Stabilization of a Bimolecular Triplex by 3′-S-Phosphorothiolate Modifications: An NMR and UV Thermal Melting Investigation

Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single‐stranded nucleic acids are also relevant in third‐st...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 21; no. 19; pp. 7278 - 7284
Main Authors Evans, Kathryn, Bhamra, Inder, Wheelhouse, Richard T., Arnold, John R. P., Cosstick, Richard, Fisher, Julie
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 04.05.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single‐stranded nucleic acids are also relevant in third‐strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson–Crick (W–C) base‐paired DNA duplexes and a Hoogsteen base‐paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA‐like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3′‐S‐phosphorothiolate (3′‐SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3′‐SP modifications is more compact. The 3′‐SP modification was previously shown to stabilise G‐quadruplex and i‐motif structures and therefore is now proposed as a generic solution to stabilising multi‐stranded DNA structures. Triplex stabilization: NMR spectroscopy and UV thermal melting studies reveal that the structure and thermodynamic properties of a bimolecular triplex containing two 3′‐S‐phosphorothiolate modifications are enhanced compared with those for the native system (see figure). This result, together with similar observations for a G‐tetraplex and an i‐motif, suggests that the 3′‐S‐phosphorothiolate modification provides a subtle approach to the stabilization of multi‐stranded DNA complexes in general.
AbstractList Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson-Crick (W-C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3'-S-phosphorothiolate (3'-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1HNMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3'-SP modifications is more compact. The 3'-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures.
Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson-Crick (W-C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3'-S-phosphorothiolate (3'-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. super(1)HNMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3'-SP modifications is more compact. The 3'-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures. Triplex stabilization: NMR spectroscopy and UV thermal melting studies reveal that the structure and thermodynamic properties of a bimolecular triplex containing two 3'-S-phosphorothiolate modifications are enhanced compared with those for the native system (see figure). This result, together with similar observations for a G-tetraplex and an i-motif, suggests that the 3'-S-phosphorothiolate modification provides a subtle approach to the stabilization of multi-stranded DNA complexes in general.
Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single‐stranded nucleic acids are also relevant in third‐strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson–Crick (W–C) base‐paired DNA duplexes and a Hoogsteen base‐paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA‐like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3′‐S‐phosphorothiolate (3′‐SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3′‐SP modifications is more compact. The 3′‐SP modification was previously shown to stabilise G‐quadruplex and i‐motif structures and therefore is now proposed as a generic solution to stabilising multi‐stranded DNA structures. Triplex stabilization: NMR spectroscopy and UV thermal melting studies reveal that the structure and thermodynamic properties of a bimolecular triplex containing two 3′‐S‐phosphorothiolate modifications are enhanced compared with those for the native system (see figure). This result, together with similar observations for a G‐tetraplex and an i‐motif, suggests that the 3′‐S‐phosphorothiolate modification provides a subtle approach to the stabilization of multi‐stranded DNA complexes in general.
Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson-Crick (W-C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3'-S-phosphorothiolate (3'-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. (1) H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3'-SP modifications is more compact. The 3'-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures.
Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single‐stranded nucleic acids are also relevant in third‐strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson–Crick (W–C) base‐paired DNA duplexes and a Hoogsteen base‐paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA‐like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3′‐ S ‐phosphorothiolate (3′‐SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1 H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3′‐SP modifications is more compact. The 3′‐SP modification was previously shown to stabilise G‐quadruplex and i‐motif structures and therefore is now proposed as a generic solution to stabilising multi‐stranded DNA structures.
Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson-Crick (W-C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3'-S-phosphorothiolate (3'-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. (1) H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3'-SP modifications is more compact. The 3'-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures.Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson-Crick (W-C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3'-S-phosphorothiolate (3'-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. (1) H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3'-SP modifications is more compact. The 3'-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures.
Author Evans, Kathryn
Wheelhouse, Richard T.
Arnold, John R. P.
Fisher, Julie
Cosstick, Richard
Bhamra, Inder
Author_xml – sequence: 1
  givenname: Kathryn
  surname: Evans
  fullname: Evans, Kathryn
  organization: School of Chemistry, University of Leeds, Leeds, LS2 9JT (UK)
– sequence: 2
  givenname: Inder
  surname: Bhamra
  fullname: Bhamra, Inder
  organization: Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD (UK)
– sequence: 3
  givenname: Richard T.
  surname: Wheelhouse
  fullname: Wheelhouse, Richard T.
  organization: School of Pharmacy, University of Bradford, Bradford, BD7 1DP (UK)
– sequence: 4
  givenname: John R. P.
  surname: Arnold
  fullname: Arnold, John R. P.
  organization: Selby College, Selby, YO8 8AT (UK)
– sequence: 5
  givenname: Richard
  surname: Cosstick
  fullname: Cosstick, Richard
  organization: Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD (UK)
– sequence: 6
  givenname: Julie
  surname: Fisher
  fullname: Fisher, Julie
  email: j.fisher@chem.leeds.ac.uk
  organization: School of Chemistry, University of Leeds, Leeds, LS2 9JT (UK)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25802084$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v0zAYxy00xLrBlSOyxIVLil9iO-Y2qrFNWgds3ThajuOsHk5c7ARWJCQ-Ex-JT0LajgpNQjs9l9_vefvvgZ02tBaA5xiNMULktZnbZkwQZghRLh-BEWYEZ1RwtgNGSOYi44zKXbCX0g1CSHJKn4BdwgpEUJGPwI-LTpfOu--6c6GFoYYavnVN8Nb0Xkc4i27h7S0sl5D-_vkru8g-zENazEMM3dwFrzsLp6FytTPrDukNPGjh2fQc6raCl1dwNrex0R5Ore9cew1P2q82de56TT8Fj2vtk312V_fB5bvD2eQ4O31_dDI5OM0MJ1hmJWOykihn1FCKsKioxbjgnNSGkJIQQikuObIFkqUhFakrIniBrOQ1QwzldB-82vRdxPClH-arxiVjvdetDX1SWBQc55Jx-TDKBStEjgsyoC_voTehj-1wyIrKOR4WwwP14o7qy8ZWahFdo-NS_c1gAMYbwMSQUrT1FsFIrUJWq5DVNuRByO8JxnXrf3ZRO_9_TW60b87b5QND1OT4cPqvm21clzp7u3V1_Ky4oIKpT2dH6mOBBeHnQl3RP5npySo
CODEN CEUJED
CitedBy_id crossref_primary_10_1039_D0CB00136H
crossref_primary_10_1093_nar_gkz1099
Cites_doi 10.1021/ja991949s
10.1021/bi9816352
10.1039/C2OB26940F
10.1107/S0907444998003254
10.1126/science.1279808
10.1089/154545703322860825
10.1021/ja026952h
10.1093/nar/gkg198
10.1016/0079-6565(96)01028-X
10.1073/pnas.46.8.1044
10.1016/S0076-6879(95)61012-X
10.1021/jp710926h
10.1021/bi00055a012
10.1039/b713292a
10.1021/ja01565a074
10.1002/(SICI)1097-458X(199911)37:11<814::AID-MRC558>3.0.CO;2-6
10.1021/ja021285d
10.1016/S0079-6565(97)00023-X
10.1016/0165-022X(90)90006-X
10.1093/nar/gkh942
10.1021/bi00126a024
10.1007/s00253-006-0434-2
10.1006/jmbi.1996.0223
10.1039/b203582k
10.1093/nar/27.16.3371
10.1002/(SICI)1097-458X(199603)34:3<191::AID-OMR856>3.0.CO;2-I
10.1021/ja972720k
10.1021/ja973221m
10.1093/nar/21.24.5547
10.1093/oso/9780199632800.001.0001
10.1007/s00412-002-0198-0
10.1021/bi992630n
10.1038/nrm2178
10.1038/nature05519
10.1002/ange.200503110
10.1021/ja046335o
10.1021/bi990832d
10.1016/0076-6879(95)59046-3
10.1107/S0365110X59002389
10.1038/nprot.2007.451
10.1021/ja00140a001
10.1016/S0022-2836(65)80264-9
10.1002/mrc.1977
10.1016/j.antiviral.2004.12.001
10.1016/0006-291X(63)90338-3
10.1093/jhered/esp064
10.1016/0076-6879(89)80108-9
10.1021/bi990456x
10.1093/nar/gkr316
10.1093/nar/gkh658
10.4161/rna.8.3.14999
10.1002/anie.200503110
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201500369
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Materials Research Database

MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 7284
ExternalDocumentID 3661235101
25802084
10_1002_chem_201500369
CHEM201500369
ark_67375_WNG_Q81726R7_V
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGC
RWI
WRC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c6219-b559d90453c33017d3e118662fc22b222331b60e809bc2d2fd27680e96f505043
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 13:20:38 EDT 2025
Thu Jul 10 23:51:43 EDT 2025
Fri Jul 25 12:15:48 EDT 2025
Wed Feb 19 02:07:37 EST 2025
Tue Jul 01 02:47:04 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Wed Jan 22 16:41:15 EST 2025
Wed Jul 16 12:31:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords UV thermal melting
nucleic acids
NMR spectroscopy
3′-S-phosphorothiolate
DNA structures
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6219-b559d90453c33017d3e118662fc22b222331b60e809bc2d2fd27680e96f505043
Notes istex:96EBCC3C0EBBCF1D150DB2774B1794DC2794C5B2
ark:/67375/WNG-Q81726R7-V
ArticleID:CHEM201500369
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25802084
PQID 1674612231
PQPubID 986340
PageCount 7
ParticipantIDs proquest_miscellaneous_1786149569
proquest_miscellaneous_1675874182
proquest_journals_1674612231
pubmed_primary_25802084
crossref_primary_10_1002_chem_201500369
crossref_citationtrail_10_1002_chem_201500369
wiley_primary_10_1002_chem_201500369_CHEM201500369
istex_primary_ark_67375_WNG_Q81726R7_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 4, 2015
PublicationDateYYYYMMDD 2015-05-04
PublicationDate_xml – month: 05
  year: 2015
  text: May 4, 2015
  day: 04
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References J. L. Mergny, L. Lacroix, Oligonucleotides 2003, 13, 515-537.
E. Wang, K. M. Koshlap, P. Gillespie, P. B. Dervan, J. Feigon, J. Mol. Biol. 1996, 257, 1052-1069.
J. J. Sorensen, J. T. Nielsen, M. Petersen, Nucleic Acids Res. 2004, 32, 6078-6085.
G. M. Hashem, J.-D. Wen, Q. Do, D. M. Gray, Nucleic Acids Res. 1999, 27, 3371-3379.
M. J. J. Blommers, F. Natt, W. Jahnke, B. Cuenoud, Biochemistry 1998, 37, 17714-17725.
A. Kay Collier, J. R. P. Arnold, J. Fisher, Magn. Reson. Chem. 1996, 34, 191-196.
S. Karkare, D. Bhatnagar, Appl. Microbiol. Biotechnol. 2006, 71, 575-586.
H. Torigoe, R. Shimizume, A. Sarai, H. Shindo, Biochemistry 1999, 38, 14653-14659.
G. M. Carbone, E. M. McGuffie, A. Collier, C. V. Catapano, Nucleic Acids Res. 2003, 31, 833-843.
M. Ohno, T. Fukagawa, J. Lee, T. Ikemura, Chromosoma 2002, 111, 201-213.
M. M. Piperakis, J. W. Gaynor, J. Fisher, R. Cosstick, Org. Biomol. Chem. 2013, 11, 966-974.
M. R. Conte, T. C. Jenkins, A. N. Lane, J. Biochem. 1995, 229, 433-444.
C. Blanchet, M. Pasi, K. Zakrzewska, R. Lavery, Nucleic Acids Res. 2011, 39, W68-W73.
A. P. G. Beevers, E. M. Witch, B. C. N. M. Jones, R. Cosstick, J. R. P. Arnold, J. Fisher, Magn. Reson. Chem. 1999, 37, 814-820
S. S. Wijmenga, B. N. M. van Buuren, Prog. Nucl. Magn. Reson. Spectrosc. 1998, 32, 287-387.
C. H. Gotfredsen, P. Schultze, J. Feigon, J. Am. Chem. Soc. 1998, 120, 4281-4289.
F. Eckstein, Oligonucleotides and Analogues, Oxford University Press, Oxford, 1991.
J. Lee, V. Guelev, S. Sorey, D. W. Hoffman, B. L. Iverson, J. Am. Chem. Soc. 2004, 126, 14036-14042.
A. Rich, Proc. Natl. Acad. Sci. USA 1960, 46, 1044-1053.
G. Felsenfeld, D. R. Davies, A. Rich, J. Am. Chem. Soc. 1957, 79, 2023-2024.
A. P. G. Beevers, K. J. Fettes, I. A. O'Neil, S. M. Roberts, J. R. P. Arnold, R. Cosstick, J. Fisher, Chem. Commun. 2002, 1458-1459
J. W. Pham, I. Radhakrishnan, E. J. Sontheimer, Nucleic Acids Res. 2004, 32, 3446-3455.
J. W. Gaynor, J. Bentley, R. Cosstick, Nat. Protoc. 2007, 2, 3122-3135.
G. Varani, F. Aboul-ela, F. H. T. Allain, Prog. Nucl. Magn. Reson. Spectrosc. 1996, 29, 51-127.
K. J. Hampel, G. D. Burkholder, J. S. Lee, Biochemistry 1993, 32, 1072-1077.
J. D. Puglisi, I. Tinoco, Jr., Methods Enzymol. 1989, 180, 304-325.
J. Bentley, J. A. Brazier, J. Fisher, R. Cosstick, Org. Biomol. Chem. 2007, 5, 3698-3702.
I. Martianov, A. Ramadass, A. S. Barros, N. Chow, A. Akoulitchev, Nature 2007, 445, 666-670.
S. Neidle, Nucleic Acid Structure, Oxford University Press, Oxford, 1999.
J. L. Mergny, L. Lacroix, X. G. Han, J. L. Leroy, C. Helene, J. Am. Chem. Soc. 1995, 117, 8887-8898.
B. M. Lunde, C. Moore, G. Varani, Nat. Rev. Mol. Cell Biol. 2007, 8, 479-490.
J. A. Brazier, J. Fisher, R. Cosstick, Angew. Chem. Int. Ed. 2006, 45, 114-117
J. S. Vyle, B. A. Connolly, D. Kemp, R. Cosstick, Biochemistry 1992, 31, 3012-3018.
F. A. Buske, J. S. Mattick, T. L. Bailey, RNA Biol. 2011, 8, 427-439.
A. T. Brünger, Acta Crystallogr. Sect. D 1998, 54, 905-921.
C. Escudeé, J. C. Francois, J. S. Sun, G. Ott, M. Sprinzl, T. Garestier, C. Helene, Nucleic Acids Res. 1993, 21, 5547-5553.
C. Glemarec, A. Nyilas, C. Sund, J. Chattopadhyaya, J. Biochem. Biophys. Methods 1990, 21, 311-332.
L. J. Collins, C. g. Kurland, P. Biggs, D. Penny, J. Heredity 2009, 100, 597-604.
R. W. Roberts, D. M. Crothers, Science 1992, 258, 1463-1466.
X. Y. Yang, X. G. Han, C. Cross, S. Bare, Y. Sanghvi, X. L. Goa, Biochemistry 1999, 38, 12586-12596.
A. R. Srinivasan, W. K. Olson, J. Am. Chem. Soc. 1998, 120, 484-491.
K. J. Breslauer, G. K. A. Michael, L. Johnson, Methods Enzymol. 1995, 259, 221-242.
J. L. Asensio, R. Carr, T. Brown, A. N. Lane, J. Am. Chem. Soc. 1999, 121, 11063-11070.
H. K. Jayakumar, J. L. Buckingham, J. A. Brazier, N. G. Berry, R. Cosstick, J. Fisher, Magn. Reson. Chem. 2007, 45, 340-345
M. J. Chamberlin, D. L. Patterson, J. Mol. Biol. 1965, 12, 410-428.
J. Feigon, K. M. Koshlap, F. W. Smith, Methods Enzymol. 1995, 261, 225-255.
C. D. Pesce, Antiviral Res. 2005, 66, 13-22.
M. N. Lipsett, Biochem. Biophys. Res. Commun. 1963, 11, 224-228.
A. M. Soto, J. Loo, L. A. Marky, J. Am. Chem. Soc. 2002, 124, 14355-14363.
H.-T. Lee, S. Arciniegas, L. A. Marky, J. Phys. Chem. A 2008, 112, 4833-4840.
B. M. Znosko, T. W. Barnes III, T. R. Krugh, D. H. Turner, J. Am. Chem. Soc. 2003, 125, 6090-6097.
K. Hoogsteen, Acta Crystallogr. 1959, 12, 822-823.
Angew. Chem. 2006, 118, 120-123.
D. Leitner, W. Schroder, K. Weisz, Biochemistry 2000, 39, 5886-5892.
2006; 71
1965; 12
2004; 126
1993; 21
2002; 111
2003; 13
1999; 121
1995; 259
2005; 66
1996; 34
2004; 32
1996; 29
2013; 11
1960; 46
1993; 32
2007; 8
2007; 5
2007; 2
2008; 112
1996; 257
2003; 125
1998; 54
1998; 120
2007; 445
1999; 27
1995; 117
1991
2002
1989; 180
1992; 31
2011; 39
2011; 8
2003; 31
1957; 79
1999
1998; 37
2006 2006; 45 118
1990; 21
1963; 11
2000; 39
2002; 124
1999; 38
1999; 37
1995; 229
1992; 258
2009; 100
1998; 32
1995; 261
2007; 45
1959; 12
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_1_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_28_3
Conte M. R. (e_1_2_7_37_2) 1995; 229
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
Neidle S. (e_1_2_7_6_2) 1999
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_18_2
Eckstein F. (e_1_2_7_19_2) 1991
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – reference: F. A. Buske, J. S. Mattick, T. L. Bailey, RNA Biol. 2011, 8, 427-439.
– reference: I. Martianov, A. Ramadass, A. S. Barros, N. Chow, A. Akoulitchev, Nature 2007, 445, 666-670.
– reference: K. J. Breslauer, G. K. A. Michael, L. Johnson, Methods Enzymol. 1995, 259, 221-242.
– reference: A. R. Srinivasan, W. K. Olson, J. Am. Chem. Soc. 1998, 120, 484-491.
– reference: R. W. Roberts, D. M. Crothers, Science 1992, 258, 1463-1466.
– reference: J. L. Asensio, R. Carr, T. Brown, A. N. Lane, J. Am. Chem. Soc. 1999, 121, 11063-11070.
– reference: H. K. Jayakumar, J. L. Buckingham, J. A. Brazier, N. G. Berry, R. Cosstick, J. Fisher, Magn. Reson. Chem. 2007, 45, 340-345;
– reference: J. D. Puglisi, I. Tinoco, Jr., Methods Enzymol. 1989, 180, 304-325.
– reference: A. Rich, Proc. Natl. Acad. Sci. USA 1960, 46, 1044-1053.
– reference: C. D. Pesce, Antiviral Res. 2005, 66, 13-22.
– reference: A. T. Brünger, Acta Crystallogr. Sect. D 1998, 54, 905-921.
– reference: G. Varani, F. Aboul-ela, F. H. T. Allain, Prog. Nucl. Magn. Reson. Spectrosc. 1996, 29, 51-127.
– reference: J. L. Mergny, L. Lacroix, X. G. Han, J. L. Leroy, C. Helene, J. Am. Chem. Soc. 1995, 117, 8887-8898.
– reference: M. N. Lipsett, Biochem. Biophys. Res. Commun. 1963, 11, 224-228.
– reference: M. R. Conte, T. C. Jenkins, A. N. Lane, J. Biochem. 1995, 229, 433-444.
– reference: J. W. Pham, I. Radhakrishnan, E. J. Sontheimer, Nucleic Acids Res. 2004, 32, 3446-3455.
– reference: A. M. Soto, J. Loo, L. A. Marky, J. Am. Chem. Soc. 2002, 124, 14355-14363.
– reference: L. J. Collins, C. g. Kurland, P. Biggs, D. Penny, J. Heredity 2009, 100, 597-604.
– reference: J. A. Brazier, J. Fisher, R. Cosstick, Angew. Chem. Int. Ed. 2006, 45, 114-117;
– reference: J. W. Gaynor, J. Bentley, R. Cosstick, Nat. Protoc. 2007, 2, 3122-3135.
– reference: B. M. Lunde, C. Moore, G. Varani, Nat. Rev. Mol. Cell Biol. 2007, 8, 479-490.
– reference: H. Torigoe, R. Shimizume, A. Sarai, H. Shindo, Biochemistry 1999, 38, 14653-14659.
– reference: K. Hoogsteen, Acta Crystallogr. 1959, 12, 822-823.
– reference: M. Ohno, T. Fukagawa, J. Lee, T. Ikemura, Chromosoma 2002, 111, 201-213.
– reference: F. Eckstein, Oligonucleotides and Analogues, Oxford University Press, Oxford, 1991.
– reference: S. Karkare, D. Bhatnagar, Appl. Microbiol. Biotechnol. 2006, 71, 575-586.
– reference: X. Y. Yang, X. G. Han, C. Cross, S. Bare, Y. Sanghvi, X. L. Goa, Biochemistry 1999, 38, 12586-12596.
– reference: A. P. G. Beevers, E. M. Witch, B. C. N. M. Jones, R. Cosstick, J. R. P. Arnold, J. Fisher, Magn. Reson. Chem. 1999, 37, 814-820;
– reference: B. M. Znosko, T. W. Barnes III, T. R. Krugh, D. H. Turner, J. Am. Chem. Soc. 2003, 125, 6090-6097.
– reference: C. Escudeé, J. C. Francois, J. S. Sun, G. Ott, M. Sprinzl, T. Garestier, C. Helene, Nucleic Acids Res. 1993, 21, 5547-5553.
– reference: Angew. Chem. 2006, 118, 120-123.
– reference: J. L. Mergny, L. Lacroix, Oligonucleotides 2003, 13, 515-537.
– reference: A. Kay Collier, J. R. P. Arnold, J. Fisher, Magn. Reson. Chem. 1996, 34, 191-196.
– reference: K. J. Hampel, G. D. Burkholder, J. S. Lee, Biochemistry 1993, 32, 1072-1077.
– reference: C. H. Gotfredsen, P. Schultze, J. Feigon, J. Am. Chem. Soc. 1998, 120, 4281-4289.
– reference: G. Felsenfeld, D. R. Davies, A. Rich, J. Am. Chem. Soc. 1957, 79, 2023-2024.
– reference: S. Neidle, Nucleic Acid Structure, Oxford University Press, Oxford, 1999.
– reference: J. Feigon, K. M. Koshlap, F. W. Smith, Methods Enzymol. 1995, 261, 225-255.
– reference: M. J. J. Blommers, F. Natt, W. Jahnke, B. Cuenoud, Biochemistry 1998, 37, 17714-17725.
– reference: M. J. Chamberlin, D. L. Patterson, J. Mol. Biol. 1965, 12, 410-428.
– reference: S. S. Wijmenga, B. N. M. van Buuren, Prog. Nucl. Magn. Reson. Spectrosc. 1998, 32, 287-387.
– reference: H.-T. Lee, S. Arciniegas, L. A. Marky, J. Phys. Chem. A 2008, 112, 4833-4840.
– reference: J. J. Sorensen, J. T. Nielsen, M. Petersen, Nucleic Acids Res. 2004, 32, 6078-6085.
– reference: G. M. Hashem, J.-D. Wen, Q. Do, D. M. Gray, Nucleic Acids Res. 1999, 27, 3371-3379.
– reference: J. Bentley, J. A. Brazier, J. Fisher, R. Cosstick, Org. Biomol. Chem. 2007, 5, 3698-3702.
– reference: A. P. G. Beevers, K. J. Fettes, I. A. O'Neil, S. M. Roberts, J. R. P. Arnold, R. Cosstick, J. Fisher, Chem. Commun. 2002, 1458-1459;
– reference: C. Glemarec, A. Nyilas, C. Sund, J. Chattopadhyaya, J. Biochem. Biophys. Methods 1990, 21, 311-332.
– reference: E. Wang, K. M. Koshlap, P. Gillespie, P. B. Dervan, J. Feigon, J. Mol. Biol. 1996, 257, 1052-1069.
– reference: J. S. Vyle, B. A. Connolly, D. Kemp, R. Cosstick, Biochemistry 1992, 31, 3012-3018.
– reference: J. Lee, V. Guelev, S. Sorey, D. W. Hoffman, B. L. Iverson, J. Am. Chem. Soc. 2004, 126, 14036-14042.
– reference: G. M. Carbone, E. M. McGuffie, A. Collier, C. V. Catapano, Nucleic Acids Res. 2003, 31, 833-843.
– reference: C. Blanchet, M. Pasi, K. Zakrzewska, R. Lavery, Nucleic Acids Res. 2011, 39, W68-W73.
– reference: M. M. Piperakis, J. W. Gaynor, J. Fisher, R. Cosstick, Org. Biomol. Chem. 2013, 11, 966-974.
– reference: D. Leitner, W. Schroder, K. Weisz, Biochemistry 2000, 39, 5886-5892.
– volume: 32
  start-page: 3446
  year: 2004
  end-page: 3455
  publication-title: Nucleic Acids Res.
– volume: 46
  start-page: 1044
  year: 1960
  end-page: 1053
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 180
  start-page: 304
  year: 1989
  end-page: 325
  publication-title: Methods Enzymol.
– volume: 11
  start-page: 966
  year: 2013
  end-page: 974
  publication-title: Org. Biomol. Chem.
– volume: 11
  start-page: 224
  year: 1963
  end-page: 228
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 112
  start-page: 4833
  year: 2008
  end-page: 4840
  publication-title: J. Phys. Chem. A
– volume: 45 118
  start-page: 114 120
  year: 2006 2006
  end-page: 117 123
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 71
  start-page: 575
  year: 2006
  end-page: 586
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 37
  start-page: 17714
  year: 1998
  end-page: 17725
  publication-title: Biochemistry
– volume: 100
  start-page: 597
  year: 2009
  end-page: 604
  publication-title: J. Heredity
– volume: 32
  start-page: 287
  year: 1998
  end-page: 387
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 31
  start-page: 833
  year: 2003
  end-page: 843
  publication-title: Nucleic Acids Res.
– volume: 5
  start-page: 3698
  year: 2007
  end-page: 3702
  publication-title: Org. Biomol. Chem.
– volume: 34
  start-page: 191
  year: 1996
  end-page: 196
  publication-title: Magn. Reson. Chem.
– volume: 259
  start-page: 221
  year: 1995
  end-page: 242
  publication-title: Methods Enzymol.
– volume: 258
  start-page: 1463
  year: 1992
  end-page: 1466
  publication-title: Science
– volume: 261
  start-page: 225
  year: 1995
  end-page: 255
  publication-title: Methods Enzymol.
– volume: 32
  start-page: 6078
  year: 2004
  end-page: 6085
  publication-title: Nucleic Acids Res.
– volume: 13
  start-page: 515
  year: 2003
  end-page: 537
  publication-title: Oligonucleotides
– volume: 21
  start-page: 311
  year: 1990
  end-page: 332
  publication-title: J. Biochem. Biophys. Methods
– volume: 8
  start-page: 479
  year: 2007
  end-page: 490
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 39
  start-page: 5886
  year: 2000
  end-page: 5892
  publication-title: Biochemistry
– volume: 117
  start-page: 8887
  year: 1995
  end-page: 8898
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 427
  year: 2011
  end-page: 439
  publication-title: RNA Biol.
– volume: 125
  start-page: 6090
  year: 2003
  end-page: 6097
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 5547
  year: 1993
  end-page: 5553
  publication-title: Nucleic Acids Res.
– volume: 2
  start-page: 3122
  year: 2007
  end-page: 3135
  publication-title: Nat. Protoc.
– volume: 29
  start-page: 51
  year: 1996
  end-page: 127
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 120
  start-page: 4281
  year: 1998
  end-page: 4289
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 484
  year: 1998
  end-page: 491
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 905
  year: 1998
  end-page: 921
  publication-title: Acta Crystallogr. Sect. D
– volume: 45
  start-page: 340
  year: 2007
  end-page: 345
  publication-title: Magn. Reson. Chem.
– volume: 12
  start-page: 822
  year: 1959
  end-page: 823
  publication-title: Acta Crystallogr.
– volume: 121
  start-page: 11063
  year: 1999
  end-page: 11070
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 3012
  year: 1992
  end-page: 3018
  publication-title: Biochemistry
– volume: 79
  start-page: 2023
  year: 1957
  end-page: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 14036
  year: 2004
  end-page: 14042
  publication-title: J. Am. Chem. Soc.
– start-page: 1458
  year: 2002
  end-page: 1459
  publication-title: Chem. Commun.
– volume: 12
  start-page: 410
  year: 1965
  end-page: 428
  publication-title: J. Mol. Biol.
– volume: 32
  start-page: 1072
  year: 1993
  end-page: 1077
  publication-title: Biochemistry
– volume: 39
  start-page: 68
  year: 2011
  end-page: 73
  publication-title: Nucleic Acids Res.
– volume: 124
  start-page: 14355
  year: 2002
  end-page: 14363
  publication-title: J. Am. Chem. Soc.
– volume: 229
  start-page: 433
  year: 1995
  end-page: 444
  publication-title: J. Biochem.
– volume: 66
  start-page: 13
  year: 2005
  end-page: 22
  publication-title: Antiviral Res.
– volume: 257
  start-page: 1052
  year: 1996
  end-page: 1069
  publication-title: J. Mol. Biol.
– volume: 38
  start-page: 12586
  year: 1999
  end-page: 12596
  publication-title: Biochemistry
– year: 1991
– volume: 38
  start-page: 14653
  year: 1999
  end-page: 14659
  publication-title: Biochemistry
– volume: 111
  start-page: 201
  year: 2002
  end-page: 213
  publication-title: Chromosoma
– volume: 445
  start-page: 666
  year: 2007
  end-page: 670
  publication-title: Nature
– volume: 27
  start-page: 3371
  year: 1999
  end-page: 3379
  publication-title: Nucleic Acids Res.
– volume: 37
  start-page: 814
  year: 1999
  end-page: 820
  publication-title: Magn. Reson. Chem.
– year: 1999
– ident: e_1_2_7_18_2
  doi: 10.1021/ja991949s
– ident: e_1_2_7_17_2
  doi: 10.1021/bi9816352
– ident: e_1_2_7_27_2
  doi: 10.1039/C2OB26940F
– ident: e_1_2_7_52_2
  doi: 10.1107/S0907444998003254
– ident: e_1_2_7_14_2
  doi: 10.1126/science.1279808
– ident: e_1_2_7_29_2
  doi: 10.1089/154545703322860825
– volume: 229
  start-page: 433
  year: 1995
  ident: e_1_2_7_37_2
  publication-title: J. Biochem.
– ident: e_1_2_7_31_2
  doi: 10.1021/ja026952h
– ident: e_1_2_7_47_2
  doi: 10.1093/nar/gkg198
– ident: e_1_2_7_43_2
  doi: 10.1016/0079-6565(96)01028-X
– ident: e_1_2_7_4_2
  doi: 10.1073/pnas.46.8.1044
– ident: e_1_2_7_23_2
– ident: e_1_2_7_38_2
  doi: 10.1016/S0076-6879(95)61012-X
– ident: e_1_2_7_34_2
– ident: e_1_2_7_32_2
  doi: 10.1021/jp710926h
– volume-title: Nucleic Acid Structure
  year: 1999
  ident: e_1_2_7_6_2
– ident: e_1_2_7_12_2
  doi: 10.1021/bi00055a012
– ident: e_1_2_7_26_2
  doi: 10.1039/b713292a
– ident: e_1_2_7_1_2
  doi: 10.1021/ja01565a074
– ident: e_1_2_7_51_2
– ident: e_1_2_7_53_2
– ident: e_1_2_7_25_2
  doi: 10.1002/(SICI)1097-458X(199911)37:11<814::AID-MRC558>3.0.CO;2-6
– ident: e_1_2_7_57_2
  doi: 10.1021/ja021285d
– ident: e_1_2_7_33_2
  doi: 10.1016/S0079-6565(97)00023-X
– ident: e_1_2_7_36_2
  doi: 10.1016/0165-022X(90)90006-X
– ident: e_1_2_7_22_2
  doi: 10.1093/nar/gkh942
– ident: e_1_2_7_48_2
  doi: 10.1021/bi00126a024
– ident: e_1_2_7_21_2
  doi: 10.1007/s00253-006-0434-2
– ident: e_1_2_7_56_2
  doi: 10.1006/jmbi.1996.0223
– ident: e_1_2_7_24_2
  doi: 10.1039/b203582k
– ident: e_1_2_7_15_2
  doi: 10.1093/nar/27.16.3371
– ident: e_1_2_7_41_2
  doi: 10.1002/(SICI)1097-458X(199603)34:3<191::AID-OMR856>3.0.CO;2-I
– ident: e_1_2_7_13_2
  doi: 10.1021/ja972720k
– ident: e_1_2_7_35_2
  doi: 10.1021/ja973221m
– ident: e_1_2_7_16_2
  doi: 10.1093/nar/21.24.5547
– volume-title: Oligonucleotides and Analogues
  year: 1991
  ident: e_1_2_7_19_2
  doi: 10.1093/oso/9780199632800.001.0001
– ident: e_1_2_7_58_2
– ident: e_1_2_7_8_2
  doi: 10.1007/s00412-002-0198-0
– ident: e_1_2_7_30_2
  doi: 10.1021/bi992630n
– ident: e_1_2_7_11_2
  doi: 10.1038/nrm2178
– ident: e_1_2_7_9_2
  doi: 10.1038/nature05519
– ident: e_1_2_7_28_3
  doi: 10.1002/ange.200503110
– ident: e_1_2_7_42_2
  doi: 10.1021/ja046335o
– ident: e_1_2_7_20_2
  doi: 10.1021/bi990832d
– ident: e_1_2_7_44_2
  doi: 10.1016/0076-6879(95)59046-3
– ident: e_1_2_7_5_2
  doi: 10.1107/S0365110X59002389
– ident: e_1_2_7_49_2
  doi: 10.1038/nprot.2007.451
– ident: e_1_2_7_45_2
  doi: 10.1021/ja00140a001
– ident: e_1_2_7_3_2
  doi: 10.1016/S0022-2836(65)80264-9
– ident: e_1_2_7_40_2
  doi: 10.1002/mrc.1977
– ident: e_1_2_7_46_2
  doi: 10.1016/j.antiviral.2004.12.001
– ident: e_1_2_7_2_2
  doi: 10.1016/0006-291X(63)90338-3
– ident: e_1_2_7_10_2
  doi: 10.1093/jhered/esp064
– ident: e_1_2_7_50_2
  doi: 10.1016/0076-6879(89)80108-9
– ident: e_1_2_7_55_2
  doi: 10.1021/bi990456x
– ident: e_1_2_7_59_2
  doi: 10.1093/nar/gkr316
– ident: e_1_2_7_54_2
  doi: 10.1093/nar/gkh658
– ident: e_1_2_7_7_2
  doi: 10.4161/rna.8.3.14999
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.200503110
– ident: e_1_2_7_39_2
– ident: e_1_2_7_60_2
SSID ssj0009633
Score 2.1616342
Snippet Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7278
SubjectTerms 3′-S-phosphorothiolate
Binding
Biological
Chemistry
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA structures
Grooves
Melting
Models, Molecular
Molecular biology
NMR spectroscopy
Nuclear Magnetic Resonance, Biomolecular
Nucleic Acid Conformation
Nucleic Acid Denaturation
Nucleic acids
Phosphates - chemistry
Ribonucleic acids
Stabilization
Strands
Thermodynamics
UV thermal melting
Title Stabilization of a Bimolecular Triplex by 3′-S-Phosphorothiolate Modifications: An NMR and UV Thermal Melting Investigation
URI https://api.istex.fr/ark:/67375/WNG-Q81726R7-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201500369
https://www.ncbi.nlm.nih.gov/pubmed/25802084
https://www.proquest.com/docview/1674612231
https://www.proquest.com/docview/1675874182
https://www.proquest.com/docview/1786149569
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9VAEN4YfNAXb6hU0awJwadCz-72xhsSkZicEz1ykLfN3hoMJy05lwR9gn_gb_En8Uuc6baFQxQTfGjSptNkL7Oz32xnviFkjWeGqULbMEpzFooki0KVgM9jMty8TWq5wETh_iDZG4mPh_HhlSx-zw_RHbjhyqjtNS5wpaebl6Sh0CfMJAdAA0YYM_gwYAtR0fCSPwq0y9eSF2mIHKwta2PENhc_X9iV7uIAn_4Jci4i2HoL2n1IVNt4H3lyvDGf6Q3z4xqv4__07hF50OBTuu0V6jG548on5N5OWxZumZwDPMWAWp--SauCKvoOJrypskv3J3h0f0r1d8ovzn5dnP38Ateno2p6clRNQC--gTM9c7RfWYxS8geGW3S7pIP-kKrS0tEBBeWFDWNM-26MYdn0ChtIVT4lo933-zt7YVPHITQJGMRQg9dic8CO3HCwJzD_roc8e6wwjGkEKLynk8hlUa4Ns6ywDJygyOVJAfgsEvwZWSqr0q0QqqzOOUDOVIMbyWOhC6G0zQ3TRcF6KgpI2M6jNA3JOdbaGEtPz8wkDqzsBjYgbzv5E0_v8VfJ9VotOjE1OcaguDSWXwcf5OcMkGAyTOVBQFZbvZGNPZhKzPUALAlgOiBvutcwc_h7RpWumtcycYZkQuwGmTRLap8W2vPc62TXIBZnWHFVBITVmvWPDknk3OieXtzmo5fkPt7X8Z9ilSzNJnP3CjDaTL-u1-FvZUMzEQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygXKO9AC0ZCcEqbtfPk1hbKAs0Klt3CzYrtREVdJdV2Vyqc2n_Ab-En9ZcwEycpi3hIcMghyUTyYzz-xpn5BuCxiDXPCmVcL0q464ex52Yh-jw6ps1bR0b4lCicDsL-2H_9MWijCSkXxvJDdAdutDJqe00LnA6kNy9YQ7FTlEqOiAatcHIZlqmsN9HnPx9eMEihftlq8n7kEgtry9vo8c3F7xf2pWUa4pNfgc5FDFtvQrvXQLXNt7EnhxvzmdrQX35idvyv_q3C1Qaisi2rU9fhUl7egJWdtjLcTThDhEoxtTaDk1UFy9g2znlTaJeNpnR6f8LUZybOT7-dn359j9fbg-r46KCaomp8Qn96lrO0MhSoZM8Mn7Gtkg3SIctKw8b7DPUX94wJS_MJRWazHwhBqvIWjHdfjHb6blPKwdUh2kRXoeNiEoSPQgs0KagCeY-o9nihOVeEUURPhV4ee4nS3PDCcPSDvDwJC4Roni9uw1JZlfldYJlRiUDUGSn0JEXgq8LPlEk0V0XBe5nngNtOpNQNzzmV25hIy9DMJQ2s7AbWgaed_JFl-Pit5JNaLzqxbHpIcXFRID8MXsp3MYLBcBjJfQfWWsWRjUk4lpTugXAS8bQDj7rXOHP0hyYr82peywQx8QnxP8hEcVi7tdieO1YpuwbxIKaiq74DvFatv3RIEu1Gd3fvXz56CCv9Ubon914N3tyHK_S8Dgf112BpNp3n6wjZZupBvSi_A4N-Ny0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEC1BIgEX9sUQQiMhODnxtNsbt5BkCMuMwpBJcmv1YisoI3s0mZECp-QP8i18Ur6EKm_JIBYJDj7YLku9VFe_ale9Anjhx4arTFvXixLuijD2XBWiz2Ni2rxNZH1BicK9frg1FO_3g_1LWfwVP0R74EYro7TXtMDHNlu9IA3FPlEmOQIaNMLJVVgUoZdQ8YaNwQWBFKpXVUxeRC6RsDa0jR5fnf9-bltapBE-_hXmnIew5R7UvQWqaX0VenK4MpvqFfPtJ2LH_-nebbhZA1S2VmnUHbiS5nfh-npTF-4enCI-pYjaKn-TFRlT7A3OeF1ml-1M6Oz-mOmvzD8_-X5-cvYZr-2D4mh8UExQMb6gNz1NWa-wFKZUnRi-Zms56_cGTOWWDXcZai_uGCPWS0cUl80u0YEU-X0Ydjd31rfcupCDa0K0iK5Gt8UmCB5946NBQQVIO0S0xzPDuSaE4nd06KWxl2jDLc8sRy_IS5MwQ4DmCf8BLORFnj4CpqxOfMSckUY_0g-EzoTSNjFcZxnvKM8Bt5lHaWqWcyq2MZIVPzOXNLCyHVgHXrXy44rf47eSL0u1aMXU5JCi4qJA7vXfyk8xQsFwEMldB5YavZG1QTiSlOyBYBLRtAPP29c4c_R_RuVpMStlgpjYhPgfZKI4LJ1abM_DSifbBvEgppKrwgFeatZfOiSJdKO9e_wvHz2Da9sbXfnxXf_DE7hBj8tYULEEC9PJLH2KeG2ql8sl-QOrrzXc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilization+of+a+Bimolecular+Triplex+by+3%27-S-Phosphorothiolate+Modifications%3A+An+NMR+and+UV+Thermal+Melting+Investigation&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Evans%2C+Kathryn&rft.au=Bhamra%2C+Inder&rft.au=Wheelhouse%2C+Richard+T&rft.au=Arnold%2C+John+RP&rft.date=2015-05-04&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=19&rft.spage=7278&rft.epage=7284&rft_id=info:doi/10.1002%2Fchem.201500369&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon