L1 recombination-associated deletions generate human genomic variation

Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnit...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 49; pp. 19366 - 19371
Main Authors Han, Kyudong, Lee, Jungnam, Meyer, Thomas J, Remedios, Paul, Goodwin, Lindsey, Batzer, Mark A
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.12.2008
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted [almost equal to]450 kb of the human genome. One L1RAD event generated a large deletion of [almost equal to]64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that [almost equal to]60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation.
AbstractList Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted ≈450 kb of the human genome. One L1RAD event generated a large deletion of ≈64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that ≈60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation. LINE-1 nonallelic homologous nonhomologous end joining retrotransposon
Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted ≈450 kb of the human genome. One L1RAD event generated a large deletion of ≈64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that ≈60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation.
Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted ≈450 kb of the human genome. One L1RAD event generated a large deletion of ≈64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that ≈60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation.
Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted [almost equal to]450 kb of the human genome. One L1RAD event generated a large deletion of [almost equal to]64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that [almost equal to]60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation.
Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted appt450 kb of the human genome. One L1RAD event generated a large deletion of appt64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that appt60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation.
Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted ...450 kb of the human genome. One L1RAD event generated a large deletion of ...64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that ...60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation. (ProQuest: ... denotes formulae/symbols omitted.)
Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements are a type of long interspersed element (LINE) that is dispersed at high copy numbers within most mammalian genomes. To determine the magnitude of L1 recombination-associated deletions (L1RADs), we computationally extracted L1RAD candidates by comparing the human and chimpanzee genomes and verified each of the L1RAD events by using wet-bench analyses. Through these analyses, we identified 73 human-specific L1RAD events that occurred subsequent to the divergence of the human and chimpanzee lineages. Despite their low frequency, the L1RAD events deleted approximately 450 kb of the human genome. One L1RAD event generated a large deletion of approximately 64 kb. Multiple alignments of prerecombination and postrecombination L1 elements suggested that two different deletion mechanisms generated the L1RADs: nonallelic homologous recombination (55 events) and nonhomologous end joining between two L1s (18 events). In addition, the position of L1RADs throughout the genome does not correlate with local chromosomal recombination rates. This process may be implicated in the partial regulation of L1 copy numbers by the finding that approximately 60% of the DNA sequences deleted by the L1RADs consist of L1 sequences that were either directly involved in the recombination events or located in the intervening sequence between recombining L1s. Overall, there is increasing evidence that L1RADs have played an important role in creating structural variation.
Author Remedios, Paul
Han, Kyudong
Lee, Jungnam
Meyer, Thomas J
Batzer, Mark A
Goodwin, Lindsey
Author_xml – sequence: 1
  fullname: Han, Kyudong
– sequence: 2
  fullname: Lee, Jungnam
– sequence: 3
  fullname: Meyer, Thomas J
– sequence: 4
  fullname: Remedios, Paul
– sequence: 5
  fullname: Goodwin, Lindsey
– sequence: 6
  fullname: Batzer, Mark A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19036926$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFMycg6gGJQ9px_BVfkFBFAWklDtCz5SSTrVeJvdhJBf99HXbVBS6cLM_7zdM8vTNy4oNHQl5SuKSg2NXO23QJNahaSgriCVlR0LSUXMMJWQFUqqx5xU_JWUpbANCihmfklGpgUldyRW7WtIjYhrFx3k4u-NKmFFpnJ-yKDgdcZqnYoMeYZ8XdPFq_fMPo2uLeRvd76zl52tsh4YvDe05ubz5-v_5crr9--nL9YV22soKp1L0GBW1DmW1UJ1FzzVnDGdQNoqWCKg1N3wlGWZ2DSF7brgepQCjLWa3YOXm_993NzYhdi36KdjC76EYbf5lgnflb8e7ObMK9qSTlSi4Gbw8GMfyYMU1mdKnFYbAew5xMBRVlGqoMXvwDbsMcfQ6XGcq4BMYzdLWH2hhSitg_XkLBLAWZpSBzLChvvP4zwJE_NJKBdwdg2TzaCcN1ppiUpp-HYcKfU2aL_7AZebVHtmkK8ZGpBJdCCsj6m73e22DsJrpkbr8tAYEKqYWm7AGT3Lky
CitedBy_id crossref_primary_10_1038_s41467_022_34810_8
crossref_primary_10_1134_S1022795416040062
crossref_primary_10_3389_fcell_2024_1357576
crossref_primary_10_3390_genes10030228
crossref_primary_10_1186_s13072_016_0084_2
crossref_primary_10_1371_journal_pgen_1003358
crossref_primary_10_1007_s13258_013_0095_3
crossref_primary_10_1266_ggs_22_00038
crossref_primary_10_1186_s13059_018_1577_z
crossref_primary_10_1093_nar_gku687
crossref_primary_10_1128_JVI_05180_11
crossref_primary_10_1093_gbe_evw224
crossref_primary_10_3389_fgene_2020_01038
crossref_primary_10_1186_s12864_022_08681_8
crossref_primary_10_1016_j_gene_2012_07_042
crossref_primary_10_1371_journal_pone_0226340
crossref_primary_10_1146_annurev_genom_9_081307_164217
crossref_primary_10_3390_life12101583
crossref_primary_10_1371_journal_pone_0015393
crossref_primary_10_1186_s12864_020_06962_8
crossref_primary_10_1038_nrg2640
crossref_primary_10_1186_s13045_015_0133_5
crossref_primary_10_1371_journal_pgen_1004395
crossref_primary_10_1007_s00018_016_2353_4
crossref_primary_10_1073_pnas_1401532111
crossref_primary_10_1016_j_tig_2009_05_005
crossref_primary_10_1101_gr_185132_114
crossref_primary_10_1186_s13100_016_0064_x
crossref_primary_10_1016_j_tibtech_2009_02_007
crossref_primary_10_1038_srep20650
crossref_primary_10_1186_1759_8753_1_7
crossref_primary_10_1002_ijc_24902
crossref_primary_10_1186_1471_2164_15_1082
crossref_primary_10_1016_j_semcancer_2010_06_001
crossref_primary_10_1002_imt2_154
crossref_primary_10_1016_j_semcancer_2010_04_001
crossref_primary_10_1038_ejhg_2013_45
crossref_primary_10_1093_hmg_ddv146
crossref_primary_10_3390_cells9071657
crossref_primary_10_1371_journal_pgen_1002236
crossref_primary_10_1242_dev_191957
crossref_primary_10_1002_bies_201900232
crossref_primary_10_1073_pnas_1310914110
crossref_primary_10_1371_journal_pgen_1007249
crossref_primary_10_1002_humu_22037
crossref_primary_10_1186_s13100_014_0029_x
crossref_primary_10_1007_s13258_013_0057_9
crossref_primary_10_1007_s13258_021_01146_4
crossref_primary_10_1016_j_molcel_2019_02_036
crossref_primary_10_1002_ajmg_b_32225
crossref_primary_10_1016_j_arr_2023_101881
crossref_primary_10_1101_gr_145631_112
crossref_primary_10_1155_2012_520732
crossref_primary_10_1093_nar_gku1394
crossref_primary_10_3390_ijms23147802
crossref_primary_10_1371_journal_pone_0101195
crossref_primary_10_1186_s13100_016_0076_6
crossref_primary_10_4161_mge_1_3_17456
crossref_primary_10_1002_ajmg_a_38122
crossref_primary_10_1128_MCB_00860_12
crossref_primary_10_1073_pnas_0810202105
crossref_primary_10_1371_journal_pgen_1001006
crossref_primary_10_1016_j_gde_2012_02_006
crossref_primary_10_1093_hmg_ddr245
crossref_primary_10_1016_j_semcancer_2010_03_001
crossref_primary_10_1128_MMBR_00012_09
crossref_primary_10_1002_evan_20283
crossref_primary_10_1139_o11_046
crossref_primary_10_5808_GI_2012_10_4_226
crossref_primary_10_5808_GI_2014_12_3_98
crossref_primary_10_1007_s13258_013_0133_1
crossref_primary_10_1080_19768354_2012_724709
crossref_primary_10_1093_gbe_evt146
crossref_primary_10_1186_1471_2164_13_87
crossref_primary_10_1101_gr_221366_117
crossref_primary_10_1007_s10577_017_9569_5
crossref_primary_10_1155_2017_5935380
crossref_primary_10_1101_gr_099044_109
crossref_primary_10_1038_s12276_021_00586_y
crossref_primary_10_1186_1471_2105_11_609
crossref_primary_10_1098_rstb_2016_0458
crossref_primary_10_1007_s13258_015_0370_6
crossref_primary_10_3390_ijms18050912
crossref_primary_10_1155_2012_807270
crossref_primary_10_1007_s00702_014_1309_9
crossref_primary_10_1155_2014_730814
crossref_primary_10_1093_hmg_ddp538
crossref_primary_10_1016_j_tig_2023_10_013
crossref_primary_10_1093_hmg_ddv623
crossref_primary_10_1371_journal_pgen_1001228
crossref_primary_10_1186_1756_0381_4_8
crossref_primary_10_1002_ajmg_b_32437
crossref_primary_10_1016_j_gde_2009_10_013
crossref_primary_10_1098_rstb_2009_0299
crossref_primary_10_1266_ggs_15_00016
crossref_primary_10_1016_j_critrevonc_2015_10_012
crossref_primary_10_1146_annurev_genom_082509_141802
crossref_primary_10_1128_AEM_00207_17
crossref_primary_10_1371_journal_pone_0251133
crossref_primary_10_1186_s13100_016_0085_5
crossref_primary_10_1093_nar_gkad1244
crossref_primary_10_1101_gr_091827_109
crossref_primary_10_1101_gr_278203_123
crossref_primary_10_1186_1471_2164_13_163
Cites_doi 10.1128/MCB.20.11.4028-4035.2000
10.1016/j.gene.2006.08.029
10.1006/jmbi.1994.0095
10.1016/S0092-8674(00)81998-4
10.1086/302213
10.1101/gr.4001406
10.1111/j.1600-0854.2005.00260.x
10.1038/nrm974
10.1016/j.tig.2007.02.002
10.1016/S0092-8674(00)81997-2
10.1073/pnas.0831042100
10.1126/science.1722352
10.1006/mpev.1998.0495
10.1126/science.3116671
10.1093/nar/gki718
10.1038/ng0597-37
10.1038/ng0598-19
10.1101/gr.1970304
10.1038/35057062
10.2307/3579810
10.1093/nar/gkh842
10.1002/humu.20778
10.1128/MCB.21.2.467-475.2001
10.1086/341718
10.1186/gb-2007-8-6-r127
10.1101/gr.205701
10.1016/0092-8674(88)90159-6
10.1086/504600
10.1093/oxfordjournals.molbev.a003893
10.1006/jmbi.1998.1641
10.1016/j.jmb.2005.02.043
10.1128/MCB.16.5.2164
10.1371/journal.pcbi.0030137
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 9, 2008
2008 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 9, 2008
– notice: 2008 by The National Academy of Sciences of the USA
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.0807866105
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList



Genetics Abstracts
CrossRef
Virology and AIDS Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 19371
ExternalDocumentID 1611531871
10_1073_pnas_0807866105
19036926
105_49_19366
25465650
US201301569591
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM059290
– fundername: NIGMS NIH HHS
  grantid: R01 GM59290
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c620t-9f9070cb13ab7d6e94943b4308beea151790bfd53138109648adf067057a43873
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:25:29 EDT 2024
Fri Oct 25 04:23:01 EDT 2024
Thu Oct 10 16:31:53 EDT 2024
Fri Aug 23 00:41:07 EDT 2024
Sat Sep 28 07:54:30 EDT 2024
Thu May 30 08:49:41 EDT 2019
Wed Nov 11 00:29:46 EST 2020
Fri Feb 02 07:05:50 EST 2024
Wed Dec 27 19:26:16 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620t-9f9070cb13ab7d6e94943b4308beea151790bfd53138109648adf067057a43873
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Edited by John C. Avise, University of California, Irvine, CA, and approved October 3, 2008
Author contributions: K.H. and M.A.B. designed research; K.H., J.L., P.R., and L.G. performed research; M.A.B. contributed new reagents/analytic tools; K.H., J.L., T.J.M., and M.A.B. analyzed data; and K.H. and M.A.B. wrote the paper.
OpenAccessLink https://www.pnas.org/doi/pdf/10.1073/pnas.0807866105
PMID 19036926
PQID 201346034
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2614767
proquest_journals_201346034
pubmed_primary_19036926
crossref_primary_10_1073_pnas_0807866105
pnas_primary_105_49_19366_fulltext
proquest_miscellaneous_20213902
jstor_primary_25465650
fao_agris_US201301569591
pnas_primary_105_49_19366
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2008-12-09
PublicationDateYYYYMMDD 2008-12-09
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-09
  day: 09
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 9590283 - Nat Genet. 1998 May;19(1):19-24
3365767 - Cell. 1988 May 6;53(3):391-400
15634208 - Traffic. 2005 Feb;6(2):75-82
11371580 - Mol Biol Evol. 2001 Jun;18(6):926-35
17953488 - PLoS Genet. 2007 Oct;3(10):1939-49
8945517 - Cell. 1996 Nov 29;87(5):905-16
1722352 - Science. 1991 Dec 20;254(5039):1808-10
12461558 - Nat Rev Mol Cell Biol. 2002 Dec;3(12):919-31
15059993 - Genome Res. 2004 Apr;14(4):528-38
9806611 - Radiat Res. 1998 Nov;150(5 Suppl):S80-91
11731496 - Genome Res. 2001 Dec;11(12):2059-65
16034026 - Nucleic Acids Res. 2005;33(13):4040-52
19057007 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19033-4
7877164 - J Mol Biol. 1995 Feb 24;246(3):401-417
9533876 - J Mol Biol. 1998 Apr 3;277(3):513-7
17630829 - PLoS Comput Biol. 2007 Jul;3(7):e137
17307271 - Trends Genet. 2007 Apr;23(4):158-61
12070800 - Am J Hum Genet. 2002 Aug;71(2):312-26
3116671 - Science. 1987 Oct 16;238(4825):369-73
9140393 - Nat Genet. 1997 May;16(1):37-43
17055192 - Gene. 2007 Apr 1;390(1-2):18-27
15843013 - J Mol Biol. 2005 May 13;348(4):791-800
12682288 - Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5280-5
11134335 - Mol Cell Biol. 2001 Jan;21(2):467-75
15466592 - Nucleic Acids Res. 2004;32(17):5249-59
17594509 - Genome Biol. 2007;8(6):R127
10805745 - Mol Cell Biol. 2000 Jun;20(11):4028-35
11237011 - Nature. 2001 Feb 15;409(6822):860-921
16344559 - Genome Res. 2006 Jan;16(1):78-87
8628283 - Mol Cell Biol. 1996 May;16(5):2164-73
2454389 - Mol Cell Biol. 1988 Apr;8(4):1385-97
9915944 - Am J Hum Genet. 1999 Jan;64(1):62-9
16773564 - Am J Hum Genet. 2006 Jul;79(1):41-53
8945518 - Cell. 1996 Nov 29;87(5):917-27
18454448 - Hum Mutat. 2008 Jul;29(7):931-8
9668008 - Mol Phylogenet Evol. 1998 Jun;9(3):585-98
Lander ES (e_1_3_4_1_2) 2001; 409
Sen SK (e_1_3_4_14_2) 2006; 79
Callinan PA (e_1_3_4_36_2) 2005; 348
Kazazian HH (e_1_3_4_8_2) 1998; 19
Moran JV (e_1_3_4_6_2) 1996; 87
Lee J (e_1_3_4_30_2) 2007; 390
Giordano J (e_1_3_4_29_2) 2007; 3
Myers JS (e_1_3_4_10_2) 2002; 71
Sela N (e_1_3_4_22_2) 2007; 8
Skowronski J (e_1_3_4_35_2) 1988; 8
Hall TA (e_1_3_4_25_2) 1999; 41
Martin SL (e_1_3_4_3_2) 2001; 21
Khan H (e_1_3_4_28_2) 2006; 16
Temtamy SA (e_1_3_4_17_2) 2008; 29
Brouha B (e_1_3_4_11_2) 2003; 100
Bentley J (e_1_3_4_27_2) 2004; 32
Miyamoto MM (e_1_3_4_18_2) 1987; 238
Korenberg JR (e_1_3_4_31_2) 1988; 53
Boissinot S (e_1_3_4_32_2) 2001; 18
Mathias SL (e_1_3_4_4_2) 1991; 254
Feng Q (e_1_3_4_5_2) 1996; 87
Sassaman DM (e_1_3_4_7_2) 1997; 16
Burwinkel B (e_1_3_4_15_2) 1998; 277
Carlton J (e_1_3_4_24_2) 2005; 6
Gebow D (e_1_3_4_13_2) 2000; 20
Segal Y (e_1_3_4_16_2) 1999; 64
Smit AF (e_1_3_4_2_2) 1995; 246
Kriegs JO (e_1_3_4_33_2) 2007; 23
Jeggo PA (e_1_3_4_12_2) 1998; 150
Han K (e_1_3_4_20_2) 2007; 3
Ostertag EM (e_1_3_4_9_2) 2001; 11
Goodman M (e_1_3_4_19_2) 1998; 9
Worby CA (e_1_3_4_23_2) 2002; 3
Jensen-Seaman MI (e_1_3_4_34_2) 2004; 14
Moore JK (e_1_3_4_26_2) 1996; 16
Han K (e_1_3_4_21_2) 2005; 33
References_xml – volume: 20
  start-page: 4028
  year: 2000
  ident: e_1_3_4_13_2
  article-title: Homologous and nonhomologous recombination resulting in deletion: Effects of p53 status, microhomology, and repetitive DNA length and orientation
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.11.4028-4035.2000
  contributor:
    fullname: Gebow D
– volume: 390
  start-page: 18
  year: 2007
  ident: e_1_3_4_30_2
  article-title: Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons
  publication-title: Gene
  doi: 10.1016/j.gene.2006.08.029
  contributor:
    fullname: Lee J
– volume: 246
  start-page: 401
  year: 1995
  ident: e_1_3_4_2_2
  article-title: Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1994.0095
  contributor:
    fullname: Smit AF
– volume: 87
  start-page: 917
  year: 1996
  ident: e_1_3_4_6_2
  article-title: High frequency retrotransposition in cultured mammalian cells
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81998-4
  contributor:
    fullname: Moran JV
– volume: 64
  start-page: 62
  year: 1999
  ident: e_1_3_4_16_2
  article-title: LINE-1 elements at the sites of molecular rearrangements in Alport syndrome-diffuse leiomyomatosis
  publication-title: Am J Hum Genet
  doi: 10.1086/302213
  contributor:
    fullname: Segal Y
– volume: 16
  start-page: 78
  year: 2006
  ident: e_1_3_4_28_2
  article-title: Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates
  publication-title: Genome Res
  doi: 10.1101/gr.4001406
  contributor:
    fullname: Khan H
– volume: 6
  start-page: 75
  year: 2005
  ident: e_1_3_4_24_2
  article-title: Sorting nexins–unifying trends and new perspectives
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2005.00260.x
  contributor:
    fullname: Carlton J
– volume: 3
  start-page: 919
  year: 2002
  ident: e_1_3_4_23_2
  article-title: Sorting out the cellular functions of sorting nexins
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm974
  contributor:
    fullname: Worby CA
– volume: 23
  start-page: 158
  year: 2007
  ident: e_1_3_4_33_2
  article-title: Evolutionary history of 7SL RNA-derived SINEs in Supraprimates
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2007.02.002
  contributor:
    fullname: Kriegs JO
– volume: 8
  start-page: 1385
  year: 1988
  ident: e_1_3_4_35_2
  article-title: Unit-length line-1 transcripts in human teratocarcinoma cells
  publication-title: Mol Cell Biol
  contributor:
    fullname: Skowronski J
– volume: 87
  start-page: 905
  year: 1996
  ident: e_1_3_4_5_2
  article-title: Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81997-2
  contributor:
    fullname: Feng Q
– volume: 100
  start-page: 5280
  year: 2003
  ident: e_1_3_4_11_2
  article-title: Hot L1s account for the bulk of retrotransposition in the human population
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0831042100
  contributor:
    fullname: Brouha B
– volume: 254
  start-page: 1808
  year: 1991
  ident: e_1_3_4_4_2
  article-title: Reverse transcriptase encoded by a human transposable element
  publication-title: Science
  doi: 10.1126/science.1722352
  contributor:
    fullname: Mathias SL
– volume: 9
  start-page: 585
  year: 1998
  ident: e_1_3_4_19_2
  article-title: Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence
  publication-title: Mol Phylogenet Evol
  doi: 10.1006/mpev.1998.0495
  contributor:
    fullname: Goodman M
– volume: 238
  start-page: 369
  year: 1987
  ident: e_1_3_4_18_2
  article-title: Phylogenetic relations of humans and African apes from DNA sequences in the psi eta-globin region
  publication-title: Science
  doi: 10.1126/science.3116671
  contributor:
    fullname: Miyamoto MM
– volume: 33
  start-page: 4040
  year: 2005
  ident: e_1_3_4_21_2
  article-title: Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki718
  contributor:
    fullname: Han K
– volume: 16
  start-page: 37
  year: 1997
  ident: e_1_3_4_7_2
  article-title: Many human L1 elements are capable of retrotransposition
  publication-title: Nat Genet
  doi: 10.1038/ng0597-37
  contributor:
    fullname: Sassaman DM
– volume: 19
  start-page: 19
  year: 1998
  ident: e_1_3_4_8_2
  article-title: The impact of L1 retrotransposons on the human genome
  publication-title: Nat Genet
  doi: 10.1038/ng0598-19
  contributor:
    fullname: Kazazian HH
– volume: 14
  start-page: 528
  year: 2004
  ident: e_1_3_4_34_2
  article-title: Comparative recombination rates in the rat, mouse, and human genomes
  publication-title: Genome Res
  doi: 10.1101/gr.1970304
  contributor:
    fullname: Jensen-Seaman MI
– volume: 409
  start-page: 860
  year: 2001
  ident: e_1_3_4_1_2
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
  doi: 10.1038/35057062
  contributor:
    fullname: Lander ES
– volume: 150
  start-page: S80
  year: 1998
  ident: e_1_3_4_12_2
  article-title: Identification of genes involved in repair of DNA double-strand breaks in mammalian cells
  publication-title: Radiat Res
  doi: 10.2307/3579810
  contributor:
    fullname: Jeggo PA
– volume: 32
  start-page: 5249
  year: 2004
  ident: e_1_3_4_27_2
  article-title: DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh842
  contributor:
    fullname: Bentley J
– volume: 29
  start-page: 931
  year: 2008
  ident: e_1_3_4_17_2
  article-title: Long interspersed nuclear element-1 (LINE1)-mediated deletion of EVC, EVC2, C4orf6, and STK32B in Ellis-van Creveld syndrome with borderline intelligence
  publication-title: Hum Mutat
  doi: 10.1002/humu.20778
  contributor:
    fullname: Temtamy SA
– volume: 21
  start-page: 467
  year: 2001
  ident: e_1_3_4_3_2
  article-title: Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon
  publication-title: Mol Cell Biochem
  doi: 10.1128/MCB.21.2.467-475.2001
  contributor:
    fullname: Martin SL
– volume: 71
  start-page: 312
  year: 2002
  ident: e_1_3_4_10_2
  article-title: A comprehensive analysis of recently integrated human Ta L1 elements
  publication-title: Am J Hum Genet
  doi: 10.1086/341718
  contributor:
    fullname: Myers JS
– volume: 8
  start-page: R127
  year: 2007
  ident: e_1_3_4_22_2
  article-title: Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-6-r127
  contributor:
    fullname: Sela N
– volume: 11
  start-page: 2059
  year: 2001
  ident: e_1_3_4_9_2
  article-title: Twin priming: A proposed mechanism for the creation of inversions in l1 retrotransposition
  publication-title: Genome Res
  doi: 10.1101/gr.205701
  contributor:
    fullname: Ostertag EM
– volume: 3
  start-page: 1939
  year: 2007
  ident: e_1_3_4_20_2
  article-title: Alu recombination-mediated structural deletions in the chimpanzee genome
  publication-title: PLoS Genet
  contributor:
    fullname: Han K
– volume: 53
  start-page: 391
  year: 1988
  ident: e_1_3_4_31_2
  article-title: Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90159-6
  contributor:
    fullname: Korenberg JR
– volume: 79
  start-page: 41
  year: 2006
  ident: e_1_3_4_14_2
  article-title: Human genomic deletions mediated by recombination between Alu elements
  publication-title: Am J Hum Genet
  doi: 10.1086/504600
  contributor:
    fullname: Sen SK
– volume: 18
  start-page: 926
  year: 2001
  ident: e_1_3_4_32_2
  article-title: Selection against deleterious LINE-1-containing loci in the human lineage
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a003893
  contributor:
    fullname: Boissinot S
– volume: 277
  start-page: 513
  year: 1998
  ident: e_1_3_4_15_2
  article-title: Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1998.1641
  contributor:
    fullname: Burwinkel B
– volume: 348
  start-page: 791
  year: 2005
  ident: e_1_3_4_36_2
  article-title: Alu Retrotransposition-mediated Deletion
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.02.043
  contributor:
    fullname: Callinan PA
– volume: 41
  start-page: 95
  year: 1999
  ident: e_1_3_4_25_2
  article-title: BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT
  publication-title: Nucl Acids Symp Series
  contributor:
    fullname: Hall TA
– volume: 16
  start-page: 2164
  year: 1996
  ident: e_1_3_4_26_2
  article-title: Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.16.5.2164
  contributor:
    fullname: Moore JK
– volume: 3
  start-page: e137
  year: 2007
  ident: e_1_3_4_29_2
  article-title: Evolutionary history of mammalian transposons determined by genome-wide defragmentation
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030137
  contributor:
    fullname: Giordano J
SSID ssj0009580
Score 2.364369
Snippet Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements...
Mobile elements have created structural variation in the human genome through their de novo insertions and post-insertional genomic rearrangements. L1 elements...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19366
SubjectTerms 3' Flanking Region - genetics
Animals
Biological Sciences
Biological variation
Chimpanzees
Chromosomes
Comparative analysis
copy number
DNA
Evolution, Molecular
Gene Deletion
Genetic loci
Genetic Variation
Genome, Human - genetics
Genomes
Genomics
Homologous recombination
Human genome
Humans
Insertion
Interspersed Repetitive Sequences - genetics
Long Interspersed Nucleotide Elements - genetics
Molecular Sequence Data
Monkeys & apes
Monomers
Nucleotide sequence
Pan troglodytes
Polymorphism, Genetic - genetics
Recombination, Genetic - genetics
Retroelements - genetics
Retrotransposons
Title L1 recombination-associated deletions generate human genomic variation
URI https://www.jstor.org/stable/25465650
http://www.pnas.org/content/105/49/19366.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19036926
https://www.proquest.com/docview/201346034
https://search.proquest.com/docview/20213902
https://pubmed.ncbi.nlm.nih.gov/PMC2614767
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-te-IFscGYGYMI8TAe0jqxY8ePaKKaEENIUGlvlp3YYxJNq7Xb38-dm7QbghceI_vs6D7sO_nudwDveeWKGKLLvXR1Lk1sctcUIq9ULF3r66pJRWKXX9XFTH6-qq72oBpqYVLSfuNvxt2v-bi7-ZlyK5fzZjLkiU2-XZ6j1y-10pMRjFBBhxB9i7Rbb-pOSjx-ZSkHPB8tJsvOrcacENbxVuKpaY3BE9wQssKDW2kU3WJITyTMU6T6m__5Zxrlg3tp-gye9g5l9nHz4wewF7pDOOhNdpWd9bjSH57D9EuRUfw7x2A4ySN3vWxCm1E_nKSC2XUiWIcste-jTypczu4xqE5UL2A2_fTj_CLv2yjkjSr5OjcRA2De-EI4r1sVjDRSeCl47UNwRcLo8rFFYyS0L6Nk7dpI5TuVdlLUWhzBfrfowjFkwtemKWXFG42BYUENrLigWlhkaozKMTgb2GiXG7QMm165tbDERrtjPoNjZLN113iW2dn3kl5QMZY0lSkYHCXeb5cgzH50PDkDllbZLV1ZaSz6oEoxePfPMRv7RBoGJ4MYbW-rK0tbS8WFZPB2O4pGRi8nrguLO5pSoqfMSwYvNyLfbdMrEAP9SBm2Ewi--_EIanWC8e61-NV_U57Ak5S9Qsk15jXsr2_vwim6SGv_JpnEb-BTCss
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5t4wFegAFjYcAixMN4SOrEjhM_oomqQDshsaK9WbZjjwmaVrTlgV_P2UnabYIHeIycs2Xd-Xwnf_cdwGtSqMxZpxLNVJUw4UyiTEaTgrtc1boqTCgSm5zx0ZR9uCgudqDoa2ECaN_oq7T5Pkubq68BW7mYmUGPExt8mpxi1M9KXg524Q6eV8L7JH3DtVu1lSc5OmCWs57Rp6SDRaOWKfEc63gvkdC2RqAPF55b4dq9tOvUvAcoetZTlPpTBHobSHntZho-gC_9nlpAyrd0vdKp-XWL7vGfN_0Q7nexavy2Hd6HHds8gv3OGyzjk46y-s1jGI6z2KfWM8yzg6oT1and1rFvtROsO74MAisbh86A_tPXRMc_MV8PUk9gOnx3fjpKug4NieE5WSXCYW5NjM6o0mXNrWCCUc0oqbS1Kgv0X9rVeM49kZjgrFK185VBRakYrUp6AHvNvLGHEFNdCZOzgpgSc87M98Yi1JfZorac4yqCk14_ctESccjwgF5S6fUjt1qN4BD1J9Ulukk5_Zz7x1lMU0UhsggOglI3U_h2ABjTkgiiMMt26kIyITG85TyCV38dk67D6ERw1NuH7NzAUvqlGSeURXC8GcXz6x9lVGPna_9LjkE4ySN42trSdpnOMiMob1jZ5gfPDH5zBG0nMIR3tvLsvyWP4e7ofDKW4_dnH4_gXgDJeAyPeA57qx9r-wIjsZV-Gc7db19qLMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB3RIiEuQIFSU6AR4lAO2Tix48RHVFgVaKtKsFLFxbITu1Sw2RWb5cDXM3aS3W0Flx4je2xFMx7PyG_eALyhuU6ddTo2XJcxl66KdZWyOBcu07Up8yoUiZ2eieMJ_3SRX2y0-gqg_cpcjZqf01Fz9T1gK-fTKhlwYsn56RFG_bwQRTKvXbIFd_HM0nJI1Fd8u2VXfZKhE-YZH1h9CpbMG70YUc-zjncTDa1rJPpx6fkVNu6mLadnA0jRM5-i1L-i0Jtgyo3bafwQvg3_1YFSfoyWrRlVf25QPt7qxx_Bgz5mjd51U3bgjm0ew07vFRbRYU9d_fYJjE_SyKfYU8y3g8pj3avf1pFvuROsPLoMAq2NQodA_-lro6PfmLcHqacwGX_4enQc950a4kpktI2lwxybViZl2hS1sJJLzgxntDTW6jTQgBlX43n3hGJS8FLXzlcI5YXmrCzYLmw3s8buQcRMKauM57QqMPdMfY8syny5LWrMOaEJHA46UvOOkEOFh_SCKa8jtdYsgT3UodKX6C7V5EvmH2kxXZW5TAnsBsWulvBtATC2pQRIWGW9dK64VBjmCkHg9X_HlOuxOgT2BxtRvTtYKL81F5RxAgerUTzH_nFGN3a29FMyDMZpRuBZZ0_rbXrrJFBcs7TVBM8Qfn0E7Scwhff28vzWkgdw7_z9WJ18PPu8D_cDVsZDeeQL2G5_Le1LDMha8yocvb_ylS9E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L1+recombination-associated+deletions+generate+human+genomic+variation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Han%2C+Kyudong&rft.au=Lee%2C+Jungnam&rft.au=Meyer%2C+Thomas+J&rft.au=Remedios%2C+Paul&rft.date=2008-12-09&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=49&rft.spage=19366&rft_id=info:doi/10.1073%2Fpnas.0807866105&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1611531871
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F49.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F49.cover.gif