Self-Assembled Isoporous Block Copolymer Membranes with Tuned Pore Sizes

The combination of nonsolvent‐induced phase separation and the self‐assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by el...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 53; no. 38; pp. 10072 - 10076
Main Authors Yu, Haizhou, Qiu, Xiaoyan, Nunes, Suzana P., Peinemann, Klaus-Viktor
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 15.09.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The combination of nonsolvent‐induced phase separation and the self‐assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. Golden pores: Membranes with tunable cylindrical pore diameters between 3 and 20 nm were manufactured and tested for nanoparticle separation and controlled delivery of proteins. The pore size was regulated by electroless gold deposition. The precise size discrimination, facile and scalable fabrication processes, and biocompatible characteristics favor potential uses in the purification of nanoscale materials and drug delivery.
AbstractList The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. Golden pores: Membranes with tunable cylindrical pore diameters between 3 and 20nm were manufactured and tested for nanoparticle separation and controlled delivery of proteins. The pore size was regulated by electroless gold deposition. The precise size discrimination, facile and scalable fabrication processes, and biocompatible characteristics favor potential uses in the purification of nanoscale materials and drug delivery.
The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application.The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application.
The combination of nonsolvent‐induced phase separation and the self‐assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. Golden pores: Membranes with tunable cylindrical pore diameters between 3 and 20 nm were manufactured and tested for nanoparticle separation and controlled delivery of proteins. The pore size was regulated by electroless gold deposition. The precise size discrimination, facile and scalable fabrication processes, and biocompatible characteristics favor potential uses in the purification of nanoscale materials and drug delivery.
The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application.
The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application.
Author Nunes, Suzana P.
Peinemann, Klaus-Viktor
Yu, Haizhou
Qiu, Xiaoyan
Author_xml – sequence: 1
  givenname: Haizhou
  surname: Yu
  fullname: Yu, Haizhou
  organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia)
– sequence: 2
  givenname: Xiaoyan
  surname: Qiu
  fullname: Qiu, Xiaoyan
  organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia)
– sequence: 3
  givenname: Suzana P.
  surname: Nunes
  fullname: Nunes, Suzana P.
  organization: Water Desalination and Reuse Center (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia)
– sequence: 4
  givenname: Klaus-Viktor
  surname: Peinemann
  fullname: Peinemann, Klaus-Viktor
  email: klausviktor.peinemann@kaust.edu.sa
  organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25055979$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gyhFF4sIlyziO7fi4rMp2pVKoWujRcpyJcJvEWztRWX49Xm1ZoUqoJ4-l57Fn5j0mB4MfkJC3FGYUoPhoBoezAmgJZanoC3JEeUFzJiU7SHXJWC4rTg_JcYy3ia8qEK_IYcGBcyXVETm7wq7N5zFiX3fYZKvo1z74KWafOm_vskW6dpseQ_YlEcEMGLMHN_7Mrqch4d98wOzK_cb4mrxsTRfxzeN5Qr5_Pr1enOXnX5erxfw8t6KgNC-FUAiA1jIoGmkrxRvKamiN5UIg0AYEZxS4rQswpQHJVV2r2jSKtwINOyEfdu-ug7-fMI66d9Fi16XWUtuaSki2YIo_j3JBaaF4JRL6_gl666cwpEG2FEhJVVUk6t0jNdU9NnodXG_CRv9dZwJmO8AGH2PAdo9Q0Nu89DYvvc8rCeUTwbrRjM4PYzCu-7-mdtqD63DzzCd6frE6_dfNd66LI_7auybcaSGZ5PrmYqkvb_iPy-WC6iX7A7Xwtto
CODEN ACIEAY
CitedBy_id crossref_primary_10_1016_j_cej_2025_161392
crossref_primary_10_1016_j_fluid_2020_112784
crossref_primary_10_1016_j_cocis_2020_03_003
crossref_primary_10_1039_D0NA00142B
crossref_primary_10_1016_j_memsci_2015_03_057
crossref_primary_10_1002_polb_23795
crossref_primary_10_1002_adsu_201900017
crossref_primary_10_1016_j_polymer_2017_05_024
crossref_primary_10_1016_j_memsci_2024_123102
crossref_primary_10_1021_acsami_0c05947
crossref_primary_10_1002_adma_201504960
crossref_primary_10_1002_marc_201800729
crossref_primary_10_1039_C6RA02313D
crossref_primary_10_1039_D3GC02081A
crossref_primary_10_1002_smtd_202201455
crossref_primary_10_1039_C7EN00760D
crossref_primary_10_1080_15583724_2018_1488730
crossref_primary_10_1038_s41545_018_0002_1
crossref_primary_10_1016_j_memsci_2020_118535
crossref_primary_10_1002_marc_202100300
crossref_primary_10_1002_admi_201500042
crossref_primary_10_1016_j_memsci_2019_117172
crossref_primary_10_1016_j_memsci_2020_118074
crossref_primary_10_1039_D1SM01368H
crossref_primary_10_1002_smll_202308171
crossref_primary_10_1038_s41598_017_05565_w
crossref_primary_10_1002_mame_202200084
crossref_primary_10_1021_acsnano_9b03659
crossref_primary_10_1016_j_memsci_2018_08_033
crossref_primary_10_1039_D0TA01023E
crossref_primary_10_1146_annurev_chembioeng_060816_101325
crossref_primary_10_1039_C6PY00215C
crossref_primary_10_1002_ange_201409783
crossref_primary_10_1016_j_pmatsci_2017_10_006
crossref_primary_10_1016_j_polymer_2022_124607
crossref_primary_10_1021_am5076056
crossref_primary_10_1016_j_memsci_2019_04_039
crossref_primary_10_1002_anie_201505663
crossref_primary_10_1002_anie_201804656
crossref_primary_10_1039_C6QM00072J
crossref_primary_10_1002_advs_202207047
crossref_primary_10_1002_marc_202100235
crossref_primary_10_1016_j_memsci_2021_119858
crossref_primary_10_1002_anie_201710272
crossref_primary_10_1007_s13233_020_8013_4
crossref_primary_10_1016_j_apsusc_2019_144056
crossref_primary_10_1016_j_molliq_2024_125834
crossref_primary_10_1021_acs_chemmater_8b03334
crossref_primary_10_1021_acsami_9b10175
crossref_primary_10_1021_acsami_8b20802
crossref_primary_10_1002_marc_201800435
crossref_primary_10_1016_j_porgcoat_2021_106554
crossref_primary_10_1002_marc_201900561
crossref_primary_10_1002_app_47137
crossref_primary_10_1016_j_memsci_2022_121022
crossref_primary_10_1021_acsnano_8b06521
crossref_primary_10_1002_anie_201409783
crossref_primary_10_1021_acsanm_0c00570
crossref_primary_10_1016_j_memsci_2019_117309
crossref_primary_10_1039_C6CC06402G
crossref_primary_10_1002_ange_201804656
crossref_primary_10_1039_D1CC04480J
crossref_primary_10_1002_marc_201400556
crossref_primary_10_1002_marc_202200875
crossref_primary_10_1002_adma_202105251
crossref_primary_10_1002_ange_201505663
crossref_primary_10_1016_j_memsci_2015_07_041
crossref_primary_10_1021_acs_macromol_9b01747
crossref_primary_10_1002_ange_201710272
crossref_primary_10_1016_j_memsci_2022_120950
crossref_primary_10_1021_acs_chemmater_2c01125
crossref_primary_10_1007_s10544_015_9951_z
crossref_primary_10_1039_D0TB01727B
crossref_primary_10_1016_j_polymer_2019_01_013
crossref_primary_10_1021_acs_macromol_6b00265
crossref_primary_10_1021_am506419z
crossref_primary_10_1016_j_memsci_2018_10_066
crossref_primary_10_1039_C7TA09777H
crossref_primary_10_1016_j_memsci_2021_119391
crossref_primary_10_1039_C7CS00688H
crossref_primary_10_3390_polym15092020
crossref_primary_10_3390_membranes10050083
Cites_doi 10.1016/j.matchemphys.2006.02.014
10.1038/71875
10.1038/16898
10.1021/nn200610r
10.1038/nmat2038
10.1039/c3sm27475f
10.1126/science.279.5357.1710
10.1023/A:1026498209874
10.1002/9780470319475
10.1038/nbt0298-153
10.1021/jp003868k
10.1021/ma101531k
10.1126/science.287.5453.625
10.1039/c3cs60125k
10.1021/nn305073e
10.1021/la970982u
10.1002/(SICI)1521-3757(19990315)111:6<884::AID-ANGE884>3.0.CO;2-K
10.1021/nn100464u
10.1002/ange.201107867
10.1021/nn200484v
10.1038/40105
10.1002/(SICI)1521-3773(19990315)38:6<835::AID-ANIE835>3.0.CO;2-R
10.1002/anie.201107867
10.1126/science.270.5233.68
10.1002/1521-4095(200108)13:16<1253::AID-ADMA1253>3.0.CO;2-T
10.1038/nature05532
10.1038/337147a0
10.1021/la011250b
10.1126/science.272.5262.702
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/anie.201404491
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 10076
ExternalDocumentID 3426181591
25055979
10_1002_anie_201404491
ANIE201404491
ark_67375_WNG_QW5VQGC1_G
Genre shortCommunication
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ABDBF
ABJNI
ACRPL
ACYXJ
ADNMO
AETEA
AEYWJ
AFWVQ
AGQPQ
AGYGG
ALVPJ
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c6211-4669e00ecc302d7c895d13b0fac566e01d0653105cb20a4a0759bb9bad95f6ea3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:20:52 EDT 2025
Thu Jul 10 19:18:18 EDT 2025
Sun Jul 13 04:30:04 EDT 2025
Mon Jul 21 05:49:31 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Tue Jul 01 03:26:37 EDT 2025
Wed Aug 20 07:27:49 EDT 2025
Wed Oct 30 09:51:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords membranes
block copolymers
self-assembly
drug release
gold deposition
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6211-4669e00ecc302d7c895d13b0fac566e01d0653105cb20a4a0759bb9bad95f6ea3
Notes The work was supported by the KAUST Seed-Fund Project "Isoporous Membranes".
ark:/67375/WNG-QW5VQGC1-G
ArticleID:ANIE201404491
istex:72C7F9A8222535DA00A893F5798382A9309A310D
The work was supported by the KAUST Seed‐Fund Project “Isoporous Membranes”.
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25055979
PQID 1560771982
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1701056395
proquest_miscellaneous_1561129586
proquest_journals_1560771982
pubmed_primary_25055979
crossref_primary_10_1002_anie_201404491
crossref_citationtrail_10_1002_anie_201404491
wiley_primary_10_1002_anie_201404491_ANIE201404491
istex_primary_ark_67375_WNG_QW5VQGC1_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 15, 2014
PublicationDateYYYYMMDD 2014-09-15
PublicationDate_xml – month: 09
  year: 2014
  text: September 15, 2014
  day: 15
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References K. R. Brown, M. J. Natan, Langmuir 1998, 14, 726-728.
L. Li, X. Shen, S. W. Hong, R. C. Hayward, T. P. Russell, Angew. Chem. 2012, 124, 4165-4170
K.-V. Peinemann, V. Abetz, P. F. W. Simon, Nat. Mater. 2007, 6, 992-996.
D. S. Marques, U. Vainio, N. M. Chaparro, V. M. Calo, A. R. Bezahd, J. W. Pitera, K.-V. Peinemann, S. P. Nunes, Soft Matter 2013, 9, 5557-5564.
P. van Rijn, M. Tutur, C. Kathrein, L. Zhu, M. Wessling, U. Schwaneberg, A. Boeker, Chem. Soc. Rev. 2013, 42, 6578-6592.
J. B. Jackson, N. J. Halas, J. Phys. Chem. B 2001, 105, 2743-2746.
D. H. Pearson, R. J. Tonucci, Science 1995, 270, 68-70.
Q.-H. Wei, C. Bechinger, P. Leiderer, Science 2000, 287, 625-627.
A. Imhof, D. J. Pine, Nature 1997, 389, 948-951.
C. C. Striemer, T. R. Gaborski, J. L. McGrath, P. M. Fauchet, Nature 2007, 445, 749-753.
J. J. T. Santini, M. J. Cima, R. Langer, Nature 1999, 397, 335-338.
Angew. Chem. Int. Ed. 2012, 51, 4089-4094.
S. Y. Yang, J. A. Yang, E. S. Kim, G. Jeon, E. J. Oh, K. Y. Choi, S. K. Hahn, J. K. Kim, ACS Nano 2010, 4, 3817-3822.
M. van de Weert, W. E. Hennink, W. Jiskoot, Pharm. Res. 2000, 17, 1159-1167.
X. Qiu, H. Yu, K. Madhavan, N. Pradeep, S. P. Nunes, K.-V. Peinemann, ACS Nano 2013, 7, 768-776.
T. Ji, V. G. Lirtsman, Y. Avny, D. Davidov, Adv. Mater. 2001, 13, 1253-1256.
K. Fu, A. M. Klibanov, R. Langer, Nat. Biotechnol. 2000, 18, 24-25.
R. C. Furneaux, W. R. Rigby, A. P. Davidson, Nature 1989, 337, 147-149.
S. P. Nunes, A. R. Behzad, B. Hooghan, R. Sougrat, M. Karunakaran, N. Pradeep, K.-V. Peinemann, ASC Nano 2011, 5, 3516-3522.
Angew. Chem. Int. Ed. 1999, 38, 835-838.
K. Y. Chun, P. Stroeve, Langmuir 2002, 18, 4653-4658.
S. D. Putney, P. A. Burke, Nat. Biotechnol. 1998, 16, 153-157.
V. Kukla, J. Kornatowski, D. Demuth, I. Girnus, H. Pfeifer, L. V. C. Rees, S. Schunk, K. K. Unger, J. Karge, Science 1996, 272, 702-704.
J. Zhu, W. Jiang, Mater. Chem. Phys. 2007, 101, 56-62.
R. M. de Vos, H. Verweij, Science 1998, 279, 1710-1711.
L. Li, L. Schulte, L. D. Clausen, K. M. Hansen, G. E. Jonsson, S. Ndoni, ACS Nano 2011, 5, 7754-7766.
G. Liu, J. Ding, S. Stewart, Angew. Chem. 1999, 111, 884-887
S. P. Nunes, R. Sougrat, B. Hooghan, D. H. Anjum, A. R. Behzad, L. Zhao, N. Pradeep, I. Pinnay, U. Vainio, K.-V. Peinemann, Macromolecules 2010, 43, 8079-8085.
2007; 445
2007; 101
1989; 337
2002; 18
1999 1999; 111 38
2013; 42
2007
1998; 279
2013; 7
2011; 5
1995; 270
2013; 9
2001; 105
1998; 16
1997; 389
2010; 43
2000; 18
2000; 17
1996; 272
2007; 6
2012 2012; 124 51
1999; 397
2000; 287
2001; 13
2010; 4
1998; 14
e_1_2_2_3_2
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_5_3
e_1_2_2_6_2
e_1_2_2_21_2
e_1_2_2_20_2
e_1_2_2_1_2
e_1_2_2_2_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_7_3
e_1_2_2_27_2
e_1_2_2_26_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_13_2
e_1_2_2_12_2
e_1_2_2_11_2
e_1_2_2_10_2
e_1_2_2_19_2
e_1_2_2_18_2
e_1_2_2_17_2
e_1_2_2_16_2
e_1_2_2_15_2
e_1_2_2_14_2
References_xml – reference: S. Y. Yang, J. A. Yang, E. S. Kim, G. Jeon, E. J. Oh, K. Y. Choi, S. K. Hahn, J. K. Kim, ACS Nano 2010, 4, 3817-3822.
– reference: X. Qiu, H. Yu, K. Madhavan, N. Pradeep, S. P. Nunes, K.-V. Peinemann, ACS Nano 2013, 7, 768-776.
– reference: K.-V. Peinemann, V. Abetz, P. F. W. Simon, Nat. Mater. 2007, 6, 992-996.
– reference: D. S. Marques, U. Vainio, N. M. Chaparro, V. M. Calo, A. R. Bezahd, J. W. Pitera, K.-V. Peinemann, S. P. Nunes, Soft Matter 2013, 9, 5557-5564.
– reference: Angew. Chem. Int. Ed. 2012, 51, 4089-4094.
– reference: K. Y. Chun, P. Stroeve, Langmuir 2002, 18, 4653-4658.
– reference: T. Ji, V. G. Lirtsman, Y. Avny, D. Davidov, Adv. Mater. 2001, 13, 1253-1256.
– reference: S. D. Putney, P. A. Burke, Nat. Biotechnol. 1998, 16, 153-157.
– reference: R. C. Furneaux, W. R. Rigby, A. P. Davidson, Nature 1989, 337, 147-149.
– reference: Angew. Chem. Int. Ed. 1999, 38, 835-838.
– reference: L. Li, X. Shen, S. W. Hong, R. C. Hayward, T. P. Russell, Angew. Chem. 2012, 124, 4165-4170;
– reference: G. Liu, J. Ding, S. Stewart, Angew. Chem. 1999, 111, 884-887;
– reference: Q.-H. Wei, C. Bechinger, P. Leiderer, Science 2000, 287, 625-627.
– reference: J. J. T. Santini, M. J. Cima, R. Langer, Nature 1999, 397, 335-338.
– reference: L. Li, L. Schulte, L. D. Clausen, K. M. Hansen, G. E. Jonsson, S. Ndoni, ACS Nano 2011, 5, 7754-7766.
– reference: D. H. Pearson, R. J. Tonucci, Science 1995, 270, 68-70.
– reference: C. C. Striemer, T. R. Gaborski, J. L. McGrath, P. M. Fauchet, Nature 2007, 445, 749-753.
– reference: K. R. Brown, M. J. Natan, Langmuir 1998, 14, 726-728.
– reference: A. Imhof, D. J. Pine, Nature 1997, 389, 948-951.
– reference: S. P. Nunes, R. Sougrat, B. Hooghan, D. H. Anjum, A. R. Behzad, L. Zhao, N. Pradeep, I. Pinnay, U. Vainio, K.-V. Peinemann, Macromolecules 2010, 43, 8079-8085.
– reference: V. Kukla, J. Kornatowski, D. Demuth, I. Girnus, H. Pfeifer, L. V. C. Rees, S. Schunk, K. K. Unger, J. Karge, Science 1996, 272, 702-704.
– reference: K. Fu, A. M. Klibanov, R. Langer, Nat. Biotechnol. 2000, 18, 24-25.
– reference: M. van de Weert, W. E. Hennink, W. Jiskoot, Pharm. Res. 2000, 17, 1159-1167.
– reference: S. P. Nunes, A. R. Behzad, B. Hooghan, R. Sougrat, M. Karunakaran, N. Pradeep, K.-V. Peinemann, ASC Nano 2011, 5, 3516-3522.
– reference: R. M. de Vos, H. Verweij, Science 1998, 279, 1710-1711.
– reference: P. van Rijn, M. Tutur, C. Kathrein, L. Zhu, M. Wessling, U. Schwaneberg, A. Boeker, Chem. Soc. Rev. 2013, 42, 6578-6592.
– reference: J. B. Jackson, N. J. Halas, J. Phys. Chem. B 2001, 105, 2743-2746.
– reference: J. Zhu, W. Jiang, Mater. Chem. Phys. 2007, 101, 56-62.
– volume: 17
  start-page: 1159
  year: 2000
  end-page: 1167
  publication-title: Pharm. Res.
– volume: 105
  start-page: 2743
  year: 2001
  end-page: 2746
  publication-title: J. Phys. Chem. B
– volume: 111 38
  start-page: 884 835
  year: 1999 1999
  end-page: 887 838
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 279
  start-page: 1710
  year: 1998
  end-page: 1711
  publication-title: Science
– volume: 445
  start-page: 749
  year: 2007
  end-page: 753
  publication-title: Nature
– volume: 16
  start-page: 153
  year: 1998
  end-page: 157
  publication-title: Nat. Biotechnol.
– year: 2007
– volume: 5
  start-page: 7754
  year: 2011
  end-page: 7766
  publication-title: ACS Nano
– volume: 43
  start-page: 8079
  year: 2010
  end-page: 8085
  publication-title: Macromolecules
– volume: 9
  start-page: 5557
  year: 2013
  end-page: 5564
  publication-title: Soft Matter
– volume: 42
  start-page: 6578
  year: 2013
  end-page: 6592
  publication-title: Chem. Soc. Rev.
– volume: 389
  start-page: 948
  year: 1997
  end-page: 951
  publication-title: Nature
– volume: 397
  start-page: 335
  year: 1999
  end-page: 338
  publication-title: Nature
– volume: 101
  start-page: 56
  year: 2007
  end-page: 62
  publication-title: Mater. Chem. Phys.
– volume: 272
  start-page: 702
  year: 1996
  end-page: 704
  publication-title: Science
– volume: 18
  start-page: 4653
  year: 2002
  end-page: 4658
  publication-title: Langmuir
– volume: 124 51
  start-page: 4165 4089
  year: 2012 2012
  end-page: 4170 4094
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 7
  start-page: 768
  year: 2013
  end-page: 776
  publication-title: ACS Nano
– volume: 4
  start-page: 3817
  year: 2010
  end-page: 3822
  publication-title: ACS Nano
– volume: 337
  start-page: 147
  year: 1989
  end-page: 149
  publication-title: Nature
– volume: 6
  start-page: 992
  year: 2007
  end-page: 996
  publication-title: Nat. Mater.
– volume: 14
  start-page: 726
  year: 1998
  end-page: 728
  publication-title: Langmuir
– volume: 5
  start-page: 3516
  year: 2011
  end-page: 3522
  publication-title: ASC Nano
– volume: 13
  start-page: 1253
  year: 2001
  end-page: 1256
  publication-title: Adv. Mater.
– volume: 270
  start-page: 68
  year: 1995
  end-page: 70
  publication-title: Science
– volume: 287
  start-page: 625
  year: 2000
  end-page: 627
  publication-title: Science
– volume: 18
  start-page: 24
  year: 2000
  end-page: 25
  publication-title: Nat. Biotechnol.
– ident: e_1_2_2_21_2
  doi: 10.1016/j.matchemphys.2006.02.014
– ident: e_1_2_2_24_2
  doi: 10.1038/71875
– ident: e_1_2_2_18_2
  doi: 10.1038/16898
– ident: e_1_2_2_6_2
  doi: 10.1021/nn200610r
– ident: e_1_2_2_13_2
  doi: 10.1038/nmat2038
– ident: e_1_2_2_16_2
  doi: 10.1039/c3sm27475f
– ident: e_1_2_2_1_2
  doi: 10.1126/science.279.5357.1710
– ident: e_1_2_2_25_2
  doi: 10.1023/A:1026498209874
– ident: e_1_2_2_2_2
  doi: 10.1002/9780470319475
– ident: e_1_2_2_23_2
  doi: 10.1038/nbt0298-153
– ident: e_1_2_2_22_2
  doi: 10.1021/jp003868k
– ident: e_1_2_2_15_2
  doi: 10.1021/ma101531k
– ident: e_1_2_2_27_2
  doi: 10.1126/science.287.5453.625
– ident: e_1_2_2_9_2
  doi: 10.1039/c3cs60125k
– ident: e_1_2_2_17_2
  doi: 10.1021/nn305073e
– ident: e_1_2_2_19_2
  doi: 10.1021/la970982u
– ident: e_1_2_2_7_2
  doi: 10.1002/(SICI)1521-3757(19990315)111:6<884::AID-ANGE884>3.0.CO;2-K
– ident: e_1_2_2_11_2
  doi: 10.1021/nn100464u
– ident: e_1_2_2_5_2
  doi: 10.1002/ange.201107867
– ident: e_1_2_2_14_2
  doi: 10.1021/nn200484v
– ident: e_1_2_2_10_2
  doi: 10.1038/40105
– ident: e_1_2_2_7_3
  doi: 10.1002/(SICI)1521-3773(19990315)38:6<835::AID-ANIE835>3.0.CO;2-R
– ident: e_1_2_2_5_3
  doi: 10.1002/anie.201107867
– ident: e_1_2_2_8_2
  doi: 10.1126/science.270.5233.68
– ident: e_1_2_2_20_2
  doi: 10.1002/1521-4095(200108)13:16<1253::AID-ADMA1253>3.0.CO;2-T
– ident: e_1_2_2_3_2
  doi: 10.1038/nature05532
– ident: e_1_2_2_4_2
  doi: 10.1038/337147a0
– ident: e_1_2_2_12_2
  doi: 10.1021/la011250b
– ident: e_1_2_2_26_2
  doi: 10.1126/science.272.5262.702
SSID ssj0028806
Score 2.4376957
Snippet The combination of nonsolvent‐induced phase separation and the self‐assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered...
The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10072
SubjectTerms Biomaterials
Block copolymers
Deposition
Drug delivery systems
drug release
Electroless plating
Fractionation
Gold
gold deposition
Membranes
Pore size
Porosity
Self assembly
Title Self-Assembled Isoporous Block Copolymer Membranes with Tuned Pore Sizes
URI https://api.istex.fr/ark:/67375/WNG-QW5VQGC1-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201404491
https://www.ncbi.nlm.nih.gov/pubmed/25055979
https://www.proquest.com/docview/1560771982
https://www.proquest.com/docview/1561129586
https://www.proquest.com/docview/1701056395
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoAL0PJoaIuMhOCU1nbiPI5l1W5bqStKW9qbZTuOhHa7iza7UumJn8Bv5Jcwk2xCF_GQ4JYoY8mZGduf7ZlvAF4JyvYsUxsWUZ6FsSqTMCu5xV2rKRE-J1LUtIvHg-TgPD66VJe3svgbfojuwI1GRj1f0wA3ttr5QRpKGdgUmhXzOK7T1ylgi1DR-44_SqJzNulFURRSFfqWtZHLneXmS6vSXVLw9a8g5zKCrZeg_Ydg2s43kSfD7fnMbrubn3gd_-fvHsGDBT5lu41DrcIdP16De722LNxjODr1o_Lbl690W3xlR75gh9UEQfxkXrG3uDIOWY_qLny-8lN2jBK4FvqK0XEvO5vjnM7eTaaenX688dUTON_fO-sdhIuCDKFDo-FeM0lyzzlaPeKySF2Wq0JElpfGISr0XBTEdIuIzVnJTWwQjuTW5tYUOTqBN9FTWBlPxn4dWKESl3g0Gfced6Rp5h2VPbFFJCMnhAsgbA2i3YKtnIpmjHTDsyw1aUh3GgrgTSf_qeHp-K3k69q-nZiZDim6LVX6YtDXJxfqw0m_J3Q_gM3WAfRiYFeaEs_TVOSZDOBl9xlNQPcsqFBUNskQilVZ8geZlEqTIjxUATxrnKvrEKFS3OflAcjaRf7yQ3p3cLjXvT3_l0YbcJ-eKQ5GqE1YmU3nfgvB1sy-qAfUdzVqHiQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2F5BAu7MtAgEZiOU0y3bMfOAQnsZ3EFiEOya2Z7umRkB0beWxBcuIT-BV-hU_gS6iaDRmxSEg5cLRdnunuqp561VP1CuAJp2rPLFR26saR7flZYEeZozBqTTKEz4HgBe1irx90jrzdE_9kCb7UtTAlP0Rz4EY7o3he0wanA-mNH6yhVIJNuVme43kxr_Iq98zZB4za8hfdLVTxUyF2tgetjl01FrA13hxjpiCIjePg6F1HpKGOYj_lrnKyRCO6MQ5PibEVkYdWwkm8BN1qrFSskjTGyZjExeteghVqI050_VuvG8YqgduhLGhyXZv63tc8kY7YWBzvgh9cIZV-_BXIXcTMhdPbuQpf6-Uqc12G6_OZWtfnPzFJ_lfreQ2uVBCcbZZ75josmfENWG3Vne9uwu6hGWXfPn2mF-KnamRS1s0nGKdM5jl7ic5_yFrUWuLs1ExZDyXQ3Zuc0Yk2G8zRbbFXk6lhh-_OTX4Lji5kKrdheTwZm7vAUj_QgeFu4BiDQXcYGU2dXVTqCldzri2wawuQuiJkp74gI1lSSQtJGpGNRix43si_L6lIfiv5rDCoRiyZDimBL_Tlcb8tD479NwftFpdtC9Zqi5PVsyuXVFsfhjyOhAWPm59RBfQqCRcUF5tkCKj7UfAHmZC6ryIC9i24U1pzMyAC3hjKxhaIwib_MiG52e9uN5_u_cufHsFqZ9Dbl_vd_t59uEzfU9oP99dgeTadmweILWfqYbGbGby9aHP_Dkg6e5E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2FRAIu7MtAgEZiOU3S3bMfOAQ7dpwQKyHrrZme6ZGQHTvy2ILkxCfwKfwKv8CXUDUbMmKRkHLgaLtsd3dVTb2aqXoF8ExQt2cWaDt1otB2vcy3w4xrzFrjDOGzL0VBu7jd9zcO3M1j73gBvtS9MCU_RHPDjTyjuF6Tg5-m2eoP0lDqwKbSLJe7biSqssotc_YBk7b8Va-NGn4uZWd9v7VhV3MF7AT_G1Mm348M57h4h8s0SMLIS4WjeRYnCG4MFykRtiLwSLTksRtjVI20jnScRrgXEzv4u5dgyfV5RMMi2m8bwiqJ3lD2MzmOTWPva5pILlfn1zsXBpdIox9_hXHnIXMR8zrX4Wt9WmWpy2BlNtUryflPRJL_03HegGsVAGdrpcfchAUzugVXWvXcu9uwuWeG2bdPn-lx-IkempT18jFmKeNZzl5j6B-wFg2WODsxE7aNEhjsTc7ofjbbn2HQYjvjiWF7789NfgcOLmQrd2FxNB6Z-8BSz098IxyfG4MpdxCahOa66NSRTiJEYoFdG4BKKjp2mgoyVCWRtFSkEdVoxIKXjfxpSUTyW8kXhT01YvFkQOV7gaeO-l21e-Qd7nZbQnUtWK4NTlVXrlxRZ30QiCiUFjxtPkYV0IMkPFA8bJIhmO6F_h9kApq9ivjXs-BeaczNggh2YyIbWSALk_zLhtRav7fevHrwL196Apd32h31ptffeghX6W2q-RHeMixOJzPzCIHlVD8ufJnBu4u29u83UXpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Assembled+Isoporous+Block+Copolymer+Membranes+with+Tuned+Pore+Sizes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yu%2C+Haizhou&rft.au=Qiu%2C+Xiaoyan&rft.au=Nunes%2C+Suzana+P&rft.au=Peinemann%2C+Klaus-Viktor&rft.date=2014-09-15&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=38&rft.spage=10072&rft.epage=10076&rft_id=info:doi/10.1002%2Fanie.201404491&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon