Stabilization of a Bimolecular Triplex by 3′-S-Phosphorothiolate Modifications: An NMR and UV Thermal Melting Investigation
Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single‐stranded nucleic acids are also relevant in third‐st...
Saved in:
Published in | Chemistry : a European journal Vol. 21; no. 19; pp. 7278 - 7284 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
04.05.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single‐stranded nucleic acids are also relevant in third‐strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson–Crick (W–C) base‐paired DNA duplexes and a Hoogsteen base‐paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA‐like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3′‐S‐phosphorothiolate (3′‐SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3′‐SP modifications is more compact. The 3′‐SP modification was previously shown to stabilise G‐quadruplex and i‐motif structures and therefore is now proposed as a generic solution to stabilising multi‐stranded DNA structures.
Triplex stabilization: NMR spectroscopy and UV thermal melting studies reveal that the structure and thermodynamic properties of a bimolecular triplex containing two 3′‐S‐phosphorothiolate modifications are enhanced compared with those for the native system (see figure). This result, together with similar observations for a G‐tetraplex and an i‐motif, suggests that the 3′‐S‐phosphorothiolate modification provides a subtle approach to the stabilization of multi‐stranded DNA complexes in general. |
---|---|
AbstractList | Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson-Crick (W-C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3'-S-phosphorothiolate (3'-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1HNMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3'-SP modifications is more compact. The 3'-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures. Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson-Crick (W-C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3'-S-phosphorothiolate (3'-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. super(1)HNMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3'-SP modifications is more compact. The 3'-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures. Triplex stabilization: NMR spectroscopy and UV thermal melting studies reveal that the structure and thermodynamic properties of a bimolecular triplex containing two 3'-S-phosphorothiolate modifications are enhanced compared with those for the native system (see figure). This result, together with similar observations for a G-tetraplex and an i-motif, suggests that the 3'-S-phosphorothiolate modification provides a subtle approach to the stabilization of multi-stranded DNA complexes in general. Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single‐stranded nucleic acids are also relevant in third‐strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson–Crick (W–C) base‐paired DNA duplexes and a Hoogsteen base‐paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA‐like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3′‐S‐phosphorothiolate (3′‐SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3′‐SP modifications is more compact. The 3′‐SP modification was previously shown to stabilise G‐quadruplex and i‐motif structures and therefore is now proposed as a generic solution to stabilising multi‐stranded DNA structures. Triplex stabilization: NMR spectroscopy and UV thermal melting studies reveal that the structure and thermodynamic properties of a bimolecular triplex containing two 3′‐S‐phosphorothiolate modifications are enhanced compared with those for the native system (see figure). This result, together with similar observations for a G‐tetraplex and an i‐motif, suggests that the 3′‐S‐phosphorothiolate modification provides a subtle approach to the stabilization of multi‐stranded DNA complexes in general. Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson-Crick (W-C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3'-S-phosphorothiolate (3'-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. (1) H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3'-SP modifications is more compact. The 3'-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures. Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single‐stranded nucleic acids are also relevant in third‐strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson–Crick (W–C) base‐paired DNA duplexes and a Hoogsteen base‐paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA‐like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3′‐ S ‐phosphorothiolate (3′‐SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1 H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3′‐SP modifications is more compact. The 3′‐SP modification was previously shown to stabilise G‐quadruplex and i‐motif structures and therefore is now proposed as a generic solution to stabilising multi‐stranded DNA structures. Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson-Crick (W-C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3'-S-phosphorothiolate (3'-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. (1) H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3'-SP modifications is more compact. The 3'-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures.Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson-Crick (W-C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3'-S-phosphorothiolate (3'-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. (1) H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3'-SP modifications is more compact. The 3'-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures. |
Author | Evans, Kathryn Wheelhouse, Richard T. Arnold, John R. P. Fisher, Julie Cosstick, Richard Bhamra, Inder |
Author_xml | – sequence: 1 givenname: Kathryn surname: Evans fullname: Evans, Kathryn organization: School of Chemistry, University of Leeds, Leeds, LS2 9JT (UK) – sequence: 2 givenname: Inder surname: Bhamra fullname: Bhamra, Inder organization: Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD (UK) – sequence: 3 givenname: Richard T. surname: Wheelhouse fullname: Wheelhouse, Richard T. organization: School of Pharmacy, University of Bradford, Bradford, BD7 1DP (UK) – sequence: 4 givenname: John R. P. surname: Arnold fullname: Arnold, John R. P. organization: Selby College, Selby, YO8 8AT (UK) – sequence: 5 givenname: Richard surname: Cosstick fullname: Cosstick, Richard organization: Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD (UK) – sequence: 6 givenname: Julie surname: Fisher fullname: Fisher, Julie email: j.fisher@chem.leeds.ac.uk organization: School of Chemistry, University of Leeds, Leeds, LS2 9JT (UK) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25802084$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v0zAYxy00xLrBlSOyxIVLil9iO-Y2qrFNWgds3ThajuOsHk5c7ARWJCQ-Ex-JT0LajgpNQjs9l9_vefvvgZ02tBaA5xiNMULktZnbZkwQZghRLh-BEWYEZ1RwtgNGSOYi44zKXbCX0g1CSHJKn4BdwgpEUJGPwI-LTpfOu--6c6GFoYYavnVN8Nb0Xkc4i27h7S0sl5D-_vkru8g-zENazEMM3dwFrzsLp6FytTPrDukNPGjh2fQc6raCl1dwNrex0R5Ore9cew1P2q82de56TT8Fj2vtk312V_fB5bvD2eQ4O31_dDI5OM0MJ1hmJWOykihn1FCKsKioxbjgnNSGkJIQQikuObIFkqUhFakrIniBrOQ1QwzldB-82vRdxPClH-arxiVjvdetDX1SWBQc55Jx-TDKBStEjgsyoC_voTehj-1wyIrKOR4WwwP14o7qy8ZWahFdo-NS_c1gAMYbwMSQUrT1FsFIrUJWq5DVNuRByO8JxnXrf3ZRO_9_TW60b87b5QND1OT4cPqvm21clzp7u3V1_Ky4oIKpT2dH6mOBBeHnQl3RP5npySo |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1039_D0CB00136H crossref_primary_10_1093_nar_gkz1099 |
Cites_doi | 10.1021/ja991949s 10.1021/bi9816352 10.1039/C2OB26940F 10.1107/S0907444998003254 10.1126/science.1279808 10.1089/154545703322860825 10.1021/ja026952h 10.1093/nar/gkg198 10.1016/0079-6565(96)01028-X 10.1073/pnas.46.8.1044 10.1016/S0076-6879(95)61012-X 10.1021/jp710926h 10.1021/bi00055a012 10.1039/b713292a 10.1021/ja01565a074 10.1002/(SICI)1097-458X(199911)37:11<814::AID-MRC558>3.0.CO;2-6 10.1021/ja021285d 10.1016/S0079-6565(97)00023-X 10.1016/0165-022X(90)90006-X 10.1093/nar/gkh942 10.1021/bi00126a024 10.1007/s00253-006-0434-2 10.1006/jmbi.1996.0223 10.1039/b203582k 10.1093/nar/27.16.3371 10.1002/(SICI)1097-458X(199603)34:3<191::AID-OMR856>3.0.CO;2-I 10.1021/ja972720k 10.1021/ja973221m 10.1093/nar/21.24.5547 10.1093/oso/9780199632800.001.0001 10.1007/s00412-002-0198-0 10.1021/bi992630n 10.1038/nrm2178 10.1038/nature05519 10.1002/ange.200503110 10.1021/ja046335o 10.1021/bi990832d 10.1016/0076-6879(95)59046-3 10.1107/S0365110X59002389 10.1038/nprot.2007.451 10.1021/ja00140a001 10.1016/S0022-2836(65)80264-9 10.1002/mrc.1977 10.1016/j.antiviral.2004.12.001 10.1016/0006-291X(63)90338-3 10.1093/jhered/esp064 10.1016/0076-6879(89)80108-9 10.1021/bi990456x 10.1093/nar/gkr316 10.1093/nar/gkh658 10.4161/rna.8.3.14999 10.1002/anie.200503110 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201500369 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database Materials Research Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 7284 |
ExternalDocumentID | 3661235101 25802084 10_1002_chem_201500369 CHEM201500369 ark_67375_WNG_Q81726R7_V |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGC RWI WRC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c6219-b559d90453c33017d3e118662fc22b222331b60e809bc2d2fd27680e96f505043 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 13:20:38 EDT 2025 Thu Jul 10 23:51:43 EDT 2025 Fri Jul 25 12:15:48 EDT 2025 Wed Feb 19 02:07:37 EST 2025 Tue Jul 01 02:47:04 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 Wed Jan 22 16:41:15 EST 2025 Wed Jul 16 12:31:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | UV thermal melting nucleic acids NMR spectroscopy 3′-S-phosphorothiolate DNA structures |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6219-b559d90453c33017d3e118662fc22b222331b60e809bc2d2fd27680e96f505043 |
Notes | istex:96EBCC3C0EBBCF1D150DB2774B1794DC2794C5B2 ark:/67375/WNG-Q81726R7-V ArticleID:CHEM201500369 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25802084 |
PQID | 1674612231 |
PQPubID | 986340 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1786149569 proquest_miscellaneous_1675874182 proquest_journals_1674612231 pubmed_primary_25802084 crossref_primary_10_1002_chem_201500369 crossref_citationtrail_10_1002_chem_201500369 wiley_primary_10_1002_chem_201500369_CHEM201500369 istex_primary_ark_67375_WNG_Q81726R7_V |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 4, 2015 |
PublicationDateYYYYMMDD | 2015-05-04 |
PublicationDate_xml | – month: 05 year: 2015 text: May 4, 2015 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | J. L. Mergny, L. Lacroix, Oligonucleotides 2003, 13, 515-537. E. Wang, K. M. Koshlap, P. Gillespie, P. B. Dervan, J. Feigon, J. Mol. Biol. 1996, 257, 1052-1069. J. J. Sorensen, J. T. Nielsen, M. Petersen, Nucleic Acids Res. 2004, 32, 6078-6085. G. M. Hashem, J.-D. Wen, Q. Do, D. M. Gray, Nucleic Acids Res. 1999, 27, 3371-3379. M. J. J. Blommers, F. Natt, W. Jahnke, B. Cuenoud, Biochemistry 1998, 37, 17714-17725. A. Kay Collier, J. R. P. Arnold, J. Fisher, Magn. Reson. Chem. 1996, 34, 191-196. S. Karkare, D. Bhatnagar, Appl. Microbiol. Biotechnol. 2006, 71, 575-586. H. Torigoe, R. Shimizume, A. Sarai, H. Shindo, Biochemistry 1999, 38, 14653-14659. G. M. Carbone, E. M. McGuffie, A. Collier, C. V. Catapano, Nucleic Acids Res. 2003, 31, 833-843. M. Ohno, T. Fukagawa, J. Lee, T. Ikemura, Chromosoma 2002, 111, 201-213. M. M. Piperakis, J. W. Gaynor, J. Fisher, R. Cosstick, Org. Biomol. Chem. 2013, 11, 966-974. M. R. Conte, T. C. Jenkins, A. N. Lane, J. Biochem. 1995, 229, 433-444. C. Blanchet, M. Pasi, K. Zakrzewska, R. Lavery, Nucleic Acids Res. 2011, 39, W68-W73. A. P. G. Beevers, E. M. Witch, B. C. N. M. Jones, R. Cosstick, J. R. P. Arnold, J. Fisher, Magn. Reson. Chem. 1999, 37, 814-820 S. S. Wijmenga, B. N. M. van Buuren, Prog. Nucl. Magn. Reson. Spectrosc. 1998, 32, 287-387. C. H. Gotfredsen, P. Schultze, J. Feigon, J. Am. Chem. Soc. 1998, 120, 4281-4289. F. Eckstein, Oligonucleotides and Analogues, Oxford University Press, Oxford, 1991. J. Lee, V. Guelev, S. Sorey, D. W. Hoffman, B. L. Iverson, J. Am. Chem. Soc. 2004, 126, 14036-14042. A. Rich, Proc. Natl. Acad. Sci. USA 1960, 46, 1044-1053. G. Felsenfeld, D. R. Davies, A. Rich, J. Am. Chem. Soc. 1957, 79, 2023-2024. A. P. G. Beevers, K. J. Fettes, I. A. O'Neil, S. M. Roberts, J. R. P. Arnold, R. Cosstick, J. Fisher, Chem. Commun. 