Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription
Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cl...
Saved in:
Published in | The FEBS journal Vol. 276; no. 6; pp. 1506 - 1516 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.03.2009
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3' recessed and RNA 5' recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNases H to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus-strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus-strand synthesis and remove both plus- and minus-strand primers after they have been extended. |
---|---|
AbstractList | Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3′ recessed and RNA 5′ recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNases H to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus‐strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus‐strand synthesis and remove both plus‐ and minus‐strand primers after they have been extended. Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3' recessed and RNA 5' recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNases H to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus-strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus-strand synthesis and remove both plus- and minus-strand primers after they have been extended. [PUBLICATION ABSTRACT] Retroviral reverse transcriptases possess both a DNA polymerase and an RNaseH activity. The linkage with the DNA polymerase activity endows the retroviral RNasesH with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3'recessed and RNA 5'recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNasesH to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus-strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus-strand synthesis and remove both plus- and minus-strand primers after they have been extended. Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3' recessed and RNA 5' recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables the retroviral RNases H to carry out a series of cleavage reactions during reverse transcription to degrade the viral RNA genome after minus strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus strand synthesis, and remove both plus- and minus-strand primers after they have been extended. |
Author | Champoux, James J Schultz, Sharon J |
Author_xml | – sequence: 1 fullname: Champoux, James J – sequence: 2 fullname: Schultz, Sharon J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19228195$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URD_gL0DEgRO7jL8SmwMSVC1FqoREqcTNcpJJ8Sq1UztZuv8eh11tgQv4MB5p3nk0M-8xOfDBIyEFhSXN781qSSvBFqKUaskA9BJKneP9I3K0Lxzsc_HtkByntALgUmj9hBxSzZiiWh4R88XVwU9NjzZhcfG2GGIYMI4O0-siTXUaox2xSAM2rnONGzeF9W0RQ4-pcL6IOMawdtH2OV1jzJDc4VMT3TC64J-Sx53tEz7b_Sfk-vzs6-nF4vLzx0-n7y8XTcmoXqhKCqVbpWoObauEgjyh5VTJsmVQW-C6go51WMtKaSaavLRqS4EM25pp4Cfk3ZY7TPUttg36PEZvhuhubdyYYJ35s-Ldd3MT1oblG1VVlQGvdoAY7iZMo7l1qcG-tx7DlExZAdCSq38KGQjBJJNZ-PIv4SpM0ecrzBoKSnKeRWoramJIKWK3H5mCmb02KzPbaGZLzey1-eW1uc-tz39f-aFxZ-7DTX64Hjf_DTbnZx-u5jQDXmwBnQ3G3kSXzPUVA8qBSp0t4vwnKKXEXQ |
CitedBy_id | crossref_primary_10_3390_v13081495 crossref_primary_10_1016_j_jhep_2020_01_028 crossref_primary_10_1097_QAD_0b013e32835537d3 crossref_primary_10_1186_s12977_018_0416_3 crossref_primary_10_1016_j_virol_2010_12_059 crossref_primary_10_1021_acscatal_1c01825 crossref_primary_10_1093_nar_gkx1073 crossref_primary_10_1038_ncomms2154 crossref_primary_10_1007_s12033_015_9846_5 crossref_primary_10_1016_j_pbiomolbio_2015_11_001 crossref_primary_10_1093_nar_gkx073 crossref_primary_10_3390_v2040900 crossref_primary_10_1016_j_virusres_2016_12_019 crossref_primary_10_1073_pnas_1719746115 crossref_primary_10_1016_j_molcel_2010_11_001 crossref_primary_10_1021_acs_chemrev_8b00201 crossref_primary_10_1016_j_omtn_2018_04_004 crossref_primary_10_1371_journal_pone_0122953 crossref_primary_10_1021_ar500314j crossref_primary_10_1039_C8AN02520G crossref_primary_10_1093_bbb_zbad077 crossref_primary_10_1128_JVI_02203_17 crossref_primary_10_1016_j_omtn_2022_12_015 crossref_primary_10_1016_j_csbj_2021_11_030 crossref_primary_10_3390_bios13020160 crossref_primary_10_1016_j_bbapap_2015_08_011 crossref_primary_10_1111_j_1742_4658_2009_06908_x crossref_primary_10_1093_jb_mvz073 crossref_primary_10_1017_S0033583510000181 crossref_primary_10_1021_jacs_1c11897 crossref_primary_10_1016_j_ab_2012_06_010 crossref_primary_10_1016_j_jmb_2010_01_059 crossref_primary_10_1021_acs_biochem_0c00500 crossref_primary_10_1021_ja102933y crossref_primary_10_1093_jb_mvy101 crossref_primary_10_1371_journal_pone_0161913 crossref_primary_10_1016_j_antiviral_2009_09_009 crossref_primary_10_1074_jbc_M110_208306 crossref_primary_10_1089_aid_2012_0067 crossref_primary_10_1177_03008916211026019 crossref_primary_10_1016_j_meegid_2019_05_020 crossref_primary_10_1016_j_jmoldx_2024_02_009 crossref_primary_10_1155_2012_586401 crossref_primary_10_1128_JVI_03000_13 crossref_primary_10_1371_journal_pone_0072270 crossref_primary_10_1093_jb_mvx021 crossref_primary_10_1093_nar_gkt027 crossref_primary_10_1016_j_virusres_2012_09_008 crossref_primary_10_1074_jbc_M116_753160 crossref_primary_10_1093_jb_mvac056 crossref_primary_10_1111_j_1365_2672_2010_04724_x crossref_primary_10_1128_JB_00579_17 crossref_primary_10_1128_JVI_00798_18 crossref_primary_10_1371_journal_pone_0228774 crossref_primary_10_1074_jbc_M109_043158 crossref_primary_10_1007_s00018_010_0346_2 crossref_primary_10_1128_JVI_00009_12 |
