Water level changes affect carbon turnover and microbial community composition in lake sediments

Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the eff...

Full description

Saved in:
Bibliographic Details
Published inFEMS microbiology ecology Vol. 92; no. 5; pp. fiw035 - 14
Main Authors Weise, Lukas, Ulrich, Andreas, Moreano, Matilde, Gessler, Arthur, E. Kayler, Zachary, Steger, Kristin, Zeller, Bernd, Rudolph, Kristin, Knezevic-Jaric, Jelena, Premke, Katrin
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.05.2016
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage. Graphical Abstract Figure. Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage.
AbstractList Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. [.sup.13]C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest C[O.sub.2] emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and C[O.sub.2] emissions.
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions.Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions.
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions.
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. ¹³C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO₂ emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO₂ emissions. Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage.
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage. Graphical Abstract Figure. Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage.
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. [.sup.13]C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest C[O.sub.2] emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and C[O.sub.2] emissions. Keywords: carbon dioxide emission; phospholipid fatty acids; keeling plot; stable isotope; water level changes
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. C-13-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA-and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions.
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13 C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO 2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO 2 emissions. Climate changes can induce higher intensities of drying and rewetting of lake littoral zones, which in turn might result in higher allochthonous organic carbon uptake and decreased carbon storage.
Audience Academic
Author Weise, Lukas
Ulrich, Andreas
Moreano, Matilde
Gessler, Arthur
Rudolph, Kristin
Premke, Katrin
Steger, Kristin
Zeller, Bernd
E. Kayler, Zachary
Knezevic-Jaric, Jelena
AuthorAffiliation 2 Swiss Federal Research Institute WSL, Zürcherstr. 111, CH-8903 Birmensdorf, Switzerland
1 Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
4 University of California, Department of Viticulture and Enology, One Shields Avenue, Davis, CA 95616, USA
6 TU Chemnitz, Department of Psychology, Research Methods and Evaluation, 09107 Chemnitz, Germany
5 INRA, Centre de Nancy Lorraine, UR 1138, Biogéochimie des Ecosystèmes Forestiers (BEF), Labex ARBRE, 54280 Champenoux, France
7 Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Chemical Analytics and Biogeochemistry Müggelseedamm 310, D-12587 Berlin, Germany
3 Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
AuthorAffiliation_xml – name: 3 Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
– name: 5 INRA, Centre de Nancy Lorraine, UR 1138, Biogéochimie des Ecosystèmes Forestiers (BEF), Labex ARBRE, 54280 Champenoux, France
– name: 6 TU Chemnitz, Department of Psychology, Research Methods and Evaluation, 09107 Chemnitz, Germany
– name: 2 Swiss Federal Research Institute WSL, Zürcherstr. 111, CH-8903 Birmensdorf, Switzerland
– name: 4 University of California, Department of Viticulture and Enology, One Shields Avenue, Davis, CA 95616, USA
– name: 1 Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
– name: 7 Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Chemical Analytics and Biogeochemistry Müggelseedamm 310, D-12587 Berlin, Germany
Author_xml – sequence: 1
  givenname: Lukas
  surname: Weise
  fullname: Weise, Lukas
  organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
– sequence: 2
  givenname: Andreas
  surname: Ulrich
  fullname: Ulrich, Andreas
  organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
– sequence: 3
  givenname: Matilde
  surname: Moreano
  fullname: Moreano, Matilde
  organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
– sequence: 4
  givenname: Arthur
  surname: Gessler
  fullname: Gessler, Arthur
  organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
– sequence: 5
  givenname: Zachary
  surname: E. Kayler
  fullname: E. Kayler, Zachary
  organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
– sequence: 6
  givenname: Kristin
  surname: Steger
  fullname: Steger, Kristin
  organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
– sequence: 7
  givenname: Bernd
  surname: Zeller
  fullname: Zeller, Bernd
  organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
– sequence: 8
  givenname: Kristin
  surname: Rudolph
  fullname: Rudolph, Kristin
  organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
– sequence: 9
  givenname: Jelena
  surname: Knezevic-Jaric
  fullname: Knezevic-Jaric, Jelena
  organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
– sequence: 10
  givenname: Katrin
  surname: Premke
  fullname: Premke, Katrin
  email: premke@igb-berlin.de
  organization: 1Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg, Institute for Landscape Biogeochemistry, Eberswalderstr. 84, 15374 Müncheberg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26902802$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02639683$$DView record in HAL
BookMark eNqFkstv1DAQhy1URB9w5IoicaGHtH7Fji9Iq4pSpJW4gDgaxxnvGhJ7iZNF_e9xlKVqK1Dlg0fjbx6e-Z2ioxADIPSa4AuCFbt00Cewl87_xqx6hk5IJXkpFCdH9-xjdJrSD4xJxTh-gY6pUJjWmJ6g79_MCEPRwR66wm5N2EAqjHNgx8KaoYmhGKchxH2GTGiL3tshNt5kOPb9FPx4O1u7mPzoM-xD0ZmfUCRofQ9hTC_Rc2e6BK8O9xn6ev3hy9VNuf788dPVal1aQfFYKqmIsI0wjkJjjBSqlcqwVtAKM8qIq2itJMdCCcy5ZQ1uVA0WpBLKMd6wM_R-ybubmh5am2sPptO7wfdmuNXReP3wJfit3sS95jUlpBY5wfmSYPso7Ga11rMPU8GUqNmeZPbdodgQf02QRt37ZKHrTIA4JU1VLSiXVLEnUSJlXhCnSmX07YJuTAfaBxdzo3bG9UriWpKa1zJTF_-g8mkhLyeLw_nsfxDw5v5k7v72VwQZKBcgrzalAdwdQrCeRaYXkelFZJlnj3jrRzOvP3fiu_9GHQYRp90TBf4APlvlXg
CitedBy_id crossref_primary_10_1021_acs_est_6b03268
crossref_primary_10_5194_bg_19_5221_2022
crossref_primary_10_1111_mec_16541
crossref_primary_10_3389_fmicb_2023_1144062
crossref_primary_10_1002_ldr_4987
crossref_primary_10_1093_femsec_fiz129
crossref_primary_10_1002_ecs2_4091
crossref_primary_10_1007_s11368_017_1675_7
crossref_primary_10_1038_s41598_018_19153_z
crossref_primary_10_1002_lno_11663
crossref_primary_10_1016_j_scitotenv_2023_168935
crossref_primary_10_1016_j_geoderma_2024_116891
crossref_primary_10_1016_j_ecoenv_2018_03_086
crossref_primary_10_1002_eco_2216
crossref_primary_10_1007_s41748_024_00406_z
crossref_primary_10_1016_j_geodrs_2024_e00851
crossref_primary_10_1016_j_rhisph_2023_100674
crossref_primary_10_1016_j_scitotenv_2020_136980
crossref_primary_10_1007_s10750_016_2715_9
crossref_primary_10_1007_s10533_021_00878_5
crossref_primary_10_1016_j_scitotenv_2016_09_003
crossref_primary_10_1002_eco_2510
crossref_primary_10_1007_s00027_019_0665_9
crossref_primary_10_3389_fenvs_2020_00008
crossref_primary_10_1038_ismej_2016_131
crossref_primary_10_1016_j_jhydrol_2024_130750
crossref_primary_10_1016_j_scitotenv_2018_01_220
crossref_primary_10_1007_s10533_019_00579_0
crossref_primary_10_3390_su8090875
crossref_primary_10_1016_j_scitotenv_2017_10_105
crossref_primary_10_1002_eco_1929
crossref_primary_10_1007_s11356_017_0824_2
crossref_primary_10_1007_s11368_019_02262_1
crossref_primary_10_1016_j_jhazmat_2025_137406
crossref_primary_10_1007_s10021_019_00464_9
crossref_primary_10_3390_w12020432
crossref_primary_10_1029_2023JG007819
crossref_primary_10_1093_femsec_fiw209
crossref_primary_10_7717_peerj_10767
crossref_primary_10_3389_fevo_2024_1305930
crossref_primary_10_3389_fmicb_2018_01044
crossref_primary_10_1016_j_scitotenv_2018_05_291
Cites_doi 10.1093/acprof:oso/9780198527084.001.0001
10.1029/2010JG001516
10.4319/lo.1996.41.2.0309
10.1007/978-1-4757-3449-2
10.1146/annurev.ecolsys.29.1.503
10.1007/s00442-009-1531-6
10.3354/ame01766
10.1029/2001WR001260
10.5194/bg-3-175-2006
10.2134/jeq1982.00472425001100040001x
10.1111/1365-2664.12297
10.1016/0167-7012(91)90018-L
10.1007/s00027-003-0689-y
10.1623/hysj.53.5.939
10.1007/BF01343734
10.4319/lo.2003.48.3.1112
10.4319/lo.1998.43.4.0695
10.1016/j.jaci.2007.07.063
10.1007/s10021-006-9013-8
10.1016/j.soilbio.2008.05.004
10.1038/22932
10.1007/1-4020-3466-0_27
10.1111/j.1574-6941.2006.00085.x
10.1579/0044-7447(2006)35[469:ACBOAS]2.0.CO;2
10.4319/lo.2008.53.3.0948
10.1128/AEM.71.10.6193-6198.2005
10.1023/A:1020298907014
10.4141/cjss89-004
10.1128/AEM.65.6.2402-2408.1999
10.4319/lo.2009.54.6_part_2.2298
10.1007/s10021-003-0161-9
10.5194/bg-11-1479-2014
10.1111/j.1461-0248.2007.01113.x
10.1111/j.1462-2920.2005.00790.x
10.1038/ismej.2009.16
10.4319/lo.1988.33.4_part_2.0796
10.1029/2008JG000853
10.1073/pnas.0709331104
10.1128/MMBR.59.1.143-169.1995
10.1111/j.1574-6941.2002.tb00940.x
10.1046/j.1365-2427.2003.00985.x
10.1098/rstb.2014.0130
10.1016/j.soilbio.2004.08.003
10.1007/s002030050250
10.1007/s10021-007-9016-0
10.1111/j.1462-2920.2010.02201.x
10.1007/BF00377129
10.1002/eco.115
10.1007/s10750-010-0199-6
10.1016/j.jhydrol.2006.10.003
10.1111/j.1574-6941.2009.00819.x
10.1016/S0016-7037(98)00044-1
10.1016/j.mimet.2010.12.028
10.1128/AEM.71.7.4117-4120.2005
10.1016/j.apsoil.2013.08.002
10.1038/189424a0
10.1002/wat2.1147
10.1007/978-1-4757-4098-1
10.1128/AEM.67.1.190-197.2001
10.1890/100014
10.1134/S0001437010040089
10.4319/lo.1999.44.2.0309
10.1093/treephys/27.7.929
10.1016/S0038-0717(99)00080-2
10.1111/j.1462-2920.2005.00723.x
10.5268/IW-1.1.406
10.4319/lo.2011.56.2.0725
ContentType Journal Article
Copyright FEMS 2016. 2016
FEMS 2016.
COPYRIGHT 2016 Oxford University Press
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: FEMS 2016. 2016
– notice: FEMS 2016.
– notice: COPYRIGHT 2016 Oxford University Press
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
5PM
DOI 10.1093/femsec/fiw035
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Environmental Sciences
EISSN 1574-6941
EndPage 14
ExternalDocumentID PMC4821186
oai_HAL_hal_02639683v1
A708718487
26902802
10_1093_femsec_fiw035
10.1093/femsec/fiw035
Genre Journal Article
GeographicLocations Germany
Central European region
Europe
GeographicLocations_xml – name: Germany
– name: Europe
– name: Central European region
GroupedDBID ---
--K
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OC
1TH
1~5
29H
2XV
31~
36B
3V.
4.4
48X
4G.
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7-5
702
7PT
7X7
7XC
8-0
8-1
8-3
8-4
8-5
88E
8CJ
8FE
8FH
8FI
8FJ
8UM
930
A03
AACTN
AAEDT
AAHBH
AAHHS
AAIMJ
AAJQQ
AALRI
AAMDB
AAMVS
AAOGV
AAONW
AAPQZ
AAPXW
AAQFI
AAQXK
AARHZ
AASNB
AAUQX
AAVAP
AAWDT
AAXUO
ABCQN
ABEML
ABEUO
ABIXL
ABMAC
ABPTD
ABQLI
ABSAR
ABSMQ
ABUWG
ABXVV
ACBWZ
ACCFJ
ACFRR
ACGFO
ACIUM
ACIWK
ACPRK
ACSCC
ACUFI
ACUTJ
ACXQS
ADBBV
ADEZT
ADGZP
ADHKW
ADHZD
ADMUD
ADPDF
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
AEEZP
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFFZL
AFGWE
AFIYH
AFKRA
AFOFC
AFRAH
AFULF
AFXEN
AFYAG
AFZJQ
AGINJ
AGSYK
AHEFC
AHHHB
AHMBA
AI.
AIWBW
AJAOE
AJBDE
AJEEA
AKRWK
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APWMN
ARIXL
ASAOO
ATCPS
ATDFG
AVWKF
AXUDD
AYOIW
AZBYB
BAFTC
BAYMD
BBNVY
BCRHZ
BDRZF
BENPR
BEYMZ
BHONS
BHPHI
BPHCQ
BQDIO
BSWAC
BVXVI
BY8
CAG
CCPQU
CDBKE
COF
CS3
CXTWN
D-E
D-F
D1J
DAKXR
DC6
DCZOG
DFGAJ
DILTD
DR2
DU5
EBS
EDH
EJD
EMB
EMOBN
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FHSFR
FLUFQ
FOEOM
FYUFA
FZ0
G-S
G.N
GAUVT
GJXCC
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HAR
HCIFZ
HF~
HMC
HMCUK
HOLLA
HVGLF
HZI
HZ~
I-F
IAG
IAO
IEP
IHE
IHR
ITC
IX1
J0M
J21
K48
KAQDR
KBUDW
KOP
KSI
KSN
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M1P
M41
M49
M7P
MK4
MM.
N04
N05
N9A
NF~
NLBLG
NOMLY
NQ-
NU-
NVLIB
O9-
OAWHX
ODMLO
OIG
OJQWA
OK1
OVD
OVEED
P2P
P2X
P4D
PAFKI
PATMY
PEELM
PQQKQ
PROAC
PSQYO
PYCSY
Q.N
Q11
Q5Y
QB0
R.K
R2-
RIG
ROL
ROX
ROZ
RPM
RPZ
RUSNO
RX1
RXO
SEW
SIN
SSZ
SUPJJ
SV3
TCN
TEORI
TLC
TOX
UB1
UKHRP
V8K
VH1
W8V
W99
WH7
WQJ
WRC
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCN
ZXP
~02
~IA
~KM
~WT
AANHP
AAYXX
ABEJV
ABGNP
ABIME
ABPIB
ABWVN
ABXZS
ACRPL
ACVFH
ACYXJ
ADCNI
ADGKP
ADNMO
AEUPX
AEUYN
AFPUW
AGQPQ
AHGBF
AIGII
ALXQX
AMNDL
APJGH
CITATION
JXSIZ
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
PPXIY
PQGLB
7S9
L.6
1XC
5PM
PJZUB
ID FETCH-LOGICAL-c620t-97916cb6af2ebaa769d79a3d62503231f5289740696044c3b0b98ece7969f34b3
IEDL.DBID TOX
ISSN 1574-6941
0168-6496
IngestDate Thu Aug 21 13:49:59 EDT 2025
Fri May 09 12:19:40 EDT 2025
Thu Jul 10 19:12:45 EDT 2025
Fri Jul 11 05:51:07 EDT 2025
Tue Jun 17 21:02:15 EDT 2025
Tue Jun 10 20:39:53 EDT 2025
Wed Feb 19 02:40:49 EST 2025
Tue Jul 01 00:56:00 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Wed Sep 11 04:48:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords water level changes
carbon dioxide emission
phospholipid fatty acids
stable isotope
keeling plot
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
FEMS 2016.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620t-97916cb6af2ebaa769d79a3d62503231f5289740696044c3b0b98ece7969f34b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4821186
ORCID 0000-0002-0054-170X
0000-0002-1910-9589
OpenAccessLink https://dx.doi.org/10.1093/femsec/fiw035
PMID 26902802
PQID 1779414299
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4821186
hal_primary_oai_HAL_hal_02639683v1
proquest_miscellaneous_2986247293
proquest_miscellaneous_1779414299
gale_infotracmisc_A708718487
gale_infotracacademiconefile_A708718487
pubmed_primary_26902802
crossref_primary_10_1093_femsec_fiw035
crossref_citationtrail_10_1093_femsec_fiw035
oup_primary_10_1093_femsec_fiw035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEMS microbiology ecology
PublicationTitleAlternate FEMS Microbiol Ecol
PublicationYear 2016
Publisher Oxford University Press
Wiley-Blackwell
Publisher_xml – name: Oxford University Press
– name: Wiley-Blackwell
References 2016040519283993000_92.5.fiw035.60
2016040519283993000_92.5.fiw035.61
2016040519283993000_92.5.fiw035.7
2016040519283993000_92.5.fiw035.8
2016040519283993000_92.5.fiw035.20
2016040519283993000_92.5.fiw035.64
2016040519283993000_92.5.fiw035.9
2016040519283993000_92.5.fiw035.21
2016040519283993000_92.5.fiw035.65
2016040519283993000_92.5.fiw035.22
2016040519283993000_92.5.fiw035.66
2016040519283993000_92.5.fiw035.3
2016040519283993000_92.5.fiw035.23
2016040519283993000_92.5.fiw035.67
2016040519283993000_92.5.fiw035.4
2016040519283993000_92.5.fiw035.24
2016040519283993000_92.5.fiw035.68
2016040519283993000_92.5.fiw035.5
2016040519283993000_92.5.fiw035.25
2016040519283993000_92.5.fiw035.69
2016040519283993000_92.5.fiw035.6
2016040519283993000_92.5.fiw035.26
2016040519283993000_92.5.fiw035.27
Butturini (2016040519283993000_92.5.fiw035.13) 2003; 39
2016040519283993000_92.5.fiw035.28
2016040519283993000_92.5.fiw035.29
Chimner (2016040519283993000_92.5.fiw035.15) 2003; 81
Kusel (2016040519283993000_92.5.fiw035.44) 2008; 121
2016040519283993000_92.5.fiw035.50
2016040519283993000_92.5.fiw035.51
2016040519283993000_92.5.fiw035.52
Parsons (2016040519283993000_92.5.fiw035.53) 1963; 21
2016040519283993000_92.5.fiw035.10
2016040519283993000_92.5.fiw035.54
2016040519283993000_92.5.fiw035.11
2016040519283993000_92.5.fiw035.12
2016040519283993000_92.5.fiw035.56
2016040519283993000_92.5.fiw035.57
2016040519283993000_92.5.fiw035.14
2016040519283993000_92.5.fiw035.59
2016040519283993000_92.5.fiw035.16
2016040519283993000_92.5.fiw035.17
2016040519283993000_92.5.fiw035.18
2016040519283993000_92.5.fiw035.19
Griffiths (2016040519283993000_92.5.fiw035.30) 1961; 189
2016040519283993000_92.5.fiw035.40
2016040519283993000_92.5.fiw035.41
2016040519283993000_92.5.fiw035.42
2016040519283993000_92.5.fiw035.43
Amann (2016040519283993000_92.5.fiw035.1) 1995; 59
2016040519283993000_92.5.fiw035.45
2016040519283993000_92.5.fiw035.46
2016040519283993000_92.5.fiw035.47
2016040519283993000_92.5.fiw035.48
2016040519283993000_92.5.fiw035.49
Reiche (2016040519283993000_92.5.fiw035.58) 2009; 114
Premke (2016040519283993000_92.5.fiw035.55) 2009; 59
Zepp Falz (2016040519283993000_92.5.fiw035.72) 1999; 65
2016040519283993000_92.5.fiw035.70
2016040519283993000_92.5.fiw035.71
Sonzogni (2016040519283993000_92.5.fiw035.63) 1982; 11
2016040519283993000_92.5.fiw035.73
2016040519283993000_92.5.fiw035.74
2016040519283993000_92.5.fiw035.31
2016040519283993000_92.5.fiw035.32
2016040519283993000_92.5.fiw035.33
2016040519283993000_92.5.fiw035.34
2016040519283993000_92.5.fiw035.35
2016040519283993000_92.5.fiw035.36
2016040519283993000_92.5.fiw035.37
Attermeyer (2016040519283993000_92.5.fiw035.2) 2014; 11
2016040519283993000_92.5.fiw035.38
2016040519283993000_92.5.fiw035.39
Sobek (2016040519283993000_92.5.fiw035.62) 2006; 35
7545384 - Arch Microbiol. 1995 Sep;164(3):165-72
11133445 - Appl Environ Microbiol. 2001 Jan;67(1):190-7
28310596 - Oecologia. 1982 Apr;53(1):7-11
19279669 - ISME J. 2009 Jun;3(6):738-44
20043179 - Oecologia. 2010 May;163(1):227-34
16011751 - Environ Microbiol. 2005 Aug;7(8):1139-49
16689875 - FEMS Microbiol Ecol. 2006 Jun;56(3):430-43
19709215 - FEMS Microbiol Ecol. 2002 May 1;40(2):85-95
17998533 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18353-4
17403645 - Tree Physiol. 2007 Jul;27(7):929-40
16204538 - Appl Environ Microbiol. 2005 Oct;71(10):6193-8
10347020 - Appl Environ Microbiol. 1999 Jun;65(6):2402-8
17900680 - J Allergy Clin Immunol. 2008 Feb;121(2):535; author reply 535-6
20438583 - Environ Microbiol. 2010 Jul;12(7):1806-10
21256887 - J Microbiol Methods. 2011 Mar;84(3):406-12
25780242 - Philos Trans R Soc Lond B Biol Sci. 2015 May 5;370(1667):null
20041952 - FEMS Microbiol Ecol. 2010 Mar;71(3):374-86
16000830 - Appl Environ Microbiol. 2005 Jul;71(7):4117-20
17334054 - Ambio. 2006 Dec;35(8):469-75
17922835 - Ecol Lett. 2007 Dec;10(12):1135-42
7535888 - Microbiol Rev. 1995 Mar;59(1):143-69
15816932 - Environ Microbiol. 2005 Apr;7(4):553-65
References_xml – ident: 2016040519283993000_92.5.fiw035.19
  doi: 10.1093/acprof:oso/9780198527084.001.0001
– ident: 2016040519283993000_92.5.fiw035.28
  doi: 10.1029/2010JG001516
– ident: 2016040519283993000_92.5.fiw035.35
  doi: 10.4319/lo.1996.41.2.0309
– ident: 2016040519283993000_92.5.fiw035.49
  doi: 10.1007/978-1-4757-3449-2
– ident: 2016040519283993000_92.5.fiw035.18
  doi: 10.1146/annurev.ecolsys.29.1.503
– ident: 2016040519283993000_92.5.fiw035.41
  doi: 10.1007/s00442-009-1531-6
– ident: 2016040519283993000_92.5.fiw035.57
– ident: 2016040519283993000_92.5.fiw035.65
  doi: 10.3354/ame01766
– volume: 39
  start-page: 1110
  year: 2003
  ident: 2016040519283993000_92.5.fiw035.13
  article-title: Influences of the stream groundwater hydrology on nitrate concentration in unsaturated riparian area bounded by an intermittent Mediterranean stream
  publication-title: Water Resour Res
  doi: 10.1029/2001WR001260
– ident: 2016040519283993000_92.5.fiw035.11
  doi: 10.5194/bg-3-175-2006
– volume: 11
  start-page: 555
  year: 1982
  ident: 2016040519283993000_92.5.fiw035.63
  article-title: Bioavailability of phosphorus inputs to lakes
  publication-title: J Environ Qual
  doi: 10.2134/jeq1982.00472425001100040001x
– ident: 2016040519283993000_92.5.fiw035.23
  doi: 10.1111/1365-2664.12297
– ident: 2016040519283993000_92.5.fiw035.27
  doi: 10.1016/0167-7012(91)90018-L
– ident: 2016040519283993000_92.5.fiw035.8
  doi: 10.1007/s00027-003-0689-y
– ident: 2016040519283993000_92.5.fiw035.43
  doi: 10.1623/hysj.53.5.939
– ident: 2016040519283993000_92.5.fiw035.6
  doi: 10.1007/BF01343734
– ident: 2016040519283993000_92.5.fiw035.32
  doi: 10.4319/lo.2003.48.3.1112
– ident: 2016040519283993000_92.5.fiw035.37
– ident: 2016040519283993000_92.5.fiw035.20
  doi: 10.4319/lo.1998.43.4.0695
– volume: 121
  start-page: 535
  year: 2008
  ident: 2016040519283993000_92.5.fiw035.44
  article-title: No day-care visits during the first year of life for infants with atopic parents? Reply
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2007.07.063
– ident: 2016040519283993000_92.5.fiw035.16
  doi: 10.1007/s10021-006-9013-8
– ident: 2016040519283993000_92.5.fiw035.71
  doi: 10.1016/j.soilbio.2008.05.004
– ident: 2016040519283993000_92.5.fiw035.61
  doi: 10.1038/22932
– ident: 2016040519283993000_92.5.fiw035.12
  doi: 10.1007/1-4020-3466-0_27
– volume: 21
  start-page: 155
  year: 1963
  ident: 2016040519283993000_92.5.fiw035.53
  article-title: Discussion of spectrophotometric determination of marine plankton pigments, with revised equations of ascertaining chlorophyll a and carotenoids
  publication-title: J Mar Res
– ident: 2016040519283993000_92.5.fiw035.68
  doi: 10.1111/j.1574-6941.2006.00085.x
– volume: 35
  start-page: 469
  year: 2006
  ident: 2016040519283993000_92.5.fiw035.62
  article-title: A carbon budget of a small humic lake: an example of the importance of lakes for organic matter cycling in boreal catchments
  publication-title: Ambio
  doi: 10.1579/0044-7447(2006)35[469:ACBOAS]2.0.CO;2
– ident: 2016040519283993000_92.5.fiw035.40
  doi: 10.4319/lo.2008.53.3.0948
– ident: 2016040519283993000_92.5.fiw035.48
– ident: 2016040519283993000_92.5.fiw035.7
  doi: 10.1128/AEM.71.10.6193-6198.2005
– ident: 2016040519283993000_92.5.fiw035.25
  doi: 10.1023/A:1020298907014
– ident: 2016040519283993000_92.5.fiw035.51
  doi: 10.4141/cjss89-004
– volume: 65
  start-page: 2402
  year: 1999
  ident: 2016040519283993000_92.5.fiw035.72
  article-title: Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland)
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.65.6.2402-2408.1999
– ident: 2016040519283993000_92.5.fiw035.67
  doi: 10.4319/lo.2009.54.6_part_2.2298
– ident: 2016040519283993000_92.5.fiw035.47
  doi: 10.1007/s10021-003-0161-9
– volume: 11
  start-page: 1479
  year: 2014
  ident: 2016040519283993000_92.5.fiw035.2
  article-title: Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-1479-2014
– ident: 2016040519283993000_92.5.fiw035.22
  doi: 10.1111/j.1461-0248.2007.01113.x
– ident: 2016040519283993000_92.5.fiw035.14
  doi: 10.1111/j.1462-2920.2005.00790.x
– ident: 2016040519283993000_92.5.fiw035.17
  doi: 10.1038/ismej.2009.16
– ident: 2016040519283993000_92.5.fiw035.33
  doi: 10.4319/lo.1988.33.4_part_2.0796
– volume: 114
  start-page: G02021
  year: 2009
  ident: 2016040519283993000_92.5.fiw035.58
  article-title: Impact of manipulated drought and heavy rainfall events on peat mineralization processes and source-sink functions of an acidic fen
  publication-title: J Geophys Res Biogeosci
  doi: 10.1029/2008JG000853
– volume: 59
  start-page: 251
  year: 2009
  ident: 2016040519283993000_92.5.fiw035.55
  article-title: Metabolism and physiological traits of the deep sea amphipod Eurythenes gryllus
  publication-title: Vie Et Milieu Life Environ
– ident: 2016040519283993000_92.5.fiw035.60
  doi: 10.1073/pnas.0709331104
– volume: 59
  start-page: 143
  year: 1995
  ident: 2016040519283993000_92.5.fiw035.1
  article-title: Phylogenetic identification and in situ detection of individual microbial cells without cultivation
  publication-title: Microbiol Rev
  doi: 10.1128/MMBR.59.1.143-169.1995
– ident: 2016040519283993000_92.5.fiw035.10
  doi: 10.1111/j.1574-6941.2002.tb00940.x
– ident: 2016040519283993000_92.5.fiw035.31
  doi: 10.1046/j.1365-2427.2003.00985.x
– ident: 2016040519283993000_92.5.fiw035.34
  doi: 10.1098/rstb.2014.0130
– ident: 2016040519283993000_92.5.fiw035.50
  doi: 10.1016/j.soilbio.2004.08.003
– ident: 2016040519283993000_92.5.fiw035.52
  doi: 10.1007/s002030050250
– ident: 2016040519283993000_92.5.fiw035.69
  doi: 10.1007/s10021-007-9016-0
– ident: 2016040519283993000_92.5.fiw035.56
  doi: 10.1111/j.1462-2920.2010.02201.x
– ident: 2016040519283993000_92.5.fiw035.5
  doi: 10.1007/BF00377129
– ident: 2016040519283993000_92.5.fiw035.26
  doi: 10.1002/eco.115
– ident: 2016040519283993000_92.5.fiw035.74
  doi: 10.1007/s10750-010-0199-6
– ident: 2016040519283993000_92.5.fiw035.39
  doi: 10.1016/j.jhydrol.2006.10.003
– ident: 2016040519283993000_92.5.fiw035.29
– ident: 2016040519283993000_92.5.fiw035.46
  doi: 10.1111/j.1574-6941.2009.00819.x
– volume: 81
  start-page: 477
  year: 2003
  ident: 2016040519283993000_92.5.fiw035.15
  article-title: Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains
  publication-title: Canadian Journal of Botany-Revue Canadienne De Botanique
– ident: 2016040519283993000_92.5.fiw035.36
  doi: 10.1016/S0016-7037(98)00044-1
– ident: 2016040519283993000_92.5.fiw035.66
  doi: 10.1016/j.mimet.2010.12.028
– ident: 2016040519283993000_92.5.fiw035.24
  doi: 10.1128/AEM.71.7.4117-4120.2005
– ident: 2016040519283993000_92.5.fiw035.4
  doi: 10.1016/j.apsoil.2013.08.002
– volume: 189
  start-page: 424
  year: 1961
  ident: 2016040519283993000_92.5.fiw035.30
  article-title: Microbiological changes in freshly moistened soil
  publication-title: Nature
  doi: 10.1038/189424a0
– ident: 2016040519283993000_92.5.fiw035.54
  doi: 10.1002/wat2.1147
– ident: 2016040519283993000_92.5.fiw035.70
  doi: 10.1007/978-1-4757-4098-1
– ident: 2016040519283993000_92.5.fiw035.21
  doi: 10.1128/AEM.67.1.190-197.2001
– ident: 2016040519283993000_92.5.fiw035.3
  doi: 10.1890/100014
– ident: 2016040519283993000_92.5.fiw035.59
  doi: 10.1134/S0001437010040089
– ident: 2016040519283993000_92.5.fiw035.9
  doi: 10.4319/lo.1999.44.2.0309
– ident: 2016040519283993000_92.5.fiw035.38
  doi: 10.1093/treephys/27.7.929
– ident: 2016040519283993000_92.5.fiw035.45
  doi: 10.1016/S0038-0717(99)00080-2
– ident: 2016040519283993000_92.5.fiw035.42
  doi: 10.1111/j.1462-2920.2005.00723.x
– ident: 2016040519283993000_92.5.fiw035.73
  doi: 10.5268/IW-1.1.406
– ident: 2016040519283993000_92.5.fiw035.64
  doi: 10.4319/lo.2011.56.2.0725
– reference: 20041952 - FEMS Microbiol Ecol. 2010 Mar;71(3):374-86
– reference: 7545384 - Arch Microbiol. 1995 Sep;164(3):165-72
– reference: 20438583 - Environ Microbiol. 2010 Jul;12(7):1806-10
– reference: 16011751 - Environ Microbiol. 2005 Aug;7(8):1139-49
– reference: 17403645 - Tree Physiol. 2007 Jul;27(7):929-40
– reference: 11133445 - Appl Environ Microbiol. 2001 Jan;67(1):190-7
– reference: 16204538 - Appl Environ Microbiol. 2005 Oct;71(10):6193-8
– reference: 15816932 - Environ Microbiol. 2005 Apr;7(4):553-65
– reference: 25780242 - Philos Trans R Soc Lond B Biol Sci. 2015 May 5;370(1667):null
– reference: 28310596 - Oecologia. 1982 Apr;53(1):7-11
– reference: 16689875 - FEMS Microbiol Ecol. 2006 Jun;56(3):430-43
– reference: 7535888 - Microbiol Rev. 1995 Mar;59(1):143-69
– reference: 19279669 - ISME J. 2009 Jun;3(6):738-44
– reference: 17334054 - Ambio. 2006 Dec;35(8):469-75
– reference: 10347020 - Appl Environ Microbiol. 1999 Jun;65(6):2402-8
– reference: 17900680 - J Allergy Clin Immunol. 2008 Feb;121(2):535; author reply 535-6
– reference: 16000830 - Appl Environ Microbiol. 2005 Jul;71(7):4117-20
– reference: 19709215 - FEMS Microbiol Ecol. 2002 May 1;40(2):85-95
– reference: 21256887 - J Microbiol Methods. 2011 Mar;84(3):406-12
– reference: 20043179 - Oecologia. 2010 May;163(1):227-34
– reference: 17998533 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18353-4
– reference: 17922835 - Ecol Lett. 2007 Dec;10(12):1135-42
SSID ssj0015340
Score 2.3890166
Snippet Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different...
SourceID pubmedcentral
hal
proquest
gale
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage fiw035
SubjectTerms Actinobacteria - classification
Actinobacteria - metabolism
Archaea - classification
Archaea - metabolism
Bacteria - classification
Bacteria - metabolism
bacterial biomass
bacterial communities
Biomass
Carbon
Carbon - metabolism
Carbon Cycle
carbon dioxide
Central European region
Climate Change
community structure
Desiccation
DNA
drought
drying
Environmental aspects
Europe
Fatty Acids - metabolism
Geologic Sediments - microbiology
greenhouse gas emissions
isotope labeling
Lake sediments
lakes
Lakes - microbiology
Life Sciences
littoral zone
Microbial colonies
Oxygen - metabolism
particulate organic carbon
phospholipid fatty acids
Polymorphism, Restriction Fragment Length
quantitative polymerase chain reaction
restriction fragment length polymorphism
ribosomal RNA
RNA, Ribosomal, 16S - genetics
sediments
stable isotopes
Title Water level changes affect carbon turnover and microbial community composition in lake sediments
URI https://www.ncbi.nlm.nih.gov/pubmed/26902802
https://www.proquest.com/docview/1779414299
https://www.proquest.com/docview/2986247293
https://hal.inrae.fr/hal-02639683
https://pubmed.ncbi.nlm.nih.gov/PMC4821186
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbYEBIvExsMMkblIQQvRHNix44fy9SpQjAQ2kTfgu04WkWXTk03tH_PXZyWBZjgrWoutpuzc9_V930m5JVgPpN5bmKARFUsyhJPA9QsrnLmmLFWp63w_McTOT4T7yfZpPu_o_nLFr7mh5W_aLw7rKY_GEc2OQRgFMk__TRZbxdkXLBOQPOPO3oBp3vtbpxj1WOP0XYLWP5eH3kr4Bw_IlsdUqTD4Nptcs_XO-RBODvyZofsjn5R1MCsW6PNY_LtK8DHBZ1hNRANvN6GmrZsgzqzsPOaQpipsXSTmrqkF9NWiwnacIEssrzBT6tqLjqt6cx897SBMNfy4Z6Qs-PR6dE47s5RiJ1M2TLWCjCgs9JUqbfGKKlLpQ0vIfVhHPBdlUHWpZACK5kQjltmde6dV1rqigvLd8lmPa_9M0JN4jMrhIKGhNACvZlUCGMSD1ikTCLydvWwC9eJjONZF7MibHbzIvimCL6JyOu1-WVQ17jL8A16rsBVB-0505EHYFSoX1UMFYPML4fsKyL7PUtYLa53-SX4ft0ZimuPhx8K_A6yUa5lzq_hVxzA1PjXiA5WE6fAPrBWrfbzq6ZIFLzjEozzd9ukGok5kNjwiDwNk23dXSpbRZ00Iqo3DXuD7l-pp-etMrjIIZ_P5d5_jP85eQjYT4bazX2yuVxc-ReAr5Z2QDbURA3I_Xejk89fBu1K-wk5-Cm-
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+level+changes+affect+carbon+turnover+and+microbial+community+composition+in+lake+sediments&rft.jtitle=FEMS+microbiology+ecology&rft.au=Weise%2C+Lukas&rft.au=Ulrich%2C+Andreas&rft.au=Moreano%2C+Matilde&rft.au=Gessler%2C+Arthur&rft.date=2016-05-01&rft.pub=Wiley-Blackwell&rft.issn=0168-6496&rft.eissn=1574-6941&rft.volume=92&rft.issue=5&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1093%2Ffemsec%2Ffiw035&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02639683v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-6941&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-6941&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-6941&client=summon