2002, 1458-1459 J. W. Pham, I. Radhakrishnan, E. J. Sontheimer, Nucleic Acids Res. 2004, 32, 3446-3455. J. W. Gaynor, J. Bentley, R. Cosstick, Nat. Protoc. 2007, 2, 3122-3135. G. Varani, F. Aboul-ela, F. H. T. Allain, Prog. Nucl. Magn. Reson. Spectrosc. 1996, 29, 51-127. K. J. Hampel, G. D. Burkholder, J. S. Lee, Biochemistry 1993, 32, 1072-1077. J. D. Puglisi, I. Tinoco, Jr., Methods Enzymol. 1989, 180, 304-325. J. Bentley, J. A. Brazier, J. Fisher, R. Cosstick, Org. Biomol. Chem. 2007, 5, 3698-3702. I. Martianov, A. Ramadass, A. S. Barros, N. Chow, A. Akoulitchev, Nature 2007, 445, 666-670. S. Neidle, Nucleic Acid Structure, Oxford University Press, Oxford, 1999. J. L. Mergny, L. Lacroix, X. G. Han, J. L. Leroy, C. Helene, J. Am. Chem. Soc. 1995, 117, 8887-8898. B. M. Lunde, C. Moore, G. Varani, Nat. Rev. Mol. Cell Biol. 2007, 8, 479-490. J. A. Brazier, J. Fisher, R. Cosstick, Angew. Chem. Int. Ed. 2006, 45, 114-117 J. S. Vyle, B. A. Connolly, D. Kemp, R. Cosstick, Biochemistry 1992, 31, 3012-3018. F. A. Buske, J. S. Mattick, T. L. Bailey, RNA Biol. 2011, 8, 427-439. A. T. Brünger, Acta Crystallogr. Sect. D 1998, 54, 905-921. C. Escudeé, J. C. Francois, J. S. Sun, G. Ott, M. Sprinzl, T. Garestier, C. Helene, Nucleic Acids Res. 1993, 21, 5547-5553. C. Glemarec, A. Nyilas, C. Sund, J. Chattopadhyaya, J. Biochem. Biophys. Methods 1990, 21, 311-332. L. J. Collins, C. g. Kurland, P. Biggs, D. Penny, J. Heredity 2009, 100, 597-604. R. W. Roberts, D. M. Crothers, Science 1992, 258, 1463-1466. X. Y. Yang, X. G. Han, C. Cross, S. Bare, Y. Sanghvi, X. L. Goa, Biochemistry 1999, 38, 12586-12596. A. R. Srinivasan, W. K. Olson, J. Am. Chem. Soc. 1998, 120, 484-491. K. J. Breslauer, G. K. A. Michael, L. Johnson, Methods Enzymol. 1995, 259, 221-242. J. L. Asensio, R. Carr, T. Brown, A. N. Lane, J. Am. Chem. Soc. 1999, 121, 11063-11070. H. K. Jayakumar, J. L. Buckingham, J. A. Brazier, N. G. Berry, R. Cosstick, J. Fisher, Magn. Reson. Chem. 2007, 45, 340-345 M. J. Chamberlin, D. L. Patterson, J. Mol. Biol. 1965, 12, 410-428. J. Feigon, K. M. Koshlap, F. W. Smith, Methods Enzymol. 1995, 261, 225-255. C. D. Pesce, Antiviral Res. 2005, 66, 13-22. M. N. Lipsett, Biochem. Biophys. Res. Commun. 1963, 11, 224-228. A. M. Soto, J. Loo, L. A. Marky, J. Am. Chem. Soc. 2002, 124, 14355-14363. H.-T. Lee, S. Arciniegas, L. A. Marky, J. Phys. Chem. A 2008, 112, 4833-4840. B. M. Znosko, T. W. Barnes III, T. R. Krugh, D. H. Turner, J. Am. Chem. Soc. 2003, 125, 6090-6097. K. Hoogsteen, Acta Crystallogr. 1959, 12, 822-823. Angew. Chem. 2006, 118, 120-123. D. Leitner, W. Schroder, K. Weisz, Biochemistry 2000, 39, 5886-5892. 2006; 71 1965; 12 2004; 126 1993; 21 2002; 111 2003; 13 1999; 121 1995; 259 2005; 66 1996; 34 2004; 32 1996; 29 2013; 11 1960; 46 1993; 32 2007; 8 2007; 5 2007; 2 2008; 112 1996; 257 2003; 125 1998; 54 1998; 120 2007; 445 1999; 27 1995; 117 1991 2002 1989; 180 1992; 31 2011; 39 2011; 8 2003; 31 1957; 79 1999 1998; 37 2006 2006; 45 118 1990; 21 1963; 11 2000; 39 2002; 124 1999; 38 1999; 37 1995; 229 1992; 258 2009; 100 1998; 32 1995; 261 2007; 45 1959; 12 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_1_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_28_3 Conte M. R. (e_1_2_7_37_2) 1995; 229 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 Neidle S. (e_1_2_7_6_2) 1999 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_18_2 Eckstein F. (e_1_2_7_19_2) 1991 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – reference: F. A. Buske, J. S. Mattick, T. L. Bailey, RNA Biol. 2011, 8, 427-439. – reference: I. Martianov, A. Ramadass, A. S. Barros, N. Chow, A. Akoulitchev, Nature 2007, 445, 666-670. – reference: K. J. Breslauer, G. K. A. Michael, L. Johnson, Methods Enzymol. 1995, 259, 221-242. – reference: A. R. Srinivasan, W. K. Olson, J. Am. Chem. Soc. 1998, 120, 484-491. – reference: R. W. Roberts, D. M. Crothers, Science 1992, 258, 1463-1466. – reference: J. L. Asensio, R. Carr, T. Brown, A. N. Lane, J. Am. Chem. Soc. 1999, 121, 11063-11070. – reference: H. K. Jayakumar, J. L. Buckingham, J. A. Brazier, N. G. Berry, R. Cosstick, J. Fisher, Magn. Reson. Chem. 2007, 45, 340-345; – reference: J. D. Puglisi, I. Tinoco, Jr., Methods Enzymol. 1989, 180, 304-325. – reference: A. Rich, Proc. Natl. Acad. Sci. USA 1960, 46, 1044-1053. – reference: C. D. Pesce, Antiviral Res. 2005, 66, 13-22. – reference: A. T. Brünger, Acta Crystallogr. Sect. D 1998, 54, 905-921. – reference: G. Varani, F. Aboul-ela, F. H. T. Allain, Prog. Nucl. Magn. Reson. Spectrosc. 1996, 29, 51-127. – reference: J. L. Mergny, L. Lacroix, X. G. Han, J. L. Leroy, C. Helene, J. Am. Chem. Soc. 1995, 117, 8887-8898. – reference: M. N. Lipsett, Biochem. Biophys. Res. Commun. 1963, 11, 224-228. – reference: M. R. Conte, T. C. Jenkins, A. N. Lane, J. Biochem. 1995, 229, 433-444. – reference: J. W. Pham, I. Radhakrishnan, E. J. Sontheimer, Nucleic Acids Res. 2004, 32, 3446-3455. – reference: A. M. Soto, J. Loo, L. A. Marky, J. Am. Chem. Soc. 2002, 124, 14355-14363. – reference: L. J. Collins, C. g. Kurland, P. Biggs, D. Penny, J. Heredity 2009, 100, 597-604. – reference: J. A. Brazier, J. Fisher, R. Cosstick, Angew. Chem. Int. Ed. 2006, 45, 114-117; – reference: J. W. Gaynor, J. Bentley, R. Cosstick, Nat. Protoc. 2007, 2, 3122-3135. – reference: B. M. Lunde, C. Moore, G. Varani, Nat. Rev. Mol. Cell Biol. 2007, 8, 479-490. – reference: H. Torigoe, R. Shimizume, A. Sarai, H. Shindo, Biochemistry 1999, 38, 14653-14659. – reference: K. Hoogsteen, Acta Crystallogr. 1959, 12, 822-823. – reference: M. Ohno, T. Fukagawa, J. Lee, T. Ikemura, Chromosoma 2002, 111, 201-213. – reference: F. Eckstein, Oligonucleotides and Analogues, Oxford University Press, Oxford, 1991. – reference: S. Karkare, D. Bhatnagar, Appl. Microbiol. Biotechnol. 2006, 71, 575-586. – reference: X. Y. Yang, X. G. Han, C. Cross, S. Bare, Y. Sanghvi, X. L. Goa, Biochemistry 1999, 38, 12586-12596. – reference: A. P. G. Beevers, E. M. Witch, B. C. N. M. Jones, R. Cosstick, J. R. P. Arnold, J. Fisher, Magn. Reson. Chem. 1999, 37, 814-820; – reference: B. M. Znosko, T. W. Barnes III, T. R. Krugh, D. H. Turner, J. Am. Chem. Soc. 2003, 125, 6090-6097. – reference: C. Escudeé, J. C. Francois, J. S. Sun, G. Ott, M. Sprinzl, T. Garestier, C. Helene, Nucleic Acids Res. 1993, 21, 5547-5553. – reference: Angew. Chem. 2006, 118, 120-123. – reference: J. L. Mergny, L. Lacroix, Oligonucleotides 2003, 13, 515-537. – reference: A. Kay Collier, J. R. P. Arnold, J. Fisher, Magn. Reson. Chem. 1996, 34, 191-196. – reference: K. J. Hampel, G. D. Burkholder, J. S. Lee, Biochemistry 1993, 32, 1072-1077. – reference: C. H. Gotfredsen, P. Schultze, J. Feigon, J. Am. Chem. Soc. 1998, 120, 4281-4289. – reference: G. Felsenfeld, D. R. Davies, A. Rich, J. Am. Chem. Soc. 1957, 79, 2023-2024. – reference: S. Neidle, Nucleic Acid Structure, Oxford University Press, Oxford, 1999. – reference: J. Feigon, K. M. Koshlap, F. W. Smith, Methods Enzymol. 1995, 261, 225-255. – reference: M. J. J. Blommers, F. Natt, W. Jahnke, B. Cuenoud, Biochemistry 1998, 37, 17714-17725. – reference: M. J. Chamberlin, D. L. Patterson, J. Mol. Biol. 1965, 12, 410-428. – reference: S. S. Wijmenga, B. N. M. van Buuren, Prog. Nucl. Magn. Reson. Spectrosc. 1998, 32, 287-387. – reference: H.-T. Lee, S. Arciniegas, L. A. Marky, J. Phys. Chem. A 2008, 112, 4833-4840. – reference: J. J. Sorensen, J. T. Nielsen, M. Petersen, Nucleic Acids Res. 2004, 32, 6078-6085. – reference: G. M. Hashem, J.-D. Wen, Q. Do, D. M. Gray, Nucleic Acids Res. 1999, 27, 3371-3379. – reference: J. Bentley, J. A. Brazier, J. Fisher, R. Cosstick, Org. Biomol. Chem. 2007, 5, 3698-3702. – reference: A. P. G. Beevers, K. J. Fettes, I. A. O'Neil, S. M. Roberts, J. R. P. Arnold, R. Cosstick, J. Fisher, Chem. Commun. 2002, 1458-1459; – reference: C. Glemarec, A. Nyilas, C. Sund, J. Chattopadhyaya, J. Biochem. Biophys. Methods 1990, 21, 311-332. – reference: E. Wang, K. M. Koshlap, P. Gillespie, P. B. Dervan, J. Feigon, J. Mol. Biol. 1996, 257, 1052-1069. – reference: J. S. Vyle, B. A. Connolly, D. Kemp, R. Cosstick, Biochemistry 1992, 31, 3012-3018. – reference: J. Lee, V. Guelev, S. Sorey, D. W. Hoffman, B. L. Iverson, J. Am. Chem. Soc. 2004, 126, 14036-14042. – reference: G. M. Carbone, E. M. McGuffie, A. Collier, C. V. Catapano, Nucleic Acids Res. 2003, 31, 833-843. – reference: C. Blanchet, M. Pasi, K. Zakrzewska, R. Lavery, Nucleic Acids Res. 2011, 39, W68-W73. – reference: M. M. Piperakis, J. W. Gaynor, J. Fisher, R. Cosstick, Org. Biomol. Chem. 2013, 11, 966-974. – reference: D. Leitner, W. Schroder, K. Weisz, Biochemistry 2000, 39, 5886-5892. – volume: 32 start-page: 3446 year: 2004 end-page: 3455 publication-title: Nucleic Acids Res. – volume: 46 start-page: 1044 year: 1960 end-page: 1053 publication-title: Proc. Natl. Acad. Sci. USA – volume: 180 start-page: 304 year: 1989 end-page: 325 publication-title: Methods Enzymol. – volume: 11 start-page: 966 year: 2013 end-page: 974 publication-title: Org. Biomol. Chem. – volume: 11 start-page: 224 year: 1963 end-page: 228 publication-title: Biochem. Biophys. Res. Commun. – volume: 112 start-page: 4833 year: 2008 end-page: 4840 publication-title: J. Phys. Chem. A – volume: 45 118 start-page: 114 120 year: 2006 2006 end-page: 117 123 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 71 start-page: 575 year: 2006 end-page: 586 publication-title: Appl. Microbiol. Biotechnol. – volume: 37 start-page: 17714 year: 1998 end-page: 17725 publication-title: Biochemistry – volume: 100 start-page: 597 year: 2009 end-page: 604 publication-title: J. Heredity – volume: 32 start-page: 287 year: 1998 end-page: 387 publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 31 start-page: 833 year: 2003 end-page: 843 publication-title: Nucleic Acids Res. – volume: 5 start-page: 3698 year: 2007 end-page: 3702 publication-title: Org. Biomol. Chem. – volume: 34 start-page: 191 year: 1996 end-page: 196 publication-title: Magn. Reson. Chem. – volume: 259 start-page: 221 year: 1995 end-page: 242 publication-title: Methods Enzymol. – volume: 258 start-page: 1463 year: 1992 end-page: 1466 publication-title: Science – volume: 261 start-page: 225 year: 1995 end-page: 255 publication-title: Methods Enzymol. – volume: 32 start-page: 6078 year: 2004 end-page: 6085 publication-title: Nucleic Acids Res. – volume: 13 start-page: 515 year: 2003 end-page: 537 publication-title: Oligonucleotides – volume: 21 start-page: 311 year: 1990 end-page: 332 publication-title: J. Biochem. Biophys. Methods – volume: 8 start-page: 479 year: 2007 end-page: 490 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 39 start-page: 5886 year: 2000 end-page: 5892 publication-title: Biochemistry – volume: 117 start-page: 8887 year: 1995 end-page: 8898 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 427 year: 2011 end-page: 439 publication-title: RNA Biol. – volume: 125 start-page: 6090 year: 2003 end-page: 6097 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 5547 year: 1993 end-page: 5553 publication-title: Nucleic Acids Res. – volume: 2 start-page: 3122 year: 2007 end-page: 3135 publication-title: Nat. Protoc. – volume: 29 start-page: 51 year: 1996 end-page: 127 publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 120 start-page: 4281 year: 1998 end-page: 4289 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 484 year: 1998 end-page: 491 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 905 year: 1998 end-page: 921 publication-title: Acta Crystallogr. Sect. D – volume: 45 start-page: 340 year: 2007 end-page: 345 publication-title: Magn. Reson. Chem. – volume: 12 start-page: 822 year: 1959 end-page: 823 publication-title: Acta Crystallogr. – volume: 121 start-page: 11063 year: 1999 end-page: 11070 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 3012 year: 1992 end-page: 3018 publication-title: Biochemistry – volume: 79 start-page: 2023 year: 1957 end-page: 2024 publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 14036 year: 2004 end-page: 14042 publication-title: J. Am. Chem. Soc. – start-page: 1458 year: 2002 end-page: 1459 publication-title: Chem. Commun. – volume: 12 start-page: 410 year: 1965 end-page: 428 publication-title: J. Mol. Biol. – volume: 32 start-page: 1072 year: 1993 end-page: 1077 publication-title: Biochemistry – volume: 39 start-page: 68 year: 2011 end-page: 73 publication-title: Nucleic Acids Res. – volume: 124 start-page: 14355 year: 2002 end-page: 14363 publication-title: J. Am. Chem. Soc. – volume: 229 start-page: 433 year: 1995 end-page: 444 publication-title: J. Biochem. – volume: 66 start-page: 13 year: 2005 end-page: 22 publication-title: Antiviral Res. – volume: 257 start-page: 1052 year: 1996 end-page: 1069 publication-title: J. Mol. Biol. – volume: 38 start-page: 12586 year: 1999 end-page: 12596 publication-title: Biochemistry – year: 1991 – volume: 38 start-page: 14653 year: 1999 end-page: 14659 publication-title: Biochemistry – volume: 111 start-page: 201 year: 2002 end-page: 213 publication-title: Chromosoma – volume: 445 start-page: 666 year: 2007 end-page: 670 publication-title: Nature – volume: 27 start-page: 3371 year: 1999 end-page: 3379 publication-title: Nucleic Acids Res. – volume: 37 start-page: 814 year: 1999 end-page: 820 publication-title: Magn. Reson. Chem. – year: 1999 – ident: e_1_2_7_18_2 doi: 10.1021/ja991949s – ident: e_1_2_7_17_2 doi: 10.1021/bi9816352 – ident: e_1_2_7_27_2 doi: 10.1039/C2OB26940F – ident: e_1_2_7_52_2 doi: 10.1107/S0907444998003254 – ident: e_1_2_7_14_2 doi: 10.1126/science.1279808 – ident: e_1_2_7_29_2 doi: 10.1089/154545703322860825 – volume: 229 start-page: 433 year: 1995 ident: e_1_2_7_37_2 publication-title: J. Biochem. – ident: e_1_2_7_31_2 doi: 10.1021/ja026952h – ident: e_1_2_7_47_2 doi: 10.1093/nar/gkg198 – ident: e_1_2_7_43_2 doi: 10.1016/0079-6565(96)01028-X – ident: e_1_2_7_4_2 doi: 10.1073/pnas.46.8.1044 – ident: e_1_2_7_23_2 – ident: e_1_2_7_38_2 doi: 10.1016/S0076-6879(95)61012-X – ident: e_1_2_7_34_2 – ident: e_1_2_7_32_2 doi: 10.1021/jp710926h – volume-title: Nucleic Acid Structure year: 1999 ident: e_1_2_7_6_2 – ident: e_1_2_7_12_2 doi: 10.1021/bi00055a012 – ident: e_1_2_7_26_2 doi: 10.1039/b713292a – ident: e_1_2_7_1_2 doi: 10.1021/ja01565a074 – ident: e_1_2_7_51_2 – ident: e_1_2_7_53_2 – ident: e_1_2_7_25_2 doi: 10.1002/(SICI)1097-458X(199911)37:11<814::AID-MRC558>3.0.CO;2-6 – ident: e_1_2_7_57_2 doi: 10.1021/ja021285d – ident: e_1_2_7_33_2 doi: 10.1016/S0079-6565(97)00023-X – ident: e_1_2_7_36_2 doi: 10.1016/0165-022X(90)90006-X – ident: e_1_2_7_22_2 doi: 10.1093/nar/gkh942 – ident: e_1_2_7_48_2 doi: 10.1021/bi00126a024 – ident: e_1_2_7_21_2 doi: 10.1007/s00253-006-0434-2 – ident: e_1_2_7_56_2 doi: 10.1006/jmbi.1996.0223 – ident: e_1_2_7_24_2 doi: 10.1039/b203582k – ident: e_1_2_7_15_2 doi: 10.1093/nar/27.16.3371 – ident: e_1_2_7_41_2 doi: 10.1002/(SICI)1097-458X(199603)34:3<191::AID-OMR856>3.0.CO;2-I – ident: e_1_2_7_13_2 doi: 10.1021/ja972720k – ident: e_1_2_7_35_2 doi: 10.1021/ja973221m – ident: e_1_2_7_16_2 doi: 10.1093/nar/21.24.5547 – volume-title: Oligonucleotides and Analogues year: 1991 ident: e_1_2_7_19_2 doi: 10.1093/oso/9780199632800.001.0001 – ident: e_1_2_7_58_2 – ident: e_1_2_7_8_2 doi: 10.1007/s00412-002-0198-0 – ident: e_1_2_7_30_2 doi: 10.1021/bi992630n – ident: e_1_2_7_11_2 doi: 10.1038/nrm2178 – ident: e_1_2_7_9_2 doi: 10.1038/nature05519 – ident: e_1_2_7_28_3 doi: 10.1002/ange.200503110 – ident: e_1_2_7_42_2 doi: 10.1021/ja046335o – ident: e_1_2_7_20_2 doi: 10.1021/bi990832d – ident: e_1_2_7_44_2 doi: 10.1016/0076-6879(95)59046-3 – ident: e_1_2_7_5_2 doi: 10.1107/S0365110X59002389 – ident: e_1_2_7_49_2 doi: 10.1038/nprot.2007.451 – ident: e_1_2_7_45_2 doi: 10.1021/ja00140a001 – ident: e_1_2_7_3_2 doi: 10.1016/S0022-2836(65)80264-9 – ident: e_1_2_7_40_2 doi: 10.1002/mrc.1977 – ident: e_1_2_7_46_2 doi: 10.1016/j.antiviral.2004.12.001 – ident: e_1_2_7_2_2 doi: 10.1016/0006-291X(63)90338-3 – ident: e_1_2_7_10_2 doi: 10.1093/jhered/esp064 – ident: e_1_2_7_50_2 doi: 10.1016/0076-6879(89)80108-9 – ident: e_1_2_7_55_2 doi: 10.1021/bi990456x – ident: e_1_2_7_59_2 doi: 10.1093/nar/gkr316 – ident: e_1_2_7_54_2 doi: 10.1093/nar/gkh658 – ident: e_1_2_7_7_2 doi: 10.4161/rna.8.3.14999 – ident: e_1_2_7_28_2 doi: 10.1002/anie.200503110 – ident: e_1_2_7_39_2 – ident: e_1_2_7_60_2 |
SSID | ssj0009633 |
Score | 2.1616342 |
Snippet | Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7278 |
SubjectTerms | 3′-S-phosphorothiolate Binding Biological Chemistry Deoxyribonucleic acid DNA DNA - chemistry DNA structures Grooves Melting Models, Molecular Molecular biology NMR spectroscopy Nuclear Magnetic Resonance, Biomolecular Nucleic Acid Conformation Nucleic Acid Denaturation Nucleic acids Phosphates - chemistry Ribonucleic acids Stabilization Strands Thermodynamics UV thermal melting |
Title | Stabilization of a Bimolecular Triplex by 3′-S-Phosphorothiolate Modifications: An NMR and UV Thermal Melting Investigation |
URI | https://api.istex.fr/ark:/67375/WNG-Q81726R7-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201500369 https://www.ncbi.nlm.nih.gov/pubmed/25802084 https://www.proquest.com/docview/1674612231 https://www.proquest.com/docview/1675874182 https://www.proquest.com/docview/1786149569 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9VAEN4YfNAXb6hU0awJwadCz-72xhsSkZicEz1ykLfN3hoMJy05lwR9gn_gb_En8Uuc6baFQxQTfGjSptNkL7Oz32xnviFkjWeGqULbMEpzFooki0KVgM9jMty8TWq5wETh_iDZG4mPh_HhlSx-zw_RHbjhyqjtNS5wpaebl6Sh0CfMJAdAA0YYM_gwYAtR0fCSPwq0y9eSF2mIHKwta2PENhc_X9iV7uIAn_4Jci4i2HoL2n1IVNt4H3lyvDGf6Q3z4xqv4__07hF50OBTuu0V6jG548on5N5OWxZumZwDPMWAWp--SauCKvoOJrypskv3J3h0f0r1d8ovzn5dnP38Ateno2p6clRNQC--gTM9c7RfWYxS8geGW3S7pIP-kKrS0tEBBeWFDWNM-26MYdn0ChtIVT4lo933-zt7YVPHITQJGMRQg9dic8CO3HCwJzD_roc8e6wwjGkEKLynk8hlUa4Ns6ywDJygyOVJAfgsEvwZWSqr0q0QqqzOOUDOVIMbyWOhC6G0zQ3TRcF6KgpI2M6jNA3JOdbaGEtPz8wkDqzsBjYgbzv5E0_v8VfJ9VotOjE1OcaguDSWXwcf5OcMkGAyTOVBQFZbvZGNPZhKzPUALAlgOiBvutcwc_h7RpWumtcycYZkQuwGmTRLap8W2vPc62TXIBZnWHFVBITVmvWPDknk3OieXtzmo5fkPt7X8Z9ilSzNJnP3CjDaTL-u1-FvZUMzEQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygXKO9AC0ZCcEqbtfPk1hbKAs0Klt3CzYrtREVdJdV2Vyqc2n_Ab-En9ZcwEycpi3hIcMghyUTyYzz-xpn5BuCxiDXPCmVcL0q464ex52Yh-jw6ps1bR0b4lCicDsL-2H_9MWijCSkXxvJDdAdutDJqe00LnA6kNy9YQ7FTlEqOiAatcHIZlqmsN9HnPx9eMEihftlq8n7kEgtry9vo8c3F7xf2pWUa4pNfgc5FDFtvQrvXQLXNt7EnhxvzmdrQX35idvyv_q3C1Qaisi2rU9fhUl7egJWdtjLcTThDhEoxtTaDk1UFy9g2znlTaJeNpnR6f8LUZybOT7-dn359j9fbg-r46KCaomp8Qn96lrO0MhSoZM8Mn7Gtkg3SIctKw8b7DPUX94wJS_MJRWazHwhBqvIWjHdfjHb6blPKwdUh2kRXoeNiEoSPQgs0KagCeY-o9nihOVeEUURPhV4ee4nS3PDCcPSDvDwJC4Roni9uw1JZlfldYJlRiUDUGSn0JEXgq8LPlEk0V0XBe5nngNtOpNQNzzmV25hIy9DMJQ2s7AbWgaed_JFl-Pit5JNaLzqxbHpIcXFRID8MXsp3MYLBcBjJfQfWWsWRjUk4lpTugXAS8bQDj7rXOHP0hyYr82peywQx8QnxP8hEcVi7tdieO1YpuwbxIKaiq74DvFatv3RIEu1Gd3fvXz56CCv9Ubon914N3tyHK_S8Dgf112BpNp3n6wjZZupBvSi_A4N-Ny0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEC1BIgEX9sUQQiMhODnxtNsbt5BkCMuMwpBJcmv1YisoI3s0mZECp-QP8i18Ur6EKm_JIBYJDj7YLku9VFe_ale9Anjhx4arTFvXixLuijD2XBWiz2Ni2rxNZH1BicK9frg1FO_3g_1LWfwVP0R74EYro7TXtMDHNlu9IA3FPlEmOQIaNMLJVVgUoZdQ8YaNwQWBFKpXVUxeRC6RsDa0jR5fnf9-bltapBE-_hXmnIew5R7UvQWqaX0VenK4MpvqFfPtJ2LH_-nebbhZA1S2VmnUHbiS5nfh-npTF-4enCI-pYjaKn-TFRlT7A3OeF1ml-1M6Oz-mOmvzD8_-X5-cvYZr-2D4mh8UExQMb6gNz1NWa-wFKZUnRi-Zms56_cGTOWWDXcZai_uGCPWS0cUl80u0YEU-X0Ydjd31rfcupCDa0K0iK5Gt8UmCB5946NBQQVIO0S0xzPDuSaE4nd06KWxl2jDLc8sRy_IS5MwQ4DmCf8BLORFnj4CpqxOfMSckUY_0g-EzoTSNjFcZxnvKM8Bt5lHaWqWcyq2MZIVPzOXNLCyHVgHXrXy44rf47eSL0u1aMXU5JCi4qJA7vXfyk8xQsFwEMldB5YavZG1QTiSlOyBYBLRtAPP29c4c_R_RuVpMStlgpjYhPgfZKI4LJ1abM_DSifbBvEgppKrwgFeatZfOiSJdKO9e_wvHz2Da9sbXfnxXf_DE7hBj8tYULEEC9PJLH2KeG2ql8sl-QOrrzXc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilization+of+a+Bimolecular+Triplex+by+3%27-S-Phosphorothiolate+Modifications%3A+An+NMR+and+UV+Thermal+Melting+Investigation&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Evans%2C+Kathryn&rft.au=Bhamra%2C+Inder&rft.au=Wheelhouse%2C+Richard+T&rft.au=Arnold%2C+John+RP&rft.date=2015-05-04&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=19&rft.spage=7278&rft.epage=7284&rft_id=info:doi/10.1002%2Fchem.201500369&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |