Self-Assembled Isoporous Block Copolymer Membranes with Tuned Pore Sizes
The combination of nonsolvent‐induced phase separation and the self‐assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by el...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 53; no. 38; pp. 10072 - 10076 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
15.09.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The combination of nonsolvent‐induced phase separation and the self‐assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application.
Golden pores: Membranes with tunable cylindrical pore diameters between 3 and 20 nm were manufactured and tested for nanoparticle separation and controlled delivery of proteins. The pore size was regulated by electroless gold deposition. The precise size discrimination, facile and scalable fabrication processes, and biocompatible characteristics favor potential uses in the purification of nanoscale materials and drug delivery. |
---|---|
AbstractList | The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. Golden pores: Membranes with tunable cylindrical pore diameters between 3 and 20nm were manufactured and tested for nanoparticle separation and controlled delivery of proteins. The pore size was regulated by electroless gold deposition. The precise size discrimination, facile and scalable fabrication processes, and biocompatible characteristics favor potential uses in the purification of nanoscale materials and drug delivery. The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application.The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. The combination of nonsolvent‐induced phase separation and the self‐assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. Golden pores: Membranes with tunable cylindrical pore diameters between 3 and 20 nm were manufactured and tested for nanoparticle separation and controlled delivery of proteins. The pore size was regulated by electroless gold deposition. The precise size discrimination, facile and scalable fabrication processes, and biocompatible characteristics favor potential uses in the purification of nanoscale materials and drug delivery. The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. |
Author | Nunes, Suzana P. Peinemann, Klaus-Viktor Yu, Haizhou Qiu, Xiaoyan |
Author_xml | – sequence: 1 givenname: Haizhou surname: Yu fullname: Yu, Haizhou organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia) – sequence: 2 givenname: Xiaoyan surname: Qiu fullname: Qiu, Xiaoyan organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia) – sequence: 3 givenname: Suzana P. surname: Nunes fullname: Nunes, Suzana P. organization: Water Desalination and Reuse Center (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia) – sequence: 4 givenname: Klaus-Viktor surname: Peinemann fullname: Peinemann, Klaus-Viktor email: klausviktor.peinemann@kaust.edu.sa organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25055979$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gyhFF4sIlyziO7fi4rMp2pVKoWujRcpyJcJvEWztRWX49Xm1ZoUqoJ4-l57Fn5j0mB4MfkJC3FGYUoPhoBoezAmgJZanoC3JEeUFzJiU7SHXJWC4rTg_JcYy3ia8qEK_IYcGBcyXVETm7wq7N5zFiX3fYZKvo1z74KWafOm_vskW6dpseQ_YlEcEMGLMHN_7Mrqch4d98wOzK_cb4mrxsTRfxzeN5Qr5_Pr1enOXnX5erxfw8t6KgNC-FUAiA1jIoGmkrxRvKamiN5UIg0AYEZxS4rQswpQHJVV2r2jSKtwINOyEfdu-ug7-fMI66d9Fi16XWUtuaSki2YIo_j3JBaaF4JRL6_gl666cwpEG2FEhJVVUk6t0jNdU9NnodXG_CRv9dZwJmO8AGH2PAdo9Q0Nu89DYvvc8rCeUTwbrRjM4PYzCu-7-mdtqD63DzzCd6frE6_dfNd66LI_7auybcaSGZ5PrmYqkvb_iPy-WC6iX7A7Xwtto |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1016_j_cej_2025_161392 crossref_primary_10_1016_j_fluid_2020_112784 crossref_primary_10_1016_j_cocis_2020_03_003 crossref_primary_10_1039_D0NA00142B crossref_primary_10_1016_j_memsci_2015_03_057 crossref_primary_10_1002_polb_23795 crossref_primary_10_1002_adsu_201900017 crossref_primary_10_1016_j_polymer_2017_05_024 crossref_primary_10_1016_j_memsci_2024_123102 crossref_primary_10_1021_acsami_0c05947 crossref_primary_10_1002_adma_201504960 crossref_primary_10_1002_marc_201800729 crossref_primary_10_1039_C6RA02313D crossref_primary_10_1039_D3GC02081A crossref_primary_10_1002_smtd_202201455 crossref_primary_10_1039_C7EN00760D crossref_primary_10_1080_15583724_2018_1488730 crossref_primary_10_1038_s41545_018_0002_1 crossref_primary_10_1016_j_memsci_2020_118535 crossref_primary_10_1002_marc_202100300 crossref_primary_10_1002_admi_201500042 crossref_primary_10_1016_j_memsci_2019_117172 crossref_primary_10_1016_j_memsci_2020_118074 crossref_primary_10_1039_D1SM01368H crossref_primary_10_1002_smll_202308171 crossref_primary_10_1038_s41598_017_05565_w crossref_primary_10_1002_mame_202200084 crossref_primary_10_1021_acsnano_9b03659 crossref_primary_10_1016_j_memsci_2018_08_033 crossref_primary_10_1039_D0TA01023E crossref_primary_10_1146_annurev_chembioeng_060816_101325 crossref_primary_10_1039_C6PY00215C crossref_primary_10_1002_ange_201409783 crossref_primary_10_1016_j_pmatsci_2017_10_006 crossref_primary_10_1016_j_polymer_2022_124607 crossref_primary_10_1021_am5076056 crossref_primary_10_1016_j_memsci_2019_04_039 crossref_primary_10_1002_anie_201505663 crossref_primary_10_1002_anie_201804656 crossref_primary_10_1039_C6QM00072J crossref_primary_10_1002_advs_202207047 crossref_primary_10_1002_marc_202100235 crossref_primary_10_1016_j_memsci_2021_119858 crossref_primary_10_1002_anie_201710272 crossref_primary_10_1007_s13233_020_8013_4 crossref_primary_10_1016_j_apsusc_2019_144056 crossref_primary_10_1016_j_molliq_2024_125834 crossref_primary_10_1021_acs_chemmater_8b03334 crossref_primary_10_1021_acsami_9b10175 crossref_primary_10_1021_acsami_8b20802 crossref_primary_10_1002_marc_201800435 crossref_primary_10_1016_j_porgcoat_2021_106554 crossref_primary_10_1002_marc_201900561 crossref_primary_10_1002_app_47137 crossref_primary_10_1016_j_memsci_2022_121022 crossref_primary_10_1021_acsnano_8b06521 crossref_primary_10_1002_anie_201409783 crossref_primary_10_1021_acsanm_0c00570 crossref_primary_10_1016_j_memsci_2019_117309 crossref_primary_10_1039_C6CC06402G crossref_primary_10_1002_ange_201804656 crossref_primary_10_1039_D1CC04480J crossref_primary_10_1002_marc_201400556 crossref_primary_10_1002_marc_202200875 crossref_primary_10_1002_adma_202105251 crossref_primary_10_1002_ange_201505663 crossref_primary_10_1016_j_memsci_2015_07_041 crossref_primary_10_1021_acs_macromol_9b01747 crossref_primary_10_1002_ange_201710272 crossref_primary_10_1016_j_memsci_2022_120950 crossref_primary_10_1021_acs_chemmater_2c01125 crossref_primary_10_1007_s10544_015_9951_z crossref_primary_10_1039_D0TB01727B crossref_primary_10_1016_j_polymer_2019_01_013 crossref_primary_10_1021_acs_macromol_6b00265 crossref_primary_10_1021_am506419z crossref_primary_10_1016_j_memsci_2018_10_066 crossref_primary_10_1039_C7TA09777H crossref_primary_10_1016_j_memsci_2021_119391 crossref_primary_10_1039_C7CS00688H crossref_primary_10_3390_polym15092020 crossref_primary_10_3390_membranes10050083 |
Cites_doi | 10.1016/j.matchemphys.2006.02.014 10.1038/71875 10.1038/16898 10.1021/nn200610r 10.1038/nmat2038 10.1039/c3sm27475f 10.1126/science.279.5357.1710 10.1023/A:1026498209874 10.1002/9780470319475 10.1038/nbt0298-153 10.1021/jp003868k 10.1021/ma101531k 10.1126/science.287.5453.625 10.1039/c3cs60125k 10.1021/nn305073e 10.1021/la970982u 10.1002/(SICI)1521-3757(19990315)111:6<884::AID-ANGE884>3.0.CO;2-K 10.1021/nn100464u 10.1002/ange.201107867 10.1021/nn200484v 10.1038/40105 10.1002/(SICI)1521-3773(19990315)38:6<835::AID-ANIE835>3.0.CO;2-R 10.1002/anie.201107867 10.1126/science.270.5233.68 10.1002/1521-4095(200108)13:16<1253::AID-ADMA1253>3.0.CO;2-T 10.1038/nature05532 10.1038/337147a0 10.1021/la011250b 10.1126/science.272.5262.702 |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/anie.201404491 |
DatabaseName | Istex CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 10076 |
ExternalDocumentID | 3426181591 25055979 10_1002_anie_201404491 ANIE201404491 ark_67375_WNG_QW5VQGC1_G |
Genre | shortCommunication Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ABDBF ABJNI ACRPL ACYXJ ADNMO AETEA AEYWJ AFWVQ AGQPQ AGYGG ALVPJ AAYXX CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c6211-4669e00ecc302d7c895d13b0fac566e01d0653105cb20a4a0759bb9bad95f6ea3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:20:52 EDT 2025 Thu Jul 10 19:18:18 EDT 2025 Sun Jul 13 04:30:04 EDT 2025 Mon Jul 21 05:49:31 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Tue Jul 01 03:26:37 EDT 2025 Wed Aug 20 07:27:49 EDT 2025 Wed Oct 30 09:51:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | membranes block copolymers self-assembly drug release gold deposition |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6211-4669e00ecc302d7c895d13b0fac566e01d0653105cb20a4a0759bb9bad95f6ea3 |
Notes | The work was supported by the KAUST Seed-Fund Project "Isoporous Membranes". ark:/67375/WNG-QW5VQGC1-G ArticleID:ANIE201404491 istex:72C7F9A8222535DA00A893F5798382A9309A310D The work was supported by the KAUST Seed‐Fund Project “Isoporous Membranes”. These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25055979 |
PQID | 1560771982 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1701056395 proquest_miscellaneous_1561129586 proquest_journals_1560771982 pubmed_primary_25055979 crossref_primary_10_1002_anie_201404491 crossref_citationtrail_10_1002_anie_201404491 wiley_primary_10_1002_anie_201404491_ANIE201404491 istex_primary_ark_67375_WNG_QW5VQGC1_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 15, 2014 |
PublicationDateYYYYMMDD | 2014-09-15 |
PublicationDate_xml | – month: 09 year: 2014 text: September 15, 2014 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | K. R. Brown, M. J. Natan, Langmuir 1998, 14, 726-728. L. Li, X. Shen, S. W. Hong, R. C. Hayward, T. P. Russell, Angew. Chem. 2012, 124, 4165-4170 K.-V. Peinemann, V. Abetz, P. F. W. Simon, Nat. Mater. 2007, 6, 992-996. D. S. Marques, U. Vainio, N. M. Chaparro, V. M. Calo, A. R. Bezahd, J. W. Pitera, K.-V. Peinemann, S. P. Nunes, Soft Matter 2013, 9, 5557-5564. P. van Rijn, M. Tutur, C. Kathrein, L. Zhu, M. Wessling, U. Schwaneberg, A. Boeker, Chem. Soc. Rev. 2013, 42, 6578-6592. J. B. Jackson, N. J. Halas, J. Phys. Chem. B 2001, 105, 2743-2746. D. H. Pearson, R. J. Tonucci, Science 1995, 270, 68-70. Q.-H. Wei, C. Bechinger, P. Leiderer, Science 2000, 287, 625-627. A. Imhof, D. J. Pine, Nature 1997, 389, 948-951. C. C. Striemer, T. R. Gaborski, J. L. McGrath, P. M. Fauchet, Nature 2007, 445, 749-753. J. J. T. Santini, M. J. Cima, R. Langer, Nature 1999, 397, 335-338. Angew. Chem. Int. Ed. 2012, 51, 4089-4094. S. Y. Yang, J. A. Yang, E. S. Kim, G. Jeon, E. J. Oh, K. Y. Choi, S. K. Hahn, J. K. Kim, ACS Nano 2010, 4, 3817-3822. M. van de Weert, W. E. Hennink, W. Jiskoot, Pharm. Res. 2000, 17, 1159-1167. X. Qiu, H. Yu, K. Madhavan, N. Pradeep, S. P. Nunes, K.-V. Peinemann, ACS Nano 2013, 7, 768-776. T. Ji, V. G. Lirtsman, Y. Avny, D. Davidov, Adv. Mater. 2001, 13, 1253-1256. K. Fu, A. M. Klibanov, R. Langer, Nat. Biotechnol. 2000, 18, 24-25. R. C. Furneaux, W. R. Rigby, A. P. Davidson, Nature 1989, 337, 147-149. S. P. Nunes, A. R. Behzad, B. Hooghan, R. Sougrat, M. Karunakaran, N. Pradeep, K.-V. Peinemann, ASC Nano 2011, 5, 3516-3522. Angew. Chem. Int. Ed. 1999, 38, 835-838. K. Y. Chun, P. Stroeve, Langmuir 2002, 18, 4653-4658. S. D. Putney, P. A. Burke, Nat. Biotechnol. 1998, 16, 153-157. V. Kukla, J. Kornatowski, D. Demuth, I. Girnus, H. Pfeifer, L. V. C. Rees, S. Schunk, K. K. Unger, J. Karge, Science 1996, 272, 702-704. J. Zhu, W. Jiang, Mater. Chem. Phys. 2007, 101, 56-62. R. M. de Vos, H. Verweij, Science 1998, 279, 1710-1711. L. Li, L. Schulte, L. D. Clausen, K. M. Hansen, G. E. Jonsson, S. Ndoni, ACS Nano 2011, 5, 7754-7766. G. Liu, J. Ding, S. Stewart, Angew. Chem. 1999, 111, 884-887 S. P. Nunes, R. Sougrat, B. Hooghan, D. H. Anjum, A. R. Behzad, L. Zhao, N. Pradeep, I. Pinnay, U. Vainio, K.-V. Peinemann, Macromolecules 2010, 43, 8079-8085. 2007; 445 2007; 101 1989; 337 2002; 18 1999 1999; 111 38 2013; 42 2007 1998; 279 2013; 7 2011; 5 1995; 270 2013; 9 2001; 105 1998; 16 1997; 389 2010; 43 2000; 18 2000; 17 1996; 272 2007; 6 2012 2012; 124 51 1999; 397 2000; 287 2001; 13 2010; 4 1998; 14 e_1_2_2_3_2 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_5_3 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_20_2 e_1_2_2_1_2 e_1_2_2_2_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_7_3 e_1_2_2_27_2 e_1_2_2_26_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_13_2 e_1_2_2_12_2 e_1_2_2_11_2 e_1_2_2_10_2 e_1_2_2_19_2 e_1_2_2_18_2 e_1_2_2_17_2 e_1_2_2_16_2 e_1_2_2_15_2 e_1_2_2_14_2 |
References_xml | – reference: S. Y. Yang, J. A. Yang, E. S. Kim, G. Jeon, E. J. Oh, K. Y. Choi, S. K. Hahn, J. K. Kim, ACS Nano 2010, 4, 3817-3822. – reference: X. Qiu, H. Yu, K. Madhavan, N. Pradeep, S. P. Nunes, K.-V. Peinemann, ACS Nano 2013, 7, 768-776. – reference: K.-V. Peinemann, V. Abetz, P. F. W. Simon, Nat. Mater. 2007, 6, 992-996. – reference: D. S. Marques, U. Vainio, N. M. Chaparro, V. M. Calo, A. R. Bezahd, J. W. Pitera, K.-V. Peinemann, S. P. Nunes, Soft Matter 2013, 9, 5557-5564. – reference: Angew. Chem. Int. Ed. 2012, 51, 4089-4094. – reference: K. Y. Chun, P. Stroeve, Langmuir 2002, 18, 4653-4658. – reference: T. Ji, V. G. Lirtsman, Y. Avny, D. Davidov, Adv. Mater. 2001, 13, 1253-1256. – reference: S. D. Putney, P. A. Burke, Nat. Biotechnol. 1998, 16, 153-157. – reference: R. C. Furneaux, W. R. Rigby, A. P. Davidson, Nature 1989, 337, 147-149. – reference: Angew. Chem. Int. Ed. 1999, 38, 835-838. – reference: L. Li, X. Shen, S. W. Hong, R. C. Hayward, T. P. Russell, Angew. Chem. 2012, 124, 4165-4170; – reference: G. Liu, J. Ding, S. Stewart, Angew. Chem. 1999, 111, 884-887; – reference: Q.-H. Wei, C. Bechinger, P. Leiderer, Science 2000, 287, 625-627. – reference: J. J. T. Santini, M. J. Cima, R. Langer, Nature 1999, 397, 335-338. – reference: L. Li, L. Schulte, L. D. Clausen, K. M. Hansen, G. E. Jonsson, S. Ndoni, ACS Nano 2011, 5, 7754-7766. – reference: D. H. Pearson, R. J. Tonucci, Science 1995, 270, 68-70. – reference: C. C. Striemer, T. R. Gaborski, J. L. McGrath, P. M. Fauchet, Nature 2007, 445, 749-753. – reference: K. R. Brown, M. J. Natan, Langmuir 1998, 14, 726-728. – reference: A. Imhof, D. J. Pine, Nature 1997, 389, 948-951. – reference: S. P. Nunes, R. Sougrat, B. Hooghan, D. H. Anjum, A. R. Behzad, L. Zhao, N. Pradeep, I. Pinnay, U. Vainio, K.-V. Peinemann, Macromolecules 2010, 43, 8079-8085. – reference: V. Kukla, J. Kornatowski, D. Demuth, I. Girnus, H. Pfeifer, L. V. C. Rees, S. Schunk, K. K. Unger, J. Karge, Science 1996, 272, 702-704. – reference: K. Fu, A. M. Klibanov, R. Langer, Nat. Biotechnol. 2000, 18, 24-25. – reference: M. van de Weert, W. E. Hennink, W. Jiskoot, Pharm. Res. 2000, 17, 1159-1167. – reference: S. P. Nunes, A. R. Behzad, B. Hooghan, R. Sougrat, M. Karunakaran, N. Pradeep, K.-V. Peinemann, ASC Nano 2011, 5, 3516-3522. – reference: R. M. de Vos, H. Verweij, Science 1998, 279, 1710-1711. – reference: P. van Rijn, M. Tutur, C. Kathrein, L. Zhu, M. Wessling, U. Schwaneberg, A. Boeker, Chem. Soc. Rev. 2013, 42, 6578-6592. – reference: J. B. Jackson, N. J. Halas, J. Phys. Chem. B 2001, 105, 2743-2746. – reference: J. Zhu, W. Jiang, Mater. Chem. Phys. 2007, 101, 56-62. – volume: 17 start-page: 1159 year: 2000 end-page: 1167 publication-title: Pharm. Res. – volume: 105 start-page: 2743 year: 2001 end-page: 2746 publication-title: J. Phys. Chem. B – volume: 111 38 start-page: 884 835 year: 1999 1999 end-page: 887 838 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 279 start-page: 1710 year: 1998 end-page: 1711 publication-title: Science – volume: 445 start-page: 749 year: 2007 end-page: 753 publication-title: Nature – volume: 16 start-page: 153 year: 1998 end-page: 157 publication-title: Nat. Biotechnol. – year: 2007 – volume: 5 start-page: 7754 year: 2011 end-page: 7766 publication-title: ACS Nano – volume: 43 start-page: 8079 year: 2010 end-page: 8085 publication-title: Macromolecules – volume: 9 start-page: 5557 year: 2013 end-page: 5564 publication-title: Soft Matter – volume: 42 start-page: 6578 year: 2013 end-page: 6592 publication-title: Chem. Soc. Rev. – volume: 389 start-page: 948 year: 1997 end-page: 951 publication-title: Nature – volume: 397 start-page: 335 year: 1999 end-page: 338 publication-title: Nature – volume: 101 start-page: 56 year: 2007 end-page: 62 publication-title: Mater. Chem. Phys. – volume: 272 start-page: 702 year: 1996 end-page: 704 publication-title: Science – volume: 18 start-page: 4653 year: 2002 end-page: 4658 publication-title: Langmuir – volume: 124 51 start-page: 4165 4089 year: 2012 2012 end-page: 4170 4094 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 7 start-page: 768 year: 2013 end-page: 776 publication-title: ACS Nano – volume: 4 start-page: 3817 year: 2010 end-page: 3822 publication-title: ACS Nano – volume: 337 start-page: 147 year: 1989 end-page: 149 publication-title: Nature – volume: 6 start-page: 992 year: 2007 end-page: 996 publication-title: Nat. Mater. – volume: 14 start-page: 726 year: 1998 end-page: 728 publication-title: Langmuir – volume: 5 start-page: 3516 year: 2011 end-page: 3522 publication-title: ASC Nano – volume: 13 start-page: 1253 year: 2001 end-page: 1256 publication-title: Adv. Mater. – volume: 270 start-page: 68 year: 1995 end-page: 70 publication-title: Science – volume: 287 start-page: 625 year: 2000 end-page: 627 publication-title: Science – volume: 18 start-page: 24 year: 2000 end-page: 25 publication-title: Nat. Biotechnol. – ident: e_1_2_2_21_2 doi: 10.1016/j.matchemphys.2006.02.014 – ident: e_1_2_2_24_2 doi: 10.1038/71875 – ident: e_1_2_2_18_2 doi: 10.1038/16898 – ident: e_1_2_2_6_2 doi: 10.1021/nn200610r – ident: e_1_2_2_13_2 doi: 10.1038/nmat2038 – ident: e_1_2_2_16_2 doi: 10.1039/c3sm27475f – ident: e_1_2_2_1_2 doi: 10.1126/science.279.5357.1710 – ident: e_1_2_2_25_2 doi: 10.1023/A:1026498209874 – ident: e_1_2_2_2_2 doi: 10.1002/9780470319475 – ident: e_1_2_2_23_2 doi: 10.1038/nbt0298-153 – ident: e_1_2_2_22_2 doi: 10.1021/jp003868k – ident: e_1_2_2_15_2 doi: 10.1021/ma101531k – ident: e_1_2_2_27_2 doi: 10.1126/science.287.5453.625 – ident: e_1_2_2_9_2 doi: 10.1039/c3cs60125k – ident: e_1_2_2_17_2 doi: 10.1021/nn305073e – ident: e_1_2_2_19_2 doi: 10.1021/la970982u – ident: e_1_2_2_7_2 doi: 10.1002/(SICI)1521-3757(19990315)111:6<884::AID-ANGE884>3.0.CO;2-K – ident: e_1_2_2_11_2 doi: 10.1021/nn100464u – ident: e_1_2_2_5_2 doi: 10.1002/ange.201107867 – ident: e_1_2_2_14_2 doi: 10.1021/nn200484v – ident: e_1_2_2_10_2 doi: 10.1038/40105 – ident: e_1_2_2_7_3 doi: 10.1002/(SICI)1521-3773(19990315)38:6<835::AID-ANIE835>3.0.CO;2-R – ident: e_1_2_2_5_3 doi: 10.1002/anie.201107867 – ident: e_1_2_2_8_2 doi: 10.1126/science.270.5233.68 – ident: e_1_2_2_20_2 doi: 10.1002/1521-4095(200108)13:16<1253::AID-ADMA1253>3.0.CO;2-T – ident: e_1_2_2_3_2 doi: 10.1038/nature05532 – ident: e_1_2_2_4_2 doi: 10.1038/337147a0 – ident: e_1_2_2_12_2 doi: 10.1021/la011250b – ident: e_1_2_2_26_2 doi: 10.1126/science.272.5262.702 |
SSID | ssj0028806 |
Score | 2.4376957 |
Snippet | The combination of nonsolvent‐induced phase separation and the self‐assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered... The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10072 |
SubjectTerms | Biomaterials Block copolymers Deposition Drug delivery systems drug release Electroless plating Fractionation Gold gold deposition Membranes Pore size Porosity Self assembly |
Title | Self-Assembled Isoporous Block Copolymer Membranes with Tuned Pore Sizes |
URI | https://api.istex.fr/ark:/67375/WNG-QW5VQGC1-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201404491 https://www.ncbi.nlm.nih.gov/pubmed/25055979 https://www.proquest.com/docview/1560771982 https://www.proquest.com/docview/1561129586 https://www.proquest.com/docview/1701056395 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoAL0PJoaIuMhOCU1nbiPI5l1W5bqStKW9qbZTuOhHa7iza7UumJn8Bv5Jcwk2xCF_GQ4JYoY8mZGduf7ZlvAF4JyvYsUxsWUZ6FsSqTMCu5xV2rKRE-J1LUtIvHg-TgPD66VJe3svgbfojuwI1GRj1f0wA3ttr5QRpKGdgUmhXzOK7T1ylgi1DR-44_SqJzNulFURRSFfqWtZHLneXmS6vSXVLw9a8g5zKCrZeg_Ydg2s43kSfD7fnMbrubn3gd_-fvHsGDBT5lu41DrcIdP16De722LNxjODr1o_Lbl690W3xlR75gh9UEQfxkXrG3uDIOWY_qLny-8lN2jBK4FvqK0XEvO5vjnM7eTaaenX688dUTON_fO-sdhIuCDKFDo-FeM0lyzzlaPeKySF2Wq0JElpfGISr0XBTEdIuIzVnJTWwQjuTW5tYUOTqBN9FTWBlPxn4dWKESl3g0Gfced6Rp5h2VPbFFJCMnhAsgbA2i3YKtnIpmjHTDsyw1aUh3GgrgTSf_qeHp-K3k69q-nZiZDim6LVX6YtDXJxfqw0m_J3Q_gM3WAfRiYFeaEs_TVOSZDOBl9xlNQPcsqFBUNskQilVZ8geZlEqTIjxUATxrnKvrEKFS3OflAcjaRf7yQ3p3cLjXvT3_l0YbcJ-eKQ5GqE1YmU3nfgvB1sy-qAfUdzVqHiQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2F5BAu7MtAgEZiOU0y3bMfOAQnsZ3EFiEOya2Z7umRkB0beWxBcuIT-BV-hU_gS6iaDRmxSEg5cLRdnunuqp561VP1CuAJp2rPLFR26saR7flZYEeZozBqTTKEz4HgBe1irx90jrzdE_9kCb7UtTAlP0Rz4EY7o3he0wanA-mNH6yhVIJNuVme43kxr_Iq98zZB4za8hfdLVTxUyF2tgetjl01FrA13hxjpiCIjePg6F1HpKGOYj_lrnKyRCO6MQ5PibEVkYdWwkm8BN1qrFSskjTGyZjExeteghVqI050_VuvG8YqgduhLGhyXZv63tc8kY7YWBzvgh9cIZV-_BXIXcTMhdPbuQpf6-Uqc12G6_OZWtfnPzFJ_lfreQ2uVBCcbZZ75josmfENWG3Vne9uwu6hGWXfPn2mF-KnamRS1s0nGKdM5jl7ic5_yFrUWuLs1ExZDyXQ3Zuc0Yk2G8zRbbFXk6lhh-_OTX4Lji5kKrdheTwZm7vAUj_QgeFu4BiDQXcYGU2dXVTqCldzri2wawuQuiJkp74gI1lSSQtJGpGNRix43si_L6lIfiv5rDCoRiyZDimBL_Tlcb8tD479NwftFpdtC9Zqi5PVsyuXVFsfhjyOhAWPm59RBfQqCRcUF5tkCKj7UfAHmZC6ryIC9i24U1pzMyAC3hjKxhaIwib_MiG52e9uN5_u_cufHsFqZ9Dbl_vd_t59uEzfU9oP99dgeTadmweILWfqYbGbGby9aHP_Dkg6e5E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2FRAIu7MtAgEZiOU3S3bMfOAQ7dpwQKyHrrZme6ZGQHTvy2ILkxCfwKfwKv8CXUDUbMmKRkHLgaLtsd3dVTb2aqXoF8ExQt2cWaDt1otB2vcy3w4xrzFrjDOGzL0VBu7jd9zcO3M1j73gBvtS9MCU_RHPDjTyjuF6Tg5-m2eoP0lDqwKbSLJe7biSqssotc_YBk7b8Va-NGn4uZWd9v7VhV3MF7AT_G1Mm348M57h4h8s0SMLIS4WjeRYnCG4MFykRtiLwSLTksRtjVI20jnScRrgXEzv4u5dgyfV5RMMi2m8bwiqJ3lD2MzmOTWPva5pILlfn1zsXBpdIox9_hXHnIXMR8zrX4Wt9WmWpy2BlNtUryflPRJL_03HegGsVAGdrpcfchAUzugVXWvXcu9uwuWeG2bdPn-lx-IkempT18jFmKeNZzl5j6B-wFg2WODsxE7aNEhjsTc7ofjbbn2HQYjvjiWF7789NfgcOLmQrd2FxNB6Z-8BSz098IxyfG4MpdxCahOa66NSRTiJEYoFdG4BKKjp2mgoyVCWRtFSkEdVoxIKXjfxpSUTyW8kXhT01YvFkQOV7gaeO-l21e-Qd7nZbQnUtWK4NTlVXrlxRZ30QiCiUFjxtPkYV0IMkPFA8bJIhmO6F_h9kApq9ivjXs-BeaczNggh2YyIbWSALk_zLhtRav7fevHrwL196Apd32h31ptffeghX6W2q-RHeMixOJzPzCIHlVD8ufJnBu4u29u83UXpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Assembled+Isoporous+Block+Copolymer+Membranes+with+Tuned+Pore+Sizes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yu%2C+Haizhou&rft.au=Qiu%2C+Xiaoyan&rft.au=Nunes%2C+Suzana+P&rft.au=Peinemann%2C+Klaus-Viktor&rft.date=2014-09-15&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=38&rft.spage=10072&rft.epage=10076&rft_id=info:doi/10.1002%2Fanie.201404491&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |