Water level changes affect carbon turnover and microbial community composition in lake sediments
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the eff...
Saved in:
Published in | FEMS microbiology ecology Vol. 92; no. 5; pp. fiw035 - 14 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.05.2016
Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions.
Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage.
Graphical Abstract Figure.
Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage. |
---|---|
AbstractList | Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. [.sup.13]C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest C[O.sub.2] emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and C[O.sub.2] emissions. Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions.Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. ¹³C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO₂ emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO₂ emissions. Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage. Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage. Graphical Abstract Figure. Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage. Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. [.sup.13]C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest C[O.sub.2] emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and C[O.sub.2] emissions. Keywords: carbon dioxide emission; phospholipid fatty acids; keeling plot; stable isotope; water level changes Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. C-13-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA-and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13 C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO 2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO 2 emissions. Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage. |
Audience | Academic |
Author | Weise, Lukas Ulrich, Andreas Moreano, Matilde Gessler, Arthur Rudolph, Kristin Premke, Katrin Steger, Kristin Zeller, Bernd E. Kayler, Zachary Knezevic-Jaric, Jelena |
AuthorAffiliation | 2 Swiss Federal Research Institute WSL, Zürcherstr. 111, CH-8903 Birmensdorf, Switzerland 1 Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany 4 University of California, Department of Viticulture and Enology, One Shields Avenue, Davis, CA 95616, USA 6 TU Chemnitz, Department of Psychology, Research Methods and Evaluation, 09107 Chemnitz, Germany 5 INRA, Centre de Nancy Lorraine, UR 1138, Biogéochimie des Ecosystèmes Forestiers (BEF), Labex ARBRE, 54280 Champenoux, France 7 Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Chemical Analytics and Biogeochemistry Müggelseedamm 310, D-12587 Berlin, Germany 3 Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany |
AuthorAffiliation_xml | – name: 3 Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany – name: 5 INRA, Centre de Nancy Lorraine, UR 1138, Biogéochimie des Ecosystèmes Forestiers (BEF), Labex ARBRE, 54280 Champenoux, France – name: 6 TU Chemnitz, Department of Psychology, Research Methods and Evaluation, 09107 Chemnitz, Germany – name: 2 Swiss Federal Research Institute WSL, Zürcherstr. 111, CH-8903 Birmensdorf, Switzerland – name: 4 University of California, Department of Viticulture and Enology, One Shields Avenue, Davis, CA 95616, USA – name: 1 Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany – name: 7 Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Chemical Analytics and Biogeochemistry Müggelseedamm 310, D-12587 Berlin, Germany |
Author_xml | – sequence: 1 givenname: Lukas surname: Weise fullname: Weise, Lukas organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany – sequence: 2 givenname: Andreas surname: Ulrich fullname: Ulrich, Andreas organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany – sequence: 3 givenname: Matilde surname: Moreano fullname: Moreano, Matilde organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany – sequence: 4 givenname: Arthur surname: Gessler fullname: Gessler, Arthur organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany – sequence: 5 givenname: Zachary surname: E. Kayler fullname: E. Kayler, Zachary organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany – sequence: 6 givenname: Kristin surname: Steger fullname: Steger, Kristin organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany – sequence: 7 givenname: Bernd surname: Zeller fullname: Zeller, Bernd organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany – sequence: 8 givenname: Kristin surname: Rudolph fullname: Rudolph, Kristin organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany – sequence: 9 givenname: Jelena surname: Knezevic-Jaric fullname: Knezevic-Jaric, Jelena organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany – sequence: 10 givenname: Katrin surname: Premke fullname: Premke, Katrin email: premke@igb-berlin.de organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26902802$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02639683$$DView record in HAL |
BookMark | eNqFkstv1DAQhy1URB9w5IoicaGHtH7Fji9Iq4pSpJW4gDgaxxnvGhJ7iZNF_e9xlKVqK1Dlg0fjbx6e-Z2ioxADIPSa4AuCFbt00Cewl87_xqx6hk5IJXkpFCdH9-xjdJrSD4xJxTh-gY6pUJjWmJ6g79_MCEPRwR66wm5N2EAqjHNgx8KaoYmhGKchxH2GTGiL3tshNt5kOPb9FPx4O1u7mPzoM-xD0ZmfUCRofQ9hTC_Rc2e6BK8O9xn6ev3hy9VNuf788dPVal1aQfFYKqmIsI0wjkJjjBSqlcqwVtAKM8qIq2itJMdCCcy5ZQ1uVA0WpBLKMd6wM_R-ybubmh5am2sPptO7wfdmuNXReP3wJfit3sS95jUlpBY5wfmSYPso7Ga11rMPU8GUqNmeZPbdodgQf02QRt37ZKHrTIA4JU1VLSiXVLEnUSJlXhCnSmX07YJuTAfaBxdzo3bG9UriWpKa1zJTF_-g8mkhLyeLw_nsfxDw5v5k7v72VwQZKBcgrzalAdwdQrCeRaYXkelFZJlnj3jrRzOvP3fiu_9GHQYRp90TBf4APlvlXg |
CitedBy_id | crossref_primary_10_1021_acs_est_6b03268 crossref_primary_10_5194_bg_19_5221_2022 crossref_primary_10_1111_mec_16541 crossref_primary_10_3389_fmicb_2023_1144062 crossref_primary_10_1002_ldr_4987 crossref_primary_10_1093_femsec_fiz129 crossref_primary_10_1002_ecs2_4091 crossref_primary_10_1007_s11368_017_1675_7 crossref_primary_10_1038_s41598_018_19153_z crossref_primary_10_1002_lno_11663 crossref_primary_10_1016_j_scitotenv_2023_168935 crossref_primary_10_1016_j_geoderma_2024_116891 crossref_primary_10_1016_j_ecoenv_2018_03_086 crossref_primary_10_1002_eco_2216 crossref_primary_10_1007_s41748_024_00406_z crossref_primary_10_1016_j_geodrs_2024_e00851 crossref_primary_10_1016_j_rhisph_2023_100674 crossref_primary_10_1016_j_scitotenv_2020_136980 crossref_primary_10_1007_s10750_016_2715_9 crossref_primary_10_1007_s10533_021_00878_5 crossref_primary_10_1016_j_scitotenv_2016_09_003 crossref_primary_10_1002_eco_2510 crossref_primary_10_1007_s00027_019_0665_9 crossref_primary_10_3389_fenvs_2020_00008 crossref_primary_10_1038_ismej_2016_131 crossref_primary_10_1016_j_jhydrol_2024_130750 crossref_primary_10_1016_j_scitotenv_2018_01_220 crossref_primary_10_1007_s10533_019_00579_0 crossref_primary_10_3390_su8090875 crossref_primary_10_1016_j_scitotenv_2017_10_105 crossref_primary_10_1002_eco_1929 crossref_primary_10_1007_s11356_017_0824_2 crossref_primary_10_1007_s11368_019_02262_1 crossref_primary_10_1016_j_jhazmat_2025_137406 crossref_primary_10_1007_s10021_019_00464_9 crossref_primary_10_3390_w12020432 crossref_primary_10_1029_2023JG007819 crossref_primary_10_1093_femsec_fiw209 crossref_primary_10_7717_peerj_10767 crossref_primary_10_3389_fevo_2024_1305930 crossref_primary_10_3389_fmicb_2018_01044 crossref_primary_10_1016_j_scitotenv_2018_05_291 |
Cites_doi | 10.1093/acprof:oso/9780198527084.001.0001 10.1029/2010JG001516 10.4319/lo.1996.41.2.0309 10.1007/978-1-4757-3449-2 10.1146/annurev.ecolsys.29.1.503 10.1007/s00442-009-1531-6 10.3354/ame01766 10.1029/2001WR001260 10.5194/bg-3-175-2006 10.2134/jeq1982.00472425001100040001x 10.1111/1365-2664.12297 10.1016/0167-7012(91)90018-L 10.1007/s00027-003-0689-y 10.1623/hysj.53.5.939 10.1007/BF01343734 10.4319/lo.2003.48.3.1112 10.4319/lo.1998.43.4.0695 10.1016/j.jaci.2007.07.063 10.1007/s10021-006-9013-8 10.1016/j.soilbio.2008.05.004 10.1038/22932 10.1007/1-4020-3466-0_27 10.1111/j.1574-6941.2006.00085.x 10.1579/0044-7447(2006)35[469:ACBOAS]2.0.CO;2 10.4319/lo.2008.53.3.0948 10.1128/AEM.71.10.6193-6198.2005 10.1023/A:1020298907014 10.4141/cjss89-004 10.1128/AEM.65.6.2402-2408.1999 10.4319/lo.2009.54.6_part_2.2298 10.1007/s10021-003-0161-9 10.5194/bg-11-1479-2014 10.1111/j.1461-0248.2007.01113.x 10.1111/j.1462-2920.2005.00790.x 10.1038/ismej.2009.16 10.4319/lo.1988.33.4_part_2.0796 10.1029/2008JG000853 10.1073/pnas.0709331104 10.1128/MMBR.59.1.143-169.1995 10.1111/j.1574-6941.2002.tb00940.x 10.1046/j.1365-2427.2003.00985.x 10.1098/rstb.2014.0130 10.1016/j.soilbio.2004.08.003 10.1007/s002030050250 10.1007/s10021-007-9016-0 10.1111/j.1462-2920.2010.02201.x 10.1007/BF00377129 10.1002/eco.115 10.1007/s10750-010-0199-6 10.1016/j.jhydrol.2006.10.003 10.1111/j.1574-6941.2009.00819.x 10.1016/S0016-7037(98)00044-1 10.1016/j.mimet.2010.12.028 10.1128/AEM.71.7.4117-4120.2005 10.1016/j.apsoil.2013.08.002 10.1038/189424a0 10.1002/wat2.1147 10.1007/978-1-4757-4098-1 10.1128/AEM.67.1.190-197.2001 10.1890/100014 10.1134/S0001437010040089 10.4319/lo.1999.44.2.0309 10.1093/treephys/27.7.929 10.1016/S0038-0717(99)00080-2 10.1111/j.1462-2920.2005.00723.x 10.5268/IW-1.1.406 10.4319/lo.2011.56.2.0725 |
ContentType | Journal Article |
Copyright | FEMS 2016. 2016 FEMS 2016. COPYRIGHT 2016 Oxford University Press Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: FEMS 2016. 2016 – notice: FEMS 2016. – notice: COPYRIGHT 2016 Oxford University Press – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC 5PM |
DOI | 10.1093/femsec/fiw035 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Environmental Sciences |
EISSN | 1574-6941 |
EndPage | 14 |
ExternalDocumentID | PMC4821186 oai_HAL_hal_02639683v1 A708718487 26902802 10_1093_femsec_fiw035 10.1093/femsec/fiw035 |
Genre | Journal Article |
GeographicLocations | Germany Central European region Europe |
GeographicLocations_xml | – name: Germany – name: Europe – name: Central European region |
GroupedDBID | --- --K .3N .GA .Y3 05W 0R~ 10A 1B1 1OC 1TH 1~5 29H 2XV 31~ 36B 3V. 4.4 48X 4G. 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7-5 702 7PT 7X7 7XC 8-0 8-1 8-3 8-4 8-5 88E 8CJ 8FE 8FH 8FI 8FJ 8UM 930 A03 AACTN AAEDT AAHBH AAHHS AAIMJ AAJQQ AALRI AAMDB AAMVS AAOGV AAONW AAPQZ AAPXW AAQFI AAQXK AARHZ AASNB AAUQX AAVAP AAWDT AAXUO ABCQN ABEML ABEUO ABIXL ABMAC ABPTD ABQLI ABSAR ABSMQ ABUWG ABXVV ACBWZ ACCFJ ACFRR ACGFO ACIUM ACIWK ACPRK ACSCC ACUFI ACUTJ ACXQS ADBBV ADEZT ADGZP ADHKW ADHZD ADMUD ADPDF ADQBN ADRIX ADRTK ADVEK ADYVW AEEZP AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFFZL AFGWE AFIYH AFKRA AFOFC AFRAH AFULF AFXEN AFYAG AFZJQ AGINJ AGSYK AHEFC AHHHB AHMBA AI. AIWBW AJAOE AJBDE AJEEA AKRWK AKWXX ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APWMN ARIXL ASAOO ATCPS ATDFG AVWKF AXUDD AYOIW AZBYB BAFTC BAYMD BBNVY BCRHZ BDRZF BENPR BEYMZ BHONS BHPHI BPHCQ BQDIO BSWAC BVXVI BY8 CAG CCPQU CDBKE COF CS3 CXTWN D-E D-F D1J DAKXR DC6 DCZOG DFGAJ DILTD DR2 DU5 EBS EDH EJD EMB EMOBN F00 F01 F04 F5P FDB FEDTE FGOYB FHSFR FLUFQ FOEOM FYUFA FZ0 G-S G.N GAUVT GJXCC GODZA GROUPED_DOAJ H.T H.X H13 HAR HCIFZ HF~ HMC HMCUK HOLLA HVGLF HZI HZ~ I-F IAG IAO IEP IHE IHR ITC IX1 J0M J21 K48 KAQDR KBUDW KOP KSI KSN LC2 LC3 LH4 LK8 LP6 LP7 LW6 M1P M41 M49 M7P MK4 MM. N04 N05 N9A NF~ NLBLG NOMLY NQ- NU- NVLIB O9- OAWHX ODMLO OIG OJQWA OK1 OVD OVEED P2P P2X P4D PAFKI PATMY PEELM PQQKQ PROAC PSQYO PYCSY Q.N Q11 Q5Y QB0 R.K R2- RIG ROL ROX ROZ RPM RPZ RUSNO RX1 RXO SEW SIN SSZ SUPJJ SV3 TCN TEORI TLC TOX UB1 UKHRP V8K VH1 W8V W99 WH7 WQJ WRC WYUIH XG1 YAYTL YKOAZ YXANX ZCN ZXP ~02 ~IA ~KM ~WT AANHP AAYXX ABEJV ABGNP ABIME ABPIB ABWVN ABXZS ACRPL ACVFH ACYXJ ADCNI ADGKP ADNMO AEUPX AEUYN AFPUW AGQPQ AHGBF AIGII ALXQX AMNDL APJGH CITATION JXSIZ PHGZM PHGZT CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY PQGLB 7S9 L.6 1XC 5PM PJZUB |
ID | FETCH-LOGICAL-c620t-97916cb6af2ebaa769d79a3d62503231f5289740696044c3b0b98ece7969f34b3 |
IEDL.DBID | TOX |
ISSN | 1574-6941 0168-6496 |
IngestDate | Thu Aug 21 13:49:59 EDT 2025 Fri May 09 12:19:40 EDT 2025 Thu Jul 10 19:12:45 EDT 2025 Fri Jul 11 05:51:07 EDT 2025 Tue Jun 17 21:02:15 EDT 2025 Tue Jun 10 20:39:53 EDT 2025 Wed Feb 19 02:40:49 EST 2025 Tue Jul 01 00:56:00 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Wed Sep 11 04:48:43 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | water level changes carbon dioxide emission phospholipid fatty acids stable isotope keeling plot |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com FEMS 2016. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c620t-97916cb6af2ebaa769d79a3d62503231f5289740696044c3b0b98ece7969f34b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4821186 |
ORCID | 0000-0002-0054-170X 0000-0002-1910-9589 |
OpenAccessLink | https://dx.doi.org/10.1093/femsec/fiw035 |
PMID | 26902802 |
PQID | 1779414299 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4821186 hal_primary_oai_HAL_hal_02639683v1 proquest_miscellaneous_2986247293 proquest_miscellaneous_1779414299 gale_infotracmisc_A708718487 gale_infotracacademiconefile_A708718487 pubmed_primary_26902802 crossref_primary_10_1093_femsec_fiw035 crossref_citationtrail_10_1093_femsec_fiw035 oup_primary_10_1093_femsec_fiw035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | FEMS microbiology ecology |
PublicationTitleAlternate | FEMS Microbiol Ecol |
PublicationYear | 2016 |
Publisher | Oxford University Press Wiley-Blackwell |
Publisher_xml | – name: Oxford University Press – name: Wiley-Blackwell |
References | 2016040519283993000_92.5.fiw035.60 2016040519283993000_92.5.fiw035.61 2016040519283993000_92.5.fiw035.7 2016040519283993000_92.5.fiw035.8 2016040519283993000_92.5.fiw035.20 2016040519283993000_92.5.fiw035.64 2016040519283993000_92.5.fiw035.9 2016040519283993000_92.5.fiw035.21 2016040519283993000_92.5.fiw035.65 2016040519283993000_92.5.fiw035.22 2016040519283993000_92.5.fiw035.66 2016040519283993000_92.5.fiw035.3 2016040519283993000_92.5.fiw035.23 2016040519283993000_92.5.fiw035.67 2016040519283993000_92.5.fiw035.4 2016040519283993000_92.5.fiw035.24 2016040519283993000_92.5.fiw035.68 2016040519283993000_92.5.fiw035.5 2016040519283993000_92.5.fiw035.25 2016040519283993000_92.5.fiw035.69 2016040519283993000_92.5.fiw035.6 2016040519283993000_92.5.fiw035.26 2016040519283993000_92.5.fiw035.27 Butturini (2016040519283993000_92.5.fiw035.13) 2003; 39 2016040519283993000_92.5.fiw035.28 2016040519283993000_92.5.fiw035.29 Chimner (2016040519283993000_92.5.fiw035.15) 2003; 81 Kusel (2016040519283993000_92.5.fiw035.44) 2008; 121 2016040519283993000_92.5.fiw035.50 2016040519283993000_92.5.fiw035.51 2016040519283993000_92.5.fiw035.52 Parsons (2016040519283993000_92.5.fiw035.53) 1963; 21 2016040519283993000_92.5.fiw035.10 2016040519283993000_92.5.fiw035.54 2016040519283993000_92.5.fiw035.11 2016040519283993000_92.5.fiw035.12 2016040519283993000_92.5.fiw035.56 2016040519283993000_92.5.fiw035.57 2016040519283993000_92.5.fiw035.14 2016040519283993000_92.5.fiw035.59 2016040519283993000_92.5.fiw035.16 2016040519283993000_92.5.fiw035.17 2016040519283993000_92.5.fiw035.18 2016040519283993000_92.5.fiw035.19 Griffiths (2016040519283993000_92.5.fiw035.30) 1961; 189 2016040519283993000_92.5.fiw035.40 2016040519283993000_92.5.fiw035.41 2016040519283993000_92.5.fiw035.42 2016040519283993000_92.5.fiw035.43 Amann (2016040519283993000_92.5.fiw035.1) 1995; 59 2016040519283993000_92.5.fiw035.45 2016040519283993000_92.5.fiw035.46 2016040519283993000_92.5.fiw035.47 2016040519283993000_92.5.fiw035.48 2016040519283993000_92.5.fiw035.49 Reiche (2016040519283993000_92.5.fiw035.58) 2009; 114 Premke (2016040519283993000_92.5.fiw035.55) 2009; 59 Zepp Falz (2016040519283993000_92.5.fiw035.72) 1999; 65 2016040519283993000_92.5.fiw035.70 2016040519283993000_92.5.fiw035.71 Sonzogni (2016040519283993000_92.5.fiw035.63) 1982; 11 2016040519283993000_92.5.fiw035.73 2016040519283993000_92.5.fiw035.74 2016040519283993000_92.5.fiw035.31 2016040519283993000_92.5.fiw035.32 2016040519283993000_92.5.fiw035.33 2016040519283993000_92.5.fiw035.34 2016040519283993000_92.5.fiw035.35 2016040519283993000_92.5.fiw035.36 2016040519283993000_92.5.fiw035.37 Attermeyer (2016040519283993000_92.5.fiw035.2) 2014; 11 2016040519283993000_92.5.fiw035.38 2016040519283993000_92.5.fiw035.39 Sobek (2016040519283993000_92.5.fiw035.62) 2006; 35 7545384 - Arch Microbiol. 1995 Sep;164(3):165-72 11133445 - Appl Environ Microbiol. 2001 Jan;67(1):190-7 28310596 - Oecologia. 1982 Apr;53(1):7-11 19279669 - ISME J. 2009 Jun;3(6):738-44 20043179 - Oecologia. 2010 May;163(1):227-34 16011751 - Environ Microbiol. 2005 Aug;7(8):1139-49 16689875 - FEMS Microbiol Ecol. 2006 Jun;56(3):430-43 19709215 - FEMS Microbiol Ecol. 2002 May 1;40(2):85-95 17998533 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18353-4 17403645 - Tree Physiol. 2007 Jul;27(7):929-40 16204538 - Appl Environ Microbiol. 2005 Oct;71(10):6193-8 10347020 - Appl Environ Microbiol. 1999 Jun;65(6):2402-8 17900680 - J Allergy Clin Immunol. 2008 Feb;121(2):535; author reply 535-6 20438583 - Environ Microbiol. 2010 Jul;12(7):1806-10 21256887 - J Microbiol Methods. 2011 Mar;84(3):406-12 25780242 - Philos Trans R Soc Lond B Biol Sci. 2015 May 5;370(1667):null 20041952 - FEMS Microbiol Ecol. 2010 Mar;71(3):374-86 16000830 - Appl Environ Microbiol. 2005 Jul;71(7):4117-20 17334054 - Ambio. 2006 Dec;35(8):469-75 17922835 - Ecol Lett. 2007 Dec;10(12):1135-42 7535888 - Microbiol Rev. 1995 Mar;59(1):143-69 15816932 - Environ Microbiol. 2005 Apr;7(4):553-65 |
References_xml | – ident: 2016040519283993000_92.5.fiw035.19 doi: 10.1093/acprof:oso/9780198527084.001.0001 – ident: 2016040519283993000_92.5.fiw035.28 doi: 10.1029/2010JG001516 – ident: 2016040519283993000_92.5.fiw035.35 doi: 10.4319/lo.1996.41.2.0309 – ident: 2016040519283993000_92.5.fiw035.49 doi: 10.1007/978-1-4757-3449-2 – ident: 2016040519283993000_92.5.fiw035.18 doi: 10.1146/annurev.ecolsys.29.1.503 – ident: 2016040519283993000_92.5.fiw035.41 doi: 10.1007/s00442-009-1531-6 – ident: 2016040519283993000_92.5.fiw035.57 – ident: 2016040519283993000_92.5.fiw035.65 doi: 10.3354/ame01766 – volume: 39 start-page: 1110 year: 2003 ident: 2016040519283993000_92.5.fiw035.13 article-title: Influences of the stream groundwater hydrology on nitrate concentration in unsaturated riparian area bounded by an intermittent Mediterranean stream publication-title: Water Resour Res doi: 10.1029/2001WR001260 – ident: 2016040519283993000_92.5.fiw035.11 doi: 10.5194/bg-3-175-2006 – volume: 11 start-page: 555 year: 1982 ident: 2016040519283993000_92.5.fiw035.63 article-title: Bioavailability of phosphorus inputs to lakes publication-title: J Environ Qual doi: 10.2134/jeq1982.00472425001100040001x – ident: 2016040519283993000_92.5.fiw035.23 doi: 10.1111/1365-2664.12297 – ident: 2016040519283993000_92.5.fiw035.27 doi: 10.1016/0167-7012(91)90018-L – ident: 2016040519283993000_92.5.fiw035.8 doi: 10.1007/s00027-003-0689-y – ident: 2016040519283993000_92.5.fiw035.43 doi: 10.1623/hysj.53.5.939 – ident: 2016040519283993000_92.5.fiw035.6 doi: 10.1007/BF01343734 – ident: 2016040519283993000_92.5.fiw035.32 doi: 10.4319/lo.2003.48.3.1112 – ident: 2016040519283993000_92.5.fiw035.37 – ident: 2016040519283993000_92.5.fiw035.20 doi: 10.4319/lo.1998.43.4.0695 – volume: 121 start-page: 535 year: 2008 ident: 2016040519283993000_92.5.fiw035.44 article-title: No day-care visits during the first year of life for infants with atopic parents? Reply publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2007.07.063 – ident: 2016040519283993000_92.5.fiw035.16 doi: 10.1007/s10021-006-9013-8 – ident: 2016040519283993000_92.5.fiw035.71 doi: 10.1016/j.soilbio.2008.05.004 – ident: 2016040519283993000_92.5.fiw035.61 doi: 10.1038/22932 – ident: 2016040519283993000_92.5.fiw035.12 doi: 10.1007/1-4020-3466-0_27 – volume: 21 start-page: 155 year: 1963 ident: 2016040519283993000_92.5.fiw035.53 article-title: Discussion of spectrophotometric determination of marine plankton pigments, with revised equations of ascertaining chlorophyll a and carotenoids publication-title: J Mar Res – ident: 2016040519283993000_92.5.fiw035.68 doi: 10.1111/j.1574-6941.2006.00085.x – volume: 35 start-page: 469 year: 2006 ident: 2016040519283993000_92.5.fiw035.62 article-title: A carbon budget of a small humic lake: an example of the importance of lakes for organic matter cycling in boreal catchments publication-title: Ambio doi: 10.1579/0044-7447(2006)35[469:ACBOAS]2.0.CO;2 – ident: 2016040519283993000_92.5.fiw035.40 doi: 10.4319/lo.2008.53.3.0948 – ident: 2016040519283993000_92.5.fiw035.48 – ident: 2016040519283993000_92.5.fiw035.7 doi: 10.1128/AEM.71.10.6193-6198.2005 – ident: 2016040519283993000_92.5.fiw035.25 doi: 10.1023/A:1020298907014 – ident: 2016040519283993000_92.5.fiw035.51 doi: 10.4141/cjss89-004 – volume: 65 start-page: 2402 year: 1999 ident: 2016040519283993000_92.5.fiw035.72 article-title: Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland) publication-title: Appl Environ Microbiol doi: 10.1128/AEM.65.6.2402-2408.1999 – ident: 2016040519283993000_92.5.fiw035.67 doi: 10.4319/lo.2009.54.6_part_2.2298 – ident: 2016040519283993000_92.5.fiw035.47 doi: 10.1007/s10021-003-0161-9 – volume: 11 start-page: 1479 year: 2014 ident: 2016040519283993000_92.5.fiw035.2 article-title: Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition publication-title: Biogeosciences doi: 10.5194/bg-11-1479-2014 – ident: 2016040519283993000_92.5.fiw035.22 doi: 10.1111/j.1461-0248.2007.01113.x – ident: 2016040519283993000_92.5.fiw035.14 doi: 10.1111/j.1462-2920.2005.00790.x – ident: 2016040519283993000_92.5.fiw035.17 doi: 10.1038/ismej.2009.16 – ident: 2016040519283993000_92.5.fiw035.33 doi: 10.4319/lo.1988.33.4_part_2.0796 – volume: 114 start-page: G02021 year: 2009 ident: 2016040519283993000_92.5.fiw035.58 article-title: Impact of manipulated drought and heavy rainfall events on peat mineralization processes and source-sink functions of an acidic fen publication-title: J Geophys Res Biogeosci doi: 10.1029/2008JG000853 – volume: 59 start-page: 251 year: 2009 ident: 2016040519283993000_92.5.fiw035.55 article-title: Metabolism and physiological traits of the deep sea amphipod Eurythenes gryllus publication-title: Vie Et Milieu Life Environ – ident: 2016040519283993000_92.5.fiw035.60 doi: 10.1073/pnas.0709331104 – volume: 59 start-page: 143 year: 1995 ident: 2016040519283993000_92.5.fiw035.1 article-title: Phylogenetic identification and in situ detection of individual microbial cells without cultivation publication-title: Microbiol Rev doi: 10.1128/MMBR.59.1.143-169.1995 – ident: 2016040519283993000_92.5.fiw035.10 doi: 10.1111/j.1574-6941.2002.tb00940.x – ident: 2016040519283993000_92.5.fiw035.31 doi: 10.1046/j.1365-2427.2003.00985.x – ident: 2016040519283993000_92.5.fiw035.34 doi: 10.1098/rstb.2014.0130 – ident: 2016040519283993000_92.5.fiw035.50 doi: 10.1016/j.soilbio.2004.08.003 – ident: 2016040519283993000_92.5.fiw035.52 doi: 10.1007/s002030050250 – ident: 2016040519283993000_92.5.fiw035.69 doi: 10.1007/s10021-007-9016-0 – ident: 2016040519283993000_92.5.fiw035.56 doi: 10.1111/j.1462-2920.2010.02201.x – ident: 2016040519283993000_92.5.fiw035.5 doi: 10.1007/BF00377129 – ident: 2016040519283993000_92.5.fiw035.26 doi: 10.1002/eco.115 – ident: 2016040519283993000_92.5.fiw035.74 doi: 10.1007/s10750-010-0199-6 – ident: 2016040519283993000_92.5.fiw035.39 doi: 10.1016/j.jhydrol.2006.10.003 – ident: 2016040519283993000_92.5.fiw035.29 – ident: 2016040519283993000_92.5.fiw035.46 doi: 10.1111/j.1574-6941.2009.00819.x – volume: 81 start-page: 477 year: 2003 ident: 2016040519283993000_92.5.fiw035.15 article-title: Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains publication-title: Canadian Journal of Botany-Revue Canadienne De Botanique – ident: 2016040519283993000_92.5.fiw035.36 doi: 10.1016/S0016-7037(98)00044-1 – ident: 2016040519283993000_92.5.fiw035.66 doi: 10.1016/j.mimet.2010.12.028 – ident: 2016040519283993000_92.5.fiw035.24 doi: 10.1128/AEM.71.7.4117-4120.2005 – ident: 2016040519283993000_92.5.fiw035.4 doi: 10.1016/j.apsoil.2013.08.002 – volume: 189 start-page: 424 year: 1961 ident: 2016040519283993000_92.5.fiw035.30 article-title: Microbiological changes in freshly moistened soil publication-title: Nature doi: 10.1038/189424a0 – ident: 2016040519283993000_92.5.fiw035.54 doi: 10.1002/wat2.1147 – ident: 2016040519283993000_92.5.fiw035.70 doi: 10.1007/978-1-4757-4098-1 – ident: 2016040519283993000_92.5.fiw035.21 doi: 10.1128/AEM.67.1.190-197.2001 – ident: 2016040519283993000_92.5.fiw035.3 doi: 10.1890/100014 – ident: 2016040519283993000_92.5.fiw035.59 doi: 10.1134/S0001437010040089 – ident: 2016040519283993000_92.5.fiw035.9 doi: 10.4319/lo.1999.44.2.0309 – ident: 2016040519283993000_92.5.fiw035.38 doi: 10.1093/treephys/27.7.929 – ident: 2016040519283993000_92.5.fiw035.45 doi: 10.1016/S0038-0717(99)00080-2 – ident: 2016040519283993000_92.5.fiw035.42 doi: 10.1111/j.1462-2920.2005.00723.x – ident: 2016040519283993000_92.5.fiw035.73 doi: 10.5268/IW-1.1.406 – ident: 2016040519283993000_92.5.fiw035.64 doi: 10.4319/lo.2011.56.2.0725 – reference: 20041952 - FEMS Microbiol Ecol. 2010 Mar;71(3):374-86 – reference: 7545384 - Arch Microbiol. 1995 Sep;164(3):165-72 – reference: 20438583 - Environ Microbiol. 2010 Jul;12(7):1806-10 – reference: 16011751 - Environ Microbiol. 2005 Aug;7(8):1139-49 – reference: 17403645 - Tree Physiol. 2007 Jul;27(7):929-40 – reference: 11133445 - Appl Environ Microbiol. 2001 Jan;67(1):190-7 – reference: 16204538 - Appl Environ Microbiol. 2005 Oct;71(10):6193-8 – reference: 15816932 - Environ Microbiol. 2005 Apr;7(4):553-65 – reference: 25780242 - Philos Trans R Soc Lond B Biol Sci. 2015 May 5;370(1667):null – reference: 28310596 - Oecologia. 1982 Apr;53(1):7-11 – reference: 16689875 - FEMS Microbiol Ecol. 2006 Jun;56(3):430-43 – reference: 7535888 - Microbiol Rev. 1995 Mar;59(1):143-69 – reference: 19279669 - ISME J. 2009 Jun;3(6):738-44 – reference: 17334054 - Ambio. 2006 Dec;35(8):469-75 – reference: 10347020 - Appl Environ Microbiol. 1999 Jun;65(6):2402-8 – reference: 17900680 - J Allergy Clin Immunol. 2008 Feb;121(2):535; author reply 535-6 – reference: 16000830 - Appl Environ Microbiol. 2005 Jul;71(7):4117-20 – reference: 19709215 - FEMS Microbiol Ecol. 2002 May 1;40(2):85-95 – reference: 21256887 - J Microbiol Methods. 2011 Mar;84(3):406-12 – reference: 20043179 - Oecologia. 2010 May;163(1):227-34 – reference: 17998533 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18353-4 – reference: 17922835 - Ecol Lett. 2007 Dec;10(12):1135-42 |
SSID | ssj0015340 |
Score | 2.3890166 |
Snippet | Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different... |
SourceID | pubmedcentral hal proquest gale pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | fiw035 |
SubjectTerms | Actinobacteria - classification Actinobacteria - metabolism Archaea - classification Archaea - metabolism Bacteria - classification Bacteria - metabolism bacterial biomass bacterial communities Biomass Carbon Carbon - metabolism Carbon Cycle carbon dioxide Central European region Climate Change community structure Desiccation DNA drought drying Environmental aspects Europe Fatty Acids - metabolism Geologic Sediments - microbiology greenhouse gas emissions isotope labeling Lake sediments lakes Lakes - microbiology Life Sciences littoral zone Microbial colonies Oxygen - metabolism particulate organic carbon phospholipid fatty acids Polymorphism, Restriction Fragment Length quantitative polymerase chain reaction restriction fragment length polymorphism ribosomal RNA RNA, Ribosomal, 16S - genetics sediments stable isotopes |
Title | Water level changes affect carbon turnover and microbial community composition in lake sediments |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26902802 https://www.proquest.com/docview/1779414299 https://www.proquest.com/docview/2986247293 https://hal.inrae.fr/hal-02639683 https://pubmed.ncbi.nlm.nih.gov/PMC4821186 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbYEBIvExsMMkblIQQvRHNix44fy9SpQjAQ2kTfgu04WkWXTk03tH_PXZyWBZjgrWoutpuzc9_V930m5JVgPpN5bmKARFUsyhJPA9QsrnLmmLFWp63w_McTOT4T7yfZpPu_o_nLFr7mh5W_aLw7rKY_GEc2OQRgFMk__TRZbxdkXLBOQPOPO3oBp3vtbpxj1WOP0XYLWP5eH3kr4Bw_IlsdUqTD4Nptcs_XO-RBODvyZofsjn5R1MCsW6PNY_LtK8DHBZ1hNRANvN6GmrZsgzqzsPOaQpipsXSTmrqkF9NWiwnacIEssrzBT6tqLjqt6cx897SBMNfy4Z6Qs-PR6dE47s5RiJ1M2TLWCjCgs9JUqbfGKKlLpQ0vIfVhHPBdlUHWpZACK5kQjltmde6dV1rqigvLd8lmPa_9M0JN4jMrhIKGhNACvZlUCGMSD1ikTCLydvWwC9eJjONZF7MibHbzIvimCL6JyOu1-WVQ17jL8A16rsBVB-0505EHYFSoX1UMFYPML4fsKyL7PUtYLa53-SX4ft0ZimuPhx8K_A6yUa5lzq_hVxzA1PjXiA5WE6fAPrBWrfbzq6ZIFLzjEozzd9ukGok5kNjwiDwNk23dXSpbRZ00Iqo3DXuD7l-pp-etMrjIIZ_P5d5_jP85eQjYT4bazX2yuVxc-ReAr5Z2QDbURA3I_Xejk89fBu1K-wk5-Cm- |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+level+changes+affect+carbon+turnover+and+microbial+community+composition+in+lake+sediments&rft.jtitle=FEMS+microbiology+ecology&rft.au=Weise%2C+Lukas&rft.au=Ulrich%2C+Andreas&rft.au=Moreano%2C+Matilde&rft.au=Gessler%2C+Arthur&rft.date=2016-05-01&rft.pub=Wiley-Blackwell&rft.issn=0168-6496&rft.eissn=1574-6941&rft.volume=92&rft.issue=5&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1093%2Ffemsec%2Ffiw035&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02639683v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-6941&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-6941&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-6941&client=summon |