Directing phenotype of vascular smooth muscle cells using electrically stimulated conducting polymer
Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates and were subjected to a 50 μA sinusoidal electrical stimulation at 0.05, 5 and 500 Hz. These substrates were doped with hyaluronic acid and coated with...
Saved in:
Published in | Biomaterials Vol. 29; no. 34; pp. 4510 - 4520 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.12.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates and were subjected to a 50
μA sinusoidal electrical stimulation at 0.05, 5 and 500
Hz. These substrates were doped with hyaluronic acid and coated with collagen IV followed by Matrigel
® in order to mimic the basement membrane and encourage cell attachment. Increased proliferation and expression of smooth muscle phenotype markers (smooth muscle α-actin and smooth muscle myosin heavy chain) were observed in cultures stimulated at 5 and 500
Hz. This increased proliferation and expression of contractile proteins were found to be significantly decreased when L-type voltage-gated calcium channels (VGCC) were blocked with the drug nifedipine. To the best of our knowledge, this is the first work that demonstrates that VSMCs cultured on a conducting polymer substrate and subject to electrical stimulation not only exhibit enhanced proliferation but can be simultaneously encouraged to increase contractile protein expression. This behaviour is somewhat contrary to the classical definition of smooth muscle contractile and synthetic phenotypes that, in general, requires a modulation in phenotype as a prerequisite for smooth muscle proliferation. This interesting result highlights both the inherent plasticity of vascular smooth muscle cells and the potential of electrical stimulation via conducting polymer substrates to manipulate their behaviour. |
---|---|
AbstractList | Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates and were subjected to a 50muA sinusoidal electrical stimulation at 0.05, 5 and 500 Hz. These substrates were doped with hyaluronic acid and coated with collagen IV followed by Matrigel in order to mimic the basement membrane and encourage cell attachment. Increased proliferation and expression of smooth muscle phenotype markers (smooth muscle alpha-actin and smooth muscle myosin heavy chain) were observed in cultures stimulated at 5 and 500 Hz. This increased proliferation and expression of contractile proteins were found to be significantly decreased when L-type voltage-gated calcium channels (VGCC) were blocked with the drug nifedipine. To the best of our knowledge, this is the first work that demonstrates that VSMCs cultured on a conducting polymer substrate and subject to electrical stimulation not only exhibit enhanced proliferation but can be simultaneously encouraged to increase contractile protein expression. This behaviour is somewhat contrary to the classical definition of smooth muscle contractile and synthetic phenotypes that, in general, requires a modulation in phenotype as a prerequisite for smooth muscle proliferation. This interesting result highlights both the inherent plasticity of vascular smooth muscle cells and the potential of electrical stimulation via conducting polymer substrates to manipulate their behaviour. Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates and were subjected to a 50muA sinusoidal electrical stimulation at 0.05, 5 and 500 Hz. These substrates were doped with hyaluronic acid and coated with collagen IV followed by Matrigel in order to mimic the basement membrane and encourage cell attachment. Increased proliferation and expression of smooth muscle phenotype markers (smooth muscle alpha-actin and smooth muscle myosin heavy chain) were observed in cultures stimulated at 5 and 500 Hz. This increased proliferation and expression of contractile proteins were found to be significantly decreased when L-type voltage-gated calcium channels (VGCC) were blocked with the drug nifedipine. To the best of our knowledge, this is the first work that demonstrates that VSMCs cultured on a conducting polymer substrate and subject to electrical stimulation not only exhibit enhanced proliferation but can be simultaneously encouraged to increase contractile protein expression. This behaviour is somewhat contrary to the classical definition of smooth muscle contractile and synthetic phenotypes that, in general, requires a modulation in phenotype as a prerequisite for smooth muscle proliferation. This interesting result highlights both the inherent plasticity of vascular smooth muscle cells and the potential of electrical stimulation via conducting polymer substrates to manipulate their behaviour.Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates and were subjected to a 50muA sinusoidal electrical stimulation at 0.05, 5 and 500 Hz. These substrates were doped with hyaluronic acid and coated with collagen IV followed by Matrigel in order to mimic the basement membrane and encourage cell attachment. Increased proliferation and expression of smooth muscle phenotype markers (smooth muscle alpha-actin and smooth muscle myosin heavy chain) were observed in cultures stimulated at 5 and 500 Hz. This increased proliferation and expression of contractile proteins were found to be significantly decreased when L-type voltage-gated calcium channels (VGCC) were blocked with the drug nifedipine. To the best of our knowledge, this is the first work that demonstrates that VSMCs cultured on a conducting polymer substrate and subject to electrical stimulation not only exhibit enhanced proliferation but can be simultaneously encouraged to increase contractile protein expression. This behaviour is somewhat contrary to the classical definition of smooth muscle contractile and synthetic phenotypes that, in general, requires a modulation in phenotype as a prerequisite for smooth muscle proliferation. This interesting result highlights both the inherent plasticity of vascular smooth muscle cells and the potential of electrical stimulation via conducting polymer substrates to manipulate their behaviour. Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates and were subjected to a 50 muA sinusoidal electrical stimulation at 0.05, 5 and 500 Hz. These substrates were doped with hyaluronic acid and coated with collagen IV followed by Matrigel(R) in order to mimic the basement membrane and encourage cell attachment. Increased proliferation and expression of smooth muscle phenotype markers (smooth muscle alpha-actin and smooth muscle myosin heavy chain) were observed in cultures stimulated at 5 and 500 Hz. This increased proliferation and expression of contractile proteins were found to be significantly decreased when L-type voltage-gated calcium channels (VGCC) were blocked with the drug nifedipine. To the best of our knowledge, this is the first work that demonstrates that VSMCs cultured on a conducting polymer substrate and subject to electrical stimulation not only exhibit enhanced proliferation but can be simultaneously encouraged to increase contractile protein expression. This behaviour is somewhat contrary to the classical definition of smooth muscle contractile and synthetic phenotypes that, in general, requires a modulation in phenotype as a prerequisite for smooth muscle proliferation. This interesting result highlights both the inherent plasticity of vascular smooth muscle cells and the potential of electrical stimulation via conducting polymer substrates to manipulate their behaviour. Abstract Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates and were subjected to a 50 μA sinusoidal electrical stimulation at 0.05, 5 and 500 Hz. These substrates were doped with hyaluronic acid and coated with collagen IV followed by Matrigel® in order to mimic the basement membrane and encourage cell attachment. Increased proliferation and expression of smooth muscle phenotype markers (smooth muscle α-actin and smooth muscle myosin heavy chain) were observed in cultures stimulated at 5 and 500 Hz. This increased proliferation and expression of contractile proteins were found to be significantly decreased when L-type voltage-gated calcium channels (VGCC) were blocked with the drug nifedipine. To the best of our knowledge, this is the first work that demonstrates that VSMCs cultured on a conducting polymer substrate and subject to electrical stimulation not only exhibit enhanced proliferation but can be simultaneously encouraged to increase contractile protein expression. This behaviour is somewhat contrary to the classical definition of smooth muscle contractile and synthetic phenotypes that, in general, requires a modulation in phenotype as a prerequisite for smooth muscle proliferation. This interesting result highlights both the inherent plasticity of vascular smooth muscle cells and the potential of electrical stimulation via conducting polymer substrates to manipulate their behaviour. Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates and were subjected to a 50 μA sinusoidal electrical stimulation at 0.05, 5 and 500 Hz. These substrates were doped with hyaluronic acid and coated with collagen IV followed by Matrigel ® in order to mimic the basement membrane and encourage cell attachment. Increased proliferation and expression of smooth muscle phenotype markers (smooth muscle α-actin and smooth muscle myosin heavy chain) were observed in cultures stimulated at 5 and 500 Hz. This increased proliferation and expression of contractile proteins were found to be significantly decreased when L-type voltage-gated calcium channels (VGCC) were blocked with the drug nifedipine. To the best of our knowledge, this is the first work that demonstrates that VSMCs cultured on a conducting polymer substrate and subject to electrical stimulation not only exhibit enhanced proliferation but can be simultaneously encouraged to increase contractile protein expression. This behaviour is somewhat contrary to the classical definition of smooth muscle contractile and synthetic phenotypes that, in general, requires a modulation in phenotype as a prerequisite for smooth muscle proliferation. This interesting result highlights both the inherent plasticity of vascular smooth muscle cells and the potential of electrical stimulation via conducting polymer substrates to manipulate their behaviour. Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates and were subjected to a 50 mu A sinusoidal electrical stimulation at 0.05, 5 and 500Hz. These substrates were doped with hyaluronic acid and coated with collagen IV followed by Matrigel super(()R) in order to mimic the basement membrane and encourage cell attachment. Increased proliferation and expression of smooth muscle phenotype markers (smooth muscle alpha -actin and smooth muscle myosin heavy chain) were observed in cultures stimulated at 5 and 500Hz. This increased proliferation and expression of contractile proteins were found to be significantly decreased when L-type voltage-gated calcium channels (VGCC) were blocked with the drug nifedipine. To the best of our knowledge, this is the first work that demonstrates that VSMCs cultured on a conducting polymer substrate and subject to electrical stimulation not only exhibit enhanced proliferation but can be simultaneously encouraged to increase contractile protein expression. This behaviour is somewhat contrary to the classical definition of smooth muscle contractile and synthetic phenotypes that, in general, requires a modulation in phenotype as a prerequisite for smooth muscle proliferation. This interesting result highlights both the inherent plasticity of vascular smooth muscle cells and the potential of electrical stimulation via conducting polymer substrates to manipulate their behaviour. |
Author | Cooper-White, Justin J. Rowlands, Andrew S. |
Author_xml | – sequence: 1 givenname: Andrew S. surname: Rowlands fullname: Rowlands, Andrew S. – sequence: 2 givenname: Justin J. surname: Cooper-White fullname: Cooper-White, Justin J. email: j.cooperwhite@uq.edu.au |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18789820$$D View this record in MEDLINE/PubMed |
BookMark | eNqNklFr1TAYhoNM3Nn0L0jxwrt2X5K2ab0QdXMqDLxQr0OafHU5ps0xSQf997aeI8pAdq5K4HkfPvq-Z-Rk9CMS8oJCQYHWF9uis35QCYNVLhYMoClAFFCxR2RDG9HkVQvVCdkALVne1pSdkrMYt7C8oWRPyOkKtQ2DDTFXNqBOdvye7W5x9GneYeb77E5FPTkVsjh4n26zYYraYabRuZhNceXRLcFgtXJuzmKyw8InNJn2o5kOSu_mAcNT8rhfLsVnh-85-Xb9_uvlx_zm84dPl29vcl0zSHnbcsqo7pXohW561hmuespLjcIoahh0PSsbbTqmuWHUCGAcUNWUC246Jfg5ebn37oL_OWFMcrBxPVmN6Kco67Zq2rIpHwR5xWlJ24eNDFohqGAL-PwATt2ARu6CHVSY5Z8_vQCv9oAOPsaA_V8E5Fqr3Mp_a5VrrRKEXGpdwm_uhbVNKlk_pqCsO05xtVfgUsCdxSCjtjhqNL8HII23x2le39NoZ8d1BD9wxrj1UxjXDJWRSZBf1gmuC4QGoCqBLoJ3_xcce8UvSnD2Ng |
CitedBy_id | crossref_primary_10_1016_j_biomaterials_2019_119584 crossref_primary_10_1016_j_actbio_2011_07_029 crossref_primary_10_1039_D4YA00155A crossref_primary_10_3390_biom9090448 crossref_primary_10_1155_2019_4146190 crossref_primary_10_1016_j_actbio_2021_08_010 crossref_primary_10_1016_j_tice_2022_101996 crossref_primary_10_1007_s10439_016_1755_7 crossref_primary_10_1039_C4RA03987D crossref_primary_10_1016_j_biomaterials_2015_08_042 crossref_primary_10_1016_j_biomaterials_2009_06_059 crossref_primary_10_1177_0885328219882638 crossref_primary_10_3390_polym17050620 crossref_primary_10_1088_0957_4484_22_8_085101 crossref_primary_10_1163_156856209X434647 crossref_primary_10_1039_C5TB00629E crossref_primary_10_1016_j_apmt_2024_102332 crossref_primary_10_1002_admt_202000384 crossref_primary_10_1016_j_actbio_2019_08_044 crossref_primary_10_1039_c3tb00463e crossref_primary_10_1016_j_biomaterials_2013_05_076 crossref_primary_10_1016_j_electacta_2016_06_080 crossref_primary_10_1002_jbm_a_32822 crossref_primary_10_1002_pat_3385 crossref_primary_10_1021_acsami_9b07353 crossref_primary_10_1021_bm300161r crossref_primary_10_1016_j_materresbull_2020_111083 crossref_primary_10_1039_C4TB00142G crossref_primary_10_1016_j_jbiosc_2021_12_003 crossref_primary_10_1038_s41598_017_17120_8 crossref_primary_10_1089_ten_tea_2012_0111 crossref_primary_10_1089_ten_teb_2012_0183 crossref_primary_10_1002_adfm_201102373 crossref_primary_10_1089_ten_teb_2009_0630 crossref_primary_10_1016_j_eurpolymj_2018_05_025 crossref_primary_10_1039_D0TB00627K crossref_primary_10_1038_s41467_024_55401_9 crossref_primary_10_1007_s12221_013_0703_5 crossref_primary_10_1002_app_41670 crossref_primary_10_1016_j_reactfunctpolym_2024_106145 crossref_primary_10_1039_C6RA11682E crossref_primary_10_1002_jbm_a_35344 crossref_primary_10_1016_j_msec_2019_04_016 crossref_primary_10_1016_j_bioactmat_2020_03_010 crossref_primary_10_1371_journal_pone_0071660 crossref_primary_10_1016_j_eurpolymj_2019_02_005 crossref_primary_10_1002_term_383 crossref_primary_10_1016_j_actbio_2016_01_036 crossref_primary_10_1080_00914037_2016_1201831 crossref_primary_10_1039_D0NR02581J crossref_primary_10_1039_D4CS00413B crossref_primary_10_1002_mabi_201700128 crossref_primary_10_1039_D0BM00621A crossref_primary_10_1007_s44258_024_00020_8 crossref_primary_10_1039_c2jm32165c crossref_primary_10_1016_j_msec_2013_12_019 crossref_primary_10_1016_j_matlet_2014_09_077 crossref_primary_10_1002_mabi_201000465 crossref_primary_10_1039_C2BM00143H crossref_primary_10_1039_C6RA14109A crossref_primary_10_1038_s41598_018_22066_6 |
Cites_doi | 10.1152/ajpheart.00610.2003 10.1161/res.89.7.560 10.1159/000064517 10.1149/1.1448820 10.1172/JCI111185 10.1016/S0306-4522(98)00584-3 10.1247/csf.22.65 10.1002/adma.200501242 10.5858/2000-124-1688-SMTOTP 10.1007/s004280050223 10.1161/01.RES.0000138582.36921.9e 10.1002/bies.950170605 10.3171/foc.2002.13.6.6 10.1523/JNEUROSCI.02-04-00483.1982 10.1097/00003086-199803000-00037 10.1016/j.tcm.2006.11.001 10.1097/01.pas.0000188029.63706.31 10.1152/physrev.00041.2003 10.1152/physrev.1995.75.3.487 10.1016/S0142-9612(00)00344-6 10.1016/S0022-3565(25)24487-1 10.1002/1616-3028(20020101)12:1<33::AID-ADFM33>3.0.CO;2-E 10.1634/stemcells.2006-0011 10.1159/000099123 10.1152/ajpcell.00201.2003 10.1016/j.msec.2005.10.076 10.1073/pnas.94.17.8948 10.1152/ajpregu.1982.242.3.R358 10.1002/jbm.10015 10.1083/jcb.106.6.2067 10.1021/la025979b 10.1016/0003-9861(91)90290-Y 10.1161/01.CIR.96.1.82 10.1007/BF00222796 10.1021/bm040048v 10.1016/S0021-9258(19)38264-X 10.1152/ajplung.00331.2006 10.1016/j.jconrel.2006.09.004 10.3348/kjr.2008.9.s.s14 10.1111/j.1582-4934.2005.tb00386.x 10.1152/physrev.1979.59.1.1 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I 10.1161/01.RES.58.4.427 10.1161/01.RES.71.4.759 10.1161/01.RES.75.5.803 10.1002/cncr.10402 10.1152/ajpcell.00131.2007 10.1515/aut-2004-040102 10.1016/S0022-0728(02)00725-8 10.1054/jcms.1999.0104 10.1084/jem.148.5.1400 10.1111/j.1525-1594.2005.29073.x 10.1021/bm060044l |
ContentType | Journal Article |
Copyright | 2008 |
Copyright_xml | – notice: 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7X8 |
DOI | 10.1016/j.biomaterials.2008.07.052 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 4520 |
ExternalDocumentID | 18789820 10_1016_j_biomaterials_2008_07_052 S0142961208005401 1_s2_0_S0142961208005401 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c620t-993121cfa7f7c8f2bd3af134ce7da1d20bf248cdb2c3d21d70230ea61373dba73 |
IEDL.DBID | AIKHN |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Jul 11 09:28:13 EDT 2025 Fri Jul 11 01:51:43 EDT 2025 Tue Aug 05 09:57:36 EDT 2025 Thu Apr 03 06:56:58 EDT 2025 Tue Jul 01 03:47:16 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Fri Feb 23 02:17:09 EST 2024 Sun Feb 23 10:18:58 EST 2025 Tue Aug 26 16:33:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | Smooth muscle cell Cell proliferation Electrical stimulation Cell activation Electroactive polymer |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c620t-993121cfa7f7c8f2bd3af134ce7da1d20bf248cdb2c3d21d70230ea61373dba73 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 18789820 |
PQID | 20977172 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_69589484 proquest_miscellaneous_35314197 proquest_miscellaneous_20977172 pubmed_primary_18789820 crossref_primary_10_1016_j_biomaterials_2008_07_052 crossref_citationtrail_10_1016_j_biomaterials_2008_07_052 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2008_07_052 elsevier_clinicalkeyesjournals_1_s2_0_S0142961208005401 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2008_07_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-12-01 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2008 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sasaki, Yamamura, Kawakami, Yamada, Hiratsuka, Kameyama (bib54) 2002; 94 Cribbs (bib58) 2001; 89 Gröschel-Stewart, Chamley, Campbell, Burnstock (bib33) 1975; 165 Cen, Neoh, Li, Kang (bib45) 2004; 5 Supronowicz, Ajayan, Ullmann, Arulanandam, Metzger, Bizios (bib10) 2001; 59 Rodrigez, Billon, Roget, Bidan (bib43) 2002; 523 Majesky, Giachelli, Reidy, Schwartz (bib22) October 1, 1992; 71 Proca, Ross, Pratt, Frankel (bib56) 2000; 124 van Eys, Völler, Timmer, Wehrens, Small, Schalken (bib34) 1997; 22 Chamley, Campbell, McConnell, Gröschel-Stewart (bib49) 1976; 177 Wamhoff, Bowles, McDonald, Sinha, Somlyo, Somlyo (bib57) August 20, 2004; 95 Onuma, Hui (bib3) June 1, 1988; 106 Khalil, van Breemen (bib59) 1988; 244 Croll, O'Connor, Stevens, Cooper-White (bib47) 2006; 7 Radisic M, Park H, Langer R, Freed LE, Vunjak-Novakovic G. Co-culture of cardiac fibroblasts and myocytes enhances functional assembly of engineered myocardium. In: Conference proceedings, seventh international congress of the cell transplant society (CTS 2004), Boston, MA; November 17–20, 2004. Cen, Neoh, Kang (bib44) 2002; 18 Mayr, Hofer, Bijak, Rafolt, Unger, Reichel (bib17) 2002; 12 Li, Kolega (bib2) 2002; 39 Eddinger, Murphy (bib28) 1991; 284 Thompson, Moulton, Jie Ding, Richardson, Cameron, O'Leary (bib37) 2006; 116 Cosnier, Molins, Mousty, Galland, Lepellec (bib42) 2006; 26 van Eys, Niessen, Rensen (bib32) 2007; 17 Kawahara, Yamaoka, Iwata, Fujimura, Kajiume, Magaki (bib18) 2006; 73 Collier, Camp, Hudon, Schmidt (bib40) 1999; 50 Owens, Kumar, Wamhoff (bib51) 2004; 84 Chamley-Campbell, Campbell, Ross (bib21) 1979; 59 Helgason, Gargiulo, Johannesdottir, Ingvarsson, Knutsdottir, Gudmundsdottir (bib16) 2005; 29 Yamada, Tanemura, Okada, Iwanami, Nakamura, Mizuno (bib14) March 1, 2007; 25 Morone, Feuer (bib15) 2002; 13 Kotwal, Schmidt (bib7) 2001; 22 Tallman, Vang, Wallace, Bierwagen (bib41) 2002; 149 Dekkers, Schaafsma, Nelemans, Zaagsma, Meurs (bib48) 2007; 292 Glukhova, Frid, Koteliansky (bib30) August 5, 1990; 265 Miano, Cserjesi, Ligon, Periasamy, Olson (bib31) November 1, 1994; 75 Pedrotty, Koh, Davis, Taylor, Wolf, Niklason (bib9) 2005; 288 Gabbiani, Kocher, Bloom, Vandekerckhove, Weber (bib25) 1984; 73 Eddinger, Meer (bib27) August 1, 2007; 293 Shimoda, Oka, Otani, Hakozaki, Yoshimura, Okazaki (bib52) 1998; 433 Schmidt, Shastri, Vacanti, Langer (bib8) 1997; 94 Ullmann, Plawsky, Kumar, Bizios (bib11) 1999 Wang, Zhong, Ouyang, Jiang, Zhang, Xie (bib12) 1998; 348 Patel, Poo (bib4) 1982; 2 Aikawa, Sakomura, Ueda, Kimura, Manabe, Ishiwata (bib24) July 1, 1997; 96 Orr, Buchanan, Weiss (bib46) 1991 Barker, Jaffe, Vanable (bib1) March 1, 1982; 242 Owens (bib23) July 1, 1995; 75 George, LaVan, Burdick, Chen, Liang, Langer (bib38) 2006; 18 Hagiwara, Bell (bib13) 2000; 28 de Leval, Waltregny, Boniver, Young, Castronovo, Oliva (bib55) 2006; 30 Kim, Koncar, Devaux (bib35) 2004; 4 Borgens (bib6) 1999; 91 Cho, Kim, Suh, Lee, Shim, Kim (bib53) 2008; 9 Stern-Straeter, Bach, Stangenberg, Foerster, Horch, Stark (bib19) 2005; 9 Berridge (bib20) 1995; 17 Cobb, Bennett (bib50) 1970; 108 Ives, Schultz, Galardy, Jamieson (bib39) 1978; 148 Martin, Rzucidlo, Merenick, Fingar, Brown, Wagner (bib29) March 1, 2004; 286 Rivers, Terr, Schmidt (bib36) 2002; 12 Schwartz, Campbell, Campbell (bib26) 1986; 58 Miano (10.1016/j.biomaterials.2008.07.052_bib31) 1994; 75 Mayr (10.1016/j.biomaterials.2008.07.052_bib17) 2002; 12 Croll (10.1016/j.biomaterials.2008.07.052_bib47) 2006; 7 Rodrigez (10.1016/j.biomaterials.2008.07.052_bib43) 2002; 523 Berridge (10.1016/j.biomaterials.2008.07.052_bib20) 1995; 17 Schwartz (10.1016/j.biomaterials.2008.07.052_bib26) 1986; 58 van Eys (10.1016/j.biomaterials.2008.07.052_bib32) 2007; 17 Rivers (10.1016/j.biomaterials.2008.07.052_bib36) 2002; 12 Ullmann (10.1016/j.biomaterials.2008.07.052_bib11) 1999 Cosnier (10.1016/j.biomaterials.2008.07.052_bib42) 2006; 26 Owens (10.1016/j.biomaterials.2008.07.052_bib51) 2004; 84 Cribbs (10.1016/j.biomaterials.2008.07.052_bib58) 2001; 89 Pedrotty (10.1016/j.biomaterials.2008.07.052_bib9) 2005; 288 Chamley (10.1016/j.biomaterials.2008.07.052_bib49) 1976; 177 Shimoda (10.1016/j.biomaterials.2008.07.052_bib52) 1998; 433 Proca (10.1016/j.biomaterials.2008.07.052_bib56) 2000; 124 Hagiwara (10.1016/j.biomaterials.2008.07.052_bib13) 2000; 28 Wamhoff (10.1016/j.biomaterials.2008.07.052_bib57) 2004; 95 Owens (10.1016/j.biomaterials.2008.07.052_bib23) 1995; 75 Collier (10.1016/j.biomaterials.2008.07.052_bib40) 1999; 50 Li (10.1016/j.biomaterials.2008.07.052_bib2) 2002; 39 Majesky (10.1016/j.biomaterials.2008.07.052_bib22) 1992; 71 Eddinger (10.1016/j.biomaterials.2008.07.052_bib28) 1991; 284 de Leval (10.1016/j.biomaterials.2008.07.052_bib55) 2006; 30 Chamley-Campbell (10.1016/j.biomaterials.2008.07.052_bib21) 1979; 59 Stern-Straeter (10.1016/j.biomaterials.2008.07.052_bib19) 2005; 9 Ives (10.1016/j.biomaterials.2008.07.052_bib39) 1978; 148 Cen (10.1016/j.biomaterials.2008.07.052_bib45) 2004; 5 Yamada (10.1016/j.biomaterials.2008.07.052_bib14) 2007; 25 Martin (10.1016/j.biomaterials.2008.07.052_bib29) 2004; 286 Sasaki (10.1016/j.biomaterials.2008.07.052_bib54) 2002; 94 Orr (10.1016/j.biomaterials.2008.07.052_bib46) 1991 Dekkers (10.1016/j.biomaterials.2008.07.052_bib48) 2007; 292 Gröschel-Stewart (10.1016/j.biomaterials.2008.07.052_bib33) 1975; 165 Cobb (10.1016/j.biomaterials.2008.07.052_bib50) 1970; 108 Khalil (10.1016/j.biomaterials.2008.07.052_bib59) 1988; 244 Onuma (10.1016/j.biomaterials.2008.07.052_bib3) 1988; 106 Supronowicz (10.1016/j.biomaterials.2008.07.052_bib10) 2001; 59 van Eys (10.1016/j.biomaterials.2008.07.052_bib34) 1997; 22 Thompson (10.1016/j.biomaterials.2008.07.052_bib37) 2006; 116 Gabbiani (10.1016/j.biomaterials.2008.07.052_bib25) 1984; 73 Tallman (10.1016/j.biomaterials.2008.07.052_bib41) 2002; 149 Morone (10.1016/j.biomaterials.2008.07.052_bib15) 2002; 13 Cen (10.1016/j.biomaterials.2008.07.052_bib44) 2002; 18 Kawahara (10.1016/j.biomaterials.2008.07.052_bib18) 2006; 73 Patel (10.1016/j.biomaterials.2008.07.052_bib4) 1982; 2 Schmidt (10.1016/j.biomaterials.2008.07.052_bib8) 1997; 94 Kim (10.1016/j.biomaterials.2008.07.052_bib35) 2004; 4 Wang (10.1016/j.biomaterials.2008.07.052_bib12) 1998; 348 Kotwal (10.1016/j.biomaterials.2008.07.052_bib7) 2001; 22 Cho (10.1016/j.biomaterials.2008.07.052_bib53) 2008; 9 Glukhova (10.1016/j.biomaterials.2008.07.052_bib30) 1990; 265 Barker (10.1016/j.biomaterials.2008.07.052_bib1) 1982; 242 Helgason (10.1016/j.biomaterials.2008.07.052_bib16) 2005; 29 Aikawa (10.1016/j.biomaterials.2008.07.052_bib24) 1997; 96 Borgens (10.1016/j.biomaterials.2008.07.052_bib6) 1999; 91 10.1016/j.biomaterials.2008.07.052_bib5 George (10.1016/j.biomaterials.2008.07.052_bib38) 2006; 18 Eddinger (10.1016/j.biomaterials.2008.07.052_bib27) 2007; 293 |
References_xml | – volume: 18 start-page: 577 year: 2006 end-page: 581 ident: bib38 article-title: Electrically controlled drug delivery from biotin-doped conductive polypyrrole publication-title: Adv Mater – volume: 59 start-page: 1 year: 1979 end-page: 61 ident: bib21 article-title: The smooth muscle cell in culture publication-title: Physiol Rev – volume: 75 start-page: 487 year: July 1, 1995 end-page: 517 ident: bib23 article-title: Regulation of differentiation of vascular smooth muscle cells publication-title: Physiol Rev – volume: 26 start-page: 436 year: 2006 end-page: 441 ident: bib42 article-title: A simple strategy based on photobiotin irradiation for the photoelectrochemical immobilization of proteins on electrode surfaces publication-title: Mater Sci Eng C – volume: 348 start-page: 259 year: 1998 end-page: 268 ident: bib12 article-title: Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions publication-title: Clin Orthopaed Relat Res – volume: 523 start-page: 70 year: 2002 end-page: 78 ident: bib43 article-title: Electrosynthesis of a biotinylated polypyrrole film and study of the avidin recognition by QCM publication-title: J Electroanal Chem – volume: 7 start-page: 1610 year: 2006 end-page: 1622 ident: bib47 article-title: A blank slate? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces publication-title: Biomacromolecules – volume: 9 start-page: 883 year: 2005 end-page: 892 ident: bib19 article-title: Impact of electrical stimulation on three-dimensional myoblast cultures – a real-time RT-PCR study publication-title: J Cell Mol Med – reference: Radisic M, Park H, Langer R, Freed LE, Vunjak-Novakovic G. Co-culture of cardiac fibroblasts and myocytes enhances functional assembly of engineered myocardium. In: Conference proceedings, seventh international congress of the cell transplant society (CTS 2004), Boston, MA; November 17–20, 2004. – volume: 17 start-page: 491 year: 1995 end-page: 500 ident: bib20 article-title: Calcium signalling and cell proliferation publication-title: BioEssays – volume: 30 start-page: 319 year: 2006 end-page: 327 ident: bib55 article-title: Use of histone deacetylase 8 (Hdac8), a new marker of smooth muscle differentiation, in the classification of mesenchymal tumors of the uterus publication-title: Am J Surg Pathol – volume: 91 start-page: 251 year: 1999 end-page: 264 ident: bib6 article-title: Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels publication-title: Neuroscience – volume: 13 start-page: 1 year: 2002 end-page: 7 ident: bib15 article-title: The use of electrical stimulation to enhance spinal fusion publication-title: Neurosurg Focus – volume: 73 start-page: 288 year: 2006 end-page: 294 ident: bib18 article-title: Novel electrical stimulation sets the cultured myoblast contractile function to ‘on’ publication-title: Pathobiology – volume: 9 start-page: 14 year: 2008 end-page: 17 ident: bib53 article-title: Leiomyosarcoma of the ovarian vein: a case report with radiological findings publication-title: Korean J Radiol – volume: 39 start-page: 391 year: 2002 end-page: 404 ident: bib2 article-title: Effects of direct current electric fields on cell migration and catin filament distribution in bonvine vascular endothelial cells publication-title: J Vasc Res – volume: 94 start-page: 1777 year: 2002 end-page: 1786 ident: bib54 article-title: Expression of smooth muscle calponin in tumor vessels of human hepatocellular carcinoma and its possible association with prognosis publication-title: Cancer – volume: 25 start-page: 562 year: March 1, 2007 end-page: 570 ident: bib14 article-title: Electrical stimulation modulates fate determination of differentiating embryonic stem cells publication-title: Stem Cells – volume: 22 start-page: 1055 year: 2001 end-page: 1064 ident: bib7 article-title: Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials publication-title: Biomaterials – volume: 4 start-page: 9 year: 2004 end-page: 13 ident: bib35 article-title: Electrical properties of conductive polymers: PET – nanocomposites' fibres publication-title: AUTEX Res J – volume: 116 start-page: 285 year: 2006 end-page: 294 ident: bib37 article-title: Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole publication-title: J Control Release – volume: 106 start-page: 2067 year: June 1, 1988 end-page: 2075 ident: bib3 article-title: Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent publication-title: J Cell Biol – volume: 95 start-page: 406 year: August 20, 2004 end-page: 414 ident: bib57 article-title: L-type voltage-gated Ca publication-title: Circ Res – volume: 50 start-page: 574 year: 1999 end-page: 584 ident: bib40 article-title: Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications publication-title: Biomed Mater Res – volume: 89 start-page: 560 year: 2001 end-page: 562 ident: bib58 article-title: Vascular smooth muscle calcium channels: could “T” be a target? publication-title: Circ Res – volume: 244 start-page: 537 year: 1988 end-page: 542 ident: bib59 article-title: Sustained contraction of vascular smooth muscle: calcium influx or C-kinase activation? publication-title: J Pharmacol Exp Ther – volume: 94 start-page: 8948 year: 1997 end-page: 8953 ident: bib8 article-title: Stimulation of neurite outgrowth using an electrically conducting polymer publication-title: Proc Natl Acad Sci U S A – volume: 284 start-page: 232 year: 1991 end-page: 237 ident: bib28 article-title: Developmental changes in actin and myosin heavy chain isoform expression in smooth muscle publication-title: Arch Biochem Biophys – volume: 84 start-page: 767 year: 2004 end-page: 801 ident: bib51 article-title: Molecular regulation of vascular smooth muscle cell differentiation in development and disease publication-title: Physiol Rev – volume: 17 start-page: 26 year: 2007 end-page: 30 ident: bib32 article-title: Smoothelin in vascular smooth muscle cells publication-title: Trends Cardiovasc Med – volume: 22 start-page: 65 year: 1997 end-page: 72 ident: bib34 article-title: Smoothelin expression characterisistics: development of a smooth muscle cell publication-title: Cell Struct Funct – volume: 293 start-page: C493 year: August 1, 2007 end-page: C508 ident: bib27 article-title: Myosin II isoforms in smooth muscle: heterogeneity and function publication-title: Am J Physiol Cell Physiol – volume: 59 start-page: 499 year: 2001 end-page: 506 ident: bib10 article-title: Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation publication-title: J Biomed Mater Res – volume: 18 start-page: 8633 year: 2002 end-page: 8640 ident: bib44 article-title: Surface functionalization of electrically conductive polypyrrole film with hyaluronic acid publication-title: Langmuir – volume: 12 year: 2002 ident: bib36 article-title: Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications publication-title: Adv Funct Mater – volume: 73 start-page: 148 year: 1984 end-page: 152 ident: bib25 article-title: Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media publication-title: J Clin Invest – volume: 29 start-page: 440 year: 2005 end-page: 443 ident: bib16 article-title: Monitoring muscle growth and tissue changes induced by electrical stimulation of denervated degenerated muscles with Ct and stereolithographic 3D modeling publication-title: Artif Organs – volume: 75 start-page: 803 year: November 1, 1994 end-page: 812 ident: bib31 article-title: Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis publication-title: Circ Res – volume: 108 start-page: 177 year: 1970 end-page: 189 ident: bib50 article-title: An ultrastructural study of mitotic division in differentiated gastric smooth muscle cells publication-title: Cell Tissue Res – year: 1991 ident: bib46 article-title: Microcirculation in cancer metastasis – volume: 242 start-page: R358 year: March 1, 1982 end-page: R366 ident: bib1 article-title: The glabrous epidermis of cavies contains a powerful battery publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 149 start-page: C173 year: 2002 end-page: C179 ident: bib41 article-title: Direct electrodeposition of polypyrrole on aluminum and aluminum alloy by electron transfer mediation publication-title: J Electrochem Soc – volume: 165 start-page: 13 year: 1975 end-page: 22 ident: bib33 article-title: Changes in myosin distribution in dedifferentiating and redifferentiating smooth muscle cells in tissue culture publication-title: Cell Tissue Res – volume: 71 start-page: 759 year: October 1, 1992 end-page: 768 ident: bib22 article-title: Rat carotid neointimal smooth muscle cells reexpress a developmentally regulated mRNA phenotype during repair of arterial injury publication-title: Circ Res – volume: 177 start-page: 503 year: 1976 end-page: 522 ident: bib49 article-title: Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture publication-title: Cell Tissue Res – volume: 433 start-page: 97 year: 1998 end-page: 100 ident: bib52 article-title: Vascular leiomyosarcoma arising from the inferior vena cava diagnosed by intraluminal biopsy publication-title: Virch Arch – volume: 265 start-page: 13042 year: August 5, 1990 end-page: 13046 ident: bib30 article-title: Developmental changes in expression of contractile and cytoskeletal proteins in human aortic smooth muscle publication-title: J Biol Chem – volume: 28 start-page: 12 year: 2000 end-page: 19 ident: bib13 article-title: Effect of electrical stimulation on mandibular distraction osteogenesis publication-title: J Cranio-Maxillofac Surg – volume: 124 start-page: 1688 year: 2000 end-page: 1692 ident: bib56 article-title: Smooth muscle tumor of the pleura publication-title: Arch Pathol Lab Med – volume: 5 start-page: 2238 year: 2004 end-page: 2246 ident: bib45 article-title: Assessment of publication-title: Biomacromolecules – volume: 286 start-page: C507 year: March 1, 2004 end-page: C517 ident: bib29 article-title: The Mtor/P70 S6k1 pathway regulates vascular smooth muscle cell differentiation publication-title: Am J Physiol Cell Physiol – volume: 12 start-page: 287 year: 2002 end-page: 290 ident: bib17 article-title: Functional electrical stimulation (Fes) of denervated muscles: existing and prospective technological solutions publication-title: Basic Appl Myol – volume: 292 start-page: L1405 year: 2007 end-page: L1413 ident: bib48 article-title: Extracellular matrix proteins differentially regulate airway smooth muscle phenotype and function publication-title: Am J Physiol Lung Cell Mol Physiol – year: 1999 ident: bib11 article-title: Osteoblast responses to electrical stimulation publication-title: 1999 Bioengineering conference – volume: 58 start-page: 427 year: 1986 end-page: 440 ident: bib26 article-title: Replication of smooth muscle cells in vascular disease publication-title: Circ Res – volume: 148 start-page: 1400 year: 1978 end-page: 1413 ident: bib39 article-title: Preparation of functional smooth muscle cells from the rabbit aorta publication-title: J Exp Med – volume: 96 start-page: 82 year: July 1, 1997 end-page: 90 ident: bib24 article-title: Redifferentiation of smooth muscle cells after coronary angioplasty determined via myosin heavy chain expression publication-title: Circulation – volume: 288 start-page: H1620 year: 2005 end-page: H1626 ident: bib9 article-title: Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation publication-title: Am J Physiol Heart Circ Physiol – volume: 2 start-page: 483 year: 1982 end-page: 496 ident: bib4 article-title: Orientation of neurite growth by extracellular electric fields publication-title: J Neurosci – volume: 288 start-page: H1620 issue: 4 year: 2005 ident: 10.1016/j.biomaterials.2008.07.052_bib9 article-title: Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00610.2003 – volume: 89 start-page: 560 issue: 7 year: 2001 ident: 10.1016/j.biomaterials.2008.07.052_bib58 article-title: Vascular smooth muscle calcium channels: could “T” be a target? publication-title: Circ Res doi: 10.1161/res.89.7.560 – volume: 39 start-page: 391 year: 2002 ident: 10.1016/j.biomaterials.2008.07.052_bib2 article-title: Effects of direct current electric fields on cell migration and catin filament distribution in bonvine vascular endothelial cells publication-title: J Vasc Res doi: 10.1159/000064517 – volume: 149 start-page: C173 issue: 3 year: 2002 ident: 10.1016/j.biomaterials.2008.07.052_bib41 article-title: Direct electrodeposition of polypyrrole on aluminum and aluminum alloy by electron transfer mediation publication-title: J Electrochem Soc doi: 10.1149/1.1448820 – volume: 73 start-page: 148 issue: 1 year: 1984 ident: 10.1016/j.biomaterials.2008.07.052_bib25 article-title: Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media publication-title: J Clin Invest doi: 10.1172/JCI111185 – volume: 91 start-page: 251 issue: 1 year: 1999 ident: 10.1016/j.biomaterials.2008.07.052_bib6 article-title: Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels publication-title: Neuroscience doi: 10.1016/S0306-4522(98)00584-3 – volume: 22 start-page: 65 year: 1997 ident: 10.1016/j.biomaterials.2008.07.052_bib34 article-title: Smoothelin expression characterisistics: development of a smooth muscle cell in vitro system and identification of a vascular variant publication-title: Cell Struct Funct doi: 10.1247/csf.22.65 – volume: 18 start-page: 577 issue: 5 year: 2006 ident: 10.1016/j.biomaterials.2008.07.052_bib38 article-title: Electrically controlled drug delivery from biotin-doped conductive polypyrrole publication-title: Adv Mater doi: 10.1002/adma.200501242 – volume: 124 start-page: 1688 issue: 11 year: 2000 ident: 10.1016/j.biomaterials.2008.07.052_bib56 article-title: Smooth muscle tumor of the pleura publication-title: Arch Pathol Lab Med doi: 10.5858/2000-124-1688-SMTOTP – volume: 177 start-page: 503 issue: 4 year: 1976 ident: 10.1016/j.biomaterials.2008.07.052_bib49 article-title: Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture publication-title: Cell Tissue Res – volume: 433 start-page: 97 year: 1998 ident: 10.1016/j.biomaterials.2008.07.052_bib52 article-title: Vascular leiomyosarcoma arising from the inferior vena cava diagnosed by intraluminal biopsy publication-title: Virch Arch doi: 10.1007/s004280050223 – volume: 95 start-page: 406 issue: 4 year: 2004 ident: 10.1016/j.biomaterials.2008.07.052_bib57 article-title: L-type voltage-gated Ca2+ channels modulate expression of smooth muscle differentiation marker genes via a Rho kinase/myocardin/Srf-dependent mechanism publication-title: Circ Res doi: 10.1161/01.RES.0000138582.36921.9e – volume: 17 start-page: 491 issue: 6 year: 1995 ident: 10.1016/j.biomaterials.2008.07.052_bib20 article-title: Calcium signalling and cell proliferation publication-title: BioEssays doi: 10.1002/bies.950170605 – volume: 13 start-page: 1 issue: 6 year: 2002 ident: 10.1016/j.biomaterials.2008.07.052_bib15 article-title: The use of electrical stimulation to enhance spinal fusion publication-title: Neurosurg Focus doi: 10.3171/foc.2002.13.6.6 – volume: 2 start-page: 483 issue: 4 year: 1982 ident: 10.1016/j.biomaterials.2008.07.052_bib4 article-title: Orientation of neurite growth by extracellular electric fields publication-title: J Neurosci doi: 10.1523/JNEUROSCI.02-04-00483.1982 – ident: 10.1016/j.biomaterials.2008.07.052_bib5 – volume: 348 start-page: 259 year: 1998 ident: 10.1016/j.biomaterials.2008.07.052_bib12 article-title: Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions publication-title: Clin Orthopaed Relat Res doi: 10.1097/00003086-199803000-00037 – volume: 17 start-page: 26 issue: 1 year: 2007 ident: 10.1016/j.biomaterials.2008.07.052_bib32 article-title: Smoothelin in vascular smooth muscle cells publication-title: Trends Cardiovasc Med doi: 10.1016/j.tcm.2006.11.001 – volume: 30 start-page: 319 issue: 3 year: 2006 ident: 10.1016/j.biomaterials.2008.07.052_bib55 article-title: Use of histone deacetylase 8 (Hdac8), a new marker of smooth muscle differentiation, in the classification of mesenchymal tumors of the uterus publication-title: Am J Surg Pathol doi: 10.1097/01.pas.0000188029.63706.31 – volume: 84 start-page: 767 issue: 3 year: 2004 ident: 10.1016/j.biomaterials.2008.07.052_bib51 article-title: Molecular regulation of vascular smooth muscle cell differentiation in development and disease publication-title: Physiol Rev doi: 10.1152/physrev.00041.2003 – volume: 75 start-page: 487 issue: 3 year: 1995 ident: 10.1016/j.biomaterials.2008.07.052_bib23 article-title: Regulation of differentiation of vascular smooth muscle cells publication-title: Physiol Rev doi: 10.1152/physrev.1995.75.3.487 – year: 1999 ident: 10.1016/j.biomaterials.2008.07.052_bib11 article-title: Osteoblast responses to electrical stimulation – volume: 22 start-page: 1055 year: 2001 ident: 10.1016/j.biomaterials.2008.07.052_bib7 article-title: Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00344-6 – volume: 244 start-page: 537 issue: 2 year: 1988 ident: 10.1016/j.biomaterials.2008.07.052_bib59 article-title: Sustained contraction of vascular smooth muscle: calcium influx or C-kinase activation? publication-title: J Pharmacol Exp Ther doi: 10.1016/S0022-3565(25)24487-1 – volume: 12 issue: 1 year: 2002 ident: 10.1016/j.biomaterials.2008.07.052_bib36 article-title: Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications publication-title: Adv Funct Mater doi: 10.1002/1616-3028(20020101)12:1<33::AID-ADFM33>3.0.CO;2-E – volume: 25 start-page: 562 issue: 3 year: 2007 ident: 10.1016/j.biomaterials.2008.07.052_bib14 article-title: Electrical stimulation modulates fate determination of differentiating embryonic stem cells publication-title: Stem Cells doi: 10.1634/stemcells.2006-0011 – volume: 73 start-page: 288 year: 2006 ident: 10.1016/j.biomaterials.2008.07.052_bib18 article-title: Novel electrical stimulation sets the cultured myoblast contractile function to ‘on’ publication-title: Pathobiology doi: 10.1159/000099123 – volume: 286 start-page: C507 issue: 3 year: 2004 ident: 10.1016/j.biomaterials.2008.07.052_bib29 article-title: The Mtor/P70 S6k1 pathway regulates vascular smooth muscle cell differentiation publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00201.2003 – volume: 26 start-page: 436 issue: 2–3 year: 2006 ident: 10.1016/j.biomaterials.2008.07.052_bib42 article-title: A simple strategy based on photobiotin irradiation for the photoelectrochemical immobilization of proteins on electrode surfaces publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2005.10.076 – volume: 94 start-page: 8948 year: 1997 ident: 10.1016/j.biomaterials.2008.07.052_bib8 article-title: Stimulation of neurite outgrowth using an electrically conducting polymer publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.17.8948 – volume: 242 start-page: R358 issue: 3 year: 1982 ident: 10.1016/j.biomaterials.2008.07.052_bib1 article-title: The glabrous epidermis of cavies contains a powerful battery publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.1982.242.3.R358 – volume: 59 start-page: 499 issue: 3 year: 2001 ident: 10.1016/j.biomaterials.2008.07.052_bib10 article-title: Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation publication-title: J Biomed Mater Res doi: 10.1002/jbm.10015 – volume: 106 start-page: 2067 issue: 6 year: 1988 ident: 10.1016/j.biomaterials.2008.07.052_bib3 article-title: Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent publication-title: J Cell Biol doi: 10.1083/jcb.106.6.2067 – volume: 18 start-page: 8633 issue: 22 year: 2002 ident: 10.1016/j.biomaterials.2008.07.052_bib44 article-title: Surface functionalization of electrically conductive polypyrrole film with hyaluronic acid publication-title: Langmuir doi: 10.1021/la025979b – volume: 12 start-page: 287 year: 2002 ident: 10.1016/j.biomaterials.2008.07.052_bib17 article-title: Functional electrical stimulation (Fes) of denervated muscles: existing and prospective technological solutions publication-title: Basic Appl Myol – volume: 284 start-page: 232 issue: 2 year: 1991 ident: 10.1016/j.biomaterials.2008.07.052_bib28 article-title: Developmental changes in actin and myosin heavy chain isoform expression in smooth muscle publication-title: Arch Biochem Biophys doi: 10.1016/0003-9861(91)90290-Y – volume: 96 start-page: 82 issue: 1 year: 1997 ident: 10.1016/j.biomaterials.2008.07.052_bib24 article-title: Redifferentiation of smooth muscle cells after coronary angioplasty determined via myosin heavy chain expression publication-title: Circulation doi: 10.1161/01.CIR.96.1.82 – volume: 165 start-page: 13 year: 1975 ident: 10.1016/j.biomaterials.2008.07.052_bib33 article-title: Changes in myosin distribution in dedifferentiating and redifferentiating smooth muscle cells in tissue culture publication-title: Cell Tissue Res doi: 10.1007/BF00222796 – volume: 5 start-page: 2238 issue: 6 year: 2004 ident: 10.1016/j.biomaterials.2008.07.052_bib45 article-title: Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer publication-title: Biomacromolecules doi: 10.1021/bm040048v – volume: 265 start-page: 13042 issue: 22 year: 1990 ident: 10.1016/j.biomaterials.2008.07.052_bib30 article-title: Developmental changes in expression of contractile and cytoskeletal proteins in human aortic smooth muscle publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)38264-X – year: 1991 ident: 10.1016/j.biomaterials.2008.07.052_bib46 – volume: 292 start-page: L1405 issue: 6 year: 2007 ident: 10.1016/j.biomaterials.2008.07.052_bib48 article-title: Extracellular matrix proteins differentially regulate airway smooth muscle phenotype and function publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.00331.2006 – volume: 116 start-page: 285 issue: 3 year: 2006 ident: 10.1016/j.biomaterials.2008.07.052_bib37 article-title: Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole publication-title: J Control Release doi: 10.1016/j.jconrel.2006.09.004 – volume: 9 start-page: 14 year: 2008 ident: 10.1016/j.biomaterials.2008.07.052_bib53 article-title: Leiomyosarcoma of the ovarian vein: a case report with radiological findings publication-title: Korean J Radiol doi: 10.3348/kjr.2008.9.s.s14 – volume: 9 start-page: 883 issue: 4 year: 2005 ident: 10.1016/j.biomaterials.2008.07.052_bib19 article-title: Impact of electrical stimulation on three-dimensional myoblast cultures – a real-time RT-PCR study publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2005.tb00386.x – volume: 59 start-page: 1 year: 1979 ident: 10.1016/j.biomaterials.2008.07.052_bib21 article-title: The smooth muscle cell in culture publication-title: Physiol Rev doi: 10.1152/physrev.1979.59.1.1 – volume: 50 start-page: 574 year: 1999 ident: 10.1016/j.biomaterials.2008.07.052_bib40 article-title: Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications publication-title: Biomed Mater Res doi: 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I – volume: 58 start-page: 427 year: 1986 ident: 10.1016/j.biomaterials.2008.07.052_bib26 article-title: Replication of smooth muscle cells in vascular disease publication-title: Circ Res doi: 10.1161/01.RES.58.4.427 – volume: 71 start-page: 759 issue: 4 year: 1992 ident: 10.1016/j.biomaterials.2008.07.052_bib22 article-title: Rat carotid neointimal smooth muscle cells reexpress a developmentally regulated mRNA phenotype during repair of arterial injury publication-title: Circ Res doi: 10.1161/01.RES.71.4.759 – volume: 75 start-page: 803 issue: 5 year: 1994 ident: 10.1016/j.biomaterials.2008.07.052_bib31 article-title: Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis publication-title: Circ Res doi: 10.1161/01.RES.75.5.803 – volume: 94 start-page: 1777 issue: 6 year: 2002 ident: 10.1016/j.biomaterials.2008.07.052_bib54 article-title: Expression of smooth muscle calponin in tumor vessels of human hepatocellular carcinoma and its possible association with prognosis publication-title: Cancer doi: 10.1002/cncr.10402 – volume: 293 start-page: C493 issue: 2 year: 2007 ident: 10.1016/j.biomaterials.2008.07.052_bib27 article-title: Myosin II isoforms in smooth muscle: heterogeneity and function publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00131.2007 – volume: 4 start-page: 9 issue: 1 year: 2004 ident: 10.1016/j.biomaterials.2008.07.052_bib35 article-title: Electrical properties of conductive polymers: PET – nanocomposites' fibres publication-title: AUTEX Res J doi: 10.1515/aut-2004-040102 – volume: 523 start-page: 70 issue: 1-2 year: 2002 ident: 10.1016/j.biomaterials.2008.07.052_bib43 article-title: Electrosynthesis of a biotinylated polypyrrole film and study of the avidin recognition by QCM publication-title: J Electroanal Chem doi: 10.1016/S0022-0728(02)00725-8 – volume: 28 start-page: 12 year: 2000 ident: 10.1016/j.biomaterials.2008.07.052_bib13 article-title: Effect of electrical stimulation on mandibular distraction osteogenesis publication-title: J Cranio-Maxillofac Surg doi: 10.1054/jcms.1999.0104 – volume: 148 start-page: 1400 year: 1978 ident: 10.1016/j.biomaterials.2008.07.052_bib39 article-title: Preparation of functional smooth muscle cells from the rabbit aorta publication-title: J Exp Med doi: 10.1084/jem.148.5.1400 – volume: 29 start-page: 440 issue: 6 year: 2005 ident: 10.1016/j.biomaterials.2008.07.052_bib16 article-title: Monitoring muscle growth and tissue changes induced by electrical stimulation of denervated degenerated muscles with Ct and stereolithographic 3D modeling publication-title: Artif Organs doi: 10.1111/j.1525-1594.2005.29073.x – volume: 7 start-page: 1610 issue: 5 year: 2006 ident: 10.1016/j.biomaterials.2008.07.052_bib47 article-title: A blank slate? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces publication-title: Biomacromolecules doi: 10.1021/bm060044l – volume: 108 start-page: 177 issue: 2 year: 1970 ident: 10.1016/j.biomaterials.2008.07.052_bib50 article-title: An ultrastructural study of mitotic division in differentiated gastric smooth muscle cells publication-title: Cell Tissue Res |
SSID | ssj0014042 |
Score | 2.2292554 |
Snippet | Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates and were... Abstract Vascular smooth muscle cells (VSMCs) isolated from rabbit aorta and immortalised A7r5 cells were cultured on conducting polypyrrole (PPy) substrates... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4510 |
SubjectTerms | Actins - metabolism Adsorption Advanced Basic Science Animals Biocompatible Materials - pharmacology Calcium - pharmacology Cell activation Cell Line Cell Proliferation Cells, Cultured Dentistry Electric Stimulation Electrical stimulation Electroactive polymer Gene Expression Regulation - drug effects Muscle, Smooth, Vascular - cytology Muscle, Smooth, Vascular - drug effects Myosin Heavy Chains - metabolism Nifedipine - pharmacology Phenotype Polymers - chemistry Polymers - pharmacology Pyrroles - chemistry Pyrroles - pharmacology Rabbits Rats Smooth muscle cell Spectrum Analysis |
Title | Directing phenotype of vascular smooth muscle cells using electrically stimulated conducting polymer |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961208005401 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961208005401 https://dx.doi.org/10.1016/j.biomaterials.2008.07.052 https://www.ncbi.nlm.nih.gov/pubmed/18789820 https://www.proquest.com/docview/20977172 https://www.proquest.com/docview/35314197 https://www.proquest.com/docview/69589484 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKKyE4ICiv5VF84Bo2fiS2hThUFdUCak9U6s1K_KiKdpOq2T300t_emcRZimCllbhGnsTyNx5_dj7PEPLROQdhMcjMGF5m0ss807LwWRGKQgURCiPwovDJaTk7k9_Pi_MdcjTehUFZZYr9Q0zvo3V6Mk2jOb26vJyiLIkbWKCR8wDvgC3QHhemBNfeO_z2Y3a6_pkg876GDrbP0GDMPdrLvPCWe7Uc0E7SSszlyTetU5t4aL8eHT8lTxKRpIdDX5-RndDsk8f30gvuk4cn6cf5c-JTaGsuKIq6Wjx5pW2koxCVdosWMKOLVQdvo3ic31HUxF_QoVAOYjm_oRAQFljwK3gKG2nMFdu_sp3fLML1C3J2_PXn0SxLBRYyV_J8CfgIxpmLlYrK6chrL6rIhHRB-Yp5nteRS-18zZ3wnHmFG5ZQAQNQwteVEi_JbtM24TWhqo7gDC5EA6Odl07ngfEqMFEa7aKQE2LG4bQuZR_HIhhzO8rMftn7UKTymMoCFBMi1rZXQw6Oraw-j6jZ8ZYpxEULS8VW1upf1qFLU7yzzHbc5vYvN5yQL2vLPzx56y9_GF3MwlRHwKsmtCtsBGQdCOfmFgIiqmRGbW5RmkIbqQGPV4P3_h5RrbQBPvjmP_v_ljzqNTW95Ocd2V1er8J7IG7L-oA8-HTLDtL0vAPteEet |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQlfo4VJS-lj7wodd0E9uJbSEOFQJtW5YTSNysxA8E2k0Q2T1w6W9nJnG2VO1KK_UaeRzL37ycfJ4h5Iu1FtyiF4nWrEiEE2miRO6S3Oe59NznmuNF4elZMbkQPy7zyy1yNNyFQVpl9P29T--8dXwyjrs5vr2-HiMtiWkI0JjzQN4BR6AnAswXrfPrrxXPA8vHsJ7HyBIcPlQe7UheeMe9XPRYR2IlVvJk66LUuiy0i0YnO-RlTCPpt36lr8iWr3fJi0fFBXfJ02n8bf6auOjY6iuKlK4Gv7vSJtCBhkrbeQOI0fmyhdkofsxvKTLir2jfJgeRnN1TcAdzbPflHYVjNFaK7aZsZvdzf_eGXJwcnx9NktheIbEFSxeADs9YZkMpg7QqsMrxMmRcWC9dmTmWVoEJZV3FLHcscxKPK76E-C-5q0rJ35Ltuqn9e0JlFUAVrA8adjstrEp9xkqf8UIrG7gYET1sp7Gx9ji2wJiZgWR2Yx5DEZtjSgNQjAhfyd72FTg2kjoYUDPDHVPwigYCxUbS8l_Svo0G3prMtMyk5i8lHJHDleQferzxm_cHFTNg6Ah4WftmiYMgVYd0c_0IDv5UZFquH1HoXGmhAI93vfb-3lEllYZscO8_179Pnk3Op6fm9PvZzw_keceu6cg_H8n24m7pP0EKt6g-dyb6AK5ISHE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directing+phenotype+of+vascular+smooth+muscle+cells+using+electrically+stimulated+conducting+polymer&rft.jtitle=Biomaterials&rft.au=Rowlands%2C+Andrew+S.&rft.au=Cooper-White%2C+Justin+J.&rft.date=2008-12-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.volume=29&rft.issue=34&rft.spage=4510&rft.epage=4520&rft_id=info:doi/10.1016%2Fj.biomaterials.2008.07.052&rft.externalDocID=S0142961208005401 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961208X00250%2Fcov150h.gif |