L1 recombination-associated deletions generate human genomic variation
Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnit...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 49; pp. 19366 - 19371 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
09.12.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted [almost equal to]450 kb of the human genome. One L1RAD event generated a large deletion of [almost equal to]64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that [almost equal to]60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation. |
---|---|
AbstractList | Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted ≈450 kb of the human genome. One L1RAD event generated a large deletion of ≈64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that ≈60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation. LINE-1 nonallelic homologous nonhomologous end joining retrotransposon Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted ≈450 kb of the human genome. One L1RAD event generated a large deletion of ≈64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that ≈60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation. Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted ≈450 kb of the human genome. One L1RAD event generated a large deletion of ≈64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that ≈60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation. Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted [almost equal to]450 kb of the human genome. One L1RAD event generated a large deletion of [almost equal to]64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that [almost equal to]60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation. Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted appt450 kb of the human genome. One L1RAD event generated a large deletion of appt64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that appt60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation. Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted ...450 kb of the human genome. One L1RAD event generated a large deletion of ...64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that ...60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation. (ProQuest: ... denotes formulae/symbols omitted.) Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted approximately 450 kb of the human genome. One L1RAD event generated a large deletion of approximately 64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that approximately 60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation. |
Author | Remedios, Paul Han, Kyudong Lee, Jungnam Meyer, Thomas J Batzer, Mark A Goodwin, Lindsey |
Author_xml | – sequence: 1 fullname: Han, Kyudong – sequence: 2 fullname: Lee, Jungnam – sequence: 3 fullname: Meyer, Thomas J – sequence: 4 fullname: Remedios, Paul – sequence: 5 fullname: Goodwin, Lindsey – sequence: 6 fullname: Batzer, Mark A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19036926$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFMycg6gGJQ9px_BVfkFBFAWklDtCz5SSTrVeJvdhJBf99HXbVBS6cLM_7zdM8vTNy4oNHQl5SuKSg2NXO23QJNahaSgriCVlR0LSUXMMJWQFUqqx5xU_JWUpbANCihmfklGpgUldyRW7WtIjYhrFx3k4u-NKmFFpnJ-yKDgdcZqnYoMeYZ8XdPFq_fMPo2uLeRvd76zl52tsh4YvDe05ubz5-v_5crr9--nL9YV22soKp1L0GBW1DmW1UJ1FzzVnDGdQNoqWCKg1N3wlGWZ2DSF7brgepQCjLWa3YOXm_993NzYhdi36KdjC76EYbf5lgnflb8e7ObMK9qSTlSi4Gbw8GMfyYMU1mdKnFYbAew5xMBRVlGqoMXvwDbsMcfQ6XGcq4BMYzdLWH2hhSitg_XkLBLAWZpSBzLChvvP4zwJE_NJKBdwdg2TzaCcN1ppiUpp-HYcKfU2aL_7AZebVHtmkK8ZGpBJdCCsj6m73e22DsJrpkbr8tAYEKqYWm7AGT3Lky |
CitedBy_id | crossref_primary_10_1038_s41467_022_34810_8 crossref_primary_10_1134_S1022795416040062 crossref_primary_10_3389_fcell_2024_1357576 crossref_primary_10_3390_genes10030228 crossref_primary_10_1186_s13072_016_0084_2 crossref_primary_10_1371_journal_pgen_1003358 crossref_primary_10_1007_s13258_013_0095_3 crossref_primary_10_1266_ggs_22_00038 crossref_primary_10_1186_s13059_018_1577_z crossref_primary_10_1093_nar_gku687 crossref_primary_10_1128_JVI_05180_11 crossref_primary_10_1093_gbe_evw224 crossref_primary_10_3389_fgene_2020_01038 crossref_primary_10_1186_s12864_022_08681_8 crossref_primary_10_1016_j_gene_2012_07_042 crossref_primary_10_1371_journal_pone_0226340 crossref_primary_10_1146_annurev_genom_9_081307_164217 crossref_primary_10_3390_life12101583 crossref_primary_10_1371_journal_pone_0015393 crossref_primary_10_1186_s12864_020_06962_8 crossref_primary_10_1038_nrg2640 crossref_primary_10_1186_s13045_015_0133_5 crossref_primary_10_1371_journal_pgen_1004395 crossref_primary_10_1007_s00018_016_2353_4 crossref_primary_10_1073_pnas_1401532111 crossref_primary_10_1016_j_tig_2009_05_005 crossref_primary_10_1101_gr_185132_114 crossref_primary_10_1186_s13100_016_0064_x crossref_primary_10_1016_j_tibtech_2009_02_007 crossref_primary_10_1038_srep20650 crossref_primary_10_1186_1759_8753_1_7 crossref_primary_10_1002_ijc_24902 crossref_primary_10_1186_1471_2164_15_1082 crossref_primary_10_1016_j_semcancer_2010_06_001 crossref_primary_10_1002_imt2_154 crossref_primary_10_1016_j_semcancer_2010_04_001 crossref_primary_10_1038_ejhg_2013_45 crossref_primary_10_1093_hmg_ddv146 crossref_primary_10_3390_cells9071657 crossref_primary_10_1371_journal_pgen_1002236 crossref_primary_10_1242_dev_191957 crossref_primary_10_1002_bies_201900232 crossref_primary_10_1073_pnas_1310914110 crossref_primary_10_1371_journal_pgen_1007249 crossref_primary_10_1002_humu_22037 crossref_primary_10_1186_s13100_014_0029_x crossref_primary_10_1007_s13258_013_0057_9 crossref_primary_10_1007_s13258_021_01146_4 crossref_primary_10_1016_j_molcel_2019_02_036 crossref_primary_10_1002_ajmg_b_32225 crossref_primary_10_1016_j_arr_2023_101881 crossref_primary_10_1101_gr_145631_112 crossref_primary_10_1155_2012_520732 crossref_primary_10_1093_nar_gku1394 crossref_primary_10_3390_ijms23147802 crossref_primary_10_1371_journal_pone_0101195 crossref_primary_10_1186_s13100_016_0076_6 crossref_primary_10_4161_mge_1_3_17456 crossref_primary_10_1002_ajmg_a_38122 crossref_primary_10_1128_MCB_00860_12 crossref_primary_10_1073_pnas_0810202105 crossref_primary_10_1371_journal_pgen_1001006 crossref_primary_10_1016_j_gde_2012_02_006 crossref_primary_10_1093_hmg_ddr245 crossref_primary_10_1016_j_semcancer_2010_03_001 crossref_primary_10_1128_MMBR_00012_09 crossref_primary_10_1002_evan_20283 crossref_primary_10_1139_o11_046 crossref_primary_10_5808_GI_2012_10_4_226 crossref_primary_10_5808_GI_2014_12_3_98 crossref_primary_10_1007_s13258_013_0133_1 crossref_primary_10_1080_19768354_2012_724709 crossref_primary_10_1093_gbe_evt146 crossref_primary_10_1186_1471_2164_13_87 crossref_primary_10_1101_gr_221366_117 crossref_primary_10_1007_s10577_017_9569_5 crossref_primary_10_1155_2017_5935380 crossref_primary_10_1101_gr_099044_109 crossref_primary_10_1038_s12276_021_00586_y crossref_primary_10_1186_1471_2105_11_609 crossref_primary_10_1098_rstb_2016_0458 crossref_primary_10_1007_s13258_015_0370_6 crossref_primary_10_3390_ijms18050912 crossref_primary_10_1155_2012_807270 crossref_primary_10_1007_s00702_014_1309_9 crossref_primary_10_1155_2014_730814 crossref_primary_10_1093_hmg_ddp538 crossref_primary_10_1016_j_tig_2023_10_013 crossref_primary_10_1093_hmg_ddv623 crossref_primary_10_1371_journal_pgen_1001228 crossref_primary_10_1186_1756_0381_4_8 crossref_primary_10_1002_ajmg_b_32437 crossref_primary_10_1016_j_gde_2009_10_013 crossref_primary_10_1098_rstb_2009_0299 crossref_primary_10_1266_ggs_15_00016 crossref_primary_10_1016_j_critrevonc_2015_10_012 crossref_primary_10_1146_annurev_genom_082509_141802 crossref_primary_10_1128_AEM_00207_17 crossref_primary_10_1371_journal_pone_0251133 crossref_primary_10_1186_s13100_016_0085_5 crossref_primary_10_1093_nar_gkad1244 crossref_primary_10_1101_gr_091827_109 crossref_primary_10_1101_gr_278203_123 crossref_primary_10_1186_1471_2164_13_163 |
Cites_doi | 10.1128/MCB.20.11.4028-4035.2000 10.1016/j.gene.2006.08.029 10.1006/jmbi.1994.0095 10.1016/S0092-8674(00)81998-4 10.1086/302213 10.1101/gr.4001406 10.1111/j.1600-0854.2005.00260.x 10.1038/nrm974 10.1016/j.tig.2007.02.002 10.1016/S0092-8674(00)81997-2 10.1073/pnas.0831042100 10.1126/science.1722352 10.1006/mpev.1998.0495 10.1126/science.3116671 10.1093/nar/gki718 10.1038/ng0597-37 10.1038/ng0598-19 10.1101/gr.1970304 10.1038/35057062 10.2307/3579810 10.1093/nar/gkh842 10.1002/humu.20778 10.1128/MCB.21.2.467-475.2001 10.1086/341718 10.1186/gb-2007-8-6-r127 10.1101/gr.205701 10.1016/0092-8674(88)90159-6 10.1086/504600 10.1093/oxfordjournals.molbev.a003893 10.1006/jmbi.1998.1641 10.1016/j.jmb.2005.02.043 10.1128/MCB.16.5.2164 10.1371/journal.pcbi.0030137 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 9, 2008 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 9, 2008 – notice: 2008 by The National Academy of Sciences of the USA |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.0807866105 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | Genetics Abstracts CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 19371 |
ExternalDocumentID | 1611531871 10_1073_pnas_0807866105 19036926 105_49_19366 25465650 US201301569591 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Comparative Study Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM059290 – fundername: NIGMS NIH HHS grantid: R01 GM59290 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c620t-9f9070cb13ab7d6e94943b4308beea151790bfd53138109648adf067057a43873 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:25:29 EDT 2024 Fri Oct 25 04:23:01 EDT 2024 Thu Oct 10 16:31:53 EDT 2024 Fri Aug 23 00:41:07 EDT 2024 Sat Sep 28 07:54:30 EDT 2024 Thu May 30 08:49:41 EDT 2019 Wed Nov 11 00:29:46 EST 2020 Fri Feb 02 07:05:50 EST 2024 Wed Dec 27 19:26:16 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c620t-9f9070cb13ab7d6e94943b4308beea151790bfd53138109648adf067057a43873 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Edited by John C. Avise, University of California, Irvine, CA, and approved October 3, 2008 Author contributions: K.H. and M.A.B. designed research; K.H., J.L., P.R., and L.G. performed research; M.A.B. contributed new reagents/analytic tools; K.H., J.L., T.J.M., and M.A.B. analyzed data; and K.H. and M.A.B. wrote the paper. |
OpenAccessLink | https://www.pnas.org/doi/pdf/10.1073/pnas.0807866105 |
PMID | 19036926 |
PQID | 201346034 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2614767 proquest_journals_201346034 pubmed_primary_19036926 crossref_primary_10_1073_pnas_0807866105 pnas_primary_105_49_19366_fulltext proquest_miscellaneous_20213902 jstor_primary_25465650 fao_agris_US201301569591 pnas_primary_105_49_19366 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2008-12-09 |
PublicationDateYYYYMMDD | 2008-12-09 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-09 day: 09 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 9590283 - Nat Genet. 1998 May;19(1):19-24 3365767 - Cell. 1988 May 6;53(3):391-400 15634208 - Traffic. 2005 Feb;6(2):75-82 11371580 - Mol Biol Evol. 2001 Jun;18(6):926-35 17953488 - PLoS Genet. 2007 Oct;3(10):1939-49 8945517 - Cell. 1996 Nov 29;87(5):905-16 1722352 - Science. 1991 Dec 20;254(5039):1808-10 12461558 - Nat Rev Mol Cell Biol. 2002 Dec;3(12):919-31 15059993 - Genome Res. 2004 Apr;14(4):528-38 9806611 - Radiat Res. 1998 Nov;150(5 Suppl):S80-91 11731496 - Genome Res. 2001 Dec;11(12):2059-65 16034026 - Nucleic Acids Res. 2005;33(13):4040-52 19057007 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19033-4 7877164 - J Mol Biol. 1995 Feb 24;246(3):401-417 9533876 - J Mol Biol. 1998 Apr 3;277(3):513-7 17630829 - PLoS Comput Biol. 2007 Jul;3(7):e137 17307271 - Trends Genet. 2007 Apr;23(4):158-61 12070800 - Am J Hum Genet. 2002 Aug;71(2):312-26 3116671 - Science. 1987 Oct 16;238(4825):369-73 9140393 - Nat Genet. 1997 May;16(1):37-43 17055192 - Gene. 2007 Apr 1;390(1-2):18-27 15843013 - J Mol Biol. 2005 May 13;348(4):791-800 12682288 - Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5280-5 11134335 - Mol Cell Biol. 2001 Jan;21(2):467-75 15466592 - Nucleic Acids Res. 2004;32(17):5249-59 17594509 - Genome Biol. 2007;8(6):R127 10805745 - Mol Cell Biol. 2000 Jun;20(11):4028-35 11237011 - Nature. 2001 Feb 15;409(6822):860-921 16344559 - Genome Res. 2006 Jan;16(1):78-87 8628283 - Mol Cell Biol. 1996 May;16(5):2164-73 2454389 - Mol Cell Biol. 1988 Apr;8(4):1385-97 9915944 - Am J Hum Genet. 1999 Jan;64(1):62-9 16773564 - Am J Hum Genet. 2006 Jul;79(1):41-53 8945518 - Cell. 1996 Nov 29;87(5):917-27 18454448 - Hum Mutat. 2008 Jul;29(7):931-8 9668008 - Mol Phylogenet Evol. 1998 Jun;9(3):585-98 Lander ES (e_1_3_4_1_2) 2001; 409 Sen SK (e_1_3_4_14_2) 2006; 79 Callinan PA (e_1_3_4_36_2) 2005; 348 Kazazian HH (e_1_3_4_8_2) 1998; 19 Moran JV (e_1_3_4_6_2) 1996; 87 Lee J (e_1_3_4_30_2) 2007; 390 Giordano J (e_1_3_4_29_2) 2007; 3 Myers JS (e_1_3_4_10_2) 2002; 71 Sela N (e_1_3_4_22_2) 2007; 8 Skowronski J (e_1_3_4_35_2) 1988; 8 Hall TA (e_1_3_4_25_2) 1999; 41 Martin SL (e_1_3_4_3_2) 2001; 21 Khan H (e_1_3_4_28_2) 2006; 16 Temtamy SA (e_1_3_4_17_2) 2008; 29 Brouha B (e_1_3_4_11_2) 2003; 100 Bentley J (e_1_3_4_27_2) 2004; 32 Miyamoto MM (e_1_3_4_18_2) 1987; 238 Korenberg JR (e_1_3_4_31_2) 1988; 53 Boissinot S (e_1_3_4_32_2) 2001; 18 Mathias SL (e_1_3_4_4_2) 1991; 254 Feng Q (e_1_3_4_5_2) 1996; 87 Sassaman DM (e_1_3_4_7_2) 1997; 16 Burwinkel B (e_1_3_4_15_2) 1998; 277 Carlton J (e_1_3_4_24_2) 2005; 6 Gebow D (e_1_3_4_13_2) 2000; 20 Segal Y (e_1_3_4_16_2) 1999; 64 Smit AF (e_1_3_4_2_2) 1995; 246 Kriegs JO (e_1_3_4_33_2) 2007; 23 Jeggo PA (e_1_3_4_12_2) 1998; 150 Han K (e_1_3_4_20_2) 2007; 3 Ostertag EM (e_1_3_4_9_2) 2001; 11 Goodman M (e_1_3_4_19_2) 1998; 9 Worby CA (e_1_3_4_23_2) 2002; 3 Jensen-Seaman MI (e_1_3_4_34_2) 2004; 14 Moore JK (e_1_3_4_26_2) 1996; 16 Han K (e_1_3_4_21_2) 2005; 33 |
References_xml | – volume: 20 start-page: 4028 year: 2000 ident: e_1_3_4_13_2 article-title: Homologous and nonhomologous recombination resulting in deletion: Effects of p53 status, microhomology, and repetitive DNA length and orientation publication-title: Mol Cell Biol doi: 10.1128/MCB.20.11.4028-4035.2000 contributor: fullname: Gebow D – volume: 390 start-page: 18 year: 2007 ident: e_1_3_4_30_2 article-title: Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons publication-title: Gene doi: 10.1016/j.gene.2006.08.029 contributor: fullname: Lee J – volume: 246 start-page: 401 year: 1995 ident: e_1_3_4_2_2 article-title: Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences publication-title: J Mol Biol doi: 10.1006/jmbi.1994.0095 contributor: fullname: Smit AF – volume: 87 start-page: 917 year: 1996 ident: e_1_3_4_6_2 article-title: High frequency retrotransposition in cultured mammalian cells publication-title: Cell doi: 10.1016/S0092-8674(00)81998-4 contributor: fullname: Moran JV – volume: 64 start-page: 62 year: 1999 ident: e_1_3_4_16_2 article-title: LINE-1 elements at the sites of molecular rearrangements in Alport syndrome-diffuse leiomyomatosis publication-title: Am J Hum Genet doi: 10.1086/302213 contributor: fullname: Segal Y – volume: 16 start-page: 78 year: 2006 ident: e_1_3_4_28_2 article-title: Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates publication-title: Genome Res doi: 10.1101/gr.4001406 contributor: fullname: Khan H – volume: 6 start-page: 75 year: 2005 ident: e_1_3_4_24_2 article-title: Sorting nexins–unifying trends and new perspectives publication-title: Traffic doi: 10.1111/j.1600-0854.2005.00260.x contributor: fullname: Carlton J – volume: 3 start-page: 919 year: 2002 ident: e_1_3_4_23_2 article-title: Sorting out the cellular functions of sorting nexins publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm974 contributor: fullname: Worby CA – volume: 23 start-page: 158 year: 2007 ident: e_1_3_4_33_2 article-title: Evolutionary history of 7SL RNA-derived SINEs in Supraprimates publication-title: Trends Genet doi: 10.1016/j.tig.2007.02.002 contributor: fullname: Kriegs JO – volume: 8 start-page: 1385 year: 1988 ident: e_1_3_4_35_2 article-title: Unit-length line-1 transcripts in human teratocarcinoma cells publication-title: Mol Cell Biol contributor: fullname: Skowronski J – volume: 87 start-page: 905 year: 1996 ident: e_1_3_4_5_2 article-title: Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition publication-title: Cell doi: 10.1016/S0092-8674(00)81997-2 contributor: fullname: Feng Q – volume: 100 start-page: 5280 year: 2003 ident: e_1_3_4_11_2 article-title: Hot L1s account for the bulk of retrotransposition in the human population publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0831042100 contributor: fullname: Brouha B – volume: 254 start-page: 1808 year: 1991 ident: e_1_3_4_4_2 article-title: Reverse transcriptase encoded by a human transposable element publication-title: Science doi: 10.1126/science.1722352 contributor: fullname: Mathias SL – volume: 9 start-page: 585 year: 1998 ident: e_1_3_4_19_2 article-title: Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence publication-title: Mol Phylogenet Evol doi: 10.1006/mpev.1998.0495 contributor: fullname: Goodman M – volume: 238 start-page: 369 year: 1987 ident: e_1_3_4_18_2 article-title: Phylogenetic relations of humans and African apes from DNA sequences in the psi eta-globin region publication-title: Science doi: 10.1126/science.3116671 contributor: fullname: Miyamoto MM – volume: 33 start-page: 4040 year: 2005 ident: e_1_3_4_21_2 article-title: Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages publication-title: Nucleic Acids Res doi: 10.1093/nar/gki718 contributor: fullname: Han K – volume: 16 start-page: 37 year: 1997 ident: e_1_3_4_7_2 article-title: Many human L1 elements are capable of retrotransposition publication-title: Nat Genet doi: 10.1038/ng0597-37 contributor: fullname: Sassaman DM – volume: 19 start-page: 19 year: 1998 ident: e_1_3_4_8_2 article-title: The impact of L1 retrotransposons on the human genome publication-title: Nat Genet doi: 10.1038/ng0598-19 contributor: fullname: Kazazian HH – volume: 14 start-page: 528 year: 2004 ident: e_1_3_4_34_2 article-title: Comparative recombination rates in the rat, mouse, and human genomes publication-title: Genome Res doi: 10.1101/gr.1970304 contributor: fullname: Jensen-Seaman MI – volume: 409 start-page: 860 year: 2001 ident: e_1_3_4_1_2 article-title: Initial sequencing and analysis of the human genome publication-title: Nature doi: 10.1038/35057062 contributor: fullname: Lander ES – volume: 150 start-page: S80 year: 1998 ident: e_1_3_4_12_2 article-title: Identification of genes involved in repair of DNA double-strand breaks in mammalian cells publication-title: Radiat Res doi: 10.2307/3579810 contributor: fullname: Jeggo PA – volume: 32 start-page: 5249 year: 2004 ident: e_1_3_4_27_2 article-title: DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh842 contributor: fullname: Bentley J – volume: 29 start-page: 931 year: 2008 ident: e_1_3_4_17_2 article-title: Long interspersed nuclear element-1 (LINE1)-mediated deletion of EVC, EVC2, C4orf6, and STK32B in Ellis-van Creveld syndrome with borderline intelligence publication-title: Hum Mutat doi: 10.1002/humu.20778 contributor: fullname: Temtamy SA – volume: 21 start-page: 467 year: 2001 ident: e_1_3_4_3_2 article-title: Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon publication-title: Mol Cell Biochem doi: 10.1128/MCB.21.2.467-475.2001 contributor: fullname: Martin SL – volume: 71 start-page: 312 year: 2002 ident: e_1_3_4_10_2 article-title: A comprehensive analysis of recently integrated human Ta L1 elements publication-title: Am J Hum Genet doi: 10.1086/341718 contributor: fullname: Myers JS – volume: 8 start-page: R127 year: 2007 ident: e_1_3_4_22_2 article-title: Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome publication-title: Genome Biol doi: 10.1186/gb-2007-8-6-r127 contributor: fullname: Sela N – volume: 11 start-page: 2059 year: 2001 ident: e_1_3_4_9_2 article-title: Twin priming: A proposed mechanism for the creation of inversions in l1 retrotransposition publication-title: Genome Res doi: 10.1101/gr.205701 contributor: fullname: Ostertag EM – volume: 3 start-page: 1939 year: 2007 ident: e_1_3_4_20_2 article-title: Alu recombination-mediated structural deletions in the chimpanzee genome publication-title: PLoS Genet contributor: fullname: Han K – volume: 53 start-page: 391 year: 1988 ident: e_1_3_4_31_2 article-title: Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands publication-title: Cell doi: 10.1016/0092-8674(88)90159-6 contributor: fullname: Korenberg JR – volume: 79 start-page: 41 year: 2006 ident: e_1_3_4_14_2 article-title: Human genomic deletions mediated by recombination between Alu elements publication-title: Am J Hum Genet doi: 10.1086/504600 contributor: fullname: Sen SK – volume: 18 start-page: 926 year: 2001 ident: e_1_3_4_32_2 article-title: Selection against deleterious LINE-1-containing loci in the human lineage publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003893 contributor: fullname: Boissinot S – volume: 277 start-page: 513 year: 1998 ident: e_1_3_4_15_2 article-title: Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease publication-title: J Mol Biol doi: 10.1006/jmbi.1998.1641 contributor: fullname: Burwinkel B – volume: 348 start-page: 791 year: 2005 ident: e_1_3_4_36_2 article-title: Alu Retrotransposition-mediated Deletion publication-title: J Mol Biol doi: 10.1016/j.jmb.2005.02.043 contributor: fullname: Callinan PA – volume: 41 start-page: 95 year: 1999 ident: e_1_3_4_25_2 article-title: BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT publication-title: Nucl Acids Symp Series contributor: fullname: Hall TA – volume: 16 start-page: 2164 year: 1996 ident: e_1_3_4_26_2 article-title: Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae publication-title: Mol Cell Biol doi: 10.1128/MCB.16.5.2164 contributor: fullname: Moore JK – volume: 3 start-page: e137 year: 2007 ident: e_1_3_4_29_2 article-title: Evolutionary history of mammalian transposons determined by genome-wide defragmentation publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030137 contributor: fullname: Giordano J |
SSID | ssj0009580 |
Score | 2.364369 |
Snippet | Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements... Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19366 |
SubjectTerms | 3' Flanking Region - genetics Animals Biological Sciences Biological variation Chimpanzees Chromosomes Comparative analysis copy number DNA Evolution, Molecular Gene Deletion Genetic loci Genetic Variation Genome, Human - genetics Genomes Genomics Homologous recombination Human genome Humans Insertion Interspersed Repetitive Sequences - genetics Long Interspersed Nucleotide Elements - genetics Molecular Sequence Data Monkeys & apes Monomers Nucleotide sequence Pan troglodytes Polymorphism, Genetic - genetics Recombination, Genetic - genetics Retroelements - genetics Retrotransposons |
Title | L1 recombination-associated deletions generate human genomic variation |
URI | https://www.jstor.org/stable/25465650 http://www.pnas.org/content/105/49/19366.abstract https://www.ncbi.nlm.nih.gov/pubmed/19036926 https://www.proquest.com/docview/201346034 https://search.proquest.com/docview/20213902 https://pubmed.ncbi.nlm.nih.gov/PMC2614767 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-te-IFscGYGYMI8TAe0jqxY8ePaKKaEENIUGlvlp3YYxJNq7Xb38-dm7QbghceI_vs6D7sO_nudwDveeWKGKLLvXR1Lk1sctcUIq9ULF3r66pJRWKXX9XFTH6-qq72oBpqYVLSfuNvxt2v-bi7-ZlyK5fzZjLkiU2-XZ6j1y-10pMRjFBBhxB9i7Rbb-pOSjx-ZSkHPB8tJsvOrcacENbxVuKpaY3BE9wQssKDW2kU3WJITyTMU6T6m__5Zxrlg3tp-gye9g5l9nHz4wewF7pDOOhNdpWd9bjSH57D9EuRUfw7x2A4ySN3vWxCm1E_nKSC2XUiWIcste-jTypczu4xqE5UL2A2_fTj_CLv2yjkjSr5OjcRA2De-EI4r1sVjDRSeCl47UNwRcLo8rFFYyS0L6Nk7dpI5TuVdlLUWhzBfrfowjFkwtemKWXFG42BYUENrLigWlhkaozKMTgb2GiXG7QMm165tbDERrtjPoNjZLN113iW2dn3kl5QMZY0lSkYHCXeb5cgzH50PDkDllbZLV1ZaSz6oEoxePfPMRv7RBoGJ4MYbW-rK0tbS8WFZPB2O4pGRi8nrguLO5pSoqfMSwYvNyLfbdMrEAP9SBm2Ewi--_EIanWC8e61-NV_U57Ak5S9Qsk15jXsr2_vwim6SGv_JpnEb-BTCss |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5t4wFegAFjYcAixMN4SOrEjhM_oomqQDshsaK9WbZjjwmaVrTlgV_P2UnabYIHeIycs2Xd-Xwnf_cdwGtSqMxZpxLNVJUw4UyiTEaTgrtc1boqTCgSm5zx0ZR9uCgudqDoa2ECaN_oq7T5Pkubq68BW7mYmUGPExt8mpxi1M9KXg524Q6eV8L7JH3DtVu1lSc5OmCWs57Rp6SDRaOWKfEc63gvkdC2RqAPF55b4dq9tOvUvAcoetZTlPpTBHobSHntZho-gC_9nlpAyrd0vdKp-XWL7vGfN_0Q7nexavy2Hd6HHds8gv3OGyzjk46y-s1jGI6z2KfWM8yzg6oT1and1rFvtROsO74MAisbh86A_tPXRMc_MV8PUk9gOnx3fjpKug4NieE5WSXCYW5NjM6o0mXNrWCCUc0oqbS1Kgv0X9rVeM49kZjgrFK185VBRakYrUp6AHvNvLGHEFNdCZOzgpgSc87M98Yi1JfZorac4yqCk14_ctESccjwgF5S6fUjt1qN4BD1J9Ulukk5_Zz7x1lMU0UhsggOglI3U_h2ABjTkgiiMMt26kIyITG85TyCV38dk67D6ERw1NuH7NzAUvqlGSeURXC8GcXz6x9lVGPna_9LjkE4ySN42trSdpnOMiMob1jZ5gfPDH5zBG0nMIR3tvLsvyWP4e7ofDKW4_dnH4_gXgDJeAyPeA57qx9r-wIjsZV-Gc7db19qLMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB3RIiEuQIFSU6AR4lAO2Tix48RHVFgVaKtKsFLFxbITu1Sw2RWb5cDXM3aS3W0Flx4je2xFMx7PyG_eALyhuU6ddTo2XJcxl66KdZWyOBcu07Up8yoUiZ2eieMJ_3SRX2y0-gqg_cpcjZqf01Fz9T1gK-fTKhlwYsn56RFG_bwQRTKvXbIFd_HM0nJI1Fd8u2VXfZKhE-YZH1h9CpbMG70YUc-zjncTDa1rJPpx6fkVNu6mLadnA0jRM5-i1L-i0Jtgyo3bafwQvg3_1YFSfoyWrRlVf25QPt7qxx_Bgz5mjd51U3bgjm0ew07vFRbRYU9d_fYJjE_SyKfYU8y3g8pj3avf1pFvuROsPLoMAq2NQodA_-lro6PfmLcHqacwGX_4enQc950a4kpktI2lwxybViZl2hS1sJJLzgxntDTW6jTQgBlX43n3hGJS8FLXzlcI5YXmrCzYLmw3s8buQcRMKauM57QqMPdMfY8syny5LWrMOaEJHA46UvOOkEOFh_SCKa8jtdYsgT3UodKX6C7V5EvmH2kxXZW5TAnsBsWulvBtATC2pQRIWGW9dK64VBjmCkHg9X_HlOuxOgT2BxtRvTtYKL81F5RxAgerUTzH_nFGN3a29FMyDMZpRuBZZ0_rbXrrJFBcs7TVBM8Qfn0E7Scwhff28vzWkgdw7_z9WJ18PPu8D_cDVsZDeeQL2G5_Le1LDMha8yocvb_ylS9E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L1+recombination-associated+deletions+generate+human+genomic+variation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Han%2C+Kyudong&rft.au=Lee%2C+Jungnam&rft.au=Meyer%2C+Thomas+J&rft.au=Remedios%2C+Paul&rft.date=2008-12-09&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=49&rft.spage=19366&rft_id=info:doi/10.1073%2Fpnas.0807866105&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1611531871 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F49.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F49.cover.gif |