Cites_doi | 10.1038/2261211a0 10.1038/2261209a0 10.1128/JVI.00750-06 10.1016/j.virol.2005.12.042 10.1016/S0021-9258(18)42147-3 10.1126/science.1707186 10.1128/JVI.79.1.419-427.2005 10.1006/jmbi.1998.1624 10.1021/bi971218 10.1016/j.molcel.2007.08.015 10.1073/pnas.210392297 10.1016/S0021-9258(18)35706-5 10.1016/j.virusres.2007.12.007 10.1074/jbc.M510504200 10.1128/jvi.68.9.5721-5729.1994 10.1128/JVI.78.23.13315-13324.2004 10.1016/S0079-6603(08)60041-0 10.1128/JVI.72.7.5905-5911.1998 10.1093/nar/gkl909 10.1074/jbc.M000021200 10.1021/bi00243a001 10.1093/nar/20.19.5115 10.1074/jbc.275.17.13061 10.1128/jvi.51.1.26-33.1984 10.1016/S0021-9258(18)86984-8 10.1093/emboj/20.6.1449 10.1016/j.biocel.2004.02.016 10.1073/pnas.152186199 10.1128/jvi.68.3.1970-1971.1994 10.1093/nar/23.19.3901 10.1074/jbc.M201645200 10.1126/science.282.5394.1669 10.1021/bi00016a005 10.1128/JVI.72.8.6805-6812.1998 10.1038/newbio234240a0 10.1093/nar/gkl360 10.1016/S0021-9258(17)32154-3 10.1128/JVI.76.16.8360-8373.2002 10.1016/S0021-9258(18)52449-2 10.1021/bi015970t 10.1021/bi00496a001 10.1002/j.1460-2075.1993.tb06128.x 10.1128/jvi.66.7.4271-4278.1992 10.1073/pnas.142123199 10.1073/pnas.89.22.10763 10.1074/jbc.273.16.9976 10.1128/jvi.64.2.592-597.1990 10.1073/pnas.85.6.1777 10.1128/JVI.75.2.672-686.2001 10.1016/S0021-9258(18)54747-5 10.1128/jvi.71.12.9259-9269.1997 10.1074/jbc.272.35.22023 10.1016/S0021-9258(18)54227-7 10.1016/0022-2836(89)90508-1 10.1021/bi971217h 10.1074/jbc.270.41.24135 10.1126/science.2169648 10.1016/j.virol.2006.10.008 10.1128/jvi.67.7.4037-4049.1993 10.1074/jbc.271.4.2063 10.1128/JVI.75.23.11874-11880.2001 10.1073/pnas.94.2.407 10.1016/S0021-9258(19)49503-3 10.1002/j.1460-2075.1995.tb07061.x 10.1128/jvi.61.9.2843-2851.1987 10.1002/j.1460-2075.1990.tb08224.x 10.1074/jbc.M007381200 10.1006/jmbi.2001.4439 10.1016/j.jmb.2004.09.081 10.1093/nar/21.18.4330 10.1128/JVI.77.15.8548-8554.2003 10.1016/j.molcel.2006.03.013 10.1128/JVI.74.22.10293-10303.2000 10.1006/viro.1997.8454 10.1016/S0021-9258(18)99002-2 10.1016/S0021-9258(18)53242-7 10.1016/S0021-9258(19)85443-1 10.1128/jvi.66.2.615-622.1992 10.1073/pnas.86.10.3539 10.1073/pnas.90.13.6320 10.1128/jvi.68.8.4747-4758.1994 10.1128/jvi.70.12.8630-8638.1996 10.1128/jvi.70.8.5288-5296.1996 10.1128/JVI.77.9.5275-5285.2003 10.1016/0092-8674(79)90357-X 10.1074/jbc.274.28.19885 10.1074/jbc.274.49.34547 10.1002/prot.340170402 10.1038/sj.emboj.7601076 10.1074/jbc.270.47.28169 10.1128/jvi.66.1.367-373.1992 10.1093/nar/22.18.3793 10.1128/JVI.00856-06 10.1126/science.7528942 10.1073/pnas.88.4.1148 10.1016/j.str.2004.02.032 10.1016/j.cell.2005.04.024 10.1074/jbc.M110254200 |
ContentType | Journal Article |
Copyright | 2009 The Authors Journal compilation © 2009 FEBS Journal compilation © 2009 Federation of European Biochemical Societies |
Copyright_xml | – notice: 2009 The Authors Journal compilation © 2009 FEBS – notice: Journal compilation © 2009 Federation of European Biochemical Societies |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1111/j.1742-4658.2009.06909.x |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE AIDS and Cancer Research Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1742-4658 |
EndPage | 1516 |
ExternalDocumentID | 1653840291 10_1111_j_1742_4658_2009_06909_x 19228195 FEBS6909 US201301598093 |
Genre | reviewArticle Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA051605 – fundername: NCI NIH HHS grantid: CA51605 – fundername: NCI NIH HHS grantid: R01 CA051605-19 – fundername: NCI NIH HHS grantid: R37 CA051605 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHHS AANLZ AAONW AASGY AAVGM AAXRX AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABHUG ABPTK ABPVW ABQWH ABWRO ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADBTR ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEQTP AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIACR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESTFP ESX EX3 F00 F01 F04 F5P FBQ FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HH5 HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OK1 OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBFHL WBKPD WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 Y6R ~IA ~KM ~WT AAHBH AHBTC AITYG HGLYW OIG CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c6219-875489d88b30dd8480922a31856d20ba03970f2feb578924c0098d64e2edb2903 |
IEDL.DBID | DR2 |
ISSN | 1742-464X |
IngestDate | Tue Sep 17 21:16:01 EDT 2024 Fri Aug 16 01:39:13 EDT 2024 Fri Aug 16 09:15:26 EDT 2024 Thu Oct 10 22:05:18 EDT 2024 Fri Aug 23 02:25:57 EDT 2024 Sat Sep 28 07:53:56 EDT 2024 Sat Aug 24 01:12:14 EDT 2024 Wed Dec 27 18:59:50 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6219-875489d88b30dd8480922a31856d20ba03970f2feb578924c0098d64e2edb2903 |
Notes | http://dx.doi.org/10.1111/j.1742-4658.2009.06909.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-3 ObjectType-Review-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1742-4658.2009.06909.x |
PMID | 19228195 |
PQID | 204108533 |
PQPubID | 28478 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2742777 proquest_miscellaneous_67001638 proquest_miscellaneous_20442525 proquest_journals_204108533 crossref_primary_10_1111_j_1742_4658_2009_06909_x pubmed_primary_19228195 wiley_primary_10_1111_j_1742_4658_2009_06909_x_FEBS6909 fao_agris_US201301598093 |
PublicationCentury | 2000 |
PublicationDate | March 2009 |
PublicationDateYYYYMMDD | 2009-03-01 |
PublicationDate_xml | – month: 03 year: 2009 text: March 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | The FEBS journal |
PublicationTitleAlternate | FEBS J |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | 1993; 67 1989; 86 2006; 34 1997; 272 1995; 34 1993; 21 2002; 277 2002; 99 1994; 22 1994; 68 1996; 70 2001; 306 1998; 277 1990; 265 2007; 35 1998; 273 2007; 28 1984; 51 1997; 94 1991; 266 1997; 229 1994; 269 2002; 41 1991; 89 1991; 88 2006; 22 2004; 36 1995; 23 2006; 25 2004; 78 2000; 97 1988; 85 2006; 281 1992; 89 1998; 282 1998; 58 2005; 79 1991; 252 1979; 18 1990; 249 2004; 344 2007; 360 1995; 14 1991; 30 1992; 267 2002; 76 1997 1993 1993; 90 2000; 275 1993; 268 1970; 226 1995; 270 2001; 20 2003; 77 1989; 208 1990; 64 2006; 80 1993; 12 1993; 17 1997; 71 2005; 121 1987; 61 1990; 29 1997; 36 2004; 12 2000; 74 1999; 274 1996; 271 1971; 234 1995; 267 1998; 72 2008; 134 1992; 20 1992; 66 1990; 9 2006; 348 2001; 75 1378844 - J Biol Chem. 1992 Jul 25;267(21):15071-9 12134040 - J Virol. 2002 Aug;76(16):8360-73 12119402 - Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10090-5 9376351 - Biochemistry. 1997 Oct 14;36(41):12468-76 4331605 - Nat New Biol. 1971 Dec 22;234(51):240-3 1370087 - J Virol. 1992 Jan;66(1):367-73 8108376 - Proteins. 1993 Dec;17(4):337-46 11939780 - Biochemistry. 2002 Apr 16;41(15):4856-65 7685407 - J Virol. 1993 Jul;67(7):4037-49 17123564 - Virology. 2007 Apr 10;360(2):341-9 11035788 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11978-83 12857924 - J Virol. 2003 Aug;77(15):8548-54 509527 - Cell. 1979 Sep;18(1):93-100 15542682 - J Virol. 2004 Dec;78(23):13315-24 7524028 - Nucleic Acids Res. 1994 Sep 11;22(18):3793-800 10913435 - J Biol Chem. 2000 Oct 13;275(41):32299-309 9621052 - J Virol. 1998 Jul;72(7):5905-11 9376350 - Biochemistry. 1997 Oct 14;36(41):12459-67 2169648 - Science. 1990 Sep 21;249(4975):1398-405 16473384 - Virology. 2006 May 10;348(2):378-88 17964265 - Mol Cell. 2007 Oct 26;28(2):264-76 9831551 - Science. 1998 Nov 27;282(5394):1669-75 9658129 - J Virol. 1998 Aug;72(8):6805-12 16306040 - J Biol Chem. 2006 Jan 27;281(4):1943-55 7688365 - J Biol Chem. 1993 Aug 5;268(22):16465-71 2477553 - J Mol Biol. 1989 Aug 5;208(3):445-56 4316301 - Nature. 1970 Jun 27;226(5252):1211-3 15533434 - J Mol Biol. 2004 Nov 26;344(3):635-52 7537089 - Biochemistry. 1995 Apr 25;34(16):5343-56 7687065 - Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6320-4 9371584 - J Virol. 1997 Dec;71(12):9259-69 11684697 - J Biol Chem. 2002 Jan 11;277(2):1370-4 11237609 - J Mol Biol. 2001 Mar 9;306(5):931-43 1691093 - EMBO J. 1990 Apr;9(4):1171-6 1707186 - Science. 1991 Apr 5;252(5002):88-95 10574917 - J Biol Chem. 1999 Dec 3;274(49):34547-55 16601679 - EMBO J. 2006 May 3;25(9):1924-33 7479034 - Nucleic Acids Res. 1995 Oct 11;23(19):3901-8 16600865 - Mol Cell. 2006 Apr 7;22(1):5-13 9533880 - J Mol Biol. 1998 Apr 3;277(3):559-72 8764039 - J Virol. 1996 Aug;70(8):5288-96 7509004 - J Virol. 1994 Mar;68(3):1970-1 7528942 - Science. 1995 Jan 6;267(5194):96-9 7592616 - J Biol Chem. 1995 Oct 13;270(41):24135-45 11689669 - J Virol. 2001 Dec;75(23):11874-80 1279694 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10763-7 3039172 - J Virol. 1987 Sep;61(9):2843-51 16973554 - J Virol. 2006 Oct;80(19):9497-510 11134281 - J Virol. 2001 Jan;75(2):672-86 1722202 - J Biol Chem. 1991 Dec 25;266(36):24295-301 1376369 - J Virol. 1992 Jul;66(7):4271-8 1281479 - J Biol Chem. 1992 Dec 25;267(36):25988-97 18261820 - Virus Res. 2008 Jun;134(1-2):86-103 8567660 - J Biol Chem. 1996 Jan 26;271(4):2063-70 15596835 - J Virol. 2005 Jan;79(1):419-27 1383938 - Nucleic Acids Res. 1992 Oct 11;20(19):5115-8 2471188 - Proc Natl Acad Sci U S A. 1989 May;86(10):3539-43 11044073 - J Virol. 2000 Nov;74(22):10293-303 10391934 - J Biol Chem. 1999 Jul 9;274(28):19885-93 9268341 - J Biol Chem. 1997 Aug 29;272(35):22023-9 10777611 - J Biol Chem. 2000 Apr 28;275(17):13061-70 12093908 - Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9515-20 16723431 - Nucleic Acids Res. 2006;34(10):2853-63 9126256 - Virology. 1997 Mar 17;229(2):437-46 1713059 - Biochemistry. 1991 Jul 23;30(29):7041-6 2450347 - Proc Natl Acad Sci U S A. 1988 Mar;85(6):1777-81 7692401 - Nucleic Acids Res. 1993 Sep 11;21(18):4330-8 7693692 - J Biol Chem. 1993 Nov 5;268(31):23585-92 12023278 - J Biol Chem. 2002 Aug 9;277(32):28400-10 8970988 - J Virol. 1996 Dec;70(12):8630-8 7518525 - J Virol. 1994 Aug;68(8):4747-58 7681062 - J Biol Chem. 1993 Mar 25;268(9):6221-7 9012795 - Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):407-11 12692229 - J Virol. 2003 May;77(9):5275-85 7518453 - J Biol Chem. 1994 Jul 29;269(30):19207-15 7533725 - EMBO J. 1995 Feb 15;14(4):833-41 15130474 - Structure. 2004 May;12(5):819-29 17164285 - Nucleic Acids Res. 2007;35(1):256-68 9545343 - J Biol Chem. 1998 Apr 17;273(16):9976-86 1370551 - J Virol. 1992 Feb;66(2):615-22 15183342 - Int J Biochem Cell Biol. 2004 Sep;36(9):1752-66 6202882 - J Virol. 1984 Jul;51(1):26-33 1693920 - J Biol Chem. 1990 Jun 25;265(18):10565-73 1718256 - Behring Inst Mitt. 1991 Jul;(89):100-7 7520094 - J Virol. 1994 Sep;68(9):5721-9 1688626 - J Virol. 1990 Feb;64(2):592-7 1646812 - J Biol Chem. 1991 Jun 25;266(18):11621-7 9308371 - Prog Nucleic Acid Res Mol Biol. 1998;58:339-93 15989951 - Cell. 2005 Jul 1;121(7):1005-16 10956669 - J Biol Chem. 2000 Dec 1;275(48):37664-71 1702425 - J Biol Chem. 1991 Jan 5;266(1):406-12 7693456 - EMBO J. 1993 Nov;12(11):4433-8 11250910 - EMBO J. 2001 Mar 15;20(6):1449-61 1703002 - Biochemistry. 1990 Nov 6;29(44):10141-7 1705027 - Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1148-52 16912289 - J Virol. 2006 Sep;80(17):8379-89 7499308 - J Biol Chem. 1995 Nov 24;270(47):28169-76 1718968 - J Biol Chem. 1991 Nov 5;266(31):20583-5 4316300 - Nature. 1970 Jun 27;226(5252):1209-11 e_1_2_9_52_2 e_1_2_9_98_2 e_1_2_9_71_2 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_56_2 e_1_2_9_94_2 e_1_2_9_75_2 e_1_2_9_90_2 e_1_2_9_103_2 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_18_2 e_1_2_9_79_2 e_1_2_9_41_2 e_1_2_9_87_2 e_1_2_9_60_2 e_1_2_9_45_2 e_1_2_9_83_2 e_1_2_9_22_2 e_1_2_9_64_2 e_1_2_9_2_2 e_1_2_9_49_2 e_1_2_9_26_2 e_1_2_9_68_2 e_1_2_9_30_2 e_1_2_9_72_2 e_1_2_9_99_2 e_1_2_9_34_2 e_1_2_9_76_2 e_1_2_9_95_2 e_1_2_9_11_2 e_1_2_9_53_2 Telesnitsky A (e_1_2_9_81_2) 1997 e_1_2_9_91_2 e_1_2_9_102_2 e_1_2_9_38_2 e_1_2_9_15_2 e_1_2_9_57_2 e_1_2_9_19_2 e_1_2_9_61_2 e_1_2_9_88_2 e_1_2_9_23_2 e_1_2_9_42_2 e_1_2_9_65_2 e_1_2_9_84_2 e_1_2_9_80_2 e_1_2_9_9_2 e_1_2_9_27_2 e_1_2_9_46_2 e_1_2_9_69_2 e_1_2_9_73_2 e_1_2_9_50_2 e_1_2_9_77_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_54_2 e_1_2_9_96_2 e_1_2_9_92_2 e_1_2_9_101_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_58_2 e_1_2_9_39_2 e_1_2_9_62_2 e_1_2_9_20_2 e_1_2_9_66_2 e_1_2_9_43_2 e_1_2_9_85_2 e_1_2_9_4_2 e_1_2_9_8_2 e_1_2_9_24_2 e_1_2_9_47_2 e_1_2_9_28_2 e_1_2_9_51_2 e_1_2_9_74_2 e_1_2_9_97_2 e_1_2_9_78_2 e_1_2_9_93_2 e_1_2_9_55_2 e_1_2_9_32_2 e_1_2_9_70_2 e_1_2_9_100_2 e_1_2_9_13_2 e_1_2_9_59_2 e_1_2_9_36_2 e_1_2_9_17_2 e_1_2_9_40_2 e_1_2_9_63_2 e_1_2_9_86_2 e_1_2_9_21_2 e_1_2_9_44_2 e_1_2_9_67_2 e_1_2_9_82_2 e_1_2_9_7_2 Telesnitsky A (e_1_2_9_6_2) 1993 e_1_2_9_3_2 e_1_2_9_25_2 e_1_2_9_48_2 Wohrl BM (e_1_2_9_89_2) 1991; 89 Champoux JJ (e_1_2_9_5_2) 1993 e_1_2_9_29_2 |
References_xml | – volume: 58 start-page: 339 year: 1998 end-page: 393 article-title: Interaction of retroviral reverse transcriptase with template–primer duplexes during replication publication-title: Prog Nucleic Acid Res Mol Biol – volume: 277 start-page: 1370 year: 2002 end-page: 1374 article-title: Mutational analysis of Tyr‐501 of HIV‐1 reverse transcriptase publication-title: J Biol Chem – volume: 9 start-page: 1171 year: 1990 end-page: 1176 article-title: HIV‐1 RT‐associated ribonuclease H displays both endonuclease and 3′ → 5′ exonuclease activity publication-title: EMBO J – volume: 70 start-page: 8630 year: 1996 end-page: 8638 article-title: RNase H domain of Moloney murine leukemia virus reverse transcriptase retains activity but requires the polymerase domain for specificity publication-title: J Virol – volume: 348 start-page: 378 year: 2006 end-page: 388 article-title: Combining mutations in HIV‐1 reverse transcriptase with mutations in the HIV‐1 polypurine tract affects RNase H cleavages involved in PPT utilization publication-title: Virol – volume: 12 start-page: 819 year: 2004 end-page: 829 article-title: The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus publication-title: Structure (Camb) – start-page: 121 year: 1997 end-page: 160 – volume: 68 start-page: 4747 year: 1994 end-page: 4758 article-title: Strand displacement synthesis capability of Moloney murine leukemia virus reverse transcriptase publication-title: J Virol – volume: 68 start-page: 5721 year: 1994 end-page: 5729 article-title: Contributions of DNA polymerase subdomains to the RNase H activity of human immunodeficiency virus type 1 reverse transcriptase publication-title: J Virol – volume: 77 start-page: 5275 year: 2003 end-page: 5285 article-title: Specific cleavages by RNase H facilitate initiation of plus‐strand RNA synthesis by Moloney murine leukemia virus publication-title: J Virol – volume: 270 start-page: 28169 year: 1995 end-page: 28176 article-title: Use of an oligoribonucleotide containing the polypurine tract sequence as a primer by HIV reverse transcriptase publication-title: J Biol Chem – volume: 234 start-page: 240 year: 1971 end-page: 243 article-title: Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA–DNA hybrids publication-title: Nat New Biol – volume: 28 start-page: 264 year: 2007 end-page: 276 article-title: Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription publication-title: Mol Cell – volume: 271 start-page: 2063 year: 1996 end-page: 2070 article-title: Helix structure and ends of RNA/DNA hybrids direct the cleavage specificity of HIV‐1 reverse transcriptase RNase H publication-title: J Biol Chem – volume: 78 start-page: 13315 year: 2004 end-page: 13324 article-title: Effects of mutations in the G tract of the human immunodeficiency virus type 1 polypurine tract on virus replication and RNase H cleavage publication-title: J Virol – volume: 75 start-page: 672 year: 2001 end-page: 686 article-title: analysis of human immunodeficiency virus type 1 minus‐strand strong‐stop DNA synthesis and genomic RNA processing publication-title: J Virol – volume: 76 start-page: 8360 year: 2002 end-page: 8373 article-title: Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition publication-title: J Virol – volume: 61 start-page: 2843 year: 1987 end-page: 2851 article-title: The role of Moloney murine leukemia virus RNase H activity in the formation of plus‐strand primers publication-title: J Virol – volume: 270 start-page: 24135 year: 1995 end-page: 24145 article-title: Cleavage specificities of Moloney murine leukemia virus RNase H implicated in the second strand transfer during reverse transcription publication-title: J Biol Chem – volume: 249 start-page: 1398 year: 1990 end-page: 1405 article-title: Structure of ribonuclease H phased at 2 Å resolution by MAD analysis of the selenomethionyl protein publication-title: Science – volume: 267 start-page: 15071 year: 1992 end-page: 15079 article-title: Specificity of human immunodeficiency virus‐1 reverse transcriptase‐associated ribonuclease H in removal of the minus‐strand primer, tRNA(Lys3) publication-title: J Biol Chem – volume: 14 start-page: 833 year: 1995 end-page: 841 article-title: HIV‐1 reverse transcriptase‐associated RNase H cleaves RNA/RNA in arrested complexes: implications for the mechanism by which RNase H discriminates between RNA/RNA and RNA/DNA publication-title: EMBO J – volume: 66 start-page: 4271 year: 1992 end-page: 4278 article-title: When retroviral reverse transcriptases reach the end of their RNA templates publication-title: J Virol – volume: 90 start-page: 6320 year: 1993 end-page: 6324 article-title: Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double‐stranded DNA at 3.0 Å resolution shows bent DNA publication-title: Proc Natl Acad Sci USA – volume: 282 start-page: 1669 year: 1998 end-page: 1675 article-title: Structure of a covalently trapped catalytic complex of HIV‐1 reverse transcriptase: implications for drug resistance publication-title: Science – volume: 272 start-page: 22023 year: 1997 end-page: 22029 article-title: The isolated RNase H domain of murine leukemia virus reverse transcriptase. Retention of activity with concomitant loss of specificity publication-title: J Biol Chem – volume: 20 start-page: 1449 year: 2001 end-page: 1461 article-title: Crystal structure of HIV‐1 reverse transcriptase in complex with a polypurine tract RNA:DNA publication-title: EMBO J – volume: 85 start-page: 1777 year: 1988 end-page: 1781 article-title: Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities publication-title: Proc Natl Acad Sci USA – volume: 229 start-page: 437 year: 1997 end-page: 446 article-title: RNase H cleavage of tRNAPro mediated by M‐MuLV and HIV‐1 reverse transcriptases publication-title: Virology – volume: 17 start-page: 337 year: 1993 end-page: 346 article-title: Crystal structure of RNase HI in complex with Mg at 2.8 Å resolution: proof for a single Mg(2 + )‐binding site publication-title: Proteins – volume: 134 start-page: 86 year: 2008 end-page: 103 article-title: RNase H activity: structure, specificity, and function in reverse transcription publication-title: Virus Res – volume: 51 start-page: 26 year: 1984 end-page: 33 article-title: RNA‐primed initiation of Moloney murine leukemia virus plus strands by reverse transcriptase publication-title: J Virol – volume: 275 start-page: 13061 year: 2000 end-page: 13070 article-title: RNA degradation and primer selection by Moloney murine leukemia virus reverse transcriptase contribute to the accuracy of plus strand initiation publication-title: J Biol Chem – volume: 30 start-page: 7041 year: 1991 end-page: 7046 article-title: Human immunodeficiency virus reverse transcriptase ribonuclease H: specificity of tRNA(Lys3)‐primer excision publication-title: Biochemistry – volume: 121 start-page: 1005 year: 2005 end-page: 1016 article-title: Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal‐dependent catalysis publication-title: Cell – volume: 99 start-page: 10090 year: 2002 end-page: 10095 article-title: Y586F mutation in murine leukemia virus reverse transcriptase decreases fidelity of DNA synthesis in regions associated with adenine–thymine tracts publication-title: Proc Natl Acad Sci USA – volume: 277 start-page: 28400 year: 2002 end-page: 28410 article-title: Substrate requirements for secondary cleavage by HIV‐1 reverse transcriptase RNase H publication-title: J Biol Chem – volume: 34 start-page: 5343 year: 1995 end-page: 5356 article-title: An expanded model of replicating human immunodeficiency virus reverse transcriptase publication-title: Biochemistry – volume: 34 start-page: 2853 year: 2006 end-page: 2863 article-title: Analysis of HIV‐1 replication block due to substitutions at F61 residue of reverse transcriptase reveals additional defects involving the RNase H function publication-title: Nucleic Acids Res – volume: 89 start-page: 10763 year: 1992 end-page: 10767 article-title: Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities publication-title: Proc Natl Acad Sci USA – volume: 269 start-page: 19207 year: 1994 end-page: 19215 article-title: The use of DNA and RNA oligonucleotides in hybrid structures with longer polynucleotide chains to probe the structural requirements for Moloney murine leukemia virus plus strand priming publication-title: J Biol Chem – volume: 281 start-page: 1943 year: 2006 end-page: 1955 article-title: Sequence, distance, and accessibility are determinants of 5′‐end‐directed cleavages by retroviral RNases H publication-title: J Biol Chem – volume: 22 start-page: 5 year: 2006 end-page: 13 article-title: Making and breaking nucleic acids: two‐Mg ‐ion catalysis and substrate specificity publication-title: Mol Cell – volume: 266 start-page: 20583 year: 1991 end-page: 20585 article-title: A recombinant ribonuclease H domain of HIV‐1 reverse transcriptase that is enzymatically active publication-title: J Biol Chem – volume: 306 start-page: 931 year: 2001 end-page: 943 article-title: Structural alterations in the DNA ahead of the primer terminus during displacement synthesis by reverse transcriptases publication-title: J Mol Biol – volume: 36 start-page: 12459 year: 1997 end-page: 12467 article-title: Effect of RNA secondary structure on the kinetics of DNA synthesis catalyzed by HIV‐1 reverse transcriptase publication-title: Biochemistry – volume: 77 start-page: 8548 year: 2003 end-page: 8554 article-title: Mutation of amino acids in the connection domain of human immunodeficiency virus type 1 reverse transcriptase that contact the template–primer affects RNase H activity publication-title: J Virol – volume: 274 start-page: 19885 year: 1999 end-page: 19893 article-title: Residues in the alphaH and alphaI helices of the HIV‐1 reverse transcriptase thumb subdomain required for the specificity of RNase H‐catalyzed removal of the polypurine tract primer publication-title: J Biol Chem – volume: 268 start-page: 6221 year: 1993 end-page: 6227 article-title: The sequence features important for plus strand priming by human immunodeficiency virus type 1 reverse transcriptase publication-title: J Biol Chem – volume: 36 start-page: 1752 year: 2004 end-page: 1766 article-title: ‘Binding, bending and bonding’: polypurine tract‐primed initiation of plus‐strand DNA synthesis in human immunodeficiency virus publication-title: Int J Biochem Cell Biol – volume: 75 start-page: 11874 year: 2001 end-page: 11880 article-title: RNase H cleavage of the 5′ end of the human immunodeficiency virus type 1 genome publication-title: J Virol – volume: 72 start-page: 5905 year: 1998 end-page: 5911 article-title: Replication defect of moloney murine leukemia virus with a mutant reverse transcriptase that can incorporate ribonucleotides and deoxyribonucleotides publication-title: J Virol – volume: 266 start-page: 406 year: 1991 end-page: 412 article-title: Reverse transcriptase.RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities publication-title: J Biol Chem – volume: 268 start-page: 16465 year: 1993 end-page: 16471 article-title: RNase H activity of reverse transcriptases on substrates derived from the 5′ end of retroviral genome publication-title: J Biol Chem – volume: 99 start-page: 9515 year: 2002 end-page: 9520 article-title: Mutations in the RNase H domain of HIV‐1 reverse transcriptase affect the initiation of DNA synthesis and the specificity of RNase H cleavage publication-title: Proc Natl Acad Sci USA – volume: 86 start-page: 3539 year: 1989 end-page: 3543 article-title: Ribonuclease H activities associated with viral reverse transcriptases are endonucleases publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 4433 year: 1993 end-page: 4438 article-title: Two defective forms of reverse transcriptase can complement to restore retroviral infectivity publication-title: EMBO J – volume: 25 start-page: 1924 year: 2006 end-page: 1933 article-title: Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release publication-title: EMBO J – volume: 88 start-page: 1148 year: 1991 end-page: 1152 article-title: Reconstitution of RNase H activity by using purified N‐terminal and C‐terminal domains of human immunodeficiency virus type 1 reverse transcriptase publication-title: Proc Natl Acad Sci USA – volume: 267 start-page: 25988 year: 1992 end-page: 25997 article-title: Mechanism and fidelity of HIV reverse transcriptase publication-title: J Biol Chem – volume: 268 start-page: 23585 year: 1993 end-page: 23592 article-title: Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities publication-title: J Biol Chem – volume: 80 start-page: 8379 year: 2006 end-page: 8389 article-title: Crystal structure of the moloney murine leukemia virus RNase H domain publication-title: J Virol – volume: 273 start-page: 9976 year: 1998 end-page: 9986 article-title: Characterization of RNA strand displacement synthesis by Moloney murine leukemia virus reverse transcriptase publication-title: J Biol Chem – volume: 18 start-page: 93 year: 1979 end-page: 100 article-title: A detailed model of reverse transcription and tests of crucial aspects publication-title: Cell – volume: 275 start-page: 32299 year: 2000 end-page: 32309 article-title: Analysis of plus‐strand primer selection, removal, and reutilization by retroviral reverse transcriptases publication-title: J Biol Chem – volume: 265 start-page: 10565 year: 1990 end-page: 10573 article-title: Processing of the primer for plus strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase publication-title: J Biol Chem – volume: 67 start-page: 4037 year: 1993 end-page: 4049 article-title: Purification and characterization of an active human immunodeficiency virus type 1 RNase H domain publication-title: J Virol – volume: 97 start-page: 11978 year: 2000 end-page: 11983 article-title: Unique progressive cleavage mechanism of HIV reverse transcriptase RNase H publication-title: Proc Natl Acad Sci USA – volume: 252 start-page: 88 year: 1991 end-page: 95 article-title: Crystal structure of the ribonuclease H domain of HIV‐1 reverse transcriptase publication-title: Science – volume: 226 start-page: 1209 year: 1970 end-page: 1211 article-title: RNA‐dependent DNA polymerase in virions of RNA tumour viruses publication-title: Nature – volume: 94 start-page: 407 year: 1997 end-page: 411 article-title: Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 3901 year: 1995 end-page: 3908 article-title: The orientation of binding of human immunodeficiency virus reverse transcriptase on nucleic acid hybrids publication-title: Nucleic Acids Res – volume: 70 start-page: 5288 year: 1996 end-page: 5296 article-title: Sequence and structural determinants required for priming of plus‐strand DNA synthesis by the human immunodeficiency virus type 1 polypurine tract publication-title: J Virol – volume: 226 start-page: 1211 year: 1970 end-page: 1213 article-title: RNA‐dependent DNA polymerase in virions of Rous sarcoma virus publication-title: Nature – volume: 277 start-page: 559 year: 1998 end-page: 572 article-title: Effects of mutations in the polymerase domain on the polymerase, RNase H and strand transfer activities of human immunodeficiency virus type 1 reverse transcriptase publication-title: J Mol Biol – volume: 274 start-page: 34547 year: 1999 end-page: 34555 article-title: Polypurine tract primer generation and utilization by Moloney murine leukemia virus reverse transcriptase publication-title: J Biol Chem – volume: 66 start-page: 367 year: 1992 end-page: 373 article-title: Incomplete removal of the RNA primer for minus‐strand DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase publication-title: J Virol – volume: 20 start-page: 5115 year: 1992 end-page: 5118 article-title: Characterization of the double stranded RNA dependent RNase activity associated with recombinant reverse transcriptases publication-title: Nucleic Acids Res – volume: 267 start-page: 96 year: 1995 end-page: 99 article-title: Footprint analysis of replicating murine leukemia virus reverse transcriptase publication-title: Science – volume: 275 start-page: 37664 year: 2000 end-page: 37671 article-title: The sequential mechanism of HIV reverse transcriptase RNase H publication-title: J Biol Chem – volume: 74 start-page: 10293 year: 2000 end-page: 10303 article-title: Selection of optimal polypurine tract region sequences during Moloney murine leukemia virus replication publication-title: J Virol – volume: 208 start-page: 445 year: 1989 end-page: 456 article-title: Plus‐strand priming by Moloney murine leukemia virus. The sequence features important for cleavage by RNase H publication-title: J Mol Biol – volume: 89 start-page: 100 year: 1991 end-page: 107 article-title: Coupling of reverse transcriptase and RNase H during HIV‐1 replication publication-title: Behring Inst Mitt – volume: 68 start-page: 1970 year: 1994 end-page: 1971 article-title: Redesignation of the RNase D activity associated with retroviral reverse transcriptase as RNase H publication-title: J Virol – start-page: 103 year: 1993 end-page: 118 – volume: 266 start-page: 11621 year: 1991 end-page: 11627 article-title: Importance of the positive charge cluster in ribonuclease HI for the effective binding of the substrate publication-title: J Biol Chem – volume: 80 start-page: 9497 year: 2006 end-page: 9510 article-title: Revealing domain structure through linker‐scanning analysis of the murine leukemia virus (MuLV) RNase H and MuLV and human immunodeficiency virus type 1 integrase proteins publication-title: J Virol – volume: 21 start-page: 4330 year: 1993 end-page: 4338 article-title: Determinants of the RNase H cleavage specificity of human immunodeficiency virus reverse transcriptase publication-title: Nucleic Acids Res – volume: 72 start-page: 6805 year: 1998 end-page: 6812 article-title: Sequence requirements for removal of tRNA by an isolated human immunodeficiency virus type 1 RNase H domain publication-title: J Virol – volume: 41 start-page: 4856 year: 2002 end-page: 4865 article-title: Altering the RNase H primer grip of human immunodeficiency virus reverse transcriptase modifies cleavage specificity publication-title: Biochemistry – volume: 344 start-page: 635 year: 2004 end-page: 652 article-title: Recognition of internal cleavage sites by retroviral RNases H publication-title: J Mol Biol – volume: 66 start-page: 615 year: 1992 end-page: 622 article-title: Defects in Moloney murine leukemia virus replication caused by a reverse transcriptase mutation modeled on the structure of RNase H publication-title: J Virol – volume: 22 start-page: 3793 year: 1994 end-page: 3800 article-title: Quantitative analysis of RNA cleavage during RNA‐directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases publication-title: Nucleic Acids Res – start-page: 49 year: 1993 end-page: 83 – volume: 79 start-page: 419 year: 2005 end-page: 427 article-title: Mutations in the RNase H primer grip domain of murine leukemia virus reverse transcriptase decrease efficiency and accuracy of plus‐strand DNA transfer publication-title: J Virol – volume: 266 start-page: 24295 year: 1991 end-page: 24301 article-title: Human immunodeficiency virus reverse transcriptase displays a partially processive 3′ to 5′ endonuclease activity publication-title: J Biol Chem – volume: 64 start-page: 592 year: 1990 end-page: 597 article-title: Specificities involved in the initiation of retroviral plus‐strand DNA publication-title: J Virol – volume: 360 start-page: 341 year: 2007 end-page: 349 article-title: analysis of the effects of mutations in the G‐tract of the human immunodeficiency virus type 1 polypurine tract on RNase H cleavage specificity publication-title: Virol – volume: 35 start-page: 256 year: 2007 end-page: 268 article-title: Purine analog substitution of the HIV‐1 polypurine tract primer defines regions controlling initiation of plus‐strand DNA synthesis publication-title: Nucleic Acids Res – volume: 36 start-page: 12468 year: 1997 end-page: 12476 article-title: Effect of RNA secondary structure on RNA cleavage catalyzed by HIV‐1 reverse transcriptase publication-title: Biochemistry – volume: 29 start-page: 10141 year: 1990 end-page: 10147 article-title: Interaction of HIV‐1 ribonuclease H with polypurine tract containing RNA–DNA hybrids publication-title: Biochemistry – volume: 71 start-page: 9259 year: 1997 end-page: 9269 article-title: Discontinuous plus‐strand DNA synthesis in human immunodeficiency virus type 1‐infected cells and in a partially reconstituted cell‐free system publication-title: J Virol – ident: e_1_2_9_3_2 doi: 10.1038/2261211a0 – ident: e_1_2_9_2_2 doi: 10.1038/2261209a0 – ident: e_1_2_9_35_2 doi: 10.1128/JVI.00750-06 – ident: e_1_2_9_41_2 doi: 10.1016/j.virol.2005.12.042 – ident: e_1_2_9_15_2 doi: 10.1016/S0021-9258(18)42147-3 – ident: e_1_2_9_25_2 doi: 10.1126/science.1707186 – ident: e_1_2_9_43_2 doi: 10.1128/JVI.79.1.419-427.2005 – ident: e_1_2_9_21_2 doi: 10.1006/jmbi.1998.1624 – ident: e_1_2_9_64_2 doi: 10.1021/bi971218 – ident: e_1_2_9_31_2 doi: 10.1016/j.molcel.2007.08.015 – ident: e_1_2_9_77_2 doi: 10.1073/pnas.210392297 – ident: e_1_2_9_62_2 doi: 10.1016/S0021-9258(18)35706-5 – ident: e_1_2_9_9_2 doi: 10.1016/j.virusres.2007.12.007 – ident: e_1_2_9_73_2 doi: 10.1074/jbc.M510504200 – ident: e_1_2_9_17_2 doi: 10.1128/jvi.68.9.5721-5729.1994 – ident: e_1_2_9_97_2 doi: 10.1128/JVI.78.23.13315-13324.2004 – volume: 89 start-page: 100 year: 1991 ident: e_1_2_9_89_2 article-title: Coupling of reverse transcriptase and RNase H during HIV‐1 replication publication-title: Behring Inst Mitt contributor: fullname: Wohrl BM – ident: e_1_2_9_7_2 doi: 10.1016/S0079-6603(08)60041-0 – ident: e_1_2_9_72_2 doi: 10.1128/JVI.72.7.5905-5911.1998 – ident: e_1_2_9_99_2 doi: 10.1093/nar/gkl909 – ident: e_1_2_9_49_2 doi: 10.1074/jbc.M000021200 – ident: e_1_2_9_50_2 doi: 10.1021/bi00243a001 – ident: e_1_2_9_46_2 doi: 10.1093/nar/20.19.5115 – ident: e_1_2_9_83_2 doi: 10.1074/jbc.275.17.13061 – ident: e_1_2_9_87_2 doi: 10.1128/jvi.51.1.26-33.1984 – ident: e_1_2_9_53_2 doi: 10.1016/S0021-9258(18)86984-8 – ident: e_1_2_9_20_2 doi: 10.1093/emboj/20.6.1449 – ident: e_1_2_9_8_2 doi: 10.1016/j.biocel.2004.02.016 – ident: e_1_2_9_42_2 doi: 10.1073/pnas.152186199 – ident: e_1_2_9_48_2 doi: 10.1128/jvi.68.3.1970-1971.1994 – ident: e_1_2_9_76_2 doi: 10.1093/nar/23.19.3901 – ident: e_1_2_9_79_2 doi: 10.1074/jbc.M201645200 – ident: e_1_2_9_28_2 doi: 10.1126/science.282.5394.1669 – ident: e_1_2_9_58_2 doi: 10.1021/bi00016a005 – ident: e_1_2_9_19_2 doi: 10.1128/JVI.72.8.6805-6812.1998 – ident: e_1_2_9_4_2 doi: 10.1038/newbio234240a0 – ident: e_1_2_9_23_2 doi: 10.1093/nar/gkl360 – ident: e_1_2_9_102_2 doi: 10.1016/S0021-9258(17)32154-3 – ident: e_1_2_9_34_2 doi: 10.1128/JVI.76.16.8360-8373.2002 – ident: e_1_2_9_60_2 doi: 10.1016/S0021-9258(18)52449-2 – ident: e_1_2_9_40_2 doi: 10.1021/bi015970t – ident: e_1_2_9_67_2 doi: 10.1021/bi00496a001 – ident: e_1_2_9_82_2 doi: 10.1002/j.1460-2075.1993.tb06128.x – ident: e_1_2_9_74_2 doi: 10.1128/jvi.66.7.4271-4278.1992 – ident: e_1_2_9_39_2 doi: 10.1073/pnas.142123199 – ident: e_1_2_9_61_2 doi: 10.1073/pnas.89.22.10763 – ident: e_1_2_9_86_2 doi: 10.1074/jbc.273.16.9976 – ident: e_1_2_9_88_2 doi: 10.1128/jvi.64.2.592-597.1990 – ident: e_1_2_9_10_2 doi: 10.1073/pnas.85.6.1777 – ident: e_1_2_9_84_2 doi: 10.1128/JVI.75.2.672-686.2001 – ident: e_1_2_9_13_2 doi: 10.1016/S0021-9258(18)54747-5 – ident: e_1_2_9_93_2 doi: 10.1128/jvi.71.12.9259-9269.1997 – ident: e_1_2_9_12_2 doi: 10.1074/jbc.272.35.22023 – ident: e_1_2_9_45_2 doi: 10.1016/S0021-9258(18)54227-7 – ident: e_1_2_9_52_2 doi: 10.1016/0022-2836(89)90508-1 – ident: e_1_2_9_65_2 doi: 10.1021/bi971217h – ident: e_1_2_9_101_2 doi: 10.1074/jbc.270.41.24135 – ident: e_1_2_9_24_2 doi: 10.1126/science.2169648 – ident: e_1_2_9_98_2 doi: 10.1016/j.virol.2006.10.008 – ident: e_1_2_9_16_2 doi: 10.1128/jvi.67.7.4037-4049.1993 – start-page: 49 volume-title: Reverse Transcriptase year: 1993 ident: e_1_2_9_6_2 contributor: fullname: Telesnitsky A – ident: e_1_2_9_70_2 doi: 10.1074/jbc.271.4.2063 – ident: e_1_2_9_85_2 doi: 10.1128/JVI.75.23.11874-11880.2001 – ident: e_1_2_9_71_2 doi: 10.1073/pnas.94.2.407 – ident: e_1_2_9_47_2 doi: 10.1016/S0021-9258(19)49503-3 – ident: e_1_2_9_69_2 doi: 10.1002/j.1460-2075.1995.tb07061.x – ident: e_1_2_9_95_2 doi: 10.1128/jvi.61.9.2843-2851.1987 – ident: e_1_2_9_66_2 doi: 10.1002/j.1460-2075.1990.tb08224.x – ident: e_1_2_9_78_2 doi: 10.1074/jbc.M007381200 – ident: e_1_2_9_59_2 doi: 10.1006/jmbi.2001.4439 – ident: e_1_2_9_56_2 doi: 10.1016/j.jmb.2004.09.081 – ident: e_1_2_9_68_2 doi: 10.1093/nar/21.18.4330 – ident: e_1_2_9_36_2 doi: 10.1128/JVI.77.15.8548-8554.2003 – start-page: 103 volume-title: Reverse Transcriptase year: 1993 ident: e_1_2_9_5_2 contributor: fullname: Champoux JJ – ident: e_1_2_9_55_2 doi: 10.1016/j.molcel.2006.03.013 – ident: e_1_2_9_96_2 doi: 10.1128/JVI.74.22.10293-10303.2000 – ident: e_1_2_9_18_2 doi: 10.1006/viro.1997.8454 – start-page: 121 volume-title: Retroviruses year: 1997 ident: e_1_2_9_81_2 contributor: fullname: Telesnitsky A – ident: e_1_2_9_32_2 doi: 10.1016/S0021-9258(18)99002-2 – ident: e_1_2_9_90_2 doi: 10.1016/S0021-9258(18)53242-7 – ident: e_1_2_9_75_2 doi: 10.1016/S0021-9258(19)85443-1 – ident: e_1_2_9_33_2 doi: 10.1128/jvi.66.2.615-622.1992 – ident: e_1_2_9_44_2 doi: 10.1073/pnas.86.10.3539 – ident: e_1_2_9_26_2 doi: 10.1073/pnas.90.13.6320 – ident: e_1_2_9_103_2 doi: 10.1128/jvi.68.8.4747-4758.1994 – ident: e_1_2_9_11_2 doi: 10.1128/jvi.70.12.8630-8638.1996 – ident: e_1_2_9_92_2 doi: 10.1128/jvi.70.8.5288-5296.1996 – ident: e_1_2_9_100_2 doi: 10.1128/JVI.77.9.5275-5285.2003 – ident: e_1_2_9_80_2 doi: 10.1016/0092-8674(79)90357-X – ident: e_1_2_9_22_2 doi: 10.1074/jbc.274.28.19885 – ident: e_1_2_9_94_2 doi: 10.1074/jbc.274.49.34547 – ident: e_1_2_9_27_2 doi: 10.1002/prot.340170402 – ident: e_1_2_9_54_2 doi: 10.1038/sj.emboj.7601076 – ident: e_1_2_9_91_2 doi: 10.1074/jbc.270.47.28169 – ident: e_1_2_9_51_2 doi: 10.1128/jvi.66.1.367-373.1992 – ident: e_1_2_9_63_2 doi: 10.1093/nar/22.18.3793 – ident: e_1_2_9_37_2 doi: 10.1128/JVI.00856-06 – ident: e_1_2_9_57_2 doi: 10.1126/science.7528942 – ident: e_1_2_9_14_2 doi: 10.1073/pnas.88.4.1148 – ident: e_1_2_9_29_2 doi: 10.1016/j.str.2004.02.032 – ident: e_1_2_9_30_2 doi: 10.1016/j.cell.2005.04.024 – ident: e_1_2_9_38_2 doi: 10.1074/jbc.M110254200 |
SSID | ssj0035499 |
Score | 2.2469397 |
SecondaryResourceType | review_article |
Snippet | Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral... Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral... Retroviral reverse transcriptases possess both a DNA polymerase and an RNaseH activity. The linkage with the DNA polymerase activity endows the retroviral... |
SourceID | pubmedcentral proquest crossref pubmed wiley fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1506 |
SubjectTerms | Biocatalysis Biochemistry catalytic mechanism DNA polymerase DNA/RNA hybrids endonuclease Genomics human immunodeficiency virus, type 1 Models, Molecular Moloney murine leukemia virus Murine leukemia virus polypurine tract Protein Conformation Retroviridae - enzymology reverse transcriptase reverse transcription Ribonuclease H - chemistry Ribonuclease H - metabolism RNA cleavage RNA-directed DNA polymerase RNase H Structure-Activity Relationship Substrate Specificity Substrates Transcription, Genetic Viruses |
Title | Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1742-4658.2009.06909.x https://www.ncbi.nlm.nih.gov/pubmed/19228195 https://www.proquest.com/docview/204108533 https://search.proquest.com/docview/20442525 https://search.proquest.com/docview/67001638 https://pubmed.ncbi.nlm.nih.gov/PMC2742777 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED7BXuCFsQ1YGAM_IJ5I5TheE_M2xkqFBA8blfpm2bED1TR3alMJ-PXcOUlZx5AQ4qWqFDtKLnfn73x3nwFe5jYrnKtM6nLrUllJkyrjbWqUzHipRK1iV9rHT8PxRH6YHk27-ifqhWn5IdYbbmQZ0V-TgRu73DRyDOtSiUtoRzuJgZ4aEJ7M8oKqu96drZmkcgqD2t5ImiKnN4t6brnRxkp1tzbz20Do77WU1zFuXKRG23DRv15bm3IxWDV2UP24wfz4f97_ITzosCw7bpVvB-74sAt7xwHj-Mvv7BWL1aVx234X7p30J8vtgT6b2XkgImVcQtn4DbuijMCCqF1fsyV6ssiYy6gJlAqZME5gJjhGhZBLNgts4RvaCEE5MCKgWuBNGlpyewf4CCaj088n47Q76CGthugx0SNj3KRcWdqcO1fKkishDPV1D53g1nAETbwWtbfoXzBgrIgF1Q2lF95ZoXj-GLbCPPh9YM4WruLC8QKRnle1laWpCuUQBRpZ-yqBrP-o-qrl89DX4iCUqCaJ0umcSkeJ6m8J7OPX1-YLul09OReU7EUUiE-ZJ3DQq4TujH-Jc0nPEUcn8GJ9FUVMqRgT_HwVh6CzFEd_HkHtU4SVE3jSKtivx0XhUPYzgWJD9dYDiDF880qYfY3M4ZSXL4oCZ0bN-msJ6NHp23P6-_SfZx7A_TYRR-V7z2CrWaz8IeK5xj6Ploq_76fZT0jWPfM |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED7BeBgvY2zAwgbzA-KJVK7jNfHetrGqwLaHbZX6ZtmxMypYOrWpBPx67pykrGNICPEWKXaUXO7O3_nuPgO8SWw3dS43sUusi2UuTayMt7FRssszJQoVutJOz3qDofw42hs1xwFRL0zND7HYcCPLCP6aDJw2pJetHOO6WOIa2vBOYqSnOggoH6H1J3SOw_vzBZdUQoFQ3R1Jc-ToblnPPU9aWqseFmZyHwz9vZryNsoNy1T_CXxtP7CuTvnSmVe2k_-4w_34nySwDmsNnGUHtf49hQe-3IDNgxJD-evv7C0LBaZh534DVo_aw-U2QZ-P7aQkLmVcRdlgn91QUmBK7K7v2AydWSDNZdQHSrVMGCowUzpGtZAzNi7Z1Fe0F4KCYMRBNcWHVLTqtj7wGQz7x5dHg7g56yHOe-g00Slj6KRcltmEO5fJjCshDLV295zg1nDETbwQhbfoYjBmzIkI1fWkF95ZoXjyHFbKSem3gDmbupwLx1MEe14VVmYmT5VDIGhk4fMIuu1f1Tc1pYe-FQqhRDVJlA7oVDpIVH-LYAt_vzZX6Hn18EJQvheBIL5lEsF2qxO6sf8ZziVVRygdwe7iLoqYsjGm9JN5GIL-Uuz9eQR1UBFcjuBFrWG_XheFQwnQCNIl3VsMINLw5Tvl-HMgD6fUfJqmODOo1l9LQPePDy_o8uU_z9yF1cHl6Yk--XD2aRse13k5qubbgZVqOvevEN5V9nUw25-NdEEa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BkIAXPjbGwoD5AfFEKtfxkpi3MVaVrwltVOqbZccOVBNp1abSxl_PnZOUdQwJId4ixY6Sy935d767nwFeJLafOVeY2CXWxbKQJlbG29go2ee5EqUKXWmfjtPhSL4f74_b-ifqhWn4IVYbbmQZwV-Tgc9cuW7kGNbFEpfQlnYSAz3VQzx5S6YIhAkgnayopBKKg5rmSJojx1ereq550tpSdbM00-tQ6O_FlJdBblilBvfhrPu-pjjlrLesba_4cYX68f8I4AHca8EsO2i07yHc8NUmbB1UGMh_v2AvWSgvDfv2m3DnsDtabgv0ycROK2JSxjWUDV-zGaUE5sTt-oot0JUFylxGXaBUyYSBAjOVY1QJuWCTis19TTshKAdGDFRzfEhNa27nAR_BaHD05XAYtyc9xEWKLhNdMgZOyuW5Tbhzucy5EsJQY3fqBLeGI2ripSi9RQeDEWNBNKgulV54Z4XiyTZsVNPK7wBzNnMFF45nCPW8Kq3MTZEphzDQyNIXEfS7n6pnDaGHvhQIoUQ1SZSO51Q6SFSfR7CDf1-br-h39ehUULYXYSC-ZRLBbqcSurX-Bc4lRUcgHcHe6i6KmHIxpvLTZRiC3lLs_3kE9U8RWI7gcaNgv14XhUPpzwiyNdVbDSDK8PU71eRboA6nxHyWZTgzaNZfS0APjt6c0uWTf565B7c_vx3oj--OP-zC3SYpR6V8T2Gjni_9M8R2tX0ejPYnh7w_yQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ribonuclease+H%3A+Properties%2C+Substrate+Specificity%2C+and+Roles+in+Retroviral+Reverse+Transcription&rft.jtitle=The+FEBS+journal&rft.au=Champoux%2C+James+J.&rft.au=Schultz%2C+Sharon+J.&rft.date=2009-03-01&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=276&rft.issue=6&rft.spage=1506&rft.epage=1516&rft_id=info:doi/10.1111%2Fj.1742-4658.2009.06909.x&rft_id=info%3Apmid%2F19228195&rft.externalDBID=PMC2742777 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon |