Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides
Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse ran...
Saved in:
Published in | Microbial cell factories Vol. 19; no. 1; pp. 24 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
05.02.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials.
The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L.
This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism. |
---|---|
AbstractList | Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism. Background Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. Results The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. Conclusion This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism. Keywords: Rhodotorula, Mevalonate pathway, Diterpene, Geranylgeranyl pyrophosphate synthase, Mutant farnesyl pyrophosphate synthase, Metabolic engineering Background Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. Results The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. Conclusion This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism. Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism. Abstract Background Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. Results The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. Conclusion This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism. Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials.BACKGROUNDRhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials.The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L.RESULTSThe Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L.This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism.CONCLUSIONThis study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism. |
ArticleNumber | 24 |
Audience | Academic |
Author | Burnum-Johnson, Kristin E. Skerker, Jeffrey M. Geiselman, Gina M. Gao, Yuqian Zhuang, Xun Clay, Derek M. Tanjore, Deepti Gladden, John M. Papa, Gabriella Magnuson, Jon K. Munoz Munoz, Nathalie Prahl, Jan-Philip Nicora, Carrie D. Sundstrom, Eric R. Kirby, James Tran-Gyamfi, Mary B. |
Author_xml | – sequence: 1 givenname: Gina M. surname: Geiselman fullname: Geiselman, Gina M. – sequence: 2 givenname: Xun surname: Zhuang fullname: Zhuang, Xun – sequence: 3 givenname: James surname: Kirby fullname: Kirby, James – sequence: 4 givenname: Mary B. surname: Tran-Gyamfi fullname: Tran-Gyamfi, Mary B. – sequence: 5 givenname: Jan-Philip surname: Prahl fullname: Prahl, Jan-Philip – sequence: 6 givenname: Eric R. surname: Sundstrom fullname: Sundstrom, Eric R. – sequence: 7 givenname: Yuqian surname: Gao fullname: Gao, Yuqian – sequence: 8 givenname: Nathalie surname: Munoz Munoz fullname: Munoz Munoz, Nathalie – sequence: 9 givenname: Carrie D. surname: Nicora fullname: Nicora, Carrie D. – sequence: 10 givenname: Derek M. surname: Clay fullname: Clay, Derek M. – sequence: 11 givenname: Gabriella surname: Papa fullname: Papa, Gabriella – sequence: 12 givenname: Kristin E. surname: Burnum-Johnson fullname: Burnum-Johnson, Kristin E. – sequence: 13 givenname: Jon K. surname: Magnuson fullname: Magnuson, Jon K. – sequence: 14 givenname: Deepti surname: Tanjore fullname: Tanjore, Deepti – sequence: 15 givenname: Jeffrey M. surname: Skerker fullname: Skerker, Jeffrey M. – sequence: 16 givenname: John M. orcidid: 0000-0002-6985-2485 surname: Gladden fullname: Gladden, John M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32024522$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URNuBH8AGRWIDixQ_4sTZIFUVj5EqgQqIpeXY1zMeEntqJ4j59zhMGXUqRLzIlfPd4-uTc45OfPCA0HOCLwgR9ZtEaMuqElNczlUpHqEzUjW8pIK3J_fqU3Se0gZj0oiGPUGnjGJacUrP0PfPMZhJjy74ItgC_Fj-UFMED4WNYSh6t_JBQ99PfUhOF-udiaHfJTVC4Xxxsw4mpG2IzrhpKMYQM-cMpKfosVV9gmd37wX69v7d16uP5fWnD8ury-tS15SMZVWbjnfQGdqRrmaMY40pAKt4Y0CD4rQlCpuaKkwtaKMwYxbXVlEQpuuALdByr2uC2shtdIOKOxmUk382QlxJFUene5AttsRyhZUlTaVqIjAnQnCb5UWLDc9ab_da26kbwOhsRlT9kejxF-_WchV-ygbnsXiVBV7dCcRwO0Ea5eDSbJ7yEKYkKeMUc8rys0AvH6CbMEWfrZqpphUE5z96oFYqX8B5G_K5ehaVlzWpK5rtmee--AeVl4HB6RwZ6_L-UcPro4bMjPBrXKkpJbn8cnPMvrhvysGNvxHKANkDOoaUItgDQrCcYyr3MZU5pnKupMg9zYMe7UY1hzBP7vr_dP4GhFTrLg |
CitedBy_id | crossref_primary_10_1016_j_biortech_2021_125071 crossref_primary_10_1016_j_engmic_2024_100139 crossref_primary_10_1016_j_ymben_2022_11_002 crossref_primary_10_3390_molecules29051127 crossref_primary_10_1007_s43393_023_00167_2 crossref_primary_10_1016_j_engmic_2022_100058 crossref_primary_10_1007_s00253_021_11549_8 crossref_primary_10_1016_j_csbj_2023_03_018 crossref_primary_10_1186_s12934_022_01977_0 crossref_primary_10_1016_j_ymben_2025_03_015 crossref_primary_10_1038_s41467_022_30826_2 crossref_primary_10_3389_fbioe_2023_1310069 crossref_primary_10_1093_femsyr_foaa038 crossref_primary_10_3389_fbioe_2021_613307 crossref_primary_10_1016_j_ymben_2025_02_014 crossref_primary_10_1016_j_copbio_2022_102709 crossref_primary_10_1016_j_rser_2022_113043 crossref_primary_10_1016_j_copbio_2020_10_012 crossref_primary_10_1186_s13068_022_02245_4 crossref_primary_10_3389_fmicb_2022_1069443 crossref_primary_10_1038_s41597_022_01610_0 crossref_primary_10_1016_j_ymben_2023_05_001 crossref_primary_10_1186_s13068_021_02094_7 crossref_primary_10_1093_femsle_fnab111 crossref_primary_10_1038_s44222_024_00247_5 crossref_primary_10_1021_acscatal_4c07121 crossref_primary_10_1021_acs_jafc_4c12081 crossref_primary_10_3390_fermentation9050431 crossref_primary_10_1016_j_biotechadv_2024_108432 crossref_primary_10_1021_acs_jafc_2c07361 crossref_primary_10_3389_fbioe_2021_768934 crossref_primary_10_3390_en13174446 crossref_primary_10_1186_s13068_021_01950_w crossref_primary_10_1016_j_ymben_2022_08_001 |
Cites_doi | 10.1093/bioinformatics/btq054 10.1126/science.1141630 10.3390/ijms131216157 10.1039/C8GC00518D 10.1271/bbb.64.660 10.2174/1381612825666190112162817 10.1002/ptr.5749 10.1016/j.jbiotec.2015.09.016 10.1093/femsyr/foz031 10.1101/592774 10.1016/j.biortech.2019.121365 10.1186/s13068-017-0927-5 10.1016/j.biortech.2009.04.041 10.1186/1754-6834-7-98 10.1039/C9GC00920E 10.1016/j.micres.2018.01.010 10.1073/pnas.93.26.15018 10.1073/pnas.1006138107 10.1128/mSystems.00043-16 10.1021/ar50128a004 10.1007/s00253-016-7517-5 10.1126/science.277.5333.1788 10.1002/bit.25864 10.1007/s00425-018-2959-x 10.1007/s00425-018-2999-2 10.1074/mcp.M115.051300 10.1016/j.phytochem.2018.11.015 10.2174/1381612825666190111143648 10.1111/pce.13491 10.1002/bip.21538 10.1186/s12934-019-1099-8 10.1016/j.enzmictec.2007.02.008 10.1093/nar/gks531 10.1146/annurev.arplant.59.032607.092804 10.1007/s11101-005-4887-1 10.3389/fmicb.2016.01686 10.1074/mcp.M110.003384 10.1039/C5EE03718B 10.3390/molecules19021856 10.1021/bi401643u |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION NPM ISR 3V. 7QL 7T7 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12934-020-1293-8 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1475-2859 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_90f1f5a0af174a618051885f0d6890d5 PMC7003354 A616422915 32024522 10_1186_s12934_020_1293_8 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Bioenergy Technologies Office grantid: DE-AC02-05CH11231 – fundername: ; grantid: DE-AC02-05CH11231 |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SCM SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M NPM PMFND 3V. 7QL 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c621t-46db5bebd2b1b63350c02ee3457decea5291a0d62a02fecda033f06fa2e8dbbe3 |
IEDL.DBID | M48 |
ISSN | 1475-2859 |
IngestDate | Wed Aug 27 01:26:04 EDT 2025 Thu Aug 21 13:49:06 EDT 2025 Fri Jul 11 02:55:59 EDT 2025 Fri Jul 25 10:44:59 EDT 2025 Tue Jun 17 21:50:50 EDT 2025 Tue Jun 10 20:49:04 EDT 2025 Fri Jun 27 03:58:49 EDT 2025 Thu Apr 03 06:58:54 EDT 2025 Tue Jul 01 02:30:23 EDT 2025 Thu Apr 24 23:16:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Diterpene Geranylgeranyl pyrophosphate synthase Metabolic engineering Mutant farnesyl pyrophosphate synthase Mevalonate pathway Rhodotorula |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c621t-46db5bebd2b1b63350c02ee3457decea5291a0d62a02fecda033f06fa2e8dbbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6985-2485 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12934-020-1293-8 |
PMID | 32024522 |
PQID | 2357981029 |
PQPubID | 42699 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_90f1f5a0af174a618051885f0d6890d5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7003354 proquest_miscellaneous_2352052333 proquest_journals_2357981029 gale_infotracmisc_A616422915 gale_infotracacademiconefile_A616422915 gale_incontextgauss_ISR_A616422915 pubmed_primary_32024522 crossref_primary_10_1186_s12934_020_1293_8 crossref_citationtrail_10_1186_s12934_020_1293_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-05 |
PublicationDateYYYYMMDD | 2020-02-05 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbial cell factories |
PublicationTitleAlternate | Microb Cell Fact |
PublicationYear | 2020 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | S Yamaguchi (1293_CR12) 2008 T Toyomasu (1293_CR31) 2000 X Liu (1293_CR36) 2019 CE Eyers (1293_CR39) 2011 Marcus Vinícius Oliveira Barros de Alencar (1293_CR7) 2016; 31 LC Tarshis (1293_CR33) 1996 S Salazar-Cerezo (1293_CR13) 2018 E Sundstrom (1293_CR35) 2018 C Faustino (1293_CR6) 2018 G Singh (1293_CR23) 2016 M Wehrs (1293_CR29) 2019 AK Block (1293_CR9) 2019 A Ratnadass (1293_CR11) 2012 MC Camara (1293_CR14) 2018 X Chen (1293_CR21) 2016 JM Prieto (1293_CR8) 2018 ML Hillwig (1293_CR17) 2011 G Du (1293_CR16) 2019 CD Poulter (1293_CR5) 2006 JA Takahashi (1293_CR15) 2014 MK Kong (1293_CR19) 2015 J Yaegashi (1293_CR26) 2017 ES Nakayasu (1293_CR38) 2016 E Leonard (1293_CR34) 2010 S Zhang (1293_CR28) 2016 Y Xu (1293_CR10) 2019 DW Christianson (1293_CR3) 2007 A Rodriguez (1293_CR25) 2019 1293_CR30 LC Nora (1293_CR32) 2019 BC Searle (1293_CR40) 2015 TS Ham (1293_CR37) 2012 JC Sacchettini (1293_CR2) 1997 B MacLean (1293_CR41) 2010 CD Poulter (1293_CR4) 1978 X Zhuang (1293_CR22) 2019 C Hu (1293_CR24) 2009 Y Li (1293_CR27) 2007 K Bromann (1293_CR18) 2016 R Li (1293_CR1) 2014 X Chen (1293_CR20) 2014 |
References_xml | – year: 2010 ident: 1293_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq054 – year: 2007 ident: 1293_CR3 publication-title: Roots of biosynthetic diversity. Science. doi: 10.1126/science.1141630 – year: 2012 ident: 1293_CR11 publication-title: Int J Mol Sci doi: 10.3390/ijms131216157 – year: 2018 ident: 1293_CR35 publication-title: Green Chem doi: 10.1039/C8GC00518D – year: 2000 ident: 1293_CR31 publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.64.660 – year: 2018 ident: 1293_CR6 publication-title: Curr Pharm Des doi: 10.2174/1381612825666190112162817 – volume: 31 start-page: 175 issue: 2 year: 2016 ident: 1293_CR7 publication-title: Phytotherapy Research doi: 10.1002/ptr.5749 – year: 2015 ident: 1293_CR19 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2015.09.016 – year: 2019 ident: 1293_CR36 publication-title: FEMS Yeast Res doi: 10.1093/femsyr/foz031 – year: 2019 ident: 1293_CR32 publication-title: BioRxiv doi: 10.1101/592774 – year: 2019 ident: 1293_CR25 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2019.121365 – year: 2017 ident: 1293_CR26 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-017-0927-5 – year: 2009 ident: 1293_CR24 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2009.04.041 – year: 2014 ident: 1293_CR20 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-7-98 – year: 2019 ident: 1293_CR29 publication-title: Green Chem doi: 10.1039/C9GC00920E – year: 2018 ident: 1293_CR13 publication-title: Microbiol Res doi: 10.1016/j.micres.2018.01.010 – year: 1996 ident: 1293_CR33 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.26.15018 – year: 2010 ident: 1293_CR34 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1006138107 – year: 2016 ident: 1293_CR38 publication-title: Msystems doi: 10.1128/mSystems.00043-16 – year: 1978 ident: 1293_CR4 publication-title: Acc Chem Res doi: 10.1021/ar50128a004 – year: 2016 ident: 1293_CR18 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-016-7517-5 – year: 1997 ident: 1293_CR2 publication-title: Science doi: 10.1126/science.277.5333.1788 – year: 2016 ident: 1293_CR28 publication-title: Biotechnol Bioeng doi: 10.1002/bit.25864 – year: 2018 ident: 1293_CR14 publication-title: Planta doi: 10.1007/s00425-018-2959-x – year: 2019 ident: 1293_CR9 publication-title: Planta doi: 10.1007/s00425-018-2999-2 – year: 2015 ident: 1293_CR40 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M115.051300 – year: 2019 ident: 1293_CR16 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2018.11.015 – year: 2018 ident: 1293_CR8 publication-title: Curr Pharm Des doi: 10.2174/1381612825666190111143648 – year: 2019 ident: 1293_CR10 publication-title: Plant Cell Environ doi: 10.1111/pce.13491 – year: 2011 ident: 1293_CR17 publication-title: Biopolymers doi: 10.1002/bip.21538 – ident: 1293_CR30 – year: 2019 ident: 1293_CR22 publication-title: Microb Cell Fact doi: 10.1186/s12934-019-1099-8 – year: 2007 ident: 1293_CR27 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2007.02.008 – year: 2012 ident: 1293_CR37 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks531 – year: 2008 ident: 1293_CR12 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092804 – year: 2006 ident: 1293_CR5 publication-title: Phytochem Rev doi: 10.1007/s11101-005-4887-1 – year: 2016 ident: 1293_CR23 publication-title: Front Microbiol doi: 10.3389/fmicb.2016.01686 – year: 2011 ident: 1293_CR39 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M110.003384 – year: 2016 ident: 1293_CR21 publication-title: Energy Environ Sci doi: 10.1039/C5EE03718B – year: 2014 ident: 1293_CR15 publication-title: Molecules doi: 10.3390/molecules19021856 – year: 2014 ident: 1293_CR1 publication-title: Biochemistry doi: 10.1021/bi401643u |
SSID | ssj0017873 |
Score | 2.426244 |
Snippet | Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on... Background Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow... Abstract Background Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 24 |
SubjectTerms | Adenine Adenosine monophosphate Basidiomycota Biological products Bioreactors Carbon Cellulose Chemical plants Chemical properties Corn Cultivation Deconstruction Diterpene Diterpenes Elongation Engineers Enzymes Gene expression Geranylgeranyl pyrophosphate synthase Gibberella fujikuroi Lignin Lignocellulose Metabolic engineering Methods Mevalonate pathway Monomers Mutant farnesyl pyrophosphate synthase Mutants Mutation Novels Nucleotides Phosphates Production processes Proteins Purines Raw materials Rhodosporidium toruloides Rhodotorula Sesquiterpenes Stover Sugar Therapeutics Translation elongation Translocase |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yJz2I31ZXiSIIQtg0bdL2uIrLKiiyuri3kM99xWcr29fD_vfOtHmPVwS9eCvNpDS_TDIz6fQ3hLxCTnYVlWQQ0EpWliFnjXeeBVeqYNHhnc50P31Wp-flxwt5sVfqC3PCZnrgGbijhsc8SsNNBN_ZqLzmSCEmI_eqbrif2EvB5m2DqfT9ANSwSN8w81odDWjVSoahEl6xemGFJrL-P7fkPZu0zJfcM0And8jt5DnS4_mN75IbobtHbu3xCd4n37_M_K2ANe0jheewH2ZE0kqKv5HQdXvZ9XhUP657mB26uvZX_fp6AH-Tth09W0GMimFu69vxJ4VoHORaH4YH5Pzk_bd3pyxVTmBOiXzDSuWttMF6YXOrikJyx0UIRSkrH1wwUjS5AQSF4SIG5w0vishVNCLU3tpQPCQHXd-Fx4SCR-iNV867RpZeVLWpHD7JNgZckZhnhG-R1C7RimN1i7Wewota6Rl8DeBrvNJ1Rt7suvyaOTX-JvwWp2cniHTY0w1QEp2URP9LSTLyEidXI-FFhxk1l2YcBv3h65k-VhAwCsADhF4nodjDCJxJPygADsiRtZA8XEjCinTL5q0O6bQjDBpphZoa3LkmIy92zdgTs9y60I-TjMBj-qLIyKNZ5Xbjxjr3yH6fkWqhjAtgli1du5r4wiss2CfLJ_8DyafkpsBlhHnr8pAcbK7G8Azcso19Pq3A33lINAU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96vuiD-H3VU6oIghAuTZu0fZJTPE5BkdPDfQtpPnaLa3tutw_33zvTZusW4d7KZlo2k0lmftPpbwh5jZzs0ktBAdAKmmUuoaU1ljqTSVdhwDvkdL98lWcX2eeFWISEWxfKKndn4nBQ29ZgjvwYaVnKAtxh-e7yD8WuUfh2NbTQuEluIXUZWnW-mABXAsaYhjeZSSGPO_RtGUXAhFe0mPmigbL__4N5zzPNqyb33NDpPXI3xI_xybjg98kN1zwgd_ZYBR-Sn99GFlfQeNz6GJ5Df-keqStj_JgkXtfLpsWEfb9uYY3i1ZXdtOurDqLOuG7i8xUgVQS7ta373zFgcpCrresekYvTjz8-nNHQP4EayZMtzaStROUqy6ukkmkqmGHcuTQTuXXGacHLRDMruWbcO2M1S1PPpNfcFbaqXPqYHDRt4w5JDHGh1VYaa0qRWZ4XOjf4pKrUEJD4JCJsp0llArk49rhYqwFkFFKNylegfIVXqojI2-mWy5FZ4zrh97g8kyCSYg8_tJulCntMlcwnXmimPcAsLZOCIduc8DDFomRWROQVLq5C2osG62qWuu869en7uTqRABs56AOE3gQh38IMjA6fKYAekClrJnk0k4R9aebDOxtS4Vzo1D8rjsjLaRjvxFq3xrX9IMMxWZ-mEXkymtw0b-x2jxz4EclnxjhTzHykqVcDa3iObftE9vT6v_WM3Oa4QbAuXRyRg-2md88h7NpWL4a99Rcr1CyV priority: 102 providerName: ProQuest |
Title | Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32024522 https://www.proquest.com/docview/2357981029 https://www.proquest.com/docview/2352052333 https://pubmed.ncbi.nlm.nih.gov/PMC7003354 https://doaj.org/article/90f1f5a0af174a618051885f0d6890d5 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF_u40UfxO-LniWKIAjRzSa7SR5E7uSOU7jjqBb7tmz2ow3GRJsG7H_vTJrWBg-ffAvd2cD-ZqYzs7v5DSEvkZNdOMEDKGh5EMc2DDKjTWB1LGyOCW-3p3t5JS4m8acpn-6RTXurHsDmxtIO-0lNFuWbXz9X78Hh33UOn4q3DcasOMBCCJ-CdJ8cQmBKsKHBZfznUAFsM-oPNm-cNghNHYP_3__TO4FqeIlyJyqd3yV3-nTSP1nr_x7Zs9V9cnuHZPAB-Xq9JnUFBfi18-E9wTfVIpOlj9-W-GUxq2rcv2_LGlTmz1dmUZerBpJQv6j88RwKVwSoMEX73YcSHeQKY5uHZHJ-9uXDRdC3Uwi0YOEyiIXJeW5zw_IwF1HEqabM2ijmibHaKs6yUFEjmKLMWW0UjSJHhVPMpibPbfSIHFR1ZY-ID2miUUZoozMeG5akKtH4pjxTkJ-40CN0g6TUPdc4trwoZVdzpEKuwZcAvsQnmXrk9XbKjzXRxr-ET1E9W0HkyO5-qBcz2buczKgLHVdUOai6lAhTiuRz3MES04wa7pEXqFyJLBgVXrOZqbZp5MfPY3kioIpkgAcIveqFXA0r0Kr_agFwQOKsgeTxQBLcVA-HNzYkN1YukWsoSyHHyzzyfDuMM_HqW2XrtpNhuHcfRR55vDa57boj1p2cM48kA2McADMcqYp5RyKeYBc_Hj_5H0g-JbcYuhFeZufH5GC5aO0zyNWW-YjsJ9NkRA5Pz66ux6Nux2PUeeVvZ94_eA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW5QAcEG8CCwQEQkKK1nFiJzkgtDxWLfsQWnZFb8axnTaiJEvTCPVP8RuZyaM0Qtrb3qJ6YtXjGc9MZvwNIS8Rk11kgnsQ0HIvDK3vJUYbz-pQ2BQd3uab7tGxGJ2Fnyd8skX-9HdhsKyyPxObg9qUGr-R7yIsSxKDOUzenf_ysGsUZlf7FhqtWBzY1W8I2aq344-wv68Y2_90-mHkdV0FPC2Yv_RCYVKe2tSw1E9FEHCqKbM2CHlkrLaKs8RX1AimKMusNooGQUZFppiNTZraAOa9Qq6C4aUY7EWTdYDng_AHXebUj8VuhbY09DBAwycvHti-pkXA_4ZgwxIOqzQ3zN7-LXKz81fdvVbAbpMtW9whNzZQDO-Sb19a1FjYYbfMXJjH-6FqhMp08fKKO8-nRYkJgnpegky4s5VZlPNVBV6umxfuyQwiYwyuc5PXP91luQC63NjqHjm7FM7eJ9tFWdiHxAU_1CgjtNEJDw2LYhVpnClNFDhAme8Q2nNS6g7MHHtqzGUT1MRCtsyXwHyJTzJ2yJv1K-ctksdFxO9xe9aECMLd_FAuprLTaZnQzM-4oiqDsE4JP6aIbsczWGKcUMMd8gI3VyLMRoF1PFNVV5Ucfz2RewLCVAb8AKLXHVFWwgq06q5FAB8QmWtAuTOghHNAD4d7GZLdOVTJf1rjkOfrYXwTa-sKW9YNDcPkQBA45EErcut1B6xJzTOHRANhHDBmOFLkswalPMI2gTx8dPHfekaujU6PDuXh-PjgMbnOUFmwJp7vkO3lorZPwOVbpk8bPXPJ98tW7L94DmvS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+ent-kaurene+from+lignocellulosic+hydrolysate+in+Rhodosporidium+toruloides&rft.jtitle=Microbial+cell+factories&rft.au=Gina+M.+Geiselman&rft.au=Xun+Zhuang&rft.au=James+Kirby&rft.au=Mary+B.+Tran-Gyamfi&rft.date=2020-02-05&rft.pub=BMC&rft.eissn=1475-2859&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1186%2Fs12934-020-1293-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_90f1f5a0af174a618051885f0d6890d5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon |