Serotonin Affects Transcranial Direct Current–Induced Neuroplasticity in Humans

Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechan...

Full description

Saved in:
Bibliographic Details
Published inBiological psychiatry (1969) Vol. 66; no. 5; pp. 503 - 508
Main Authors Nitsche, Michael A., Kuo, Min-Fang, Karrasch, Ralf, Wächter, Bettina, Liebetanz, David, Paulus, Walter
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study. In 12 healthy subjects, anodal excitability-enhancing or cathodal excitability-diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS). Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60–120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation. Serotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools.
AbstractList Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study. Methods - In 12 healthy subjects, anodal excitability-enhancing or cathodal excitability- diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS). Results - Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60-120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation. Conclusions - Serotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools.
Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study. In 12 healthy subjects, anodal excitability-enhancing or cathodal excitability-diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS). Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60-120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation. Serotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools.
Background Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study. Methods In 12 healthy subjects, anodal excitability-enhancing or cathodal excitability-diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS). Results Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60–120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation. Conclusions Serotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools.
Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study.BACKGROUNDModulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study.In 12 healthy subjects, anodal excitability-enhancing or cathodal excitability-diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS).METHODSIn 12 healthy subjects, anodal excitability-enhancing or cathodal excitability-diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS).Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60-120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation.RESULTSUnder placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60-120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation.Serotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools.CONCLUSIONSSerotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools.
Author Paulus, Walter
Kuo, Min-Fang
Karrasch, Ralf
Liebetanz, David
Wächter, Bettina
Nitsche, Michael A.
Author_xml – sequence: 1
  givenname: Michael A.
  surname: Nitsche
  fullname: Nitsche, Michael A.
  email: mnitsch1@gwdg.de
– sequence: 2
  givenname: Min-Fang
  surname: Kuo
  fullname: Kuo, Min-Fang
– sequence: 3
  givenname: Ralf
  surname: Karrasch
  fullname: Karrasch, Ralf
– sequence: 4
  givenname: Bettina
  surname: Wächter
  fullname: Wächter, Bettina
– sequence: 5
  givenname: David
  surname: Liebetanz
  fullname: Liebetanz, David
– sequence: 6
  givenname: Walter
  surname: Paulus
  fullname: Paulus, Walter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19427633$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9qFDEUxoNU7Lb6CmWuvJvxJJmZ7ICIZf3TQlGk9TpkMieYdTZZk4ywd75D37BPYsZtEXrhepNDwvd9hO93TsiR8w4JOaNQUaDtq3XVW7-NO_2tYgBdBbwCxp6QBV0KXrIa2BFZAEBbcsb4MTmJcZ2vgjH6jBzTrmai5XxBvlxj8Mk764pzY1CnWNwE5aLOh1Vj8c6G_FisphDQpbtft5dumDQOxSecgt-OKiarbdoVOeBi2mTnc_LUqDHii_t5Sr5-eH-zuiivPn-8XJ1flbplNJX1oLjpdN8sjRq4oV1vwBjRND2jWrdc85b3nOueMw5tI-iAQi21AmCqVo3gp-TlPncb_I8JY5IbGzWOo3Lopyhb0Qjo2PKgkIGAuqOz8OxeOPUbHOQ22I0KO_nQVha0e4EOPsaA5q8E5IxFruUDFjljkcBlxpKNrx8Zc2cqWe9SUHY8bH-7t2Pu86fFIKO26DKGP3Tk4O3hiDePIvRondVq_I47jGs_BZdpSSojkyCv59WZNwc6gDrPfwf8zw9-A3M22SE
CitedBy_id crossref_primary_10_1001_jamapsychiatry_2019_3199
crossref_primary_10_1016_j_neucli_2014_08_002
crossref_primary_10_1113_JP282565
crossref_primary_10_3389_fphar_2018_00094
crossref_primary_10_3389_fpsyt_2020_00040
crossref_primary_10_1016_j_neurot_2024_e00330
crossref_primary_10_1016_j_brs_2018_10_003
crossref_primary_10_1016_j_brs_2014_12_007
crossref_primary_10_1016_j_neuroimage_2011_07_075
crossref_primary_10_1007_s00406_017_0769_y
crossref_primary_10_1016_j_brs_2011_04_006
crossref_primary_10_1038_nrneurol_2010_55
crossref_primary_10_1016_j_brs_2017_10_006
crossref_primary_10_1016_j_pnpbp_2022_110672
crossref_primary_10_1002_da_22578
crossref_primary_10_1080_02687038_2011_589892
crossref_primary_10_1007_s41465_017_0036_1
crossref_primary_10_1155_2016_8428256
crossref_primary_10_1016_j_neuroimage_2013_05_117
crossref_primary_10_1016_j_neuroimage_2021_118039
crossref_primary_10_3389_fncel_2015_00355
crossref_primary_10_3389_fneur_2017_00058
crossref_primary_10_1152_jn_00065_2021
crossref_primary_10_1016_j_neuropsychologia_2016_06_024
crossref_primary_10_1027_1016_9040_a000242
crossref_primary_10_1080_17434440_2019_1615440
crossref_primary_10_1016_j_brs_2020_09_004
crossref_primary_10_1523_JNEUROSCI_1140_23_2023
crossref_primary_10_1016_j_neulet_2017_12_060
crossref_primary_10_1212_WNL_0b013e318205d50d
crossref_primary_10_1007_s00702_024_02853_4
crossref_primary_10_1016_j_pneurobio_2010_10_003
crossref_primary_10_1586_17434440_2016_1153968
crossref_primary_10_3389_fnins_2016_00550
crossref_primary_10_1002_npr2_12493
crossref_primary_10_1016_j_mehy_2009_12_032
crossref_primary_10_1080_14737175_2016_1209410
crossref_primary_10_7554_eLife_34304
crossref_primary_10_1093_texcom_tgac006
crossref_primary_10_1016_j_neubiorev_2017_03_007
crossref_primary_10_1016_j_chc_2018_07_008
crossref_primary_10_3389_fncir_2017_00072
crossref_primary_10_1016_j_neubiorev_2023_105047
crossref_primary_10_1590_S1807_55092013005000009
crossref_primary_10_1016_j_eurpsy_2011_02_008
crossref_primary_10_1136_gpsych_2023_101166
crossref_primary_10_12677_ASS_2023_124242
crossref_primary_10_1016_j_neuropsychologia_2014_11_021
crossref_primary_10_3389_fpsyg_2016_00315
crossref_primary_10_1016_j_tins_2014_08_003
crossref_primary_10_1080_09602011_2011_557292
crossref_primary_10_1016_j_comppsych_2024_152520
crossref_primary_10_1016_j_pnpbp_2015_06_016
crossref_primary_10_1177_20451253221132085
crossref_primary_10_1016_j_arr_2020_101065
crossref_primary_10_1186_s13041_024_01169_4
crossref_primary_10_3390_life14091106
crossref_primary_10_1016_j_neuropsychologia_2021_107850
crossref_primary_10_52547_shefa_10_3_26
crossref_primary_10_1007_s13295_014_0056_6
crossref_primary_10_1007_s00213_017_4686_6
crossref_primary_10_3389_fpsyt_2022_969199
crossref_primary_10_1016_j_brs_2019_07_013
crossref_primary_10_1016_j_biopsych_2012_10_010
crossref_primary_10_1016_j_brs_2021_03_013
crossref_primary_10_1155_2012_584727
crossref_primary_10_1016_j_neubiorev_2017_06_015
crossref_primary_10_2139_ssrn_3988621
crossref_primary_10_3389_fnbeh_2018_00093
crossref_primary_10_3390_brainsci8020037
crossref_primary_10_1111_ejn_13640
crossref_primary_10_1177_1073858410386614
crossref_primary_10_3109_15622975_2013_876514
crossref_primary_10_1016_j_neures_2017_08_012
crossref_primary_10_3389_fpsyt_2022_969800
crossref_primary_10_1515_revneuro_2019_0047
crossref_primary_10_1016_j_neuropharm_2023_109761
crossref_primary_10_1097_YCT_0000000000000512
crossref_primary_10_1016_j_pnpbp_2012_05_016
crossref_primary_10_29252_shefa_8_1_51
crossref_primary_10_1002_ana_24689
crossref_primary_10_1113_jphysiol_2010_190314
crossref_primary_10_12786_bn_2017_10_e4
crossref_primary_10_3344_kjp_2021_34_2_156
crossref_primary_10_1080_14737175_2019_1637257
crossref_primary_10_1093_ijnp_pyu047
crossref_primary_10_1007_s10286_024_01055_y
crossref_primary_10_1080_13803395_2016_1230595
crossref_primary_10_1016_j_neulet_2019_134723
crossref_primary_10_3390_nu15204455
crossref_primary_10_1016_j_bbr_2011_05_017
crossref_primary_10_1002_gps_5941
crossref_primary_10_1038_npp_2015_270
crossref_primary_10_1016_j_pnpbp_2014_08_009
crossref_primary_10_3389_fnhum_2022_952602
crossref_primary_10_1109_TNSRE_2013_2256432
crossref_primary_10_1159_000502149
crossref_primary_10_1007_s40263_016_0335_6
crossref_primary_10_2217_nmt_2020_0061
crossref_primary_10_1080_09540261_2017_1286299
crossref_primary_10_1007_s00406_013_0446_8
crossref_primary_10_1113_JP273137
crossref_primary_10_3389_fpain_2022_1005634
crossref_primary_10_3389_fnhum_2021_631838
crossref_primary_10_1016_j_ctim_2018_09_013
crossref_primary_10_1080_00222895_2014_983450
crossref_primary_10_1093_scan_nsaa049
crossref_primary_10_1186_1471_2202_13_10
crossref_primary_10_3390_brainsci7120161
crossref_primary_10_1007_s40846_023_00810_2
crossref_primary_10_1111_ner_12786
crossref_primary_10_3390_brainsci14060614
crossref_primary_10_1177_1550059421991688
crossref_primary_10_1186_s40814_023_01423_x
crossref_primary_10_1093_cercor_bhu126
crossref_primary_10_1097_YCT_0000000000000534
crossref_primary_10_1177_0706743716660033
crossref_primary_10_1016_j_neucli_2025_103055
crossref_primary_10_1017_S1461145714000418
crossref_primary_10_3390_brainsci10040236
crossref_primary_10_1192_bjp_bp_115_164715
crossref_primary_10_1177_0271678X17727670
crossref_primary_10_3390_brainsci12050522
crossref_primary_10_1016_j_euroneuro_2014_03_006
crossref_primary_10_1002_brb3_681
crossref_primary_10_1155_2016_2823735
crossref_primary_10_1113_jphysiol_2012_232975
crossref_primary_10_1111_ejn_13675
crossref_primary_10_1007_s40473_014_0009_y
crossref_primary_10_1016_j_neucli_2016_02_003
crossref_primary_10_1016_j_neuroimage_2013_05_098
crossref_primary_10_1186_s12916_021_02181_4
crossref_primary_10_14814_phy2_70067
crossref_primary_10_1016_j_brainresbull_2019_09_011
crossref_primary_10_1016_j_brs_2011_08_005
crossref_primary_10_3389_fnhum_2018_00534
crossref_primary_10_1016_j_brs_2024_04_001
crossref_primary_10_1016_j_clinph_2018_04_604
crossref_primary_10_1016_j_cortex_2017_02_014
crossref_primary_10_1038_npp_2016_170
crossref_primary_10_1371_journal_pone_0098503
crossref_primary_10_1016_j_euroneuro_2013_03_009
crossref_primary_10_1016_j_clinph_2014_08_028
crossref_primary_10_1038_npp_2013_127
crossref_primary_10_1155_2013_603502
crossref_primary_10_1016_j_jpsychires_2020_12_056
crossref_primary_10_1113_jphysiol_2012_249730
crossref_primary_10_1136_jnnp_2016_314075
crossref_primary_10_3389_fnins_2015_00349
crossref_primary_10_1186_s12891_024_07805_3
crossref_primary_10_1016_j_eurpsy_2012_09_001
crossref_primary_10_1177_1550059414540647
crossref_primary_10_1590_S0004_282X2010000300021
crossref_primary_10_1016_j_pnpbp_2023_110766
crossref_primary_10_1016_j_clinph_2016_10_087
crossref_primary_10_1586_erd_12_90
crossref_primary_10_1016_j_neubiorev_2018_04_008
crossref_primary_10_1016_j_cobeha_2016_08_001
crossref_primary_10_3389_fphar_2018_00907
crossref_primary_10_1016_j_cortex_2012_11_002
crossref_primary_10_3389_fnagi_2021_761348
crossref_primary_10_1093_ijnp_pyab035
crossref_primary_10_1515_s13295_014_0056_6
crossref_primary_10_3233_NRE_182469
crossref_primary_10_3390_brainsci14030210
crossref_primary_10_3390_e26110953
crossref_primary_10_1007_s00213_017_4751_1
crossref_primary_10_3389_fnhum_2018_00480
crossref_primary_10_1016_j_actaastro_2020_06_011
crossref_primary_10_1097_WCO_0000000000000353
crossref_primary_10_1016_j_brs_2011_03_002
crossref_primary_10_1016_j_brs_2016_11_009
crossref_primary_10_1113_jphysiol_2014_285940
crossref_primary_10_1186_s12938_017_0361_8
crossref_primary_10_1093_braincomms_fcaa179
crossref_primary_10_1177_1545968319860483
crossref_primary_10_3389_fpsyg_2018_01430
Cites_doi 10.1038/sj.npp.1300517
10.1093/cercor/bhm098
10.1111/j.1399-5618.2006.00291.x
10.1515/REVNEURO.2002.13.3.195
10.1007/s002130050045
10.1093/cercor/bhh204
10.1016/j.jns.2004.03.007
10.1055/s-2004-832670
10.1016/S0014-2999(98)00286-6
10.1034/j.1399-5618.2002.01159.x
10.1113/jphysiol.2005.088310
10.1016/S0006-8993(02)03756-3
10.1016/j.biopsych.2006.10.006
10.1113/jphysiol.2008.159905
10.1038/nrn1629
10.1152/jn.1965.28.1.166
10.1111/j.1469-7793.2001.0285f.x
10.1017/S1461145707007997
10.1523/JNEUROSCI.15-11-07539.1995
10.1016/S0163-1047(87)90664-9
10.1016/j.bbr.2008.02.023
10.1037/a0013867
10.1016/0165-6147(92)90051-7
10.1212/WNL.57.10.1899
10.1101/lm.126306
10.1038/387497a0
10.1016/S1471-4892(02)00008-5
10.1161/01.STR.27.7.1211
10.1016/S0306-4522(02)00026-X
10.1016/S0165-3806(97)00083-7
10.1111/j.1460-9568.2008.06090.x
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1113/jphysiol.2005.092429
10.1111/j.1600-0773.1981.tb01587.x
10.1016/S0149-7634(99)00067-6
10.1016/j.psychres.2005.08.010
10.1002/ana.1257
10.1113/jphysiol.2003.049916
10.1016/j.bbr.2008.02.028
10.1016/S0079-6123(08)00911-4
10.1016/j.neuroimage.2004.12.023
10.1523/JNEUROSCI.3908-06.2007
10.1080/07853890600551045
10.1126/science.1083968
10.1093/brain/awf238
10.1523/JNEUROSCI.0950-04.2004
10.1016/j.bbr.2007.11.027
10.1016/j.brainres.2005.01.001
10.1016/S0006-8993(02)02973-6
10.1111/j.0953-816X.2004.03398.x
10.1006/nimg.2001.0957
10.1097/00001756-199406020-00018
10.1016/S0028-3932(02)00030-1
10.1016/S0091-3057(01)00546-9
10.1016/S1388-2457(02)00412-1
10.1016/j.eurpsy.2007.09.006
10.1016/0006-8993(94)90003-5
10.1523/JNEUROSCI.4104-07.2007
10.1073/pnas.88.6.2560
10.1523/JNEUROSCI.17-21-08324.1997
10.1016/S0006-3223(00)01065-9
10.1093/cercor/bhh085
ContentType Journal Article
Copyright 2009 Society of Biological Psychiatry
Society of Biological Psychiatry
Copyright_xml – notice: 2009 Society of Biological Psychiatry
– notice: Society of Biological Psychiatry
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1016/j.biopsych.2009.03.022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1873-2402
EndPage 508
ExternalDocumentID 19427633
10_1016_j_biopsych_2009_03_022
S0006322309004223
1_s2_0_S0006322309004223
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABCQX
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
HZ~
IHE
J1W
KOM
L7B
M29
M2V
M39
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OU-
OZT
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSN
SSZ
T5K
UNMZH
UPT
UV1
WH7
Z5R
ZCA
~G-
.GJ
3O-
AACTN
AAQXK
ABDPE
ABMZM
AFCTW
AFFNX
AFJKZ
AFKWA
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
GBLVA
HEG
HMK
HMO
HMQ
HVGLF
H~9
P-8
PKN
R2-
RIG
SNS
UAP
WUQ
XJT
XOL
ZGI
ZKB
ZXP
AADPK
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
ZA5
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
ID FETCH-LOGICAL-c621t-4da3f9cb58fad3f19bf0ff755b21cc63c363b33cb32306571de7a8ca002a4a573
IEDL.DBID AIKHN
ISSN 0006-3223
1873-2402
IngestDate Fri Jul 11 06:52:13 EDT 2025
Fri Jul 11 05:15:49 EDT 2025
Mon Jul 21 06:03:21 EDT 2025
Tue Jul 01 03:21:15 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Fri Feb 23 02:42:23 EST 2024
Sun Feb 23 10:19:26 EST 2025
Tue Aug 26 16:31:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Depression
serotonin
motor cortex
human
transcranial direct current stimulation
neuroplasticity
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c621t-4da3f9cb58fad3f19bf0ff755b21cc63c363b33cb32306571de7a8ca002a4a573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://resolver.sub.uni-goettingen.de/purl?gs-1/6237
PMID 19427633
PQID 20704918
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_67570928
proquest_miscellaneous_20704918
pubmed_primary_19427633
crossref_primary_10_1016_j_biopsych_2009_03_022
crossref_citationtrail_10_1016_j_biopsych_2009_03_022
elsevier_sciencedirect_doi_10_1016_j_biopsych_2009_03_022
elsevier_clinicalkeyesjournals_1_s2_0_S0006322309004223
elsevier_clinicalkey_doi_10_1016_j_biopsych_2009_03_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-09-01
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biological psychiatry (1969)
PublicationTitleAlternate Biol Psychiatry
PublicationYear 2009
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Stewart, Reid (bib16) 2000; 148
Boros, Poreisz, Münchau, Paulus, Nitsche (bib40) 2008; 27
Panicker, Parker, Miledi (bib49) 1991; 88
Bert, Fink, Rothe, Walstab, Bönisch (bib1) 2008; 195
Gu (bib51) 2002; 111
Caspi, Sugden, Moffitt, Taylor, Craig, Harrington (bib17) 2003; 30
Normann, Schmitz, Fürmaier, Döing, Bach (bib20) 2007; 62
Kuo, Paulus, Nitsche (bib35) 2008; 18
Nitsche, Liebetanz, Schlitterlau, Henschke, Fricke, Lang (bib38) 2004; 19
Cheeran, Talelli, Mori, Koch, Suppa, Edwards (bib61) 2008; 586
Rigonatti, Boggio, Myczkowski, Otta, Fiquer, Ribeiro (bib63) 2008; 23
Spedding, Neau, Harsing (bib15) 2003; 3
Bearden, Glahn, Monkul, Barrett, Najt, Villarreal (bib21) 2006; 142
Nitsche, Nitsche, Klein, Tergau, Rothwell, Paulus (bib30) 2003; 114
Liebetanz, Nitsche, Tergau, Paulus (bib31) 2002; 125
Edagawa, Saito, Abe (bib45) 1998; 349
Wood, Wren (bib56) 2008; 172
Kojima, Matsumoto, Togashi, Tachibana, Kemmotsu, Yoshioka (bib46) 2003; 959
Bockaert, Fozard, Dumuis, Clarke (bib50) 1992; 13
Ardolino, Bossi, Barbieri, Priori (bib39) 2005; 568
Roerig, Katz (bib55) 1997; 17
Kemp, Manahan-Vaughan (bib6) 2005; 15
Ogren, Eriksson, Elvander-Tottie, D'Addario, Ekström, Svenningsson (bib3) 2008; 195
Nitsche, Grundey, Liebetanz, Lang, Tergau, Paulus (bib36) 2004; 14
Andrade, Chaput (bib48) 1991; 257
Nitsche, Paulus (bib28) 2000; 527
Speer, Kimbrell, Wassermann, Repella, J, Willis (bib64) 2000; 48
Kuo, Grosch, Fregni, Paulus, Nitsche (bib34) 2007; 27
Dam, Tonin, De Boni, Pizzolato, Casson, Ermani (bib27) 1996; 27
Henn, Vollmayr (bib13) 2004; 37
Nitsche, Jaussi, Liebetanz, Lang, Tergau, Paulus (bib33) 2004; 29
Consolo, Arnaboldi, Giorgi, Russi, Ladinsky (bib54) 1994; 5
Kojic, Gu, Douglas, Cynader (bib7) 1997; 101
Nitsche, Paulus (bib29) 2001; 57
Nitsche, Fricke, Henschke, Schlitterlau, Liebetanz, Lang (bib32) 2003; 553
Binder, Holsboer (bib59) 2006; 38
Meneses (bib2) 1999; 23
Staubli, Otaky (bib47) 1994; 643
Purpura, McMurtry (bib57) 1965; 28
Xu, Anwyl, Rowan (bib19) 1997; 387
Sanberg, Jones, Do, Dieguez, Derrick (bib44) 2006; 13
Riad, Zimmer, Rbah, Watkins, Hamon, Descarries (bib53) 2004; 24
Loubinoux, Pariente, Rascol, Celsis, Chollet (bib23) 2008; 40
Ohashi, Matsumoto, Otani, Mori, Togashi, Ueno (bib10) 2002; 949
Normann, Clark (bib9) 2005; 1037
Loubinoux, Pariente, Boulanouar, Carel, Manelfe, Rascol (bib24) 2002; 15
Mori, Togashi, Kojima, Matsumoto, Ohashi, Ueno (bib8) 2001; 69
Nibuya, Morinobu, Duman (bib60) 1995; 15
Castrén (bib11) 2005; 6
Pariente, Loubinoux, Carel, Albucher, Leger, Manelfe (bib26) 2001; 50
Bezchlibnyk-Butler, Aleksic, Kennedy (bib41) 2000; 25
Nitsche, Seeber, Frommann, Klein, Nitsche, Rochford (bib37) 2005; 568
Perez-Garcia, Meneses (bib4) 2008; 195
Huang, Kandel (bib5) 2007; 27
Lamy, Goshen-Kosover, Aviani, Harari, Levkovitz (bib22) 2008; 117
Loubinoux, Tombari, Pariente, Gerdelat-Mas, Franceries, Cassol (bib25) 2005; 27
Foy, Stanton, Levine, Thompson (bib18) 1987; 48
Kragh-Sørensen, Overø, Petersen, Jensen, Parnas (bib42) 1981; 48
Popoli, Gennarelli, Racagni (bib14) 2002; 4
Fregni, Boggio, Nitsche, Marcolin, Rigonatti, Pascual-Leone (bib62) 2006; 8
Lisman (bib52) 2001; 532
Savaskan, Müller, Böhringer, Schulz, Schächinger (bib58) 2008; 11
Garcia (bib12) 2002; 13
Robol, Fiaschi, Manganotti (bib43) 2004; 221
Pariente (10.1016/j.biopsych.2009.03.022_bib26) 2001; 50
Speer (10.1016/j.biopsych.2009.03.022_bib64) 2000; 48
Foy (10.1016/j.biopsych.2009.03.022_bib18) 1987; 48
Nitsche (10.1016/j.biopsych.2009.03.022_bib38) 2004; 19
Dam (10.1016/j.biopsych.2009.03.022_bib27) 1996; 27
Kuo (10.1016/j.biopsych.2009.03.022_bib35) 2008; 18
Meneses (10.1016/j.biopsych.2009.03.022_bib2) 1999; 23
Loubinoux (10.1016/j.biopsych.2009.03.022_bib24) 2002; 15
Caspi (10.1016/j.biopsych.2009.03.022_bib17) 2003; 30
Bert (10.1016/j.biopsych.2009.03.022_bib1) 2008; 195
Riad (10.1016/j.biopsych.2009.03.022_bib53) 2004; 24
Ogren (10.1016/j.biopsych.2009.03.022_bib3) 2008; 195
Nitsche (10.1016/j.biopsych.2009.03.022_bib37) 2005; 568
Perez-Garcia (10.1016/j.biopsych.2009.03.022_bib4) 2008; 195
Roerig (10.1016/j.biopsych.2009.03.022_bib55) 1997; 17
Liebetanz (10.1016/j.biopsych.2009.03.022_bib31) 2002; 125
Castrén (10.1016/j.biopsych.2009.03.022_bib11) 2005; 6
Popoli (10.1016/j.biopsych.2009.03.022_bib14) 2002; 4
Ohashi (10.1016/j.biopsych.2009.03.022_bib10) 2002; 949
Bockaert (10.1016/j.biopsych.2009.03.022_bib50) 1992; 13
Huang (10.1016/j.biopsych.2009.03.022_bib5) 2007; 27
Bezchlibnyk-Butler (10.1016/j.biopsych.2009.03.022_bib41) 2000; 25
Panicker (10.1016/j.biopsych.2009.03.022_bib49) 1991; 88
Mori (10.1016/j.biopsych.2009.03.022_bib8) 2001; 69
Nitsche (10.1016/j.biopsych.2009.03.022_bib28) 2000; 527
Cheeran (10.1016/j.biopsych.2009.03.022_bib61) 2008; 586
Lamy (10.1016/j.biopsych.2009.03.022_bib22) 2008; 117
Nitsche (10.1016/j.biopsych.2009.03.022_bib32) 2003; 553
Nitsche (10.1016/j.biopsych.2009.03.022_bib33) 2004; 29
Xu (10.1016/j.biopsych.2009.03.022_bib19) 1997; 387
Nitsche (10.1016/j.biopsych.2009.03.022_bib29) 2001; 57
Kragh-Sørensen (10.1016/j.biopsych.2009.03.022_bib42) 1981; 48
Kuo (10.1016/j.biopsych.2009.03.022_bib34) 2007; 27
Nibuya (10.1016/j.biopsych.2009.03.022_bib60) 1995; 15
Garcia (10.1016/j.biopsych.2009.03.022_bib12) 2002; 13
Loubinoux (10.1016/j.biopsych.2009.03.022_bib23) 2008; 40
Normann (10.1016/j.biopsych.2009.03.022_bib20) 2007; 62
Edagawa (10.1016/j.biopsych.2009.03.022_bib45) 1998; 349
Ardolino (10.1016/j.biopsych.2009.03.022_bib39) 2005; 568
Andrade (10.1016/j.biopsych.2009.03.022_bib48) 1991; 257
Fregni (10.1016/j.biopsych.2009.03.022_bib62) 2006; 8
Lisman (10.1016/j.biopsych.2009.03.022_bib52) 2001; 532
Rigonatti (10.1016/j.biopsych.2009.03.022_bib63) 2008; 23
Robol (10.1016/j.biopsych.2009.03.022_bib43) 2004; 221
Kojic (10.1016/j.biopsych.2009.03.022_bib7) 1997; 101
Kemp (10.1016/j.biopsych.2009.03.022_bib6) 2005; 15
Boros (10.1016/j.biopsych.2009.03.022_bib40) 2008; 27
Stewart (10.1016/j.biopsych.2009.03.022_bib16) 2000; 148
Nitsche (10.1016/j.biopsych.2009.03.022_bib30) 2003; 114
Gu (10.1016/j.biopsych.2009.03.022_bib51) 2002; 111
Normann (10.1016/j.biopsych.2009.03.022_bib9) 2005; 1037
Spedding (10.1016/j.biopsych.2009.03.022_bib15) 2003; 3
Binder (10.1016/j.biopsych.2009.03.022_bib59) 2006; 38
Sanberg (10.1016/j.biopsych.2009.03.022_bib44) 2006; 13
Purpura (10.1016/j.biopsych.2009.03.022_bib57) 1965; 28
Loubinoux (10.1016/j.biopsych.2009.03.022_bib25) 2005; 27
Staubli (10.1016/j.biopsych.2009.03.022_bib47) 1994; 643
Nitsche (10.1016/j.biopsych.2009.03.022_bib36) 2004; 14
Bearden (10.1016/j.biopsych.2009.03.022_bib21) 2006; 142
Kojima (10.1016/j.biopsych.2009.03.022_bib46) 2003; 959
Henn (10.1016/j.biopsych.2009.03.022_bib13) 2004; 37
Wood (10.1016/j.biopsych.2009.03.022_bib56) 2008; 172
Consolo (10.1016/j.biopsych.2009.03.022_bib54) 1994; 5
Savaskan (10.1016/j.biopsych.2009.03.022_bib58) 2008; 11
References_xml – volume: 13
  start-page: 52
  year: 2006
  end-page: 62
  ident: bib44
  article-title: 5-HT1A receptor antagonists block perforant path-dentate LTP induced in novel, but not familiar, environments
  publication-title: Learn Mem
– volume: 29
  start-page: 1573
  year: 2004
  end-page: 1578
  ident: bib33
  article-title: Consolidation of externally induced human motor cortical neuroplasticity by d-cycloserine
  publication-title: Neuropsychopharmacology
– volume: 27
  start-page: 1442
  year: 2007
  end-page: 1447
  ident: bib34
  article-title: Focusing effect of acetylcholine on neuroplasticity in the human motor cortex
  publication-title: J Neurosci
– volume: 949
  start-page: 131
  year: 2002
  end-page: 138
  ident: bib10
  article-title: Changes in synaptic plasticity in the rat hippocampo-medial prefrontal cortex pathway induced by repeated treatments with fluvoxamine
  publication-title: Brain Res
– volume: 13
  start-page: 195
  year: 2002
  end-page: 208
  ident: bib12
  article-title: Stress, synaptic plasticity, and psychopathology
  publication-title: Rev Neurosci
– volume: 532
  start-page: 285
  year: 2001
  ident: bib52
  article-title: Three Ca2+ levels affect plasticity differently: The LTP zone, the LTD zone and no man's land
  publication-title: J Physiol
– volume: 257
  start-page: 930
  year: 1991
  end-page: 937
  ident: bib48
  article-title: 5-Hydroxytryptamine4-like receptors mediate the slow excitatory response to serotonin in the rat hippocampus
  publication-title: J Pharmacol Exp Ther
– volume: 586
  start-page: 5717
  year: 2008
  end-page: 5725
  ident: bib61
  article-title: A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS
  publication-title: J Physiol
– volume: 117
  start-page: 954
  year: 2008
  end-page: 961
  ident: bib22
  article-title: Implicit memory for spatial context in depression and schizophrenia
  publication-title: J Abnorm Psychol
– volume: 221
  start-page: 41
  year: 2004
  end-page: 46
  ident: bib43
  article-title: Effects of citalopram on the excitability of the human motor cortex: A paired magnetic stimulation study
  publication-title: J Neurol Sci
– volume: 50
  start-page: 718
  year: 2001
  end-page: 729
  ident: bib26
  article-title: Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke
  publication-title: Ann Neurol
– volume: 527
  start-page: 633
  year: 2000
  end-page: 639
  ident: bib28
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J Physiol
– volume: 15
  start-page: 7539
  year: 1995
  end-page: 7547
  ident: bib60
  article-title: Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments
  publication-title: J Neurosci
– volume: 24
  start-page: 5420
  year: 2004
  end-page: 5426
  ident: bib53
  article-title: Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand18FMPPF in the nucleus raphe dorsalis of rat
  publication-title: J Neurosci
– volume: 387
  start-page: 497
  year: 1997
  end-page: 500
  ident: bib19
  article-title: Behavioural stress facilitates the induction of long-term depression in the hippocampus
  publication-title: Nature
– volume: 8
  start-page: 203
  year: 2006
  end-page: 204
  ident: bib62
  article-title: Treatment of Major depression with transcranial direct current stimulation
  publication-title: Bipolar Disord
– volume: 5
  start-page: 1230
  year: 1994
  end-page: 1232
  ident: bib54
  article-title: 5-HT4 receptor stimulation facilitates acetylcholine release in rat frontal cortex
  publication-title: Neuroreport
– volume: 195
  start-page: 54
  year: 2008
  end-page: 77
  ident: bib3
  article-title: The role of 5-HT(1A) receptors in learning and memory
  publication-title: Behav Brain Res
– volume: 6
  start-page: 241
  year: 2005
  end-page: 246
  ident: bib11
  article-title: Is mood chemistry?
  publication-title: Nat Rev Neurosci
– volume: 48
  start-page: 1133
  year: 2000
  end-page: 1141
  ident: bib64
  article-title: Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients
  publication-title: Biol Psychiatry
– volume: 568
  start-page: 291
  year: 2005
  end-page: 303
  ident: bib37
  article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex
  publication-title: J Physiol
– volume: 111
  start-page: 815
  year: 2002
  end-page: 835
  ident: bib51
  article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity
  publication-title: Neuroscience
– volume: 195
  start-page: 78
  year: 2008
  end-page: 85
  ident: bib1
  article-title: Learning and memory in 5 HT(1A)-receptor mutant mice
  publication-title: Behav Brain Res
– volume: 69
  start-page: 367
  year: 2001
  end-page: 372
  ident: bib8
  article-title: Different effects of anxiolytic agents, diazepam and 5-HT(1A) agonist tandospirone, on hippocampal long-term potentiation in vivo
  publication-title: Pharmacol Biochem Behav
– volume: 349
  start-page: 221
  year: 1998
  end-page: 224
  ident: bib45
  article-title: 5-HT1A receptor-mediated inhibition of long-term potentiation in rat visual cortex
  publication-title: Eur J Pharmacol
– volume: 1037
  start-page: 187
  year: 2005
  end-page: 193
  ident: bib9
  article-title: Selective modulation of Ca(2+) influx pathways by 5-HT regulates synaptic long-term plasticity in the hippocampus
  publication-title: Brain Res
– volume: 13
  start-page: 141
  year: 1992
  end-page: 145
  ident: bib50
  article-title: The 5-HT4 receptor: A place in the sun
  publication-title: Trends Pharmacol Sci
– volume: 15
  start-page: 1037
  year: 2005
  end-page: 1043
  ident: bib6
  article-title: The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo
  publication-title: Cereb Cortex
– volume: 125
  start-page: 2238
  year: 2002
  end-page: 2247
  ident: bib31
  article-title: Pharmacological approach to synaptic and membrane mechanisms of DC-induced neuroplasticity in man
  publication-title: Brain
– volume: 148
  start-page: 217
  year: 2000
  end-page: 223
  ident: bib16
  article-title: Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity
  publication-title: Psychopharmacology
– volume: 114
  start-page: 600
  year: 2003
  end-page: 604
  ident: bib30
  article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex
  publication-title: Clin Neurophysiol
– volume: 172
  start-page: 213
  year: 2008
  end-page: 230
  ident: bib56
  article-title: Serotonin-dopamine interactions: Implications for the design of novel therapeutic agents for psychiatric disorders
  publication-title: Prog Brain Res
– volume: 27
  start-page: 1292
  year: 2008
  end-page: 1300
  ident: bib40
  article-title: Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans
  publication-title: Eur J Neurosci
– volume: 18
  start-page: 648
  year: 2008
  end-page: 651
  ident: bib35
  article-title: Boosting focally-induced brain plasticity by dopamine
  publication-title: Cereb Cortex
– volume: 14
  start-page: 1240
  year: 2004
  end-page: 1245
  ident: bib36
  article-title: Catecholaminergic consolidation of motor cortex plasticity in humans
  publication-title: Cereb Cortex
– volume: 19
  start-page: 2720
  year: 2004
  end-page: 2726
  ident: bib38
  article-title: GABAergic modulation of DC-stimulation-induced motor cortex excitability shifts in the human
  publication-title: Eur J Neurosci
– volume: 28
  start-page: 166
  year: 1965
  end-page: 185
  ident: bib57
  article-title: Intracellular activities and evoked potential changes during polarization ofI motor cortex
  publication-title: J Neurophysiol
– volume: 27
  start-page: 299
  year: 2005
  end-page: 313
  ident: bib25
  article-title: Modulation of behavior and cortical motor activity in healthy subjects by a chronic administration of a serotonin enhancer
  publication-title: Neuroimage
– volume: 38
  start-page: 82
  year: 2006
  end-page: 94
  ident: bib59
  article-title: Pharmacogenomics and antidepressant drugs
  publication-title: Ann Med
– volume: 27
  start-page: 3111
  year: 2007
  end-page: 3119
  ident: bib5
  article-title: 5-Hydroxytryptamine induces a protein kinase A/mitogen-activated protein kinase-mediated and macromolecular synthesis-dependent late phase of long-term potentiation in the amygdala
  publication-title: J Neurosci
– volume: 62
  start-page: 373
  year: 2007
  end-page: 380
  ident: bib20
  article-title: Long-term plasticity of visually evoked potentials in humans is altered in major depression
  publication-title: Biol Psychiatry
– volume: 142
  start-page: 139
  year: 2006
  end-page: 150
  ident: bib21
  article-title: Patterns of memory impairment in bipolar disorder and unipolar major depression
  publication-title: Psychiatry Res
– volume: 37
  start-page: S152
  year: 2004
  end-page: S156
  ident: bib13
  article-title: Basic pathophysiological mechanisms in depression: What are they and how might they affect the course of the illness?
  publication-title: Pharmacopsychiatry
– volume: 553
  start-page: 293
  year: 2003
  end-page: 301
  ident: bib32
  article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial DC stimulation
  publication-title: J Physiol
– volume: 15
  start-page: 26
  year: 2002
  end-page: 36
  ident: bib24
  article-title: A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: Double-blind, placebo-controlled, fMRI study in healthy subjects
  publication-title: Neuroimage
– volume: 959
  start-page: 165
  year: 2003
  end-page: 168
  ident: bib46
  article-title: Fluvoxamine suppresses the long-term potentiation in the hippocampal CA1 field of anesthetized rats: An effect mediated via 5-HT1A receptors
  publication-title: Brain Res
– volume: 195
  start-page: 17
  year: 2008
  end-page: 29
  ident: bib4
  article-title: Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role
  publication-title: Behav Brain Res
– volume: 23
  start-page: 1111
  year: 1999
  end-page: 1125
  ident: bib2
  article-title: 5-HT system and cognition
  publication-title: Neurosci Biobehav Rev
– volume: 17
  start-page: 8324
  year: 1997
  end-page: 8338
  ident: bib55
  article-title: Modulation of intrinsic circuits by serotonin 5-HT3 receptors in developing ferret visual cortex
  publication-title: J Neurosci
– volume: 48
  start-page: 138
  year: 1987
  end-page: 149
  ident: bib18
  article-title: Behavioral stress impairs long-term potentiation in rodent hippocampus
  publication-title: Behav Neural Biol
– volume: 27
  start-page: 1211
  year: 1996
  end-page: 1214
  ident: bib27
  article-title: Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy
  publication-title: Stroke
– volume: 30
  start-page: 386
  year: 2003
  end-page: 389
  ident: bib17
  article-title: Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene
  publication-title: Science
– volume: 3
  start-page: 33
  year: 2003
  end-page: 40
  ident: bib15
  article-title: Brain plasticity and pathology in psychiatric disease: Sites of action for potential therapy
  publication-title: Curr Opin Pharmacol
– volume: 568
  start-page: 653
  year: 2005
  end-page: 663
  ident: bib39
  article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain
  publication-title: J Physiol
– volume: 88
  start-page: 2560
  year: 1991
  end-page: 2562
  ident: bib49
  article-title: Receptors of the serotonin 1C subtype expressed from cloned DNA mediate the closing of K+ membrane channels encoded by brain mRNA
  publication-title: Proc Natl Acad Sci U S A
– volume: 101
  start-page: 299
  year: 1997
  end-page: 304
  ident: bib7
  article-title: Serotonin facilitates synaptic plasticity in kitten visual cortex: An in vitro study
  publication-title: Brain Res Dev Brain Res
– volume: 40
  start-page: 1815
  year: 2008
  end-page: 1821
  ident: bib23
  article-title: Selective serotonin reuptake inhibitor paroxetine modulates motor behavior through practice
  publication-title: Neuropsychologia
– volume: 57
  start-page: 1899
  year: 2001
  end-page: 1901
  ident: bib29
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
– volume: 23
  start-page: 74
  year: 2008
  end-page: 76
  ident: bib63
  article-title: Transcranial direct stimulation and fluoxetine for the treatment of depression
  publication-title: Eur Psychiatry
– volume: 4
  start-page: 166
  year: 2002
  end-page: 182
  ident: bib14
  article-title: Modulation of synaptic plasticity by stress and antidepressants
  publication-title: Bipolar Disord
– volume: 11
  start-page: 381
  year: 2008
  end-page: 388
  ident: bib58
  article-title: Antidepressive therapy with escitalopram improves mood, cognitive symptoms, and identity memory for angry fæces in elderly depressed patients
  publication-title: Int J Neuropsychopharmacology
– volume: 643
  start-page: 10
  year: 1994
  end-page: 16
  ident: bib47
  article-title: Serotonin controls the magnitude of LTP induced by theta bursts via an action on NMDA-receptor-mediated responses
  publication-title: Brain Res
– volume: 25
  start-page: 241
  year: 2000
  end-page: 254
  ident: bib41
  article-title: Citalopram—A review of pharmacological and clinical effects
  publication-title: J Psychiatry Neurosci
– volume: 48
  start-page: 53
  year: 1981
  end-page: 60
  ident: bib42
  article-title: The kinetics of citalopram: Single and multiple dose studies in man
  publication-title: Acta Pharmacol Toxicol
– volume: 29
  start-page: 1573
  year: 2004
  ident: 10.1016/j.biopsych.2009.03.022_bib33
  article-title: Consolidation of externally induced human motor cortical neuroplasticity by d-cycloserine
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1300517
– volume: 18
  start-page: 648
  year: 2008
  ident: 10.1016/j.biopsych.2009.03.022_bib35
  article-title: Boosting focally-induced brain plasticity by dopamine
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhm098
– volume: 8
  start-page: 203
  year: 2006
  ident: 10.1016/j.biopsych.2009.03.022_bib62
  article-title: Treatment of Major depression with transcranial direct current stimulation
  publication-title: Bipolar Disord
  doi: 10.1111/j.1399-5618.2006.00291.x
– volume: 13
  start-page: 195
  year: 2002
  ident: 10.1016/j.biopsych.2009.03.022_bib12
  article-title: Stress, synaptic plasticity, and psychopathology
  publication-title: Rev Neurosci
  doi: 10.1515/REVNEURO.2002.13.3.195
– volume: 148
  start-page: 217
  year: 2000
  ident: 10.1016/j.biopsych.2009.03.022_bib16
  article-title: Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity
  publication-title: Psychopharmacology
  doi: 10.1007/s002130050045
– volume: 15
  start-page: 1037
  year: 2005
  ident: 10.1016/j.biopsych.2009.03.022_bib6
  article-title: The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhh204
– volume: 221
  start-page: 41
  year: 2004
  ident: 10.1016/j.biopsych.2009.03.022_bib43
  article-title: Effects of citalopram on the excitability of the human motor cortex: A paired magnetic stimulation study
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2004.03.007
– volume: 37
  start-page: S152
  issue: suppl 2
  year: 2004
  ident: 10.1016/j.biopsych.2009.03.022_bib13
  article-title: Basic pathophysiological mechanisms in depression: What are they and how might they affect the course of the illness?
  publication-title: Pharmacopsychiatry
  doi: 10.1055/s-2004-832670
– volume: 349
  start-page: 221
  year: 1998
  ident: 10.1016/j.biopsych.2009.03.022_bib45
  article-title: 5-HT1A receptor-mediated inhibition of long-term potentiation in rat visual cortex
  publication-title: Eur J Pharmacol
  doi: 10.1016/S0014-2999(98)00286-6
– volume: 4
  start-page: 166
  year: 2002
  ident: 10.1016/j.biopsych.2009.03.022_bib14
  article-title: Modulation of synaptic plasticity by stress and antidepressants
  publication-title: Bipolar Disord
  doi: 10.1034/j.1399-5618.2002.01159.x
– volume: 568
  start-page: 653
  year: 2005
  ident: 10.1016/j.biopsych.2009.03.022_bib39
  article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2005.088310
– volume: 959
  start-page: 165
  year: 2003
  ident: 10.1016/j.biopsych.2009.03.022_bib46
  article-title: Fluvoxamine suppresses the long-term potentiation in the hippocampal CA1 field of anesthetized rats: An effect mediated via 5-HT1A receptors
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(02)03756-3
– volume: 62
  start-page: 373
  year: 2007
  ident: 10.1016/j.biopsych.2009.03.022_bib20
  article-title: Long-term plasticity of visually evoked potentials in humans is altered in major depression
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2006.10.006
– volume: 586
  start-page: 5717
  year: 2008
  ident: 10.1016/j.biopsych.2009.03.022_bib61
  article-title: A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2008.159905
– volume: 6
  start-page: 241
  year: 2005
  ident: 10.1016/j.biopsych.2009.03.022_bib11
  article-title: Is mood chemistry?
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1629
– volume: 28
  start-page: 166
  year: 1965
  ident: 10.1016/j.biopsych.2009.03.022_bib57
  article-title: Intracellular activities and evoked potential changes during polarization ofI motor cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1965.28.1.166
– volume: 532
  start-page: 285
  year: 2001
  ident: 10.1016/j.biopsych.2009.03.022_bib52
  article-title: Three Ca2+ levels affect plasticity differently: The LTP zone, the LTD zone and no man's land
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.2001.0285f.x
– volume: 11
  start-page: 381
  year: 2008
  ident: 10.1016/j.biopsych.2009.03.022_bib58
  article-title: Antidepressive therapy with escitalopram improves mood, cognitive symptoms, and identity memory for angry fæces in elderly depressed patients
  publication-title: Int J Neuropsychopharmacology
  doi: 10.1017/S1461145707007997
– volume: 15
  start-page: 7539
  year: 1995
  ident: 10.1016/j.biopsych.2009.03.022_bib60
  article-title: Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.15-11-07539.1995
– volume: 48
  start-page: 138
  year: 1987
  ident: 10.1016/j.biopsych.2009.03.022_bib18
  article-title: Behavioral stress impairs long-term potentiation in rodent hippocampus
  publication-title: Behav Neural Biol
  doi: 10.1016/S0163-1047(87)90664-9
– volume: 195
  start-page: 54
  year: 2008
  ident: 10.1016/j.biopsych.2009.03.022_bib3
  article-title: The role of 5-HT(1A) receptors in learning and memory
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2008.02.023
– volume: 117
  start-page: 954
  year: 2008
  ident: 10.1016/j.biopsych.2009.03.022_bib22
  article-title: Implicit memory for spatial context in depression and schizophrenia
  publication-title: J Abnorm Psychol
  doi: 10.1037/a0013867
– volume: 13
  start-page: 141
  year: 1992
  ident: 10.1016/j.biopsych.2009.03.022_bib50
  article-title: The 5-HT4 receptor: A place in the sun
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/0165-6147(92)90051-7
– volume: 57
  start-page: 1899
  year: 2001
  ident: 10.1016/j.biopsych.2009.03.022_bib29
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
  doi: 10.1212/WNL.57.10.1899
– volume: 13
  start-page: 52
  year: 2006
  ident: 10.1016/j.biopsych.2009.03.022_bib44
  article-title: 5-HT1A receptor antagonists block perforant path-dentate LTP induced in novel, but not familiar, environments
  publication-title: Learn Mem
  doi: 10.1101/lm.126306
– volume: 387
  start-page: 497
  year: 1997
  ident: 10.1016/j.biopsych.2009.03.022_bib19
  article-title: Behavioural stress facilitates the induction of long-term depression in the hippocampus
  publication-title: Nature
  doi: 10.1038/387497a0
– volume: 3
  start-page: 33
  year: 2003
  ident: 10.1016/j.biopsych.2009.03.022_bib15
  article-title: Brain plasticity and pathology in psychiatric disease: Sites of action for potential therapy
  publication-title: Curr Opin Pharmacol
  doi: 10.1016/S1471-4892(02)00008-5
– volume: 27
  start-page: 1211
  year: 1996
  ident: 10.1016/j.biopsych.2009.03.022_bib27
  article-title: Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy
  publication-title: Stroke
  doi: 10.1161/01.STR.27.7.1211
– volume: 111
  start-page: 815
  year: 2002
  ident: 10.1016/j.biopsych.2009.03.022_bib51
  article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(02)00026-X
– volume: 101
  start-page: 299
  year: 1997
  ident: 10.1016/j.biopsych.2009.03.022_bib7
  article-title: Serotonin facilitates synaptic plasticity in kitten visual cortex: An in vitro study
  publication-title: Brain Res Dev Brain Res
  doi: 10.1016/S0165-3806(97)00083-7
– volume: 27
  start-page: 1292
  year: 2008
  ident: 10.1016/j.biopsych.2009.03.022_bib40
  article-title: Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2008.06090.x
– volume: 527
  start-page: 633
  year: 2000
  ident: 10.1016/j.biopsych.2009.03.022_bib28
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– volume: 568
  start-page: 291
  year: 2005
  ident: 10.1016/j.biopsych.2009.03.022_bib37
  article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2005.092429
– volume: 48
  start-page: 53
  year: 1981
  ident: 10.1016/j.biopsych.2009.03.022_bib42
  article-title: The kinetics of citalopram: Single and multiple dose studies in man
  publication-title: Acta Pharmacol Toxicol
  doi: 10.1111/j.1600-0773.1981.tb01587.x
– volume: 23
  start-page: 1111
  year: 1999
  ident: 10.1016/j.biopsych.2009.03.022_bib2
  article-title: 5-HT system and cognition
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/S0149-7634(99)00067-6
– volume: 142
  start-page: 139
  year: 2006
  ident: 10.1016/j.biopsych.2009.03.022_bib21
  article-title: Patterns of memory impairment in bipolar disorder and unipolar major depression
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2005.08.010
– volume: 50
  start-page: 718
  year: 2001
  ident: 10.1016/j.biopsych.2009.03.022_bib26
  article-title: Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke
  publication-title: Ann Neurol
  doi: 10.1002/ana.1257
– volume: 553
  start-page: 293
  year: 2003
  ident: 10.1016/j.biopsych.2009.03.022_bib32
  article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial DC stimulation
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2003.049916
– volume: 195
  start-page: 78
  year: 2008
  ident: 10.1016/j.biopsych.2009.03.022_bib1
  article-title: Learning and memory in 5 HT(1A)-receptor mutant mice
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2008.02.028
– volume: 172
  start-page: 213
  year: 2008
  ident: 10.1016/j.biopsych.2009.03.022_bib56
  article-title: Serotonin-dopamine interactions: Implications for the design of novel therapeutic agents for psychiatric disorders
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(08)00911-4
– volume: 27
  start-page: 299
  year: 2005
  ident: 10.1016/j.biopsych.2009.03.022_bib25
  article-title: Modulation of behavior and cortical motor activity in healthy subjects by a chronic administration of a serotonin enhancer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.023
– volume: 27
  start-page: 3111
  year: 2007
  ident: 10.1016/j.biopsych.2009.03.022_bib5
  article-title: 5-Hydroxytryptamine induces a protein kinase A/mitogen-activated protein kinase-mediated and macromolecular synthesis-dependent late phase of long-term potentiation in the amygdala
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3908-06.2007
– volume: 38
  start-page: 82
  year: 2006
  ident: 10.1016/j.biopsych.2009.03.022_bib59
  article-title: Pharmacogenomics and antidepressant drugs
  publication-title: Ann Med
  doi: 10.1080/07853890600551045
– volume: 257
  start-page: 930
  year: 1991
  ident: 10.1016/j.biopsych.2009.03.022_bib48
  article-title: 5-Hydroxytryptamine4-like receptors mediate the slow excitatory response to serotonin in the rat hippocampus
  publication-title: J Pharmacol Exp Ther
– volume: 30
  start-page: 386
  year: 2003
  ident: 10.1016/j.biopsych.2009.03.022_bib17
  article-title: Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene
  publication-title: Science
  doi: 10.1126/science.1083968
– volume: 125
  start-page: 2238
  year: 2002
  ident: 10.1016/j.biopsych.2009.03.022_bib31
  article-title: Pharmacological approach to synaptic and membrane mechanisms of DC-induced neuroplasticity in man
  publication-title: Brain
  doi: 10.1093/brain/awf238
– volume: 24
  start-page: 5420
  year: 2004
  ident: 10.1016/j.biopsych.2009.03.022_bib53
  article-title: Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand18FMPPF in the nucleus raphe dorsalis of rat
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0950-04.2004
– volume: 195
  start-page: 17
  year: 2008
  ident: 10.1016/j.biopsych.2009.03.022_bib4
  article-title: Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2007.11.027
– volume: 1037
  start-page: 187
  year: 2005
  ident: 10.1016/j.biopsych.2009.03.022_bib9
  article-title: Selective modulation of Ca(2+) influx pathways by 5-HT regulates synaptic long-term plasticity in the hippocampus
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2005.01.001
– volume: 949
  start-page: 131
  year: 2002
  ident: 10.1016/j.biopsych.2009.03.022_bib10
  article-title: Changes in synaptic plasticity in the rat hippocampo-medial prefrontal cortex pathway induced by repeated treatments with fluvoxamine
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(02)02973-6
– volume: 19
  start-page: 2720
  year: 2004
  ident: 10.1016/j.biopsych.2009.03.022_bib38
  article-title: GABAergic modulation of DC-stimulation-induced motor cortex excitability shifts in the human
  publication-title: Eur J Neurosci
  doi: 10.1111/j.0953-816X.2004.03398.x
– volume: 15
  start-page: 26
  year: 2002
  ident: 10.1016/j.biopsych.2009.03.022_bib24
  article-title: A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: Double-blind, placebo-controlled, fMRI study in healthy subjects
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0957
– volume: 5
  start-page: 1230
  year: 1994
  ident: 10.1016/j.biopsych.2009.03.022_bib54
  article-title: 5-HT4 receptor stimulation facilitates acetylcholine release in rat frontal cortex
  publication-title: Neuroreport
  doi: 10.1097/00001756-199406020-00018
– volume: 40
  start-page: 1815
  year: 2008
  ident: 10.1016/j.biopsych.2009.03.022_bib23
  article-title: Selective serotonin reuptake inhibitor paroxetine modulates motor behavior through practice
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(02)00030-1
– volume: 69
  start-page: 367
  year: 2001
  ident: 10.1016/j.biopsych.2009.03.022_bib8
  article-title: Different effects of anxiolytic agents, diazepam and 5-HT(1A) agonist tandospirone, on hippocampal long-term potentiation in vivo
  publication-title: Pharmacol Biochem Behav
  doi: 10.1016/S0091-3057(01)00546-9
– volume: 114
  start-page: 600
  year: 2003
  ident: 10.1016/j.biopsych.2009.03.022_bib30
  article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00412-1
– volume: 23
  start-page: 74
  year: 2008
  ident: 10.1016/j.biopsych.2009.03.022_bib63
  article-title: Transcranial direct stimulation and fluoxetine for the treatment of depression
  publication-title: Eur Psychiatry
  doi: 10.1016/j.eurpsy.2007.09.006
– volume: 25
  start-page: 241
  year: 2000
  ident: 10.1016/j.biopsych.2009.03.022_bib41
  article-title: Citalopram—A review of pharmacological and clinical effects
  publication-title: J Psychiatry Neurosci
– volume: 643
  start-page: 10
  year: 1994
  ident: 10.1016/j.biopsych.2009.03.022_bib47
  article-title: Serotonin controls the magnitude of LTP induced by theta bursts via an action on NMDA-receptor-mediated responses
  publication-title: Brain Res
  doi: 10.1016/0006-8993(94)90003-5
– volume: 27
  start-page: 1442
  year: 2007
  ident: 10.1016/j.biopsych.2009.03.022_bib34
  article-title: Focusing effect of acetylcholine on neuroplasticity in the human motor cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4104-07.2007
– volume: 88
  start-page: 2560
  year: 1991
  ident: 10.1016/j.biopsych.2009.03.022_bib49
  article-title: Receptors of the serotonin 1C subtype expressed from cloned DNA mediate the closing of K+ membrane channels encoded by brain mRNA
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.88.6.2560
– volume: 17
  start-page: 8324
  year: 1997
  ident: 10.1016/j.biopsych.2009.03.022_bib55
  article-title: Modulation of intrinsic circuits by serotonin 5-HT3 receptors in developing ferret visual cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-21-08324.1997
– volume: 48
  start-page: 1133
  year: 2000
  ident: 10.1016/j.biopsych.2009.03.022_bib64
  article-title: Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(00)01065-9
– volume: 14
  start-page: 1240
  year: 2004
  ident: 10.1016/j.biopsych.2009.03.022_bib36
  article-title: Catecholaminergic consolidation of motor cortex plasticity in humans
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhh085
SSID ssj0007221
Score 2.4070601
Snippet Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning...
Background Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 503
SubjectTerms Adult
Citalopram - pharmacology
Cross-Over Studies
Depression
Electric Stimulation - methods
Evoked Potentials, Motor - drug effects
Evoked Potentials, Motor - physiology
Female
human
Humans
Male
motor cortex
Motor Cortex - drug effects
Motor Cortex - physiology
Neuronal Plasticity - drug effects
Neuronal Plasticity - physiology
neuroplasticity
Psychiatry
serotonin
Serotonin - physiology
Serotonin Uptake Inhibitors - pharmacology
transcranial direct current stimulation
Transcranial Magnetic Stimulation
Title Serotonin Affects Transcranial Direct Current–Induced Neuroplasticity in Humans
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0006322309004223
https://www.clinicalkey.es/playcontent/1-s2.0-S0006322309004223
https://dx.doi.org/10.1016/j.biopsych.2009.03.022
https://www.ncbi.nlm.nih.gov/pubmed/19427633
https://www.proquest.com/docview/20704918
https://www.proquest.com/docview/67570928
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yoI9LSbdNu32kPvTqXVtjWfZxWRq2DQkEEshNWLIEG8LuEjuHXEL-Q_9hf0lHsrxtKEtKe_HBaGwx-jQz0rwAPmtkXJvMxM54jV1B8rhQAmMCh1G10Wi8R_f4JJ-dZ98u-MUWTPtcGBdWGWR_J9O9tA5vxoGb49V87nJ8Sb2SdktKX8gKt2GXYZkTtHcnX49mJ2uBLBgLjfPy2BH8lih8OVLzpY8rDqUrcZQwtklHbbJBvS463IMXwYiMJt08X8KWWQzgSddW8nYAz6Z9F7cBPD0OzvNXcEpyYdm669do0kVxRF5TaXoQCqNO-kWhYtOP---urQcxKPIFPFZkZrsI7PY2og_4u__mNZwffjmbzuLQUSHWOUvbOKsrtKVWvLBVjTYtlU2sFZwrlmqdo8YcFaJW6DvKi7Q2oip0RWKzyioucB92FsuFeQtRImytyf6ytLQZ16myBRa6UHWCXFjUQ-A9D6UO5cZd14sr2ceVXcqe964XZikTlMT7IYzXdKuu4MajFKJfItmnk5IAlKQT_o3SNGEfNzKVDZOJ_ANrQyjXlA_g-ld__dTjSBIYnIOmWpjlTUODBB3Y0mLzCDreiaRkNOJNB8BfPCozRroC3_3HzN7D885Z5kLoPsBOe31jPpLN1aoD2B7dpQdhZ_0EcTctBQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTtwwcESpKL1UdPvatpQcuGY38cRxckSrooWySJVA4mbFji0tqnZXTThwQfxD_7Bf0rHjAFW1alUuOUQziTWelz0vgH2NjGuTmdg5r7FrSB4XSmBMzGFUbTQaH9GdnebT8-z4gl9swKSvhXFplUH3dzrda-vwZhyoOV7N567Gl8wrWbek9I2s8Ak8zUh8nXSObu7zPARjYWxeHjvwB2XClyM1X_qs4tC4EkcJY-ss1DoP1Fuiwx14EVzI6KBb5UvYMIsBbHVDJa8HsD3pZ7gN4NkshM5fwVfSCsvWXb5GB10OR-TtlKYH8WDU6b4o9Gv6efvDDfUg8kS-fceKnGyXf91eR_QBf_PfvIbzw89nk2kc5inEOmdpG2d1hbbUihe2qtGmpbKJtYJzxVKtc9SYo0LUCv08eZHWRlSFrkhpVlnFBb6BzcVyYd5BlAhba_K-LG1sxnWqbIGFLlSdIBcW9RB4T0OpQ7NxN_Pim-yzyi5lT3s3CbOUCUqi_RDGd3irrt3GXzFEv0WyLyYl9SfJIvwfpmmCFDcylQ2TifyD04ZQ3mH-xqz_9Ne9no8kMYMLz1QLs7xqCEjQcS0t1kPQ4U4kJSOItx0D3tOozBhZCnz_iJXtwfb0bHYiT45Ov3yA513YzCXTfYTN9vuV2SXvq1WfvHT9Au-8Lck
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serotonin+affects+transcranial+direct+current-induced+neuroplasticity+in+humans&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Nitsche%2C+Michael+A&rft.au=Kuo%2C+Min-Fang&rft.au=Karrasch%2C+Ralf&rft.au=W%C3%A4chter%2C+Bettina&rft.date=2009-09-01&rft.eissn=1873-2402&rft.volume=66&rft.issue=5&rft.spage=503&rft_id=info:doi/10.1016%2Fj.biopsych.2009.03.022&rft_id=info%3Apmid%2F19427633&rft.externalDocID=19427633
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322309X00156%2Fcov150h.gif