIcB-3bsrIMZ13-5WbAMS_5Mf5XFkVFl_q723U-vVo_ILfMA-peLDgUjjT__9e8fkMELxr0GIJ-Sgely5zxBJVVkP9GeW9MiL0Wh8M4bnz_Pp1XWvvpeAzwlPe7Vu_QV0iydb
link.rule.ids 230,315,730,783,787,867,888,24330,27936,27937,31732,33757,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIcRe-B4EBhiEhISUtk5sJ32cJqYO1grBhvZmObYzKlpnWlKV8ddzzkdp-wZPffAldXS_-0p-dwZ4l7I8N7lF-2ZGh8zYJFQiEWFsonzIbKRo5t93jCdidM4-XfCLHeBdL0xN2tfZtOdm856b_qi5lVdz3e94Yv0v4yPGMM0Y0P4tuI32OmBdkd5-PMCgx9sPmDQV_RJdsPBUCx5SjK6hPxwm4lj5UT9RYS0abfvktaC0TZjcW6K1u7r9aS0cHd-H792DNCyUn71FlfX0760Zj__8pA_gXpugksNm-SHsWPcI7jRHVt48BtcOZL0MsZhHWBiCm7PE_moJtY5MHcGkkqCTNyUpclItCzJRmNZPFfF9nViao4CqSHM2i5efFXg_HyPI3BN_b8iqpfIJnB9_PDsahe2ZDaEWEa1CTg21qfcjwuRRari1Ok9jbTJMJXFTGApZqpOM2TxJFEfRKOOGI15UxpSK4n3YdYWzz4D41FIJhflmnDARI9qiLFHoNbSwA82iAD50upNXzWgOWZc0qZCNziXqXHqdSxrAW69d6UdeOM-puVSLspQn377KQ46BXDB0ZQG8b4XyAvWsVduigPvxU7I2JA82JNEm9cbymw5E0i95IpuzxaKUVGCJizUiHQbwtAHVavMdKANINuC2EvCjwDdXEDf1SPAWJwHEf4EpnT-Nqqyval8JyuXiWrqZ_8H7lJINBzyNn__3_72Gu6Oz8ak8PZl8fgF7kbexmut4ALvV9cK-xIStyl7V5vkHc4VDZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCLSX8c0CAwxCQkJKWye2kz5Og2oDVk3ApIkXy7GdUdE61ZKqjL-eu3yUto976oMvqaP73Vfy8x0h71Ke5zZ3YN_cmpBbl4RaJjKMbZQPuYs0y_B9x-lYHp_zzxfiYm3UV03aN9mk56eznp_8qrmV85npdzyx_tnpEeeQZgxYf27z_m1yB2x2ILtCvf2AAIFPtB8xWSr7JbhhiXQLETKIsCEOiIkEVH8MuyqsRaRtv7wWmLZJk7tLsHhfH4FaC0mj--Rn9zANE-V3b1FlPfN3q8_jjZ72AdlrE1V62Ig8JLecf0TuNqMrrx8T3zZmvQyhqAd4WAobdNT9aYm1nk48heSSgrO3JS1yWi0LOtaQ3k80xfOdUKKDgK5oM6MF5acF3A9jBZ0hAfiaro5WPiHno08_jo7DdnZDaGTEqlAwy1yK_kTaPEqtcM7kaWxsBiklbApCIk9NknGXJ4kWIBplwgrAjc641lH8lOz4wrt9QjHF1FJD3hknXMaAuihLNHgPI93A8CggHzr9qXnTokPVpU0qVaN3BXpXqHfFAvIWNayw9YVHbs2lXpSlOvn-TR0KCOiSg0sLyPtWKC9A10a3RxVgP9gta0PyYEMSbNNsLL_pgKRwCQlt3hWLUjEJpS7UimwYkGcNsFab74AZkGQDcisBbAm-uQLYqVuDt1gJSPwfnMrjVKqyvqp9NaiWiyvlp_gD9ykVHw5EGj-_8f-9JvfOPo7U15PxlxdkN0IzqymPB2Snulq4l5C3Vdmr2kL_AWd9Rec
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-induced+gene+expression+in+the+heads+of+two+Nasonia+species+that+differ+in+long-term+memory+formation&rft.jtitle=BMC+genomics&rft.au=Hoedjes%2C+Katja+M&rft.au=Smid%2C+Hans+M&rft.au=Schijlen%2C+Elio+G+W+M&rft.au=Vet%2C+Louise+E+M&rft.date=2015-03-10&rft.eissn=1471-2164&rft.volume=16&rft.spage=162&rft.epage=162&rft_id=info:doi/10.1186%2Fs12864-015-1355-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon