Serotonin Affects Transcranial Direct Current–Induced Neuroplasticity in Humans
Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechan...
Saved in:
Published in | Biological psychiatry (1969) Vol. 66; no. 5; pp. 503 - 508 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study.
In 12 healthy subjects, anodal excitability-enhancing or cathodal excitability-diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS).
Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60–120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation.
Serotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools. |
---|---|
AbstractList | Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study. Methods - In 12 healthy subjects, anodal excitability-enhancing or cathodal excitability- diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS). Results - Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60-120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation. Conclusions - Serotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools. Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study. In 12 healthy subjects, anodal excitability-enhancing or cathodal excitability-diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS). Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60-120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation. Serotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools. Background Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study. Methods In 12 healthy subjects, anodal excitability-enhancing or cathodal excitability-diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS). Results Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60–120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation. Conclusions Serotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools. Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study.BACKGROUNDModulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, in animals and slice preparations. Serotonin-dependent modulation of plasticity has been proposed as an underlying mechanism for depression. However, direct knowledge about the impact of serotonin on neuroplasticity in humans is missing. Here we explore the impact of the serotonin reuptake blocker citalopram on plasticity induced by transcranial direct current stimulation (tDCS) in humans in a single-blinded, placebo-controlled, randomized crossover study.In 12 healthy subjects, anodal excitability-enhancing or cathodal excitability-diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS).METHODSIn 12 healthy subjects, anodal excitability-enhancing or cathodal excitability-diminishing tDCS was applied to the motor cortex under a single dose of 20-mg citalopram or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation (TMS).Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60-120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation.RESULTSUnder placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for about 60-120 min. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS, whereas it turned cathodal tDCS-induced inhibition into facilitation.Serotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools.CONCLUSIONSSerotonin has a prominent impact on neuroplasticity in humans, which is in favor for facilitatory plasticity. Taking into account serotonergic hypoactivity in depression, this might explain deficits of learning and memory formation. Moreover, the results suggest that for therapeutic brain stimulation in depression and other neuropsychiatric diseases (e.g., in neurorehabilitation), serotonergic reinforcement may enhance facilitatory aftereffects and thereby increase the efficacy of these tools. |
Author | Paulus, Walter Kuo, Min-Fang Karrasch, Ralf Liebetanz, David Wächter, Bettina Nitsche, Michael A. |
Author_xml | – sequence: 1 givenname: Michael A. surname: Nitsche fullname: Nitsche, Michael A. email: mnitsch1@gwdg.de – sequence: 2 givenname: Min-Fang surname: Kuo fullname: Kuo, Min-Fang – sequence: 3 givenname: Ralf surname: Karrasch fullname: Karrasch, Ralf – sequence: 4 givenname: Bettina surname: Wächter fullname: Wächter, Bettina – sequence: 5 givenname: David surname: Liebetanz fullname: Liebetanz, David – sequence: 6 givenname: Walter surname: Paulus fullname: Paulus, Walter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19427633$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt9qFDEUxoNU7Lb6CmWuvJvxJJmZ7ICIZf3TQlGk9TpkMieYdTZZk4ywd75D37BPYsZtEXrhepNDwvd9hO93TsiR8w4JOaNQUaDtq3XVW7-NO_2tYgBdBbwCxp6QBV0KXrIa2BFZAEBbcsb4MTmJcZ2vgjH6jBzTrmai5XxBvlxj8Mk764pzY1CnWNwE5aLOh1Vj8c6G_FisphDQpbtft5dumDQOxSecgt-OKiarbdoVOeBi2mTnc_LUqDHii_t5Sr5-eH-zuiivPn-8XJ1flbplNJX1oLjpdN8sjRq4oV1vwBjRND2jWrdc85b3nOueMw5tI-iAQi21AmCqVo3gp-TlPncb_I8JY5IbGzWOo3Lopyhb0Qjo2PKgkIGAuqOz8OxeOPUbHOQ22I0KO_nQVha0e4EOPsaA5q8E5IxFruUDFjljkcBlxpKNrx8Zc2cqWe9SUHY8bH-7t2Pu86fFIKO26DKGP3Tk4O3hiDePIvRondVq_I47jGs_BZdpSSojkyCv59WZNwc6gDrPfwf8zw9-A3M22SE |
CitedBy_id | crossref_primary_10_1001_jamapsychiatry_2019_3199 crossref_primary_10_1016_j_neucli_2014_08_002 crossref_primary_10_1113_JP282565 crossref_primary_10_3389_fphar_2018_00094 crossref_primary_10_3389_fpsyt_2020_00040 crossref_primary_10_1016_j_neurot_2024_e00330 crossref_primary_10_1016_j_brs_2018_10_003 crossref_primary_10_1016_j_brs_2014_12_007 crossref_primary_10_1016_j_neuroimage_2011_07_075 crossref_primary_10_1007_s00406_017_0769_y crossref_primary_10_1016_j_brs_2011_04_006 crossref_primary_10_1038_nrneurol_2010_55 crossref_primary_10_1016_j_brs_2017_10_006 crossref_primary_10_1016_j_pnpbp_2022_110672 crossref_primary_10_1002_da_22578 crossref_primary_10_1080_02687038_2011_589892 crossref_primary_10_1007_s41465_017_0036_1 crossref_primary_10_1155_2016_8428256 crossref_primary_10_1016_j_neuroimage_2013_05_117 crossref_primary_10_1016_j_neuroimage_2021_118039 crossref_primary_10_3389_fncel_2015_00355 crossref_primary_10_3389_fneur_2017_00058 crossref_primary_10_1152_jn_00065_2021 crossref_primary_10_1016_j_neuropsychologia_2016_06_024 crossref_primary_10_1027_1016_9040_a000242 crossref_primary_10_1080_17434440_2019_1615440 crossref_primary_10_1016_j_brs_2020_09_004 crossref_primary_10_1523_JNEUROSCI_1140_23_2023 crossref_primary_10_1016_j_neulet_2017_12_060 crossref_primary_10_1212_WNL_0b013e318205d50d crossref_primary_10_1007_s00702_024_02853_4 crossref_primary_10_1016_j_pneurobio_2010_10_003 crossref_primary_10_1586_17434440_2016_1153968 crossref_primary_10_3389_fnins_2016_00550 crossref_primary_10_1002_npr2_12493 crossref_primary_10_1016_j_mehy_2009_12_032 crossref_primary_10_1080_14737175_2016_1209410 crossref_primary_10_7554_eLife_34304 crossref_primary_10_1093_texcom_tgac006 crossref_primary_10_1016_j_neubiorev_2017_03_007 crossref_primary_10_1016_j_chc_2018_07_008 crossref_primary_10_3389_fncir_2017_00072 crossref_primary_10_1016_j_neubiorev_2023_105047 crossref_primary_10_1590_S1807_55092013005000009 crossref_primary_10_1016_j_eurpsy_2011_02_008 crossref_primary_10_1136_gpsych_2023_101166 crossref_primary_10_12677_ASS_2023_124242 crossref_primary_10_1016_j_neuropsychologia_2014_11_021 crossref_primary_10_3389_fpsyg_2016_00315 crossref_primary_10_1016_j_tins_2014_08_003 crossref_primary_10_1080_09602011_2011_557292 crossref_primary_10_1016_j_comppsych_2024_152520 crossref_primary_10_1016_j_pnpbp_2015_06_016 crossref_primary_10_1177_20451253221132085 crossref_primary_10_1016_j_arr_2020_101065 crossref_primary_10_1186_s13041_024_01169_4 crossref_primary_10_3390_life14091106 crossref_primary_10_1016_j_neuropsychologia_2021_107850 crossref_primary_10_52547_shefa_10_3_26 crossref_primary_10_1007_s13295_014_0056_6 crossref_primary_10_1007_s00213_017_4686_6 crossref_primary_10_3389_fpsyt_2022_969199 crossref_primary_10_1016_j_brs_2019_07_013 crossref_primary_10_1016_j_biopsych_2012_10_010 crossref_primary_10_1016_j_brs_2021_03_013 crossref_primary_10_1155_2012_584727 crossref_primary_10_1016_j_neubiorev_2017_06_015 crossref_primary_10_2139_ssrn_3988621 crossref_primary_10_3389_fnbeh_2018_00093 crossref_primary_10_3390_brainsci8020037 crossref_primary_10_1111_ejn_13640 crossref_primary_10_1177_1073858410386614 crossref_primary_10_3109_15622975_2013_876514 crossref_primary_10_1016_j_neures_2017_08_012 crossref_primary_10_3389_fpsyt_2022_969800 crossref_primary_10_1515_revneuro_2019_0047 crossref_primary_10_1016_j_neuropharm_2023_109761 crossref_primary_10_1097_YCT_0000000000000512 crossref_primary_10_1016_j_pnpbp_2012_05_016 crossref_primary_10_29252_shefa_8_1_51 crossref_primary_10_1002_ana_24689 crossref_primary_10_1113_jphysiol_2010_190314 crossref_primary_10_12786_bn_2017_10_e4 crossref_primary_10_3344_kjp_2021_34_2_156 crossref_primary_10_1080_14737175_2019_1637257 crossref_primary_10_1093_ijnp_pyu047 crossref_primary_10_1007_s10286_024_01055_y crossref_primary_10_1080_13803395_2016_1230595 crossref_primary_10_1016_j_neulet_2019_134723 crossref_primary_10_3390_nu15204455 crossref_primary_10_1016_j_bbr_2011_05_017 crossref_primary_10_1002_gps_5941 crossref_primary_10_1038_npp_2015_270 crossref_primary_10_1016_j_pnpbp_2014_08_009 crossref_primary_10_3389_fnhum_2022_952602 crossref_primary_10_1109_TNSRE_2013_2256432 crossref_primary_10_1159_000502149 crossref_primary_10_1007_s40263_016_0335_6 crossref_primary_10_2217_nmt_2020_0061 crossref_primary_10_1080_09540261_2017_1286299 crossref_primary_10_1007_s00406_013_0446_8 crossref_primary_10_1113_JP273137 crossref_primary_10_3389_fpain_2022_1005634 crossref_primary_10_3389_fnhum_2021_631838 crossref_primary_10_1016_j_ctim_2018_09_013 crossref_primary_10_1080_00222895_2014_983450 crossref_primary_10_1093_scan_nsaa049 crossref_primary_10_1186_1471_2202_13_10 crossref_primary_10_3390_brainsci7120161 crossref_primary_10_1007_s40846_023_00810_2 crossref_primary_10_1111_ner_12786 crossref_primary_10_3390_brainsci14060614 crossref_primary_10_1177_1550059421991688 crossref_primary_10_1186_s40814_023_01423_x crossref_primary_10_1093_cercor_bhu126 crossref_primary_10_1097_YCT_0000000000000534 crossref_primary_10_1177_0706743716660033 crossref_primary_10_1016_j_neucli_2025_103055 crossref_primary_10_1017_S1461145714000418 crossref_primary_10_3390_brainsci10040236 crossref_primary_10_1192_bjp_bp_115_164715 crossref_primary_10_1177_0271678X17727670 crossref_primary_10_3390_brainsci12050522 crossref_primary_10_1016_j_euroneuro_2014_03_006 crossref_primary_10_1002_brb3_681 crossref_primary_10_1155_2016_2823735 crossref_primary_10_1113_jphysiol_2012_232975 crossref_primary_10_1111_ejn_13675 crossref_primary_10_1007_s40473_014_0009_y crossref_primary_10_1016_j_neucli_2016_02_003 crossref_primary_10_1016_j_neuroimage_2013_05_098 crossref_primary_10_1186_s12916_021_02181_4 crossref_primary_10_14814_phy2_70067 crossref_primary_10_1016_j_brainresbull_2019_09_011 crossref_primary_10_1016_j_brs_2011_08_005 crossref_primary_10_3389_fnhum_2018_00534 crossref_primary_10_1016_j_brs_2024_04_001 crossref_primary_10_1016_j_clinph_2018_04_604 crossref_primary_10_1016_j_cortex_2017_02_014 crossref_primary_10_1038_npp_2016_170 crossref_primary_10_1371_journal_pone_0098503 crossref_primary_10_1016_j_euroneuro_2013_03_009 crossref_primary_10_1016_j_clinph_2014_08_028 crossref_primary_10_1038_npp_2013_127 crossref_primary_10_1155_2013_603502 crossref_primary_10_1016_j_jpsychires_2020_12_056 crossref_primary_10_1113_jphysiol_2012_249730 crossref_primary_10_1136_jnnp_2016_314075 crossref_primary_10_3389_fnins_2015_00349 crossref_primary_10_1186_s12891_024_07805_3 crossref_primary_10_1016_j_eurpsy_2012_09_001 crossref_primary_10_1177_1550059414540647 crossref_primary_10_1590_S0004_282X2010000300021 crossref_primary_10_1016_j_pnpbp_2023_110766 crossref_primary_10_1016_j_clinph_2016_10_087 crossref_primary_10_1586_erd_12_90 crossref_primary_10_1016_j_neubiorev_2018_04_008 crossref_primary_10_1016_j_cobeha_2016_08_001 crossref_primary_10_3389_fphar_2018_00907 crossref_primary_10_1016_j_cortex_2012_11_002 crossref_primary_10_3389_fnagi_2021_761348 crossref_primary_10_1093_ijnp_pyab035 crossref_primary_10_1515_s13295_014_0056_6 crossref_primary_10_3233_NRE_182469 crossref_primary_10_3390_brainsci14030210 crossref_primary_10_3390_e26110953 crossref_primary_10_1007_s00213_017_4751_1 crossref_primary_10_3389_fnhum_2018_00480 crossref_primary_10_1016_j_actaastro_2020_06_011 crossref_primary_10_1097_WCO_0000000000000353 crossref_primary_10_1016_j_brs_2011_03_002 crossref_primary_10_1016_j_brs_2016_11_009 crossref_primary_10_1113_jphysiol_2014_285940 crossref_primary_10_1186_s12938_017_0361_8 crossref_primary_10_1093_braincomms_fcaa179 crossref_primary_10_1177_1545968319860483 crossref_primary_10_3389_fpsyg_2018_01430 |
Cites_doi | 10.1038/sj.npp.1300517 10.1093/cercor/bhm098 10.1111/j.1399-5618.2006.00291.x 10.1515/REVNEURO.2002.13.3.195 10.1007/s002130050045 10.1093/cercor/bhh204 10.1016/j.jns.2004.03.007 10.1055/s-2004-832670 10.1016/S0014-2999(98)00286-6 10.1034/j.1399-5618.2002.01159.x 10.1113/jphysiol.2005.088310 10.1016/S0006-8993(02)03756-3 10.1016/j.biopsych.2006.10.006 10.1113/jphysiol.2008.159905 10.1038/nrn1629 10.1152/jn.1965.28.1.166 10.1111/j.1469-7793.2001.0285f.x 10.1017/S1461145707007997 10.1523/JNEUROSCI.15-11-07539.1995 10.1016/S0163-1047(87)90664-9 10.1016/j.bbr.2008.02.023 10.1037/a0013867 10.1016/0165-6147(92)90051-7 10.1212/WNL.57.10.1899 10.1101/lm.126306 10.1038/387497a0 10.1016/S1471-4892(02)00008-5 10.1161/01.STR.27.7.1211 10.1016/S0306-4522(02)00026-X 10.1016/S0165-3806(97)00083-7 10.1111/j.1460-9568.2008.06090.x 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1113/jphysiol.2005.092429 10.1111/j.1600-0773.1981.tb01587.x 10.1016/S0149-7634(99)00067-6 10.1016/j.psychres.2005.08.010 10.1002/ana.1257 10.1113/jphysiol.2003.049916 10.1016/j.bbr.2008.02.028 10.1016/S0079-6123(08)00911-4 10.1016/j.neuroimage.2004.12.023 10.1523/JNEUROSCI.3908-06.2007 10.1080/07853890600551045 10.1126/science.1083968 10.1093/brain/awf238 10.1523/JNEUROSCI.0950-04.2004 10.1016/j.bbr.2007.11.027 10.1016/j.brainres.2005.01.001 10.1016/S0006-8993(02)02973-6 10.1111/j.0953-816X.2004.03398.x 10.1006/nimg.2001.0957 10.1097/00001756-199406020-00018 10.1016/S0028-3932(02)00030-1 10.1016/S0091-3057(01)00546-9 10.1016/S1388-2457(02)00412-1 10.1016/j.eurpsy.2007.09.006 10.1016/0006-8993(94)90003-5 10.1523/JNEUROSCI.4104-07.2007 10.1073/pnas.88.6.2560 10.1523/JNEUROSCI.17-21-08324.1997 10.1016/S0006-3223(00)01065-9 10.1093/cercor/bhh085 |
ContentType | Journal Article |
Copyright | 2009 Society of Biological Psychiatry Society of Biological Psychiatry |
Copyright_xml | – notice: 2009 Society of Biological Psychiatry – notice: Society of Biological Psychiatry |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1016/j.biopsych.2009.03.022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1873-2402 |
EndPage | 508 |
ExternalDocumentID | 19427633 10_1016_j_biopsych_2009_03_022 S0006322309004223 1_s2_0_S0006322309004223 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABCQX ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q HZ~ IHE J1W KOM L7B M29 M2V M39 M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OU- OZT P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SEL SES SPCBC SSH SSN SSZ T5K UNMZH UPT UV1 WH7 Z5R ZCA ~G- .GJ 3O- AACTN AAQXK ABDPE ABMZM AFCTW AFFNX AFJKZ AFKWA AJOXV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 GBLVA HEG HMK HMO HMQ HVGLF H~9 P-8 PKN R2- RIG SNS UAP WUQ XJT XOL ZGI ZKB ZXP AADPK AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR ZA5 AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
ID | FETCH-LOGICAL-c621t-4da3f9cb58fad3f19bf0ff755b21cc63c363b33cb32306571de7a8ca002a4a573 |
IEDL.DBID | AIKHN |
ISSN | 0006-3223 1873-2402 |
IngestDate | Fri Jul 11 06:52:13 EDT 2025 Fri Jul 11 05:15:49 EDT 2025 Mon Jul 21 06:03:21 EDT 2025 Tue Jul 01 03:21:15 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Fri Feb 23 02:42:23 EST 2024 Sun Feb 23 10:19:26 EST 2025 Tue Aug 26 16:31:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Depression serotonin motor cortex human transcranial direct current stimulation neuroplasticity |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c621t-4da3f9cb58fad3f19bf0ff755b21cc63c363b33cb32306571de7a8ca002a4a573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | http://resolver.sub.uni-goettingen.de/purl?gs-1/6237 |
PMID | 19427633 |
PQID | 20704918 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_67570928 proquest_miscellaneous_20704918 pubmed_primary_19427633 crossref_primary_10_1016_j_biopsych_2009_03_022 crossref_citationtrail_10_1016_j_biopsych_2009_03_022 elsevier_sciencedirect_doi_10_1016_j_biopsych_2009_03_022 elsevier_clinicalkeyesjournals_1_s2_0_S0006322309004223 elsevier_clinicalkey_doi_10_1016_j_biopsych_2009_03_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-09-01 |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: 2009-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biological psychiatry (1969) |
PublicationTitleAlternate | Biol Psychiatry |
PublicationYear | 2009 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Stewart, Reid (bib16) 2000; 148 Boros, Poreisz, Münchau, Paulus, Nitsche (bib40) 2008; 27 Panicker, Parker, Miledi (bib49) 1991; 88 Bert, Fink, Rothe, Walstab, Bönisch (bib1) 2008; 195 Gu (bib51) 2002; 111 Caspi, Sugden, Moffitt, Taylor, Craig, Harrington (bib17) 2003; 30 Normann, Schmitz, Fürmaier, Döing, Bach (bib20) 2007; 62 Kuo, Paulus, Nitsche (bib35) 2008; 18 Nitsche, Liebetanz, Schlitterlau, Henschke, Fricke, Lang (bib38) 2004; 19 Cheeran, Talelli, Mori, Koch, Suppa, Edwards (bib61) 2008; 586 Rigonatti, Boggio, Myczkowski, Otta, Fiquer, Ribeiro (bib63) 2008; 23 Spedding, Neau, Harsing (bib15) 2003; 3 Bearden, Glahn, Monkul, Barrett, Najt, Villarreal (bib21) 2006; 142 Nitsche, Nitsche, Klein, Tergau, Rothwell, Paulus (bib30) 2003; 114 Liebetanz, Nitsche, Tergau, Paulus (bib31) 2002; 125 Edagawa, Saito, Abe (bib45) 1998; 349 Wood, Wren (bib56) 2008; 172 Kojima, Matsumoto, Togashi, Tachibana, Kemmotsu, Yoshioka (bib46) 2003; 959 Bockaert, Fozard, Dumuis, Clarke (bib50) 1992; 13 Ardolino, Bossi, Barbieri, Priori (bib39) 2005; 568 Roerig, Katz (bib55) 1997; 17 Kemp, Manahan-Vaughan (bib6) 2005; 15 Ogren, Eriksson, Elvander-Tottie, D'Addario, Ekström, Svenningsson (bib3) 2008; 195 Nitsche, Grundey, Liebetanz, Lang, Tergau, Paulus (bib36) 2004; 14 Andrade, Chaput (bib48) 1991; 257 Nitsche, Paulus (bib28) 2000; 527 Speer, Kimbrell, Wassermann, Repella, J, Willis (bib64) 2000; 48 Kuo, Grosch, Fregni, Paulus, Nitsche (bib34) 2007; 27 Dam, Tonin, De Boni, Pizzolato, Casson, Ermani (bib27) 1996; 27 Henn, Vollmayr (bib13) 2004; 37 Nitsche, Jaussi, Liebetanz, Lang, Tergau, Paulus (bib33) 2004; 29 Consolo, Arnaboldi, Giorgi, Russi, Ladinsky (bib54) 1994; 5 Kojic, Gu, Douglas, Cynader (bib7) 1997; 101 Nitsche, Paulus (bib29) 2001; 57 Nitsche, Fricke, Henschke, Schlitterlau, Liebetanz, Lang (bib32) 2003; 553 Binder, Holsboer (bib59) 2006; 38 Meneses (bib2) 1999; 23 Staubli, Otaky (bib47) 1994; 643 Purpura, McMurtry (bib57) 1965; 28 Xu, Anwyl, Rowan (bib19) 1997; 387 Sanberg, Jones, Do, Dieguez, Derrick (bib44) 2006; 13 Riad, Zimmer, Rbah, Watkins, Hamon, Descarries (bib53) 2004; 24 Loubinoux, Pariente, Rascol, Celsis, Chollet (bib23) 2008; 40 Ohashi, Matsumoto, Otani, Mori, Togashi, Ueno (bib10) 2002; 949 Normann, Clark (bib9) 2005; 1037 Loubinoux, Pariente, Boulanouar, Carel, Manelfe, Rascol (bib24) 2002; 15 Mori, Togashi, Kojima, Matsumoto, Ohashi, Ueno (bib8) 2001; 69 Nibuya, Morinobu, Duman (bib60) 1995; 15 Castrén (bib11) 2005; 6 Pariente, Loubinoux, Carel, Albucher, Leger, Manelfe (bib26) 2001; 50 Bezchlibnyk-Butler, Aleksic, Kennedy (bib41) 2000; 25 Nitsche, Seeber, Frommann, Klein, Nitsche, Rochford (bib37) 2005; 568 Perez-Garcia, Meneses (bib4) 2008; 195 Huang, Kandel (bib5) 2007; 27 Lamy, Goshen-Kosover, Aviani, Harari, Levkovitz (bib22) 2008; 117 Loubinoux, Tombari, Pariente, Gerdelat-Mas, Franceries, Cassol (bib25) 2005; 27 Foy, Stanton, Levine, Thompson (bib18) 1987; 48 Kragh-Sørensen, Overø, Petersen, Jensen, Parnas (bib42) 1981; 48 Popoli, Gennarelli, Racagni (bib14) 2002; 4 Fregni, Boggio, Nitsche, Marcolin, Rigonatti, Pascual-Leone (bib62) 2006; 8 Lisman (bib52) 2001; 532 Savaskan, Müller, Böhringer, Schulz, Schächinger (bib58) 2008; 11 Garcia (bib12) 2002; 13 Robol, Fiaschi, Manganotti (bib43) 2004; 221 Pariente (10.1016/j.biopsych.2009.03.022_bib26) 2001; 50 Speer (10.1016/j.biopsych.2009.03.022_bib64) 2000; 48 Foy (10.1016/j.biopsych.2009.03.022_bib18) 1987; 48 Nitsche (10.1016/j.biopsych.2009.03.022_bib38) 2004; 19 Dam (10.1016/j.biopsych.2009.03.022_bib27) 1996; 27 Kuo (10.1016/j.biopsych.2009.03.022_bib35) 2008; 18 Meneses (10.1016/j.biopsych.2009.03.022_bib2) 1999; 23 Loubinoux (10.1016/j.biopsych.2009.03.022_bib24) 2002; 15 Caspi (10.1016/j.biopsych.2009.03.022_bib17) 2003; 30 Bert (10.1016/j.biopsych.2009.03.022_bib1) 2008; 195 Riad (10.1016/j.biopsych.2009.03.022_bib53) 2004; 24 Ogren (10.1016/j.biopsych.2009.03.022_bib3) 2008; 195 Nitsche (10.1016/j.biopsych.2009.03.022_bib37) 2005; 568 Perez-Garcia (10.1016/j.biopsych.2009.03.022_bib4) 2008; 195 Roerig (10.1016/j.biopsych.2009.03.022_bib55) 1997; 17 Liebetanz (10.1016/j.biopsych.2009.03.022_bib31) 2002; 125 Castrén (10.1016/j.biopsych.2009.03.022_bib11) 2005; 6 Popoli (10.1016/j.biopsych.2009.03.022_bib14) 2002; 4 Ohashi (10.1016/j.biopsych.2009.03.022_bib10) 2002; 949 Bockaert (10.1016/j.biopsych.2009.03.022_bib50) 1992; 13 Huang (10.1016/j.biopsych.2009.03.022_bib5) 2007; 27 Bezchlibnyk-Butler (10.1016/j.biopsych.2009.03.022_bib41) 2000; 25 Panicker (10.1016/j.biopsych.2009.03.022_bib49) 1991; 88 Mori (10.1016/j.biopsych.2009.03.022_bib8) 2001; 69 Nitsche (10.1016/j.biopsych.2009.03.022_bib28) 2000; 527 Cheeran (10.1016/j.biopsych.2009.03.022_bib61) 2008; 586 Lamy (10.1016/j.biopsych.2009.03.022_bib22) 2008; 117 Nitsche (10.1016/j.biopsych.2009.03.022_bib32) 2003; 553 Nitsche (10.1016/j.biopsych.2009.03.022_bib33) 2004; 29 Xu (10.1016/j.biopsych.2009.03.022_bib19) 1997; 387 Nitsche (10.1016/j.biopsych.2009.03.022_bib29) 2001; 57 Kragh-Sørensen (10.1016/j.biopsych.2009.03.022_bib42) 1981; 48 Kuo (10.1016/j.biopsych.2009.03.022_bib34) 2007; 27 Nibuya (10.1016/j.biopsych.2009.03.022_bib60) 1995; 15 Garcia (10.1016/j.biopsych.2009.03.022_bib12) 2002; 13 Loubinoux (10.1016/j.biopsych.2009.03.022_bib23) 2008; 40 Normann (10.1016/j.biopsych.2009.03.022_bib20) 2007; 62 Edagawa (10.1016/j.biopsych.2009.03.022_bib45) 1998; 349 Ardolino (10.1016/j.biopsych.2009.03.022_bib39) 2005; 568 Andrade (10.1016/j.biopsych.2009.03.022_bib48) 1991; 257 Fregni (10.1016/j.biopsych.2009.03.022_bib62) 2006; 8 Lisman (10.1016/j.biopsych.2009.03.022_bib52) 2001; 532 Rigonatti (10.1016/j.biopsych.2009.03.022_bib63) 2008; 23 Robol (10.1016/j.biopsych.2009.03.022_bib43) 2004; 221 Kojic (10.1016/j.biopsych.2009.03.022_bib7) 1997; 101 Kemp (10.1016/j.biopsych.2009.03.022_bib6) 2005; 15 Boros (10.1016/j.biopsych.2009.03.022_bib40) 2008; 27 Stewart (10.1016/j.biopsych.2009.03.022_bib16) 2000; 148 Nitsche (10.1016/j.biopsych.2009.03.022_bib30) 2003; 114 Gu (10.1016/j.biopsych.2009.03.022_bib51) 2002; 111 Normann (10.1016/j.biopsych.2009.03.022_bib9) 2005; 1037 Spedding (10.1016/j.biopsych.2009.03.022_bib15) 2003; 3 Binder (10.1016/j.biopsych.2009.03.022_bib59) 2006; 38 Sanberg (10.1016/j.biopsych.2009.03.022_bib44) 2006; 13 Purpura (10.1016/j.biopsych.2009.03.022_bib57) 1965; 28 Loubinoux (10.1016/j.biopsych.2009.03.022_bib25) 2005; 27 Staubli (10.1016/j.biopsych.2009.03.022_bib47) 1994; 643 Nitsche (10.1016/j.biopsych.2009.03.022_bib36) 2004; 14 Bearden (10.1016/j.biopsych.2009.03.022_bib21) 2006; 142 Kojima (10.1016/j.biopsych.2009.03.022_bib46) 2003; 959 Henn (10.1016/j.biopsych.2009.03.022_bib13) 2004; 37 Wood (10.1016/j.biopsych.2009.03.022_bib56) 2008; 172 Consolo (10.1016/j.biopsych.2009.03.022_bib54) 1994; 5 Savaskan (10.1016/j.biopsych.2009.03.022_bib58) 2008; 11 |
References_xml | – volume: 13 start-page: 52 year: 2006 end-page: 62 ident: bib44 article-title: 5-HT1A receptor antagonists block perforant path-dentate LTP induced in novel, but not familiar, environments publication-title: Learn Mem – volume: 29 start-page: 1573 year: 2004 end-page: 1578 ident: bib33 article-title: Consolidation of externally induced human motor cortical neuroplasticity by d-cycloserine publication-title: Neuropsychopharmacology – volume: 27 start-page: 1442 year: 2007 end-page: 1447 ident: bib34 article-title: Focusing effect of acetylcholine on neuroplasticity in the human motor cortex publication-title: J Neurosci – volume: 949 start-page: 131 year: 2002 end-page: 138 ident: bib10 article-title: Changes in synaptic plasticity in the rat hippocampo-medial prefrontal cortex pathway induced by repeated treatments with fluvoxamine publication-title: Brain Res – volume: 13 start-page: 195 year: 2002 end-page: 208 ident: bib12 article-title: Stress, synaptic plasticity, and psychopathology publication-title: Rev Neurosci – volume: 532 start-page: 285 year: 2001 ident: bib52 article-title: Three Ca2+ levels affect plasticity differently: The LTP zone, the LTD zone and no man's land publication-title: J Physiol – volume: 257 start-page: 930 year: 1991 end-page: 937 ident: bib48 article-title: 5-Hydroxytryptamine4-like receptors mediate the slow excitatory response to serotonin in the rat hippocampus publication-title: J Pharmacol Exp Ther – volume: 586 start-page: 5717 year: 2008 end-page: 5725 ident: bib61 article-title: A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS publication-title: J Physiol – volume: 117 start-page: 954 year: 2008 end-page: 961 ident: bib22 article-title: Implicit memory for spatial context in depression and schizophrenia publication-title: J Abnorm Psychol – volume: 221 start-page: 41 year: 2004 end-page: 46 ident: bib43 article-title: Effects of citalopram on the excitability of the human motor cortex: A paired magnetic stimulation study publication-title: J Neurol Sci – volume: 50 start-page: 718 year: 2001 end-page: 729 ident: bib26 article-title: Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke publication-title: Ann Neurol – volume: 527 start-page: 633 year: 2000 end-page: 639 ident: bib28 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J Physiol – volume: 15 start-page: 7539 year: 1995 end-page: 7547 ident: bib60 article-title: Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments publication-title: J Neurosci – volume: 24 start-page: 5420 year: 2004 end-page: 5426 ident: bib53 article-title: Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand18FMPPF in the nucleus raphe dorsalis of rat publication-title: J Neurosci – volume: 387 start-page: 497 year: 1997 end-page: 500 ident: bib19 article-title: Behavioural stress facilitates the induction of long-term depression in the hippocampus publication-title: Nature – volume: 8 start-page: 203 year: 2006 end-page: 204 ident: bib62 article-title: Treatment of Major depression with transcranial direct current stimulation publication-title: Bipolar Disord – volume: 5 start-page: 1230 year: 1994 end-page: 1232 ident: bib54 article-title: 5-HT4 receptor stimulation facilitates acetylcholine release in rat frontal cortex publication-title: Neuroreport – volume: 195 start-page: 54 year: 2008 end-page: 77 ident: bib3 article-title: The role of 5-HT(1A) receptors in learning and memory publication-title: Behav Brain Res – volume: 6 start-page: 241 year: 2005 end-page: 246 ident: bib11 article-title: Is mood chemistry? publication-title: Nat Rev Neurosci – volume: 48 start-page: 1133 year: 2000 end-page: 1141 ident: bib64 article-title: Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients publication-title: Biol Psychiatry – volume: 568 start-page: 291 year: 2005 end-page: 303 ident: bib37 article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex publication-title: J Physiol – volume: 111 start-page: 815 year: 2002 end-page: 835 ident: bib51 article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity publication-title: Neuroscience – volume: 195 start-page: 78 year: 2008 end-page: 85 ident: bib1 article-title: Learning and memory in 5 HT(1A)-receptor mutant mice publication-title: Behav Brain Res – volume: 69 start-page: 367 year: 2001 end-page: 372 ident: bib8 article-title: Different effects of anxiolytic agents, diazepam and 5-HT(1A) agonist tandospirone, on hippocampal long-term potentiation in vivo publication-title: Pharmacol Biochem Behav – volume: 349 start-page: 221 year: 1998 end-page: 224 ident: bib45 article-title: 5-HT1A receptor-mediated inhibition of long-term potentiation in rat visual cortex publication-title: Eur J Pharmacol – volume: 1037 start-page: 187 year: 2005 end-page: 193 ident: bib9 article-title: Selective modulation of Ca(2+) influx pathways by 5-HT regulates synaptic long-term plasticity in the hippocampus publication-title: Brain Res – volume: 13 start-page: 141 year: 1992 end-page: 145 ident: bib50 article-title: The 5-HT4 receptor: A place in the sun publication-title: Trends Pharmacol Sci – volume: 15 start-page: 1037 year: 2005 end-page: 1043 ident: bib6 article-title: The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo publication-title: Cereb Cortex – volume: 125 start-page: 2238 year: 2002 end-page: 2247 ident: bib31 article-title: Pharmacological approach to synaptic and membrane mechanisms of DC-induced neuroplasticity in man publication-title: Brain – volume: 148 start-page: 217 year: 2000 end-page: 223 ident: bib16 article-title: Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity publication-title: Psychopharmacology – volume: 114 start-page: 600 year: 2003 end-page: 604 ident: bib30 article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex publication-title: Clin Neurophysiol – volume: 172 start-page: 213 year: 2008 end-page: 230 ident: bib56 article-title: Serotonin-dopamine interactions: Implications for the design of novel therapeutic agents for psychiatric disorders publication-title: Prog Brain Res – volume: 27 start-page: 1292 year: 2008 end-page: 1300 ident: bib40 article-title: Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans publication-title: Eur J Neurosci – volume: 18 start-page: 648 year: 2008 end-page: 651 ident: bib35 article-title: Boosting focally-induced brain plasticity by dopamine publication-title: Cereb Cortex – volume: 14 start-page: 1240 year: 2004 end-page: 1245 ident: bib36 article-title: Catecholaminergic consolidation of motor cortex plasticity in humans publication-title: Cereb Cortex – volume: 19 start-page: 2720 year: 2004 end-page: 2726 ident: bib38 article-title: GABAergic modulation of DC-stimulation-induced motor cortex excitability shifts in the human publication-title: Eur J Neurosci – volume: 28 start-page: 166 year: 1965 end-page: 185 ident: bib57 article-title: Intracellular activities and evoked potential changes during polarization ofI motor cortex publication-title: J Neurophysiol – volume: 27 start-page: 299 year: 2005 end-page: 313 ident: bib25 article-title: Modulation of behavior and cortical motor activity in healthy subjects by a chronic administration of a serotonin enhancer publication-title: Neuroimage – volume: 38 start-page: 82 year: 2006 end-page: 94 ident: bib59 article-title: Pharmacogenomics and antidepressant drugs publication-title: Ann Med – volume: 27 start-page: 3111 year: 2007 end-page: 3119 ident: bib5 article-title: 5-Hydroxytryptamine induces a protein kinase A/mitogen-activated protein kinase-mediated and macromolecular synthesis-dependent late phase of long-term potentiation in the amygdala publication-title: J Neurosci – volume: 62 start-page: 373 year: 2007 end-page: 380 ident: bib20 article-title: Long-term plasticity of visually evoked potentials in humans is altered in major depression publication-title: Biol Psychiatry – volume: 142 start-page: 139 year: 2006 end-page: 150 ident: bib21 article-title: Patterns of memory impairment in bipolar disorder and unipolar major depression publication-title: Psychiatry Res – volume: 37 start-page: S152 year: 2004 end-page: S156 ident: bib13 article-title: Basic pathophysiological mechanisms in depression: What are they and how might they affect the course of the illness? publication-title: Pharmacopsychiatry – volume: 553 start-page: 293 year: 2003 end-page: 301 ident: bib32 article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial DC stimulation publication-title: J Physiol – volume: 15 start-page: 26 year: 2002 end-page: 36 ident: bib24 article-title: A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: Double-blind, placebo-controlled, fMRI study in healthy subjects publication-title: Neuroimage – volume: 959 start-page: 165 year: 2003 end-page: 168 ident: bib46 article-title: Fluvoxamine suppresses the long-term potentiation in the hippocampal CA1 field of anesthetized rats: An effect mediated via 5-HT1A receptors publication-title: Brain Res – volume: 195 start-page: 17 year: 2008 end-page: 29 ident: bib4 article-title: Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role publication-title: Behav Brain Res – volume: 23 start-page: 1111 year: 1999 end-page: 1125 ident: bib2 article-title: 5-HT system and cognition publication-title: Neurosci Biobehav Rev – volume: 17 start-page: 8324 year: 1997 end-page: 8338 ident: bib55 article-title: Modulation of intrinsic circuits by serotonin 5-HT3 receptors in developing ferret visual cortex publication-title: J Neurosci – volume: 48 start-page: 138 year: 1987 end-page: 149 ident: bib18 article-title: Behavioral stress impairs long-term potentiation in rodent hippocampus publication-title: Behav Neural Biol – volume: 27 start-page: 1211 year: 1996 end-page: 1214 ident: bib27 article-title: Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy publication-title: Stroke – volume: 30 start-page: 386 year: 2003 end-page: 389 ident: bib17 article-title: Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene publication-title: Science – volume: 3 start-page: 33 year: 2003 end-page: 40 ident: bib15 article-title: Brain plasticity and pathology in psychiatric disease: Sites of action for potential therapy publication-title: Curr Opin Pharmacol – volume: 568 start-page: 653 year: 2005 end-page: 663 ident: bib39 article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain publication-title: J Physiol – volume: 88 start-page: 2560 year: 1991 end-page: 2562 ident: bib49 article-title: Receptors of the serotonin 1C subtype expressed from cloned DNA mediate the closing of K+ membrane channels encoded by brain mRNA publication-title: Proc Natl Acad Sci U S A – volume: 101 start-page: 299 year: 1997 end-page: 304 ident: bib7 article-title: Serotonin facilitates synaptic plasticity in kitten visual cortex: An in vitro study publication-title: Brain Res Dev Brain Res – volume: 40 start-page: 1815 year: 2008 end-page: 1821 ident: bib23 article-title: Selective serotonin reuptake inhibitor paroxetine modulates motor behavior through practice publication-title: Neuropsychologia – volume: 57 start-page: 1899 year: 2001 end-page: 1901 ident: bib29 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology – volume: 23 start-page: 74 year: 2008 end-page: 76 ident: bib63 article-title: Transcranial direct stimulation and fluoxetine for the treatment of depression publication-title: Eur Psychiatry – volume: 4 start-page: 166 year: 2002 end-page: 182 ident: bib14 article-title: Modulation of synaptic plasticity by stress and antidepressants publication-title: Bipolar Disord – volume: 11 start-page: 381 year: 2008 end-page: 388 ident: bib58 article-title: Antidepressive therapy with escitalopram improves mood, cognitive symptoms, and identity memory for angry fæces in elderly depressed patients publication-title: Int J Neuropsychopharmacology – volume: 643 start-page: 10 year: 1994 end-page: 16 ident: bib47 article-title: Serotonin controls the magnitude of LTP induced by theta bursts via an action on NMDA-receptor-mediated responses publication-title: Brain Res – volume: 25 start-page: 241 year: 2000 end-page: 254 ident: bib41 article-title: Citalopram—A review of pharmacological and clinical effects publication-title: J Psychiatry Neurosci – volume: 48 start-page: 53 year: 1981 end-page: 60 ident: bib42 article-title: The kinetics of citalopram: Single and multiple dose studies in man publication-title: Acta Pharmacol Toxicol – volume: 29 start-page: 1573 year: 2004 ident: 10.1016/j.biopsych.2009.03.022_bib33 article-title: Consolidation of externally induced human motor cortical neuroplasticity by d-cycloserine publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300517 – volume: 18 start-page: 648 year: 2008 ident: 10.1016/j.biopsych.2009.03.022_bib35 article-title: Boosting focally-induced brain plasticity by dopamine publication-title: Cereb Cortex doi: 10.1093/cercor/bhm098 – volume: 8 start-page: 203 year: 2006 ident: 10.1016/j.biopsych.2009.03.022_bib62 article-title: Treatment of Major depression with transcranial direct current stimulation publication-title: Bipolar Disord doi: 10.1111/j.1399-5618.2006.00291.x – volume: 13 start-page: 195 year: 2002 ident: 10.1016/j.biopsych.2009.03.022_bib12 article-title: Stress, synaptic plasticity, and psychopathology publication-title: Rev Neurosci doi: 10.1515/REVNEURO.2002.13.3.195 – volume: 148 start-page: 217 year: 2000 ident: 10.1016/j.biopsych.2009.03.022_bib16 article-title: Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity publication-title: Psychopharmacology doi: 10.1007/s002130050045 – volume: 15 start-page: 1037 year: 2005 ident: 10.1016/j.biopsych.2009.03.022_bib6 article-title: The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo publication-title: Cereb Cortex doi: 10.1093/cercor/bhh204 – volume: 221 start-page: 41 year: 2004 ident: 10.1016/j.biopsych.2009.03.022_bib43 article-title: Effects of citalopram on the excitability of the human motor cortex: A paired magnetic stimulation study publication-title: J Neurol Sci doi: 10.1016/j.jns.2004.03.007 – volume: 37 start-page: S152 issue: suppl 2 year: 2004 ident: 10.1016/j.biopsych.2009.03.022_bib13 article-title: Basic pathophysiological mechanisms in depression: What are they and how might they affect the course of the illness? publication-title: Pharmacopsychiatry doi: 10.1055/s-2004-832670 – volume: 349 start-page: 221 year: 1998 ident: 10.1016/j.biopsych.2009.03.022_bib45 article-title: 5-HT1A receptor-mediated inhibition of long-term potentiation in rat visual cortex publication-title: Eur J Pharmacol doi: 10.1016/S0014-2999(98)00286-6 – volume: 4 start-page: 166 year: 2002 ident: 10.1016/j.biopsych.2009.03.022_bib14 article-title: Modulation of synaptic plasticity by stress and antidepressants publication-title: Bipolar Disord doi: 10.1034/j.1399-5618.2002.01159.x – volume: 568 start-page: 653 year: 2005 ident: 10.1016/j.biopsych.2009.03.022_bib39 article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain publication-title: J Physiol doi: 10.1113/jphysiol.2005.088310 – volume: 959 start-page: 165 year: 2003 ident: 10.1016/j.biopsych.2009.03.022_bib46 article-title: Fluvoxamine suppresses the long-term potentiation in the hippocampal CA1 field of anesthetized rats: An effect mediated via 5-HT1A receptors publication-title: Brain Res doi: 10.1016/S0006-8993(02)03756-3 – volume: 62 start-page: 373 year: 2007 ident: 10.1016/j.biopsych.2009.03.022_bib20 article-title: Long-term plasticity of visually evoked potentials in humans is altered in major depression publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.10.006 – volume: 586 start-page: 5717 year: 2008 ident: 10.1016/j.biopsych.2009.03.022_bib61 article-title: A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS publication-title: J Physiol doi: 10.1113/jphysiol.2008.159905 – volume: 6 start-page: 241 year: 2005 ident: 10.1016/j.biopsych.2009.03.022_bib11 article-title: Is mood chemistry? publication-title: Nat Rev Neurosci doi: 10.1038/nrn1629 – volume: 28 start-page: 166 year: 1965 ident: 10.1016/j.biopsych.2009.03.022_bib57 article-title: Intracellular activities and evoked potential changes during polarization ofI motor cortex publication-title: J Neurophysiol doi: 10.1152/jn.1965.28.1.166 – volume: 532 start-page: 285 year: 2001 ident: 10.1016/j.biopsych.2009.03.022_bib52 article-title: Three Ca2+ levels affect plasticity differently: The LTP zone, the LTD zone and no man's land publication-title: J Physiol doi: 10.1111/j.1469-7793.2001.0285f.x – volume: 11 start-page: 381 year: 2008 ident: 10.1016/j.biopsych.2009.03.022_bib58 article-title: Antidepressive therapy with escitalopram improves mood, cognitive symptoms, and identity memory for angry fæces in elderly depressed patients publication-title: Int J Neuropsychopharmacology doi: 10.1017/S1461145707007997 – volume: 15 start-page: 7539 year: 1995 ident: 10.1016/j.biopsych.2009.03.022_bib60 article-title: Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments publication-title: J Neurosci doi: 10.1523/JNEUROSCI.15-11-07539.1995 – volume: 48 start-page: 138 year: 1987 ident: 10.1016/j.biopsych.2009.03.022_bib18 article-title: Behavioral stress impairs long-term potentiation in rodent hippocampus publication-title: Behav Neural Biol doi: 10.1016/S0163-1047(87)90664-9 – volume: 195 start-page: 54 year: 2008 ident: 10.1016/j.biopsych.2009.03.022_bib3 article-title: The role of 5-HT(1A) receptors in learning and memory publication-title: Behav Brain Res doi: 10.1016/j.bbr.2008.02.023 – volume: 117 start-page: 954 year: 2008 ident: 10.1016/j.biopsych.2009.03.022_bib22 article-title: Implicit memory for spatial context in depression and schizophrenia publication-title: J Abnorm Psychol doi: 10.1037/a0013867 – volume: 13 start-page: 141 year: 1992 ident: 10.1016/j.biopsych.2009.03.022_bib50 article-title: The 5-HT4 receptor: A place in the sun publication-title: Trends Pharmacol Sci doi: 10.1016/0165-6147(92)90051-7 – volume: 57 start-page: 1899 year: 2001 ident: 10.1016/j.biopsych.2009.03.022_bib29 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology doi: 10.1212/WNL.57.10.1899 – volume: 13 start-page: 52 year: 2006 ident: 10.1016/j.biopsych.2009.03.022_bib44 article-title: 5-HT1A receptor antagonists block perforant path-dentate LTP induced in novel, but not familiar, environments publication-title: Learn Mem doi: 10.1101/lm.126306 – volume: 387 start-page: 497 year: 1997 ident: 10.1016/j.biopsych.2009.03.022_bib19 article-title: Behavioural stress facilitates the induction of long-term depression in the hippocampus publication-title: Nature doi: 10.1038/387497a0 – volume: 3 start-page: 33 year: 2003 ident: 10.1016/j.biopsych.2009.03.022_bib15 article-title: Brain plasticity and pathology in psychiatric disease: Sites of action for potential therapy publication-title: Curr Opin Pharmacol doi: 10.1016/S1471-4892(02)00008-5 – volume: 27 start-page: 1211 year: 1996 ident: 10.1016/j.biopsych.2009.03.022_bib27 article-title: Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy publication-title: Stroke doi: 10.1161/01.STR.27.7.1211 – volume: 111 start-page: 815 year: 2002 ident: 10.1016/j.biopsych.2009.03.022_bib51 article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity publication-title: Neuroscience doi: 10.1016/S0306-4522(02)00026-X – volume: 101 start-page: 299 year: 1997 ident: 10.1016/j.biopsych.2009.03.022_bib7 article-title: Serotonin facilitates synaptic plasticity in kitten visual cortex: An in vitro study publication-title: Brain Res Dev Brain Res doi: 10.1016/S0165-3806(97)00083-7 – volume: 27 start-page: 1292 year: 2008 ident: 10.1016/j.biopsych.2009.03.022_bib40 article-title: Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2008.06090.x – volume: 527 start-page: 633 year: 2000 ident: 10.1016/j.biopsych.2009.03.022_bib28 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J Physiol doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – volume: 568 start-page: 291 year: 2005 ident: 10.1016/j.biopsych.2009.03.022_bib37 article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex publication-title: J Physiol doi: 10.1113/jphysiol.2005.092429 – volume: 48 start-page: 53 year: 1981 ident: 10.1016/j.biopsych.2009.03.022_bib42 article-title: The kinetics of citalopram: Single and multiple dose studies in man publication-title: Acta Pharmacol Toxicol doi: 10.1111/j.1600-0773.1981.tb01587.x – volume: 23 start-page: 1111 year: 1999 ident: 10.1016/j.biopsych.2009.03.022_bib2 article-title: 5-HT system and cognition publication-title: Neurosci Biobehav Rev doi: 10.1016/S0149-7634(99)00067-6 – volume: 142 start-page: 139 year: 2006 ident: 10.1016/j.biopsych.2009.03.022_bib21 article-title: Patterns of memory impairment in bipolar disorder and unipolar major depression publication-title: Psychiatry Res doi: 10.1016/j.psychres.2005.08.010 – volume: 50 start-page: 718 year: 2001 ident: 10.1016/j.biopsych.2009.03.022_bib26 article-title: Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke publication-title: Ann Neurol doi: 10.1002/ana.1257 – volume: 553 start-page: 293 year: 2003 ident: 10.1016/j.biopsych.2009.03.022_bib32 article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial DC stimulation publication-title: J Physiol doi: 10.1113/jphysiol.2003.049916 – volume: 195 start-page: 78 year: 2008 ident: 10.1016/j.biopsych.2009.03.022_bib1 article-title: Learning and memory in 5 HT(1A)-receptor mutant mice publication-title: Behav Brain Res doi: 10.1016/j.bbr.2008.02.028 – volume: 172 start-page: 213 year: 2008 ident: 10.1016/j.biopsych.2009.03.022_bib56 article-title: Serotonin-dopamine interactions: Implications for the design of novel therapeutic agents for psychiatric disorders publication-title: Prog Brain Res doi: 10.1016/S0079-6123(08)00911-4 – volume: 27 start-page: 299 year: 2005 ident: 10.1016/j.biopsych.2009.03.022_bib25 article-title: Modulation of behavior and cortical motor activity in healthy subjects by a chronic administration of a serotonin enhancer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.023 – volume: 27 start-page: 3111 year: 2007 ident: 10.1016/j.biopsych.2009.03.022_bib5 article-title: 5-Hydroxytryptamine induces a protein kinase A/mitogen-activated protein kinase-mediated and macromolecular synthesis-dependent late phase of long-term potentiation in the amygdala publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3908-06.2007 – volume: 38 start-page: 82 year: 2006 ident: 10.1016/j.biopsych.2009.03.022_bib59 article-title: Pharmacogenomics and antidepressant drugs publication-title: Ann Med doi: 10.1080/07853890600551045 – volume: 257 start-page: 930 year: 1991 ident: 10.1016/j.biopsych.2009.03.022_bib48 article-title: 5-Hydroxytryptamine4-like receptors mediate the slow excitatory response to serotonin in the rat hippocampus publication-title: J Pharmacol Exp Ther – volume: 30 start-page: 386 year: 2003 ident: 10.1016/j.biopsych.2009.03.022_bib17 article-title: Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene publication-title: Science doi: 10.1126/science.1083968 – volume: 125 start-page: 2238 year: 2002 ident: 10.1016/j.biopsych.2009.03.022_bib31 article-title: Pharmacological approach to synaptic and membrane mechanisms of DC-induced neuroplasticity in man publication-title: Brain doi: 10.1093/brain/awf238 – volume: 24 start-page: 5420 year: 2004 ident: 10.1016/j.biopsych.2009.03.022_bib53 article-title: Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand18FMPPF in the nucleus raphe dorsalis of rat publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0950-04.2004 – volume: 195 start-page: 17 year: 2008 ident: 10.1016/j.biopsych.2009.03.022_bib4 article-title: Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role publication-title: Behav Brain Res doi: 10.1016/j.bbr.2007.11.027 – volume: 1037 start-page: 187 year: 2005 ident: 10.1016/j.biopsych.2009.03.022_bib9 article-title: Selective modulation of Ca(2+) influx pathways by 5-HT regulates synaptic long-term plasticity in the hippocampus publication-title: Brain Res doi: 10.1016/j.brainres.2005.01.001 – volume: 949 start-page: 131 year: 2002 ident: 10.1016/j.biopsych.2009.03.022_bib10 article-title: Changes in synaptic plasticity in the rat hippocampo-medial prefrontal cortex pathway induced by repeated treatments with fluvoxamine publication-title: Brain Res doi: 10.1016/S0006-8993(02)02973-6 – volume: 19 start-page: 2720 year: 2004 ident: 10.1016/j.biopsych.2009.03.022_bib38 article-title: GABAergic modulation of DC-stimulation-induced motor cortex excitability shifts in the human publication-title: Eur J Neurosci doi: 10.1111/j.0953-816X.2004.03398.x – volume: 15 start-page: 26 year: 2002 ident: 10.1016/j.biopsych.2009.03.022_bib24 article-title: A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: Double-blind, placebo-controlled, fMRI study in healthy subjects publication-title: Neuroimage doi: 10.1006/nimg.2001.0957 – volume: 5 start-page: 1230 year: 1994 ident: 10.1016/j.biopsych.2009.03.022_bib54 article-title: 5-HT4 receptor stimulation facilitates acetylcholine release in rat frontal cortex publication-title: Neuroreport doi: 10.1097/00001756-199406020-00018 – volume: 40 start-page: 1815 year: 2008 ident: 10.1016/j.biopsych.2009.03.022_bib23 article-title: Selective serotonin reuptake inhibitor paroxetine modulates motor behavior through practice publication-title: Neuropsychologia doi: 10.1016/S0028-3932(02)00030-1 – volume: 69 start-page: 367 year: 2001 ident: 10.1016/j.biopsych.2009.03.022_bib8 article-title: Different effects of anxiolytic agents, diazepam and 5-HT(1A) agonist tandospirone, on hippocampal long-term potentiation in vivo publication-title: Pharmacol Biochem Behav doi: 10.1016/S0091-3057(01)00546-9 – volume: 114 start-page: 600 year: 2003 ident: 10.1016/j.biopsych.2009.03.022_bib30 article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00412-1 – volume: 23 start-page: 74 year: 2008 ident: 10.1016/j.biopsych.2009.03.022_bib63 article-title: Transcranial direct stimulation and fluoxetine for the treatment of depression publication-title: Eur Psychiatry doi: 10.1016/j.eurpsy.2007.09.006 – volume: 25 start-page: 241 year: 2000 ident: 10.1016/j.biopsych.2009.03.022_bib41 article-title: Citalopram—A review of pharmacological and clinical effects publication-title: J Psychiatry Neurosci – volume: 643 start-page: 10 year: 1994 ident: 10.1016/j.biopsych.2009.03.022_bib47 article-title: Serotonin controls the magnitude of LTP induced by theta bursts via an action on NMDA-receptor-mediated responses publication-title: Brain Res doi: 10.1016/0006-8993(94)90003-5 – volume: 27 start-page: 1442 year: 2007 ident: 10.1016/j.biopsych.2009.03.022_bib34 article-title: Focusing effect of acetylcholine on neuroplasticity in the human motor cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4104-07.2007 – volume: 88 start-page: 2560 year: 1991 ident: 10.1016/j.biopsych.2009.03.022_bib49 article-title: Receptors of the serotonin 1C subtype expressed from cloned DNA mediate the closing of K+ membrane channels encoded by brain mRNA publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.88.6.2560 – volume: 17 start-page: 8324 year: 1997 ident: 10.1016/j.biopsych.2009.03.022_bib55 article-title: Modulation of intrinsic circuits by serotonin 5-HT3 receptors in developing ferret visual cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-21-08324.1997 – volume: 48 start-page: 1133 year: 2000 ident: 10.1016/j.biopsych.2009.03.022_bib64 article-title: Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(00)01065-9 – volume: 14 start-page: 1240 year: 2004 ident: 10.1016/j.biopsych.2009.03.022_bib36 article-title: Catecholaminergic consolidation of motor cortex plasticity in humans publication-title: Cereb Cortex doi: 10.1093/cercor/bhh085 |
SSID | ssj0007221 |
Score | 2.4070601 |
Snippet | Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of learning... Background Modulation of the serotonergic system affects long-term potentiation (LTP) and long-term depression (LTD), the likely neurophysiologic derivates of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 503 |
SubjectTerms | Adult Citalopram - pharmacology Cross-Over Studies Depression Electric Stimulation - methods Evoked Potentials, Motor - drug effects Evoked Potentials, Motor - physiology Female human Humans Male motor cortex Motor Cortex - drug effects Motor Cortex - physiology Neuronal Plasticity - drug effects Neuronal Plasticity - physiology neuroplasticity Psychiatry serotonin Serotonin - physiology Serotonin Uptake Inhibitors - pharmacology transcranial direct current stimulation Transcranial Magnetic Stimulation |
Title | Serotonin Affects Transcranial Direct Current–Induced Neuroplasticity in Humans |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006322309004223 https://www.clinicalkey.es/playcontent/1-s2.0-S0006322309004223 https://dx.doi.org/10.1016/j.biopsych.2009.03.022 https://www.ncbi.nlm.nih.gov/pubmed/19427633 https://www.proquest.com/docview/20704918 https://www.proquest.com/docview/67570928 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yoI9LSbdNu32kPvTqXVtjWfZxWRq2DQkEEshNWLIEG8LuEjuHXEL-Q_9hf0lHsrxtKEtKe_HBaGwx-jQz0rwAPmtkXJvMxM54jV1B8rhQAmMCh1G10Wi8R_f4JJ-dZ98u-MUWTPtcGBdWGWR_J9O9tA5vxoGb49V87nJ8Sb2SdktKX8gKt2GXYZkTtHcnX49mJ2uBLBgLjfPy2BH8lih8OVLzpY8rDqUrcZQwtklHbbJBvS463IMXwYiMJt08X8KWWQzgSddW8nYAz6Z9F7cBPD0OzvNXcEpyYdm669do0kVxRF5TaXoQCqNO-kWhYtOP---urQcxKPIFPFZkZrsI7PY2og_4u__mNZwffjmbzuLQUSHWOUvbOKsrtKVWvLBVjTYtlU2sFZwrlmqdo8YcFaJW6DvKi7Q2oip0RWKzyioucB92FsuFeQtRImytyf6ytLQZ16myBRa6UHWCXFjUQ-A9D6UO5cZd14sr2ceVXcqe964XZikTlMT7IYzXdKuu4MajFKJfItmnk5IAlKQT_o3SNGEfNzKVDZOJ_ANrQyjXlA_g-ld__dTjSBIYnIOmWpjlTUODBB3Y0mLzCDreiaRkNOJNB8BfPCozRroC3_3HzN7D885Z5kLoPsBOe31jPpLN1aoD2B7dpQdhZ_0EcTctBQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTtwwcESpKL1UdPvatpQcuGY38cRxckSrooWySJVA4mbFji0tqnZXTThwQfxD_7Bf0rHjAFW1alUuOUQziTWelz0vgH2NjGuTmdg5r7FrSB4XSmBMzGFUbTQaH9GdnebT8-z4gl9swKSvhXFplUH3dzrda-vwZhyoOV7N567Gl8wrWbek9I2s8Ak8zUh8nXSObu7zPARjYWxeHjvwB2XClyM1X_qs4tC4EkcJY-ss1DoP1Fuiwx14EVzI6KBb5UvYMIsBbHVDJa8HsD3pZ7gN4NkshM5fwVfSCsvWXb5GB10OR-TtlKYH8WDU6b4o9Gv6efvDDfUg8kS-fceKnGyXf91eR_QBf_PfvIbzw89nk2kc5inEOmdpG2d1hbbUihe2qtGmpbKJtYJzxVKtc9SYo0LUCv08eZHWRlSFrkhpVlnFBb6BzcVyYd5BlAhba_K-LG1sxnWqbIGFLlSdIBcW9RB4T0OpQ7NxN_Pim-yzyi5lT3s3CbOUCUqi_RDGd3irrt3GXzFEv0WyLyYl9SfJIvwfpmmCFDcylQ2TifyD04ZQ3mH-xqz_9Ne9no8kMYMLz1QLs7xqCEjQcS0t1kPQ4U4kJSOItx0D3tOozBhZCnz_iJXtwfb0bHYiT45Ov3yA513YzCXTfYTN9vuV2SXvq1WfvHT9Au-8Lck |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serotonin+affects+transcranial+direct+current-induced+neuroplasticity+in+humans&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Nitsche%2C+Michael+A&rft.au=Kuo%2C+Min-Fang&rft.au=Karrasch%2C+Ralf&rft.au=W%C3%A4chter%2C+Bettina&rft.date=2009-09-01&rft.eissn=1873-2402&rft.volume=66&rft.issue=5&rft.spage=503&rft_id=info:doi/10.1016%2Fj.biopsych.2009.03.022&rft_id=info%3Apmid%2F19427633&rft.externalDocID=19427633 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322309X00156%2Fcov150h.gif |