Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription

Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cl...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 276; no. 6; pp. 1506 - 1516
Main Authors Champoux, James J, Schultz, Sharon J
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.03.2009
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3' recessed and RNA 5' recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNases H to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus-strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus-strand synthesis and remove both plus- and minus-strand primers after they have been extended.
AbstractList Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3′ recessed and RNA 5′ recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNases H to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus‐strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus‐strand synthesis and remove both plus‐ and minus‐strand primers after they have been extended.
Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3' recessed and RNA 5' recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNases H to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus-strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus-strand synthesis and remove both plus- and minus-strand primers after they have been extended. [PUBLICATION ABSTRACT]
Retroviral reverse transcriptases possess both a DNA polymerase and an RNaseH activity. The linkage with the DNA polymerase activity endows the retroviral RNasesH with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3'recessed and RNA 5'recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNasesH to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus-strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus-strand synthesis and remove both plus- and minus-strand primers after they have been extended.
Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3' recessed and RNA 5' recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables the retroviral RNases H to carry out a series of cleavage reactions during reverse transcription to degrade the viral RNA genome after minus strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus strand synthesis, and remove both plus- and minus-strand primers after they have been extended.
Author Champoux, James J
Schultz, Sharon J
Author_xml – sequence: 1
  fullname: Champoux, James J
– sequence: 2
  fullname: Schultz, Sharon J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19228195$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URD_gL0DEgRO7jL8SmwMSVC1FqoREqcTNcpJJ8Sq1UztZuv8eh11tgQv4MB5p3nk0M-8xOfDBIyEFhSXN781qSSvBFqKUaskA9BJKneP9I3K0Lxzsc_HtkByntALgUmj9hBxSzZiiWh4R88XVwU9NjzZhcfG2GGIYMI4O0-siTXUaox2xSAM2rnONGzeF9W0RQ4-pcL6IOMawdtH2OV1jzJDc4VMT3TC64J-Sx53tEz7b_Sfk-vzs6-nF4vLzx0-n7y8XTcmoXqhKCqVbpWoObauEgjyh5VTJsmVQW-C6go51WMtKaSaavLRqS4EM25pp4Cfk3ZY7TPUttg36PEZvhuhubdyYYJ35s-Ldd3MT1oblG1VVlQGvdoAY7iZMo7l1qcG-tx7DlExZAdCSq38KGQjBJJNZ-PIv4SpM0ecrzBoKSnKeRWoramJIKWK3H5mCmb02KzPbaGZLzey1-eW1uc-tz39f-aFxZ-7DTX64Hjf_DTbnZx-u5jQDXmwBnQ3G3kSXzPUVA8qBSp0t4vwnKKXEXQ
CitedBy_id crossref_primary_10_3390_v13081495
crossref_primary_10_1016_j_jhep_2020_01_028
crossref_primary_10_1097_QAD_0b013e32835537d3
crossref_primary_10_1186_s12977_018_0416_3
crossref_primary_10_1016_j_virol_2010_12_059
crossref_primary_10_1021_acscatal_1c01825
crossref_primary_10_1093_nar_gkx1073
crossref_primary_10_1038_ncomms2154
crossref_primary_10_1007_s12033_015_9846_5
crossref_primary_10_1016_j_pbiomolbio_2015_11_001
crossref_primary_10_1093_nar_gkx073
crossref_primary_10_3390_v2040900
crossref_primary_10_1016_j_virusres_2016_12_019
crossref_primary_10_1073_pnas_1719746115
crossref_primary_10_1016_j_molcel_2010_11_001
crossref_primary_10_1021_acs_chemrev_8b00201
crossref_primary_10_1016_j_omtn_2018_04_004
crossref_primary_10_1371_journal_pone_0122953
crossref_primary_10_1021_ar500314j
crossref_primary_10_1039_C8AN02520G
crossref_primary_10_1093_bbb_zbad077
crossref_primary_10_1128_JVI_02203_17
crossref_primary_10_1016_j_omtn_2022_12_015
crossref_primary_10_1016_j_csbj_2021_11_030
crossref_primary_10_3390_bios13020160
crossref_primary_10_1016_j_bbapap_2015_08_011
crossref_primary_10_1111_j_1742_4658_2009_06908_x
crossref_primary_10_1093_jb_mvz073
crossref_primary_10_1017_S0033583510000181
crossref_primary_10_1021_jacs_1c11897
crossref_primary_10_1016_j_ab_2012_06_010
crossref_primary_10_1016_j_jmb_2010_01_059
crossref_primary_10_1021_acs_biochem_0c00500
crossref_primary_10_1021_ja102933y
crossref_primary_10_1093_jb_mvy101
crossref_primary_10_1371_journal_pone_0161913
crossref_primary_10_1016_j_antiviral_2009_09_009
crossref_primary_10_1074_jbc_M110_208306
crossref_primary_10_1089_aid_2012_0067
crossref_primary_10_1177_03008916211026019
crossref_primary_10_1016_j_meegid_2019_05_020
crossref_primary_10_1016_j_jmoldx_2024_02_009
crossref_primary_10_1155_2012_586401
crossref_primary_10_1128_JVI_03000_13
crossref_primary_10_1371_journal_pone_0072270
crossref_primary_10_1093_jb_mvx021
crossref_primary_10_1093_nar_gkt027
crossref_primary_10_1016_j_virusres_2012_09_008
crossref_primary_10_1074_jbc_M116_753160
crossref_primary_10_1093_jb_mvac056
crossref_primary_10_1111_j_1365_2672_2010_04724_x
crossref_primary_10_1128_JB_00579_17
crossref_primary_10_1128_JVI_00798_18
crossref_primary_10_1371_journal_pone_0228774
crossref_primary_10_1074_jbc_M109_043158
crossref_primary_10_1007_s00018_010_0346_2
crossref_primary_10_1128_JVI_00009_12
Cites_doi 10.1038/2261211a0
10.1038/2261209a0
10.1128/JVI.00750-06
10.1016/j.virol.2005.12.042
10.1016/S0021-9258(18)42147-3
10.1126/science.1707186
10.1128/JVI.79.1.419-427.2005
10.1006/jmbi.1998.1624
10.1021/bi971218
10.1016/j.molcel.2007.08.015
10.1073/pnas.210392297
10.1016/S0021-9258(18)35706-5
10.1016/j.virusres.2007.12.007
10.1074/jbc.M510504200
10.1128/jvi.68.9.5721-5729.1994
10.1128/JVI.78.23.13315-13324.2004
10.1016/S0079-6603(08)60041-0
10.1128/JVI.72.7.5905-5911.1998
10.1093/nar/gkl909
10.1074/jbc.M000021200
10.1021/bi00243a001
10.1093/nar/20.19.5115
10.1074/jbc.275.17.13061
10.1128/jvi.51.1.26-33.1984
10.1016/S0021-9258(18)86984-8
10.1093/emboj/20.6.1449
10.1016/j.biocel.2004.02.016
10.1073/pnas.152186199
10.1128/jvi.68.3.1970-1971.1994
10.1093/nar/23.19.3901
10.1074/jbc.M201645200
10.1126/science.282.5394.1669
10.1021/bi00016a005
10.1128/JVI.72.8.6805-6812.1998
10.1038/newbio234240a0
10.1093/nar/gkl360
10.1016/S0021-9258(17)32154-3
10.1128/JVI.76.16.8360-8373.2002
10.1016/S0021-9258(18)52449-2
10.1021/bi015970t
10.1021/bi00496a001
10.1002/j.1460-2075.1993.tb06128.x
10.1128/jvi.66.7.4271-4278.1992
10.1073/pnas.142123199
10.1073/pnas.89.22.10763
10.1074/jbc.273.16.9976
10.1128/jvi.64.2.592-597.1990
10.1073/pnas.85.6.1777
10.1128/JVI.75.2.672-686.2001
10.1016/S0021-9258(18)54747-5
10.1128/jvi.71.12.9259-9269.1997
10.1074/jbc.272.35.22023
10.1016/S0021-9258(18)54227-7
10.1016/0022-2836(89)90508-1
10.1021/bi971217h
10.1074/jbc.270.41.24135
10.1126/science.2169648
10.1016/j.virol.2006.10.008
10.1128/jvi.67.7.4037-4049.1993
10.1074/jbc.271.4.2063
10.1128/JVI.75.23.11874-11880.2001
10.1073/pnas.94.2.407
10.1016/S0021-9258(19)49503-3
10.1002/j.1460-2075.1995.tb07061.x
10.1128/jvi.61.9.2843-2851.1987
10.1002/j.1460-2075.1990.tb08224.x
10.1074/jbc.M007381200
10.1006/jmbi.2001.4439
10.1016/j.jmb.2004.09.081
10.1093/nar/21.18.4330
10.1128/JVI.77.15.8548-8554.2003
10.1016/j.molcel.2006.03.013
10.1128/JVI.74.22.10293-10303.2000
10.1006/viro.1997.8454
10.1016/S0021-9258(18)99002-2
10.1016/S0021-9258(18)53242-7
10.1016/S0021-9258(19)85443-1
10.1128/jvi.66.2.615-622.1992
10.1073/pnas.86.10.3539
10.1073/pnas.90.13.6320
10.1128/jvi.68.8.4747-4758.1994
10.1128/jvi.70.12.8630-8638.1996
10.1128/jvi.70.8.5288-5296.1996
10.1128/JVI.77.9.5275-5285.2003
10.1016/0092-8674(79)90357-X
10.1074/jbc.274.28.19885
10.1074/jbc.274.49.34547
10.1002/prot.340170402
10.1038/sj.emboj.7601076
10.1074/jbc.270.47.28169
10.1128/jvi.66.1.367-373.1992
10.1093/nar/22.18.3793
10.1128/JVI.00856-06
10.1126/science.7528942
10.1073/pnas.88.4.1148
10.1016/j.str.2004.02.032
10.1016/j.cell.2005.04.024
10.1074/jbc.M110254200
ContentType Journal Article
Copyright 2009 The Authors Journal compilation © 2009 FEBS
Journal compilation © 2009 Federation of European Biochemical Societies
Copyright_xml – notice: 2009 The Authors Journal compilation © 2009 FEBS
– notice: Journal compilation © 2009 Federation of European Biochemical Societies
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1111/j.1742-4658.2009.06909.x
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts

MEDLINE
AIDS and Cancer Research Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1742-4658
EndPage 1516
ExternalDocumentID 1653840291
10_1111_j_1742_4658_2009_06909_x
19228195
FEBS6909
US201301598093
Genre reviewArticle
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA051605
– fundername: NCI NIH HHS
  grantid: CA51605
– fundername: NCI NIH HHS
  grantid: R01 CA051605-19
– fundername: NCI NIH HHS
  grantid: R37 CA051605
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABHUG
ABPTK
ABPVW
ABQWH
ABWRO
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
EX3
F00
F01
F04
F5P
FBQ
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c6219-875489d88b30dd8480922a31856d20ba03970f2feb578924c0098d64e2edb2903
IEDL.DBID DR2
ISSN 1742-464X
IngestDate Tue Sep 17 21:16:01 EDT 2024
Fri Aug 16 01:39:13 EDT 2024
Fri Aug 16 09:15:26 EDT 2024
Thu Oct 10 22:05:18 EDT 2024
Fri Aug 23 02:25:57 EDT 2024
Sat Sep 28 07:53:56 EDT 2024
Sat Aug 24 01:12:14 EDT 2024
Wed Dec 27 18:59:50 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6219-875489d88b30dd8480922a31856d20ba03970f2feb578924c0098d64e2edb2903
Notes http://dx.doi.org/10.1111/j.1742-4658.2009.06909.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-3
ObjectType-Review-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1742-4658.2009.06909.x
PMID 19228195
PQID 204108533
PQPubID 28478
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2742777
proquest_miscellaneous_67001638
proquest_miscellaneous_20442525
proquest_journals_204108533
crossref_primary_10_1111_j_1742_4658_2009_06909_x
pubmed_primary_19228195
wiley_primary_10_1111_j_1742_4658_2009_06909_x_FEBS6909
fao_agris_US201301598093
PublicationCentury 2000
PublicationDate March 2009
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: March 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References 1993; 67
1989; 86
2006; 34
1997; 272
1995; 34
1993; 21
2002; 277
2002; 99
1994; 22
1994; 68
1996; 70
2001; 306
1998; 277
1990; 265
2007; 35
1998; 273
2007; 28
1984; 51
1997; 94
1991; 266
1997; 229
1994; 269
2002; 41
1991; 89
1991; 88
2006; 22
2004; 36
1995; 23
2006; 25
2004; 78
2000; 97
1988; 85
2006; 281
1992; 89
1998; 282
1998; 58
2005; 79
1991; 252
1979; 18
1990; 249
2004; 344
2007; 360
1995; 14
1991; 30
1992; 267
2002; 76
1997
1993
1993; 90
2000; 275
1993; 268
1970; 226
1995; 270
2001; 20
2003; 77
1989; 208
1990; 64
2006; 80
1993; 12
1993; 17
1997; 71
2005; 121
1987; 61
1990; 29
1997; 36
2004; 12
2000; 74
1999; 274
1996; 271
1971; 234
1995; 267
1998; 72
2008; 134
1992; 20
1992; 66
1990; 9
2006; 348
2001; 75
1378844 - J Biol Chem. 1992 Jul 25;267(21):15071-9
12134040 - J Virol. 2002 Aug;76(16):8360-73
12119402 - Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10090-5
9376351 - Biochemistry. 1997 Oct 14;36(41):12468-76
4331605 - Nat New Biol. 1971 Dec 22;234(51):240-3
1370087 - J Virol. 1992 Jan;66(1):367-73
8108376 - Proteins. 1993 Dec;17(4):337-46
11939780 - Biochemistry. 2002 Apr 16;41(15):4856-65
7685407 - J Virol. 1993 Jul;67(7):4037-49
17123564 - Virology. 2007 Apr 10;360(2):341-9
11035788 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11978-83
12857924 - J Virol. 2003 Aug;77(15):8548-54
509527 - Cell. 1979 Sep;18(1):93-100
15542682 - J Virol. 2004 Dec;78(23):13315-24
7524028 - Nucleic Acids Res. 1994 Sep 11;22(18):3793-800
10913435 - J Biol Chem. 2000 Oct 13;275(41):32299-309
9621052 - J Virol. 1998 Jul;72(7):5905-11
9376350 - Biochemistry. 1997 Oct 14;36(41):12459-67
2169648 - Science. 1990 Sep 21;249(4975):1398-405
16473384 - Virology. 2006 May 10;348(2):378-88
17964265 - Mol Cell. 2007 Oct 26;28(2):264-76
9831551 - Science. 1998 Nov 27;282(5394):1669-75
9658129 - J Virol. 1998 Aug;72(8):6805-12
16306040 - J Biol Chem. 2006 Jan 27;281(4):1943-55
7688365 - J Biol Chem. 1993 Aug 5;268(22):16465-71
2477553 - J Mol Biol. 1989 Aug 5;208(3):445-56
4316301 - Nature. 1970 Jun 27;226(5252):1211-3
15533434 - J Mol Biol. 2004 Nov 26;344(3):635-52
7537089 - Biochemistry. 1995 Apr 25;34(16):5343-56
7687065 - Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6320-4
9371584 - J Virol. 1997 Dec;71(12):9259-69
11684697 - J Biol Chem. 2002 Jan 11;277(2):1370-4
11237609 - J Mol Biol. 2001 Mar 9;306(5):931-43
1691093 - EMBO J. 1990 Apr;9(4):1171-6
1707186 - Science. 1991 Apr 5;252(5002):88-95
10574917 - J Biol Chem. 1999 Dec 3;274(49):34547-55
16601679 - EMBO J. 2006 May 3;25(9):1924-33
7479034 - Nucleic Acids Res. 1995 Oct 11;23(19):3901-8
16600865 - Mol Cell. 2006 Apr 7;22(1):5-13
9533880 - J Mol Biol. 1998 Apr 3;277(3):559-72
8764039 - J Virol. 1996 Aug;70(8):5288-96
7509004 - J Virol. 1994 Mar;68(3):1970-1
7528942 - Science. 1995 Jan 6;267(5194):96-9
7592616 - J Biol Chem. 1995 Oct 13;270(41):24135-45
11689669 - J Virol. 2001 Dec;75(23):11874-80
1279694 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10763-7
3039172 - J Virol. 1987 Sep;61(9):2843-51
16973554 - J Virol. 2006 Oct;80(19):9497-510
11134281 - J Virol. 2001 Jan;75(2):672-86
1722202 - J Biol Chem. 1991 Dec 25;266(36):24295-301
1376369 - J Virol. 1992 Jul;66(7):4271-8
1281479 - J Biol Chem. 1992 Dec 25;267(36):25988-97
18261820 - Virus Res. 2008 Jun;134(1-2):86-103
8567660 - J Biol Chem. 1996 Jan 26;271(4):2063-70
15596835 - J Virol. 2005 Jan;79(1):419-27
1383938 - Nucleic Acids Res. 1992 Oct 11;20(19):5115-8
2471188 - Proc Natl Acad Sci U S A. 1989 May;86(10):3539-43
11044073 - J Virol. 2000 Nov;74(22):10293-303
10391934 - J Biol Chem. 1999 Jul 9;274(28):19885-93
9268341 - J Biol Chem. 1997 Aug 29;272(35):22023-9
10777611 - J Biol Chem. 2000 Apr 28;275(17):13061-70
12093908 - Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9515-20
16723431 - Nucleic Acids Res. 2006;34(10):2853-63
9126256 - Virology. 1997 Mar 17;229(2):437-46
1713059 - Biochemistry. 1991 Jul 23;30(29):7041-6
2450347 - Proc Natl Acad Sci U S A. 1988 Mar;85(6):1777-81
7692401 - Nucleic Acids Res. 1993 Sep 11;21(18):4330-8
7693692 - J Biol Chem. 1993 Nov 5;268(31):23585-92
12023278 - J Biol Chem. 2002 Aug 9;277(32):28400-10
8970988 - J Virol. 1996 Dec;70(12):8630-8
7518525 - J Virol. 1994 Aug;68(8):4747-58
7681062 - J Biol Chem. 1993 Mar 25;268(9):6221-7
9012795 - Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):407-11
12692229 - J Virol. 2003 May;77(9):5275-85
7518453 - J Biol Chem. 1994 Jul 29;269(30):19207-15
7533725 - EMBO J. 1995 Feb 15;14(4):833-41
15130474 - Structure. 2004 May;12(5):819-29
17164285 - Nucleic Acids Res. 2007;35(1):256-68
9545343 - J Biol Chem. 1998 Apr 17;273(16):9976-86
1370551 - J Virol. 1992 Feb;66(2):615-22
15183342 - Int J Biochem Cell Biol. 2004 Sep;36(9):1752-66
6202882 - J Virol. 1984 Jul;51(1):26-33
1693920 - J Biol Chem. 1990 Jun 25;265(18):10565-73
1718256 - Behring Inst Mitt. 1991 Jul;(89):100-7
7520094 - J Virol. 1994 Sep;68(9):5721-9
1688626 - J Virol. 1990 Feb;64(2):592-7
1646812 - J Biol Chem. 1991 Jun 25;266(18):11621-7
9308371 - Prog Nucleic Acid Res Mol Biol. 1998;58:339-93
15989951 - Cell. 2005 Jul 1;121(7):1005-16
10956669 - J Biol Chem. 2000 Dec 1;275(48):37664-71
1702425 - J Biol Chem. 1991 Jan 5;266(1):406-12
7693456 - EMBO J. 1993 Nov;12(11):4433-8
11250910 - EMBO J. 2001 Mar 15;20(6):1449-61
1703002 - Biochemistry. 1990 Nov 6;29(44):10141-7
1705027 - Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1148-52
16912289 - J Virol. 2006 Sep;80(17):8379-89
7499308 - J Biol Chem. 1995 Nov 24;270(47):28169-76
1718968 - J Biol Chem. 1991 Nov 5;266(31):20583-5
4316300 - Nature. 1970 Jun 27;226(5252):1209-11
e_1_2_9_52_2
e_1_2_9_98_2
e_1_2_9_71_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_94_2
e_1_2_9_75_2
e_1_2_9_90_2
e_1_2_9_103_2
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_18_2
e_1_2_9_79_2
e_1_2_9_41_2
e_1_2_9_87_2
e_1_2_9_60_2
e_1_2_9_45_2
e_1_2_9_83_2
e_1_2_9_22_2
e_1_2_9_64_2
e_1_2_9_2_2
e_1_2_9_49_2
e_1_2_9_26_2
e_1_2_9_68_2
e_1_2_9_30_2
e_1_2_9_72_2
e_1_2_9_99_2
e_1_2_9_34_2
e_1_2_9_76_2
e_1_2_9_95_2
e_1_2_9_11_2
e_1_2_9_53_2
Telesnitsky A (e_1_2_9_81_2) 1997
e_1_2_9_91_2
e_1_2_9_102_2
e_1_2_9_38_2
e_1_2_9_15_2
e_1_2_9_57_2
e_1_2_9_19_2
e_1_2_9_61_2
e_1_2_9_88_2
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_65_2
e_1_2_9_84_2
e_1_2_9_80_2
e_1_2_9_9_2
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_69_2
e_1_2_9_73_2
e_1_2_9_50_2
e_1_2_9_77_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_96_2
e_1_2_9_92_2
e_1_2_9_101_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_39_2
e_1_2_9_62_2
e_1_2_9_20_2
e_1_2_9_66_2
e_1_2_9_43_2
e_1_2_9_85_2
e_1_2_9_4_2
e_1_2_9_8_2
e_1_2_9_24_2
e_1_2_9_47_2
e_1_2_9_28_2
e_1_2_9_51_2
e_1_2_9_74_2
e_1_2_9_97_2
e_1_2_9_78_2
e_1_2_9_93_2
e_1_2_9_55_2
e_1_2_9_32_2
e_1_2_9_70_2
e_1_2_9_100_2
e_1_2_9_13_2
e_1_2_9_59_2
e_1_2_9_36_2
e_1_2_9_17_2
e_1_2_9_40_2
e_1_2_9_63_2
e_1_2_9_86_2
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_67_2
e_1_2_9_82_2
e_1_2_9_7_2
Telesnitsky A (e_1_2_9_6_2) 1993
e_1_2_9_3_2
e_1_2_9_25_2
e_1_2_9_48_2
Wohrl BM (e_1_2_9_89_2) 1991; 89
Champoux JJ (e_1_2_9_5_2) 1993
e_1_2_9_29_2
References_xml – volume: 58
  start-page: 339
  year: 1998
  end-page: 393
  article-title: Interaction of retroviral reverse transcriptase with template–primer duplexes during replication
  publication-title: Prog Nucleic Acid Res Mol Biol
– volume: 277
  start-page: 1370
  year: 2002
  end-page: 1374
  article-title: Mutational analysis of Tyr‐501 of HIV‐1 reverse transcriptase
  publication-title: J Biol Chem
– volume: 9
  start-page: 1171
  year: 1990
  end-page: 1176
  article-title: HIV‐1 RT‐associated ribonuclease H displays both endonuclease and 3′ → 5′ exonuclease activity
  publication-title: EMBO J
– volume: 70
  start-page: 8630
  year: 1996
  end-page: 8638
  article-title: RNase H domain of Moloney murine leukemia virus reverse transcriptase retains activity but requires the polymerase domain for specificity
  publication-title: J Virol
– volume: 348
  start-page: 378
  year: 2006
  end-page: 388
  article-title: Combining mutations in HIV‐1 reverse transcriptase with mutations in the HIV‐1 polypurine tract affects RNase H cleavages involved in PPT utilization
  publication-title: Virol
– volume: 12
  start-page: 819
  year: 2004
  end-page: 829
  article-title: The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus
  publication-title: Structure (Camb)
– start-page: 121
  year: 1997
  end-page: 160
– volume: 68
  start-page: 4747
  year: 1994
  end-page: 4758
  article-title: Strand displacement synthesis capability of Moloney murine leukemia virus reverse transcriptase
  publication-title: J Virol
– volume: 68
  start-page: 5721
  year: 1994
  end-page: 5729
  article-title: Contributions of DNA polymerase subdomains to the RNase H activity of human immunodeficiency virus type 1 reverse transcriptase
  publication-title: J Virol
– volume: 77
  start-page: 5275
  year: 2003
  end-page: 5285
  article-title: Specific cleavages by RNase H facilitate initiation of plus‐strand RNA synthesis by Moloney murine leukemia virus
  publication-title: J Virol
– volume: 270
  start-page: 28169
  year: 1995
  end-page: 28176
  article-title: Use of an oligoribonucleotide containing the polypurine tract sequence as a primer by HIV reverse transcriptase
  publication-title: J Biol Chem
– volume: 234
  start-page: 240
  year: 1971
  end-page: 243
  article-title: Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA–DNA hybrids
  publication-title: Nat New Biol
– volume: 28
  start-page: 264
  year: 2007
  end-page: 276
  article-title: Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription
  publication-title: Mol Cell
– volume: 271
  start-page: 2063
  year: 1996
  end-page: 2070
  article-title: Helix structure and ends of RNA/DNA hybrids direct the cleavage specificity of HIV‐1 reverse transcriptase RNase H
  publication-title: J Biol Chem
– volume: 78
  start-page: 13315
  year: 2004
  end-page: 13324
  article-title: Effects of mutations in the G tract of the human immunodeficiency virus type 1 polypurine tract on virus replication and RNase H cleavage
  publication-title: J Virol
– volume: 75
  start-page: 672
  year: 2001
  end-page: 686
  article-title: analysis of human immunodeficiency virus type 1 minus‐strand strong‐stop DNA synthesis and genomic RNA processing
  publication-title: J Virol
– volume: 76
  start-page: 8360
  year: 2002
  end-page: 8373
  article-title: Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition
  publication-title: J Virol
– volume: 61
  start-page: 2843
  year: 1987
  end-page: 2851
  article-title: The role of Moloney murine leukemia virus RNase H activity in the formation of plus‐strand primers
  publication-title: J Virol
– volume: 270
  start-page: 24135
  year: 1995
  end-page: 24145
  article-title: Cleavage specificities of Moloney murine leukemia virus RNase H implicated in the second strand transfer during reverse transcription
  publication-title: J Biol Chem
– volume: 249
  start-page: 1398
  year: 1990
  end-page: 1405
  article-title: Structure of ribonuclease H phased at 2 Å resolution by MAD analysis of the selenomethionyl protein
  publication-title: Science
– volume: 267
  start-page: 15071
  year: 1992
  end-page: 15079
  article-title: Specificity of human immunodeficiency virus‐1 reverse transcriptase‐associated ribonuclease H in removal of the minus‐strand primer, tRNA(Lys3)
  publication-title: J Biol Chem
– volume: 14
  start-page: 833
  year: 1995
  end-page: 841
  article-title: HIV‐1 reverse transcriptase‐associated RNase H cleaves RNA/RNA in arrested complexes: implications for the mechanism by which RNase H discriminates between RNA/RNA and RNA/DNA
  publication-title: EMBO J
– volume: 66
  start-page: 4271
  year: 1992
  end-page: 4278
  article-title: When retroviral reverse transcriptases reach the end of their RNA templates
  publication-title: J Virol
– volume: 90
  start-page: 6320
  year: 1993
  end-page: 6324
  article-title: Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double‐stranded DNA at 3.0 Å resolution shows bent DNA
  publication-title: Proc Natl Acad Sci USA
– volume: 282
  start-page: 1669
  year: 1998
  end-page: 1675
  article-title: Structure of a covalently trapped catalytic complex of HIV‐1 reverse transcriptase: implications for drug resistance
  publication-title: Science
– volume: 272
  start-page: 22023
  year: 1997
  end-page: 22029
  article-title: The isolated RNase H domain of murine leukemia virus reverse transcriptase. Retention of activity with concomitant loss of specificity
  publication-title: J Biol Chem
– volume: 20
  start-page: 1449
  year: 2001
  end-page: 1461
  article-title: Crystal structure of HIV‐1 reverse transcriptase in complex with a polypurine tract RNA:DNA
  publication-title: EMBO J
– volume: 85
  start-page: 1777
  year: 1988
  end-page: 1781
  article-title: Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities
  publication-title: Proc Natl Acad Sci USA
– volume: 229
  start-page: 437
  year: 1997
  end-page: 446
  article-title: RNase H cleavage of tRNAPro mediated by M‐MuLV and HIV‐1 reverse transcriptases
  publication-title: Virology
– volume: 17
  start-page: 337
  year: 1993
  end-page: 346
  article-title: Crystal structure of RNase HI in complex with Mg at 2.8 Å resolution: proof for a single Mg(2 + )‐binding site
  publication-title: Proteins
– volume: 134
  start-page: 86
  year: 2008
  end-page: 103
  article-title: RNase H activity: structure, specificity, and function in reverse transcription
  publication-title: Virus Res
– volume: 51
  start-page: 26
  year: 1984
  end-page: 33
  article-title: RNA‐primed initiation of Moloney murine leukemia virus plus strands by reverse transcriptase
  publication-title: J Virol
– volume: 275
  start-page: 13061
  year: 2000
  end-page: 13070
  article-title: RNA degradation and primer selection by Moloney murine leukemia virus reverse transcriptase contribute to the accuracy of plus strand initiation
  publication-title: J Biol Chem
– volume: 30
  start-page: 7041
  year: 1991
  end-page: 7046
  article-title: Human immunodeficiency virus reverse transcriptase ribonuclease H: specificity of tRNA(Lys3)‐primer excision
  publication-title: Biochemistry
– volume: 121
  start-page: 1005
  year: 2005
  end-page: 1016
  article-title: Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal‐dependent catalysis
  publication-title: Cell
– volume: 99
  start-page: 10090
  year: 2002
  end-page: 10095
  article-title: Y586F mutation in murine leukemia virus reverse transcriptase decreases fidelity of DNA synthesis in regions associated with adenine–thymine tracts
  publication-title: Proc Natl Acad Sci USA
– volume: 277
  start-page: 28400
  year: 2002
  end-page: 28410
  article-title: Substrate requirements for secondary cleavage by HIV‐1 reverse transcriptase RNase H
  publication-title: J Biol Chem
– volume: 34
  start-page: 5343
  year: 1995
  end-page: 5356
  article-title: An expanded model of replicating human immunodeficiency virus reverse transcriptase
  publication-title: Biochemistry
– volume: 34
  start-page: 2853
  year: 2006
  end-page: 2863
  article-title: Analysis of HIV‐1 replication block due to substitutions at F61 residue of reverse transcriptase reveals additional defects involving the RNase H function
  publication-title: Nucleic Acids Res
– volume: 89
  start-page: 10763
  year: 1992
  end-page: 10767
  article-title: Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities
  publication-title: Proc Natl Acad Sci USA
– volume: 269
  start-page: 19207
  year: 1994
  end-page: 19215
  article-title: The use of DNA and RNA oligonucleotides in hybrid structures with longer polynucleotide chains to probe the structural requirements for Moloney murine leukemia virus plus strand priming
  publication-title: J Biol Chem
– volume: 281
  start-page: 1943
  year: 2006
  end-page: 1955
  article-title: Sequence, distance, and accessibility are determinants of 5′‐end‐directed cleavages by retroviral RNases H
  publication-title: J Biol Chem
– volume: 22
  start-page: 5
  year: 2006
  end-page: 13
  article-title: Making and breaking nucleic acids: two‐Mg ‐ion catalysis and substrate specificity
  publication-title: Mol Cell
– volume: 266
  start-page: 20583
  year: 1991
  end-page: 20585
  article-title: A recombinant ribonuclease H domain of HIV‐1 reverse transcriptase that is enzymatically active
  publication-title: J Biol Chem
– volume: 306
  start-page: 931
  year: 2001
  end-page: 943
  article-title: Structural alterations in the DNA ahead of the primer terminus during displacement synthesis by reverse transcriptases
  publication-title: J Mol Biol
– volume: 36
  start-page: 12459
  year: 1997
  end-page: 12467
  article-title: Effect of RNA secondary structure on the kinetics of DNA synthesis catalyzed by HIV‐1 reverse transcriptase
  publication-title: Biochemistry
– volume: 77
  start-page: 8548
  year: 2003
  end-page: 8554
  article-title: Mutation of amino acids in the connection domain of human immunodeficiency virus type 1 reverse transcriptase that contact the template–primer affects RNase H activity
  publication-title: J Virol
– volume: 274
  start-page: 19885
  year: 1999
  end-page: 19893
  article-title: Residues in the alphaH and alphaI helices of the HIV‐1 reverse transcriptase thumb subdomain required for the specificity of RNase H‐catalyzed removal of the polypurine tract primer
  publication-title: J Biol Chem
– volume: 268
  start-page: 6221
  year: 1993
  end-page: 6227
  article-title: The sequence features important for plus strand priming by human immunodeficiency virus type 1 reverse transcriptase
  publication-title: J Biol Chem
– volume: 36
  start-page: 1752
  year: 2004
  end-page: 1766
  article-title: ‘Binding, bending and bonding’: polypurine tract‐primed initiation of plus‐strand DNA synthesis in human immunodeficiency virus
  publication-title: Int J Biochem Cell Biol
– volume: 75
  start-page: 11874
  year: 2001
  end-page: 11880
  article-title: RNase H cleavage of the 5′ end of the human immunodeficiency virus type 1 genome
  publication-title: J Virol
– volume: 72
  start-page: 5905
  year: 1998
  end-page: 5911
  article-title: Replication defect of moloney murine leukemia virus with a mutant reverse transcriptase that can incorporate ribonucleotides and deoxyribonucleotides
  publication-title: J Virol
– volume: 266
  start-page: 406
  year: 1991
  end-page: 412
  article-title: Reverse transcriptase.RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities
  publication-title: J Biol Chem
– volume: 268
  start-page: 16465
  year: 1993
  end-page: 16471
  article-title: RNase H activity of reverse transcriptases on substrates derived from the 5′ end of retroviral genome
  publication-title: J Biol Chem
– volume: 99
  start-page: 9515
  year: 2002
  end-page: 9520
  article-title: Mutations in the RNase H domain of HIV‐1 reverse transcriptase affect the initiation of DNA synthesis and the specificity of RNase H cleavage
  publication-title: Proc Natl Acad Sci USA
– volume: 86
  start-page: 3539
  year: 1989
  end-page: 3543
  article-title: Ribonuclease H activities associated with viral reverse transcriptases are endonucleases
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 4433
  year: 1993
  end-page: 4438
  article-title: Two defective forms of reverse transcriptase can complement to restore retroviral infectivity
  publication-title: EMBO J
– volume: 25
  start-page: 1924
  year: 2006
  end-page: 1933
  article-title: Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release
  publication-title: EMBO J
– volume: 88
  start-page: 1148
  year: 1991
  end-page: 1152
  article-title: Reconstitution of RNase H activity by using purified N‐terminal and C‐terminal domains of human immunodeficiency virus type 1 reverse transcriptase
  publication-title: Proc Natl Acad Sci USA
– volume: 267
  start-page: 25988
  year: 1992
  end-page: 25997
  article-title: Mechanism and fidelity of HIV reverse transcriptase
  publication-title: J Biol Chem
– volume: 268
  start-page: 23585
  year: 1993
  end-page: 23592
  article-title: Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities
  publication-title: J Biol Chem
– volume: 80
  start-page: 8379
  year: 2006
  end-page: 8389
  article-title: Crystal structure of the moloney murine leukemia virus RNase H domain
  publication-title: J Virol
– volume: 273
  start-page: 9976
  year: 1998
  end-page: 9986
  article-title: Characterization of RNA strand displacement synthesis by Moloney murine leukemia virus reverse transcriptase
  publication-title: J Biol Chem
– volume: 18
  start-page: 93
  year: 1979
  end-page: 100
  article-title: A detailed model of reverse transcription and tests of crucial aspects
  publication-title: Cell
– volume: 275
  start-page: 32299
  year: 2000
  end-page: 32309
  article-title: Analysis of plus‐strand primer selection, removal, and reutilization by retroviral reverse transcriptases
  publication-title: J Biol Chem
– volume: 265
  start-page: 10565
  year: 1990
  end-page: 10573
  article-title: Processing of the primer for plus strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase
  publication-title: J Biol Chem
– volume: 67
  start-page: 4037
  year: 1993
  end-page: 4049
  article-title: Purification and characterization of an active human immunodeficiency virus type 1 RNase H domain
  publication-title: J Virol
– volume: 97
  start-page: 11978
  year: 2000
  end-page: 11983
  article-title: Unique progressive cleavage mechanism of HIV reverse transcriptase RNase H
  publication-title: Proc Natl Acad Sci USA
– volume: 252
  start-page: 88
  year: 1991
  end-page: 95
  article-title: Crystal structure of the ribonuclease H domain of HIV‐1 reverse transcriptase
  publication-title: Science
– volume: 226
  start-page: 1209
  year: 1970
  end-page: 1211
  article-title: RNA‐dependent DNA polymerase in virions of RNA tumour viruses
  publication-title: Nature
– volume: 94
  start-page: 407
  year: 1997
  end-page: 411
  article-title: Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 3901
  year: 1995
  end-page: 3908
  article-title: The orientation of binding of human immunodeficiency virus reverse transcriptase on nucleic acid hybrids
  publication-title: Nucleic Acids Res
– volume: 70
  start-page: 5288
  year: 1996
  end-page: 5296
  article-title: Sequence and structural determinants required for priming of plus‐strand DNA synthesis by the human immunodeficiency virus type 1 polypurine tract
  publication-title: J Virol
– volume: 226
  start-page: 1211
  year: 1970
  end-page: 1213
  article-title: RNA‐dependent DNA polymerase in virions of Rous sarcoma virus
  publication-title: Nature
– volume: 277
  start-page: 559
  year: 1998
  end-page: 572
  article-title: Effects of mutations in the polymerase domain on the polymerase, RNase H and strand transfer activities of human immunodeficiency virus type 1 reverse transcriptase
  publication-title: J Mol Biol
– volume: 274
  start-page: 34547
  year: 1999
  end-page: 34555
  article-title: Polypurine tract primer generation and utilization by Moloney murine leukemia virus reverse transcriptase
  publication-title: J Biol Chem
– volume: 66
  start-page: 367
  year: 1992
  end-page: 373
  article-title: Incomplete removal of the RNA primer for minus‐strand DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase
  publication-title: J Virol
– volume: 20
  start-page: 5115
  year: 1992
  end-page: 5118
  article-title: Characterization of the double stranded RNA dependent RNase activity associated with recombinant reverse transcriptases
  publication-title: Nucleic Acids Res
– volume: 267
  start-page: 96
  year: 1995
  end-page: 99
  article-title: Footprint analysis of replicating murine leukemia virus reverse transcriptase
  publication-title: Science
– volume: 275
  start-page: 37664
  year: 2000
  end-page: 37671
  article-title: The sequential mechanism of HIV reverse transcriptase RNase H
  publication-title: J Biol Chem
– volume: 74
  start-page: 10293
  year: 2000
  end-page: 10303
  article-title: Selection of optimal polypurine tract region sequences during Moloney murine leukemia virus replication
  publication-title: J Virol
– volume: 208
  start-page: 445
  year: 1989
  end-page: 456
  article-title: Plus‐strand priming by Moloney murine leukemia virus. The sequence features important for cleavage by RNase H
  publication-title: J Mol Biol
– volume: 89
  start-page: 100
  year: 1991
  end-page: 107
  article-title: Coupling of reverse transcriptase and RNase H during HIV‐1 replication
  publication-title: Behring Inst Mitt
– volume: 68
  start-page: 1970
  year: 1994
  end-page: 1971
  article-title: Redesignation of the RNase D activity associated with retroviral reverse transcriptase as RNase H
  publication-title: J Virol
– start-page: 103
  year: 1993
  end-page: 118
– volume: 266
  start-page: 11621
  year: 1991
  end-page: 11627
  article-title: Importance of the positive charge cluster in ribonuclease HI for the effective binding of the substrate
  publication-title: J Biol Chem
– volume: 80
  start-page: 9497
  year: 2006
  end-page: 9510
  article-title: Revealing domain structure through linker‐scanning analysis of the murine leukemia virus (MuLV) RNase H and MuLV and human immunodeficiency virus type 1 integrase proteins
  publication-title: J Virol
– volume: 21
  start-page: 4330
  year: 1993
  end-page: 4338
  article-title: Determinants of the RNase H cleavage specificity of human immunodeficiency virus reverse transcriptase
  publication-title: Nucleic Acids Res
– volume: 72
  start-page: 6805
  year: 1998
  end-page: 6812
  article-title: Sequence requirements for removal of tRNA by an isolated human immunodeficiency virus type 1 RNase H domain
  publication-title: J Virol
– volume: 41
  start-page: 4856
  year: 2002
  end-page: 4865
  article-title: Altering the RNase H primer grip of human immunodeficiency virus reverse transcriptase modifies cleavage specificity
  publication-title: Biochemistry
– volume: 344
  start-page: 635
  year: 2004
  end-page: 652
  article-title: Recognition of internal cleavage sites by retroviral RNases H
  publication-title: J Mol Biol
– volume: 66
  start-page: 615
  year: 1992
  end-page: 622
  article-title: Defects in Moloney murine leukemia virus replication caused by a reverse transcriptase mutation modeled on the structure of RNase H
  publication-title: J Virol
– volume: 22
  start-page: 3793
  year: 1994
  end-page: 3800
  article-title: Quantitative analysis of RNA cleavage during RNA‐directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases
  publication-title: Nucleic Acids Res
– start-page: 49
  year: 1993
  end-page: 83
– volume: 79
  start-page: 419
  year: 2005
  end-page: 427
  article-title: Mutations in the RNase H primer grip domain of murine leukemia virus reverse transcriptase decrease efficiency and accuracy of plus‐strand DNA transfer
  publication-title: J Virol
– volume: 266
  start-page: 24295
  year: 1991
  end-page: 24301
  article-title: Human immunodeficiency virus reverse transcriptase displays a partially processive 3′ to 5′ endonuclease activity
  publication-title: J Biol Chem
– volume: 64
  start-page: 592
  year: 1990
  end-page: 597
  article-title: Specificities involved in the initiation of retroviral plus‐strand DNA
  publication-title: J Virol
– volume: 360
  start-page: 341
  year: 2007
  end-page: 349
  article-title: analysis of the effects of mutations in the G‐tract of the human immunodeficiency virus type 1 polypurine tract on RNase H cleavage specificity
  publication-title: Virol
– volume: 35
  start-page: 256
  year: 2007
  end-page: 268
  article-title: Purine analog substitution of the HIV‐1 polypurine tract primer defines regions controlling initiation of plus‐strand DNA synthesis
  publication-title: Nucleic Acids Res
– volume: 36
  start-page: 12468
  year: 1997
  end-page: 12476
  article-title: Effect of RNA secondary structure on RNA cleavage catalyzed by HIV‐1 reverse transcriptase
  publication-title: Biochemistry
– volume: 29
  start-page: 10141
  year: 1990
  end-page: 10147
  article-title: Interaction of HIV‐1 ribonuclease H with polypurine tract containing RNA–DNA hybrids
  publication-title: Biochemistry
– volume: 71
  start-page: 9259
  year: 1997
  end-page: 9269
  article-title: Discontinuous plus‐strand DNA synthesis in human immunodeficiency virus type 1‐infected cells and in a partially reconstituted cell‐free system
  publication-title: J Virol
– ident: e_1_2_9_3_2
  doi: 10.1038/2261211a0
– ident: e_1_2_9_2_2
  doi: 10.1038/2261209a0
– ident: e_1_2_9_35_2
  doi: 10.1128/JVI.00750-06
– ident: e_1_2_9_41_2
  doi: 10.1016/j.virol.2005.12.042
– ident: e_1_2_9_15_2
  doi: 10.1016/S0021-9258(18)42147-3
– ident: e_1_2_9_25_2
  doi: 10.1126/science.1707186
– ident: e_1_2_9_43_2
  doi: 10.1128/JVI.79.1.419-427.2005
– ident: e_1_2_9_21_2
  doi: 10.1006/jmbi.1998.1624
– ident: e_1_2_9_64_2
  doi: 10.1021/bi971218
– ident: e_1_2_9_31_2
  doi: 10.1016/j.molcel.2007.08.015
– ident: e_1_2_9_77_2
  doi: 10.1073/pnas.210392297
– ident: e_1_2_9_62_2
  doi: 10.1016/S0021-9258(18)35706-5
– ident: e_1_2_9_9_2
  doi: 10.1016/j.virusres.2007.12.007
– ident: e_1_2_9_73_2
  doi: 10.1074/jbc.M510504200
– ident: e_1_2_9_17_2
  doi: 10.1128/jvi.68.9.5721-5729.1994
– ident: e_1_2_9_97_2
  doi: 10.1128/JVI.78.23.13315-13324.2004
– volume: 89
  start-page: 100
  year: 1991
  ident: e_1_2_9_89_2
  article-title: Coupling of reverse transcriptase and RNase H during HIV‐1 replication
  publication-title: Behring Inst Mitt
  contributor:
    fullname: Wohrl BM
– ident: e_1_2_9_7_2
  doi: 10.1016/S0079-6603(08)60041-0
– ident: e_1_2_9_72_2
  doi: 10.1128/JVI.72.7.5905-5911.1998
– ident: e_1_2_9_99_2
  doi: 10.1093/nar/gkl909
– ident: e_1_2_9_49_2
  doi: 10.1074/jbc.M000021200
– ident: e_1_2_9_50_2
  doi: 10.1021/bi00243a001
– ident: e_1_2_9_46_2
  doi: 10.1093/nar/20.19.5115
– ident: e_1_2_9_83_2
  doi: 10.1074/jbc.275.17.13061
– ident: e_1_2_9_87_2
  doi: 10.1128/jvi.51.1.26-33.1984
– ident: e_1_2_9_53_2
  doi: 10.1016/S0021-9258(18)86984-8
– ident: e_1_2_9_20_2
  doi: 10.1093/emboj/20.6.1449
– ident: e_1_2_9_8_2
  doi: 10.1016/j.biocel.2004.02.016
– ident: e_1_2_9_42_2
  doi: 10.1073/pnas.152186199
– ident: e_1_2_9_48_2
  doi: 10.1128/jvi.68.3.1970-1971.1994
– ident: e_1_2_9_76_2
  doi: 10.1093/nar/23.19.3901
– ident: e_1_2_9_79_2
  doi: 10.1074/jbc.M201645200
– ident: e_1_2_9_28_2
  doi: 10.1126/science.282.5394.1669
– ident: e_1_2_9_58_2
  doi: 10.1021/bi00016a005
– ident: e_1_2_9_19_2
  doi: 10.1128/JVI.72.8.6805-6812.1998
– ident: e_1_2_9_4_2
  doi: 10.1038/newbio234240a0
– ident: e_1_2_9_23_2
  doi: 10.1093/nar/gkl360
– ident: e_1_2_9_102_2
  doi: 10.1016/S0021-9258(17)32154-3
– ident: e_1_2_9_34_2
  doi: 10.1128/JVI.76.16.8360-8373.2002
– ident: e_1_2_9_60_2
  doi: 10.1016/S0021-9258(18)52449-2
– ident: e_1_2_9_40_2
  doi: 10.1021/bi015970t
– ident: e_1_2_9_67_2
  doi: 10.1021/bi00496a001
– ident: e_1_2_9_82_2
  doi: 10.1002/j.1460-2075.1993.tb06128.x
– ident: e_1_2_9_74_2
  doi: 10.1128/jvi.66.7.4271-4278.1992
– ident: e_1_2_9_39_2
  doi: 10.1073/pnas.142123199
– ident: e_1_2_9_61_2
  doi: 10.1073/pnas.89.22.10763
– ident: e_1_2_9_86_2
  doi: 10.1074/jbc.273.16.9976
– ident: e_1_2_9_88_2
  doi: 10.1128/jvi.64.2.592-597.1990
– ident: e_1_2_9_10_2
  doi: 10.1073/pnas.85.6.1777
– ident: e_1_2_9_84_2
  doi: 10.1128/JVI.75.2.672-686.2001
– ident: e_1_2_9_13_2
  doi: 10.1016/S0021-9258(18)54747-5
– ident: e_1_2_9_93_2
  doi: 10.1128/jvi.71.12.9259-9269.1997
– ident: e_1_2_9_12_2
  doi: 10.1074/jbc.272.35.22023
– ident: e_1_2_9_45_2
  doi: 10.1016/S0021-9258(18)54227-7
– ident: e_1_2_9_52_2
  doi: 10.1016/0022-2836(89)90508-1
– ident: e_1_2_9_65_2
  doi: 10.1021/bi971217h
– ident: e_1_2_9_101_2
  doi: 10.1074/jbc.270.41.24135
– ident: e_1_2_9_24_2
  doi: 10.1126/science.2169648
– ident: e_1_2_9_98_2
  doi: 10.1016/j.virol.2006.10.008
– ident: e_1_2_9_16_2
  doi: 10.1128/jvi.67.7.4037-4049.1993
– start-page: 49
  volume-title: Reverse Transcriptase
  year: 1993
  ident: e_1_2_9_6_2
  contributor:
    fullname: Telesnitsky A
– ident: e_1_2_9_70_2
  doi: 10.1074/jbc.271.4.2063
– ident: e_1_2_9_85_2
  doi: 10.1128/JVI.75.23.11874-11880.2001
– ident: e_1_2_9_71_2
  doi: 10.1073/pnas.94.2.407
– ident: e_1_2_9_47_2
  doi: 10.1016/S0021-9258(19)49503-3
– ident: e_1_2_9_69_2
  doi: 10.1002/j.1460-2075.1995.tb07061.x
– ident: e_1_2_9_95_2
  doi: 10.1128/jvi.61.9.2843-2851.1987
– ident: e_1_2_9_66_2
  doi: 10.1002/j.1460-2075.1990.tb08224.x
– ident: e_1_2_9_78_2
  doi: 10.1074/jbc.M007381200
– ident: e_1_2_9_59_2
  doi: 10.1006/jmbi.2001.4439
– ident: e_1_2_9_56_2
  doi: 10.1016/j.jmb.2004.09.081
– ident: e_1_2_9_68_2
  doi: 10.1093/nar/21.18.4330
– ident: e_1_2_9_36_2
  doi: 10.1128/JVI.77.15.8548-8554.2003
– start-page: 103
  volume-title: Reverse Transcriptase
  year: 1993
  ident: e_1_2_9_5_2
  contributor:
    fullname: Champoux JJ
– ident: e_1_2_9_55_2
  doi: 10.1016/j.molcel.2006.03.013
– ident: e_1_2_9_96_2
  doi: 10.1128/JVI.74.22.10293-10303.2000
– ident: e_1_2_9_18_2
  doi: 10.1006/viro.1997.8454
– start-page: 121
  volume-title: Retroviruses
  year: 1997
  ident: e_1_2_9_81_2
  contributor:
    fullname: Telesnitsky A
– ident: e_1_2_9_32_2
  doi: 10.1016/S0021-9258(18)99002-2
– ident: e_1_2_9_90_2
  doi: 10.1016/S0021-9258(18)53242-7
– ident: e_1_2_9_75_2
  doi: 10.1016/S0021-9258(19)85443-1
– ident: e_1_2_9_33_2
  doi: 10.1128/jvi.66.2.615-622.1992
– ident: e_1_2_9_44_2
  doi: 10.1073/pnas.86.10.3539
– ident: e_1_2_9_26_2
  doi: 10.1073/pnas.90.13.6320
– ident: e_1_2_9_103_2
  doi: 10.1128/jvi.68.8.4747-4758.1994
– ident: e_1_2_9_11_2
  doi: 10.1128/jvi.70.12.8630-8638.1996
– ident: e_1_2_9_92_2
  doi: 10.1128/jvi.70.8.5288-5296.1996
– ident: e_1_2_9_100_2
  doi: 10.1128/JVI.77.9.5275-5285.2003
– ident: e_1_2_9_80_2
  doi: 10.1016/0092-8674(79)90357-X
– ident: e_1_2_9_22_2
  doi: 10.1074/jbc.274.28.19885
– ident: e_1_2_9_94_2
  doi: 10.1074/jbc.274.49.34547
– ident: e_1_2_9_27_2
  doi: 10.1002/prot.340170402
– ident: e_1_2_9_54_2
  doi: 10.1038/sj.emboj.7601076
– ident: e_1_2_9_91_2
  doi: 10.1074/jbc.270.47.28169
– ident: e_1_2_9_51_2
  doi: 10.1128/jvi.66.1.367-373.1992
– ident: e_1_2_9_63_2
  doi: 10.1093/nar/22.18.3793
– ident: e_1_2_9_37_2
  doi: 10.1128/JVI.00856-06
– ident: e_1_2_9_57_2
  doi: 10.1126/science.7528942
– ident: e_1_2_9_14_2
  doi: 10.1073/pnas.88.4.1148
– ident: e_1_2_9_29_2
  doi: 10.1016/j.str.2004.02.032
– ident: e_1_2_9_30_2
  doi: 10.1016/j.cell.2005.04.024
– ident: e_1_2_9_38_2
  doi: 10.1074/jbc.M110254200
SSID ssj0035499
Score 2.2469397
SecondaryResourceType review_article
Snippet Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral...
Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral...
Retroviral reverse transcriptases possess both a DNA polymerase and an RNaseH activity. The linkage with the DNA polymerase activity endows the retroviral...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1506
SubjectTerms Biocatalysis
Biochemistry
catalytic mechanism
DNA polymerase
DNA/RNA hybrids
endonuclease
Genomics
human immunodeficiency virus, type 1
Models, Molecular
Moloney murine leukemia virus
Murine leukemia virus
polypurine tract
Protein Conformation
Retroviridae - enzymology
reverse transcriptase
reverse transcription
Ribonuclease H - chemistry
Ribonuclease H - metabolism
RNA cleavage
RNA-directed DNA polymerase
RNase H
Structure-Activity Relationship
Substrate Specificity
Substrates
Transcription, Genetic
Viruses
Title Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1742-4658.2009.06909.x
https://www.ncbi.nlm.nih.gov/pubmed/19228195
https://www.proquest.com/docview/204108533
https://search.proquest.com/docview/20442525
https://search.proquest.com/docview/67001638
https://pubmed.ncbi.nlm.nih.gov/PMC2742777
Volume 276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED7BXuCFsQ1YGAM_IJ5I5TheE_M2xkqFBA8blfpm2bED1TR3alMJ-PXcOUlZx5AQ4qWqFDtKLnfn73x3nwFe5jYrnKtM6nLrUllJkyrjbWqUzHipRK1iV9rHT8PxRH6YHk27-ifqhWn5IdYbbmQZ0V-TgRu73DRyDOtSiUtoRzuJgZ4aEJ7M8oKqu96drZmkcgqD2t5ImiKnN4t6brnRxkp1tzbz20Do77WU1zFuXKRG23DRv15bm3IxWDV2UP24wfz4f97_ITzosCw7bpVvB-74sAt7xwHj-Mvv7BWL1aVx234X7p30J8vtgT6b2XkgImVcQtn4DbuijMCCqF1fsyV6ssiYy6gJlAqZME5gJjhGhZBLNgts4RvaCEE5MCKgWuBNGlpyewf4CCaj088n47Q76CGthugx0SNj3KRcWdqcO1fKkishDPV1D53g1nAETbwWtbfoXzBgrIgF1Q2lF95ZoXj-GLbCPPh9YM4WruLC8QKRnle1laWpCuUQBRpZ-yqBrP-o-qrl89DX4iCUqCaJ0umcSkeJ6m8J7OPX1-YLul09OReU7EUUiE-ZJ3DQq4TujH-Jc0nPEUcn8GJ9FUVMqRgT_HwVh6CzFEd_HkHtU4SVE3jSKtivx0XhUPYzgWJD9dYDiDF880qYfY3M4ZSXL4oCZ0bN-msJ6NHp23P6-_SfZx7A_TYRR-V7z2CrWaz8IeK5xj6Ploq_76fZT0jWPfM
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED7BeBgvY2zAwgbzA-KJVK7jNfHetrGqwLaHbZX6ZtmxMypYOrWpBPx67pykrGNICPEWKXaUXO7O3_nuPgO8SWw3dS43sUusi2UuTayMt7FRssszJQoVutJOz3qDofw42hs1xwFRL0zND7HYcCPLCP6aDJw2pJetHOO6WOIa2vBOYqSnOggoH6H1J3SOw_vzBZdUQoFQ3R1Jc-ToblnPPU9aWqseFmZyHwz9vZryNsoNy1T_CXxtP7CuTvnSmVe2k_-4w_34nySwDmsNnGUHtf49hQe-3IDNgxJD-evv7C0LBaZh534DVo_aw-U2QZ-P7aQkLmVcRdlgn91QUmBK7K7v2AydWSDNZdQHSrVMGCowUzpGtZAzNi7Z1Fe0F4KCYMRBNcWHVLTqtj7wGQz7x5dHg7g56yHOe-g00Slj6KRcltmEO5fJjCshDLV295zg1nDETbwQhbfoYjBmzIkI1fWkF95ZoXjyHFbKSem3gDmbupwLx1MEe14VVmYmT5VDIGhk4fMIuu1f1Tc1pYe-FQqhRDVJlA7oVDpIVH-LYAt_vzZX6Hn18EJQvheBIL5lEsF2qxO6sf8ZziVVRygdwe7iLoqYsjGm9JN5GIL-Uuz9eQR1UBFcjuBFrWG_XheFQwnQCNIl3VsMINLw5Tvl-HMgD6fUfJqmODOo1l9LQPePDy_o8uU_z9yF1cHl6Yk--XD2aRse13k5qubbgZVqOvevEN5V9nUw25-NdEEa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BkIAXPjbGwoD5AfFEKtfxkpi3MVaVrwltVOqbZccOVBNp1abSxl_PnZOUdQwJId4ixY6Sy935d767nwFeJLafOVeY2CXWxbKQJlbG29go2ee5EqUKXWmfjtPhSL4f74_b-ifqhWn4IVYbbmQZwV-Tgc9cuW7kGNbFEpfQlnYSAz3VQzx5S6YIhAkgnayopBKKg5rmSJojx1ereq550tpSdbM00-tQ6O_FlJdBblilBvfhrPu-pjjlrLesba_4cYX68f8I4AHca8EsO2i07yHc8NUmbB1UGMh_v2AvWSgvDfv2m3DnsDtabgv0ycROK2JSxjWUDV-zGaUE5sTt-oot0JUFylxGXaBUyYSBAjOVY1QJuWCTis19TTshKAdGDFRzfEhNa27nAR_BaHD05XAYtyc9xEWKLhNdMgZOyuW5Tbhzucy5EsJQY3fqBLeGI2ripSi9RQeDEWNBNKgulV54Z4XiyTZsVNPK7wBzNnMFF45nCPW8Kq3MTZEphzDQyNIXEfS7n6pnDaGHvhQIoUQ1SZSO51Q6SFSfR7CDf1-br-h39ehUULYXYSC-ZRLBbqcSurX-Bc4lRUcgHcHe6i6KmHIxpvLTZRiC3lLs_3kE9U8RWI7gcaNgv14XhUPpzwiyNdVbDSDK8PU71eRboA6nxHyWZTgzaNZfS0APjt6c0uWTf565B7c_vx3oj--OP-zC3SYpR6V8T2Gjni_9M8R2tX0ejPYnh7w_yQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ribonuclease+H%3A+Properties%2C+Substrate+Specificity%2C+and+Roles+in+Retroviral+Reverse+Transcription&rft.jtitle=The+FEBS+journal&rft.au=Champoux%2C+James+J.&rft.au=Schultz%2C+Sharon+J.&rft.date=2009-03-01&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=276&rft.issue=6&rft.spage=1506&rft.epage=1516&rft_id=info:doi/10.1111%2Fj.1742-4658.2009.06909.x&rft_id=info%3Apmid%2F19228195&rft.externalDBID=PMC2742777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon