Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion

Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cel...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 176; no. 5; pp. 1026 - 1039.e15
Main Authors Walls, Alexandra C., Xiong, Xiaoli, Park, Young-Jun, Tortorici, M. Alejandra, Snijder, Joost, Quispe, Joel, Cameroni, Elisabetta, Gopal, Robin, Dai, Mian, Lanzavecchia, Antonio, Zambon, Maria, Rey, Félix A., Corti, Davide, Veesler, David
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 21.02.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism. [Display omitted] •MERS-CoV/SARS-CoV S composite glycan shields analyzed by cryo-EM and mass spectrometry•Structures of MERS-CoV/SARS-CoV S with neutralizing antibodies from survivors•LCA60 inhibits receptor binding by interacting with MERS-CoV S protein/glycans•S230 blocks receptor binding and triggers fusogenic rearrangements via functional mimicry Structural analysis of the SARS-CoV S and MERS-CoV S glycoproteins in complex with neutralizing antibodies from human survivors sheds light into the mechanisms of membrane fusion and neutralization
AbstractList Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism. [Display omitted] •MERS-CoV/SARS-CoV S composite glycan shields analyzed by cryo-EM and mass spectrometry•Structures of MERS-CoV/SARS-CoV S with neutralizing antibodies from survivors•LCA60 inhibits receptor binding by interacting with MERS-CoV S protein/glycans•S230 blocks receptor binding and triggers fusogenic rearrangements via functional mimicry Structural analysis of the SARS-CoV S and MERS-CoV S glycoproteins in complex with neutralizing antibodies from human survivors sheds light into the mechanisms of membrane fusion and neutralization
Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism.
Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism. Structural analysis of the SARS-CoV S and MERS-CoV S glycoproteins in complex with neutralizing antibodies from human survivors sheds light into the mechanisms of membrane fusion and neutralization
Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism.
Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism.Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism.
Author Lanzavecchia, Antonio
Gopal, Robin
Dai, Mian
Veesler, David
Xiong, Xiaoli
Zambon, Maria
Cameroni, Elisabetta
Walls, Alexandra C.
Snijder, Joost
Tortorici, M. Alejandra
Quispe, Joel
Rey, Félix A.
Corti, Davide
Park, Young-Jun
Author_xml – sequence: 1
  givenname: Alexandra C.
  surname: Walls
  fullname: Walls, Alexandra C.
  organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
– sequence: 2
  givenname: Xiaoli
  surname: Xiong
  fullname: Xiong, Xiaoli
  organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
– sequence: 3
  givenname: Young-Jun
  surname: Park
  fullname: Park, Young-Jun
  organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
– sequence: 4
  givenname: M. Alejandra
  surname: Tortorici
  fullname: Tortorici, M. Alejandra
  organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
– sequence: 5
  givenname: Joost
  surname: Snijder
  fullname: Snijder, Joost
  organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
– sequence: 6
  givenname: Joel
  surname: Quispe
  fullname: Quispe, Joel
  organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
– sequence: 7
  givenname: Elisabetta
  surname: Cameroni
  fullname: Cameroni, Elisabetta
  organization: Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 8
  givenname: Robin
  surname: Gopal
  fullname: Gopal, Robin
  organization: National Infection Service, Public Health England, London NW9 5HT, UK
– sequence: 9
  givenname: Mian
  surname: Dai
  fullname: Dai, Mian
  organization: Crick Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
– sequence: 10
  givenname: Antonio
  surname: Lanzavecchia
  fullname: Lanzavecchia, Antonio
  organization: Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
– sequence: 11
  givenname: Maria
  surname: Zambon
  fullname: Zambon, Maria
  organization: National Infection Service, Public Health England, London NW9 5HT, UK
– sequence: 12
  givenname: Félix A.
  surname: Rey
  fullname: Rey, Félix A.
  organization: Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, 75015, Paris, France
– sequence: 13
  givenname: Davide
  surname: Corti
  fullname: Corti, Davide
  organization: Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 14
  givenname: David
  surname: Veesler
  fullname: Veesler, David
  email: dveesler@uw.edu
  organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30712865$$D View this record in MEDLINE/PubMed
https://pasteur.hal.science/pasteur-02546514$$DView record in HAL
BookMark eNqNkk9v1DAQxS1URLeFL8AB5cglwZ7EfyIhpNWqpUiLkCp6thxnQr3KxoudRO23x2FLBT1UnCx5fu95xm_OyMngByTkLaMFo0x82BUW-74AylTBoKCgXpAVo7XMKybhhKworSFXQlan5CzGHaVUcc5fkdOSSgZK8BW5vhnw7oB2xDa7RouH0Yfschrs6Pxg-uyr2zsb7rOLfrKuNSPGbJ1qs1nqme-yjQ8JnF2YYtLFdPuavOxMH_HNw3lObi4vvm-u8u23z182621uBdAxl3XNeausggYb1VFelwCNaKQEVBIUEzUFYaCtUCpKUZWN7bAsO4tG1bUoz8mno-9havbYWhzGYHp9CG5vwr32xul_K4O71T_8rIXkjJWLQX40uH0iu1pv9cHEEaegKfBKcFbNLPHvHx4M_ueEcdR7F5cIzIB-ihqAl5Bg_h8ok3WlpJQqoe_-HuOxkT8ZJQCOgA0-xoDdI8KoXhZB7_RirZdF0AxSy4ureiKybvwdWvoK1z8v_XiUYgpvdhh0tA4Hi60LaVF0691z8l8lr86W
CitedBy_id crossref_primary_10_3390_ijms22168604
crossref_primary_10_3390_v13061126
crossref_primary_10_1126_science_abb2507
crossref_primary_10_1021_acscentsci_2c01471
crossref_primary_10_1080_19390211_2020_1834049
crossref_primary_10_1016_j_lfs_2020_118541
crossref_primary_10_1007_s10787_023_01385_9
crossref_primary_10_1155_2021_8160860
crossref_primary_10_15252_embr_202154199
crossref_primary_10_1088_1742_6596_2207_1_012016
crossref_primary_10_1371_journal_ppat_1011789
crossref_primary_10_1016_j_celrep_2022_111335
crossref_primary_10_1016_j_xcrm_2020_100126
crossref_primary_10_1111_ijcp_13893
crossref_primary_10_1111_pai_13271
crossref_primary_10_2147_JIR_S282213
crossref_primary_10_3390_s20113121
crossref_primary_10_1016_j_cell_2022_01_019
crossref_primary_10_1002_mas_21813
crossref_primary_10_1128_jvi_00531_24
crossref_primary_10_1016_j_ijantimicag_2020_105951
crossref_primary_10_1089_cmb_2020_0193
crossref_primary_10_3390_v12111289
crossref_primary_10_3390_biom10091346
crossref_primary_10_1016_j_addr_2021_01_014
crossref_primary_10_1155_2020_9238696
crossref_primary_10_1038_s41586_024_08121_5
crossref_primary_10_1038_s41586_021_03925_1
crossref_primary_10_1093_abt_tbaa028
crossref_primary_10_1016_j_sjbs_2021_02_077
crossref_primary_10_3389_fmicb_2022_988298
crossref_primary_10_1126_science_abq0203
crossref_primary_10_1016_j_jbc_2021_100375
crossref_primary_10_1126_sciimmunol_ade0958
crossref_primary_10_1038_s41594_019_0233_y
crossref_primary_10_1111_febs_16239
crossref_primary_10_1146_annurev_biophys_062920_063711
crossref_primary_10_3390_bios12100785
crossref_primary_10_1007_s12035_021_02399_6
crossref_primary_10_1016_j_celrep_2024_114265
crossref_primary_10_1007_s42995_023_00215_9
crossref_primary_10_7554_eLife_75433
crossref_primary_10_1016_j_isci_2022_105726
crossref_primary_10_3390_ijms22041749
crossref_primary_10_3390_v14081837
crossref_primary_10_1073_pnas_2122769119
crossref_primary_10_1021_acsomega_1c02336
crossref_primary_10_1093_nsr_nwaa297
crossref_primary_10_1038_s42003_021_02030_3
crossref_primary_10_1126_science_abe3354
crossref_primary_10_1016_j_isci_2023_107085
crossref_primary_10_1093_abt_tbaa008
crossref_primary_10_1590_1678_7757_2020_0678
crossref_primary_10_1093_abt_tbaa007
crossref_primary_10_1016_j_bpj_2023_09_003
crossref_primary_10_1016_j_csbj_2021_06_041
crossref_primary_10_1016_j_peptides_2021_170583
crossref_primary_10_3389_fimmu_2020_01531
crossref_primary_10_1016_j_cell_2020_04_031
crossref_primary_10_1016_j_meegid_2020_104382
crossref_primary_10_1016_j_cell_2021_05_005
crossref_primary_10_1016_j_cell_2024_12_032
crossref_primary_10_1002_prot_26422
crossref_primary_10_1021_acs_jpcb_4c05270
crossref_primary_10_1038_s41598_020_71748_7
crossref_primary_10_7554_eLife_73027
crossref_primary_10_1038_s41586_021_03817_4
crossref_primary_10_1016_j_chom_2020_06_010
crossref_primary_10_1080_21645515_2020_1796425
crossref_primary_10_1186_s13104_021_05874_4
crossref_primary_10_1016_j_virusres_2020_198141
crossref_primary_10_1080_19420862_2024_2440586
crossref_primary_10_1016_j_virusres_2020_198021
crossref_primary_10_29333_jcei_8564
crossref_primary_10_1128_mmbr_00001_23
crossref_primary_10_1128_JVI_00785_19
crossref_primary_10_1016_j_crmicr_2020_06_003
crossref_primary_10_1126_science_abb7269
crossref_primary_10_1128_mBio_02764_19
crossref_primary_10_1126_science_abq2679
crossref_primary_10_1016_j_molliq_2020_113612
crossref_primary_10_1073_pnas_2101918118
crossref_primary_10_3390_ijms21165707
crossref_primary_10_1038_s41467_020_20501_9
crossref_primary_10_1038_s41598_020_74050_8
crossref_primary_10_2174_2666796701999201204123259
crossref_primary_10_1128_JVI_00861_20
crossref_primary_10_1360_SSC_2021_0249
crossref_primary_10_1016_j_jiph_2021_05_009
crossref_primary_10_1126_science_abj3321
crossref_primary_10_1021_acsomega_2c00844
crossref_primary_10_2174_1389201022666210509022313
crossref_primary_10_1021_acsnano_2c07681
crossref_primary_10_3389_fimmu_2023_1159326
crossref_primary_10_1016_j_molliq_2020_113968
crossref_primary_10_1038_s41598_023_48186_2
crossref_primary_10_1016_j_bbagen_2019_05_012
crossref_primary_10_1016_j_celrep_2022_110348
crossref_primary_10_1017_S1431927619007232
crossref_primary_10_1016_j_tips_2020_07_004
crossref_primary_10_3389_fmolb_2021_629873
crossref_primary_10_1371_journal_ppat_1008556
crossref_primary_10_1038_s41467_020_19204_y
crossref_primary_10_3389_fimmu_2022_963023
crossref_primary_10_1038_s41467_022_31193_8
crossref_primary_10_1097_MNM_0000000000001269
crossref_primary_10_1016_j_compbiomed_2022_105758
crossref_primary_10_3389_fchem_2021_767448
crossref_primary_10_1146_annurev_biophys_102620_080956
crossref_primary_10_1016_j_xcrm_2021_100313
crossref_primary_10_3390_cells9071583
crossref_primary_10_1016_j_jiph_2022_12_019
crossref_primary_10_1021_jasms_3c00038
crossref_primary_10_1038_s41594_020_0478_5
crossref_primary_10_3390_v12010083
crossref_primary_10_1038_s41467_021_27610_z
crossref_primary_10_1038_s41598_020_70863_9
crossref_primary_10_1016_j_str_2021_04_006
crossref_primary_10_1021_acs_analchem_2c02670
crossref_primary_10_1016_j_immuni_2020_06_001
crossref_primary_10_1128_JVI_00923_19
crossref_primary_10_1016_j_intimp_2020_106924
crossref_primary_10_3389_fonc_2020_572329
crossref_primary_10_3390_v14010144
crossref_primary_10_1021_acsinfecdis_3c00010
crossref_primary_10_1038_s41422_020_00446_w
crossref_primary_10_2196_20699
crossref_primary_10_1016_j_intimp_2022_108786
crossref_primary_10_1099_jgv_0_001506
crossref_primary_10_1371_journal_pone_0241168
crossref_primary_10_1038_s41392_021_00809_8
crossref_primary_10_1038_s41598_021_84700_0
crossref_primary_10_3389_fchem_2020_572885
crossref_primary_10_1016_j_bbrc_2021_06_001
crossref_primary_10_1021_jacs_4c09996
crossref_primary_10_1038_s41467_019_10897_4
crossref_primary_10_1080_22221751_2020_1729069
crossref_primary_10_1021_jacs_1c02713
crossref_primary_10_1088_1742_6596_2058_1_012020
crossref_primary_10_1016_j_immuni_2021_08_025
crossref_primary_10_1073_pnas_2111199119
crossref_primary_10_1016_j_cell_2020_06_025
crossref_primary_10_1126_scitranslmed_abc3103
crossref_primary_10_1038_s41594_019_0334_7
crossref_primary_10_1038_s41467_020_16256_y
crossref_primary_10_1038_s41598_021_84637_4
crossref_primary_10_1126_scitranslmed_abn1252
crossref_primary_10_1128_JVI_02015_19
crossref_primary_10_3389_fmolb_2021_637550
crossref_primary_10_1039_D0SC03920A
crossref_primary_10_1002_anie_202100316
crossref_primary_10_1016_j_csbj_2020_11_002
crossref_primary_10_1080_07391102_2021_1933594
crossref_primary_10_1016_j_biochi_2021_10_013
crossref_primary_10_1074_mcp_RA120_002295
crossref_primary_10_1126_sciadv_adr8772
crossref_primary_10_1021_acs_jpcb_1c02398
crossref_primary_10_1038_s41385_020_00359_2
crossref_primary_10_1038_s41467_023_36761_0
crossref_primary_10_3390_ijms25168828
crossref_primary_10_1016_j_jchromb_2021_123015
crossref_primary_10_1038_s41586_021_03807_6
crossref_primary_10_1002_rmv_2439
crossref_primary_10_1126_sciadv_abq8276
crossref_primary_10_1063_5_0011141
crossref_primary_10_1007_s00521_023_08802_8
crossref_primary_10_1016_j_drudis_2020_10_018
crossref_primary_10_1128_jvi_01245_22
crossref_primary_10_1002_rmv_2464
crossref_primary_10_2174_2666958702101010065
crossref_primary_10_1080_17476348_2021_1854092
crossref_primary_10_1038_s41467_021_24963_3
crossref_primary_10_1016_j_tim_2021_05_002
crossref_primary_10_1126_science_abb9983
crossref_primary_10_1016_j_bea_2022_100054
crossref_primary_10_1002_cmdc_202000259
crossref_primary_10_1126_science_abm8143
crossref_primary_10_1016_j_jpha_2020_12_001
crossref_primary_10_3389_fimmu_2022_901217
crossref_primary_10_26508_lsa_202201796
crossref_primary_10_3389_fviro_2022_923018
crossref_primary_10_3389_fphys_2021_624675
crossref_primary_10_3389_fimmu_2022_864775
crossref_primary_10_1038_s41594_020_0479_4
crossref_primary_10_3390_biom11071048
crossref_primary_10_1007_s12539_020_00376_6
crossref_primary_10_1038_s41467_020_18440_6
crossref_primary_10_1016_j_ymthe_2023_08_010
crossref_primary_10_1371_journal_pcbi_1010230
crossref_primary_10_1038_s41423_020_0458_z
crossref_primary_10_3389_fimmu_2021_636966
crossref_primary_10_1038_s41594_021_00596_4
crossref_primary_10_1016_j_immuni_2024_10_001
crossref_primary_10_1038_s41467_021_21968_w
crossref_primary_10_1016_j_coviro_2021_12_015
crossref_primary_10_1016_j_lfs_2020_118056
crossref_primary_10_1126_sciadv_abe5575
crossref_primary_10_1126_sciadv_adk4920
crossref_primary_10_1021_jacs_1c00556
crossref_primary_10_1134_S0006297922070021
crossref_primary_10_1002_JLB_3COVCRA0920_628RR
crossref_primary_10_3389_fimmu_2021_678570
crossref_primary_10_1016_j_jbc_2021_101151
crossref_primary_10_1038_s41467_020_20401_y
crossref_primary_10_1038_s41594_021_00584_8
crossref_primary_10_3390_v14102178
crossref_primary_10_1016_j_str_2020_12_003
crossref_primary_10_3389_fimmu_2021_659071
crossref_primary_10_1038_s41586_020_2456_9
crossref_primary_10_1080_07391102_2020_1802338
crossref_primary_10_1016_j_cell_2020_08_012
crossref_primary_10_1038_s42003_022_03630_3
crossref_primary_10_1038_s41541_021_00417_1
crossref_primary_10_1111_ddg_14169
crossref_primary_10_1021_jasms_3c00309
crossref_primary_10_3389_fimmu_2021_637152
crossref_primary_10_3390_v15091886
crossref_primary_10_1021_acs_analchem_1c01772
crossref_primary_10_1007_s13337_021_00654_x
crossref_primary_10_1016_j_cell_2021_03_028
crossref_primary_10_3389_fmed_2021_637642
crossref_primary_10_1016_j_ijbiomac_2021_02_071
crossref_primary_10_3389_fimmu_2020_576622
crossref_primary_10_13181_mji_oa_215559
crossref_primary_10_1016_j_clim_2020_108448
crossref_primary_10_1126_science_abc7424
crossref_primary_10_3389_fmolb_2020_00226
crossref_primary_10_1002_ange_202100316
crossref_primary_10_1111_imr_13383
crossref_primary_10_3390_v12040445
crossref_primary_10_1016_S0140_6736_20_31605_6
crossref_primary_10_1002_cti2_1228
crossref_primary_10_3390_ijms21134639
crossref_primary_10_14710_jksa_24_5_170_176
crossref_primary_10_3389_fimmu_2020_02008
crossref_primary_10_1016_j_immuni_2023_10_007
crossref_primary_10_1073_pnas_2314990121
crossref_primary_10_1080_07391102_2022_2095305
crossref_primary_10_3389_fimmu_2020_02130
crossref_primary_10_1177_11779322211025876
crossref_primary_10_1002_ange_202100345
crossref_primary_10_1016_j_cell_2020_09_049
crossref_primary_10_1177_2472555220979579
crossref_primary_10_1016_j_ajpath_2021_04_010
crossref_primary_10_1016_j_chom_2020_08_002
crossref_primary_10_1093_glycob_cwaa042
crossref_primary_10_1016_j_bpj_2021_11_009
crossref_primary_10_1016_j_virol_2021_09_001
crossref_primary_10_1038_s41577_023_00858_w
crossref_primary_10_1016_j_chembiol_2023_05_011
crossref_primary_10_1007_s12026_020_09159_z
crossref_primary_10_1038_s41586_023_06599_z
crossref_primary_10_1038_s41467_020_19231_9
crossref_primary_10_1126_scitranslmed_abc9396
crossref_primary_10_1038_s41586_020_2180_5
crossref_primary_10_1016_j_cell_2022_05_019
crossref_primary_10_2174_1568026620666200922112300
crossref_primary_10_1016_j_cell_2020_09_035
crossref_primary_10_1016_j_cell_2020_09_032
crossref_primary_10_1016_j_pulmoe_2021_03_008
crossref_primary_10_3389_fmolb_2020_00204
crossref_primary_10_1016_j_cell_2020_09_037
crossref_primary_10_1186_s12859_020_03872_0
crossref_primary_10_3390_vaccines8030355
crossref_primary_10_1016_j_cell_2021_04_033
crossref_primary_10_1002_rmv_2183
crossref_primary_10_7717_peerj_11232
crossref_primary_10_1016_j_cell_2024_09_026
crossref_primary_10_4103_ijp_IJP_115_20
crossref_primary_10_1038_s41565_024_01655_9
crossref_primary_10_1007_s10439_022_03094_w
crossref_primary_10_1021_acs_analchem_0c04339
crossref_primary_10_1021_acs_jpcb_1c00395
crossref_primary_10_1080_21645515_2024_2351664
crossref_primary_10_1016_j_bpj_2021_02_023
crossref_primary_10_1126_science_abd0826
crossref_primary_10_1016_j_celrep_2024_114530
crossref_primary_10_1016_j_gendis_2020_07_001
crossref_primary_10_1002_anie_202100345
crossref_primary_10_1021_acs_jpcb_0c10637
crossref_primary_10_1038_s41467_020_17371_6
crossref_primary_10_1021_acs_jcim_0c01320
crossref_primary_10_1186_s12985_021_01526_y
crossref_primary_10_1038_s41467_024_51770_3
crossref_primary_10_1016_j_cell_2020_10_043
crossref_primary_10_1038_s41586_020_2349_y
crossref_primary_10_1021_acs_jproteome_1c00442
crossref_primary_10_1039_D3AY01618H
crossref_primary_10_1099_jgv_0_001408
crossref_primary_10_1016_j_str_2023_11_015
crossref_primary_10_1128_mbio_02030_21
crossref_primary_10_1080_22221751_2020_1821583
crossref_primary_10_1038_s41586_022_05513_3
crossref_primary_10_3389_fmicb_2020_00658
crossref_primary_10_1016_j_jpha_2021_09_006
crossref_primary_10_1016_j_idairyj_2021_105002
crossref_primary_10_1038_s41541_020_00237_9
crossref_primary_10_3389_fmolb_2021_671923
crossref_primary_10_1080_22221751_2022_2125348
crossref_primary_10_1016_j_cell_2021_09_015
crossref_primary_10_1007_s12033_024_01277_5
crossref_primary_10_1016_j_medntd_2020_100043
crossref_primary_10_1186_s40001_023_01210_7
crossref_primary_10_3390_ijms222011028
crossref_primary_10_1007_s13205_021_02657_3
crossref_primary_10_1016_j_cell_2024_06_006
crossref_primary_10_1016_j_idairyj_2022_105436
crossref_primary_10_3390_v12030254
crossref_primary_10_1007_s43538_021_00058_x
crossref_primary_10_1039_D1CP01072G
crossref_primary_10_1016_j_lfs_2020_117970
crossref_primary_10_1126_sciimmunol_adf1421
crossref_primary_10_3390_ijms21218268
crossref_primary_10_1038_s41392_020_00369_3
crossref_primary_10_1126_science_adc9127
crossref_primary_10_3390_ijms22031308
crossref_primary_10_1099_acmi_0_000166
crossref_primary_10_1186_s43042_022_00224_w
crossref_primary_10_1038_s42003_022_03767_1
crossref_primary_10_1021_acsnano_1c04142
crossref_primary_10_1038_s42003_022_03262_7
crossref_primary_10_1126_sciadv_abf5632
crossref_primary_10_1016_j_ejmech_2020_112862
crossref_primary_10_1007_s41664_021_00197_6
crossref_primary_10_1016_j_addr_2020_12_004
crossref_primary_10_1016_j_biopha_2022_113190
crossref_primary_10_1126_sciadv_abq6527
crossref_primary_10_1128_JVI_01751_20
crossref_primary_10_2196_36100
crossref_primary_10_1080_22221751_2020_1781551
crossref_primary_10_1016_j_trac_2022_116738
crossref_primary_10_1016_j_biopha_2020_110559
crossref_primary_10_3390_v15020504
crossref_primary_10_1007_s42485_021_00074_x
crossref_primary_10_1111_cbdd_13847
crossref_primary_10_12873_411vique
crossref_primary_10_1007_s11033_022_07724_3
crossref_primary_10_1002_prot_26088
crossref_primary_10_1080_07391102_2023_2265485
crossref_primary_10_1016_j_celrep_2022_110786
crossref_primary_10_1007_s12033_021_00373_0
crossref_primary_10_1016_j_chom_2023_10_018
crossref_primary_10_1038_s41594_019_0308_9
crossref_primary_10_3389_fmicb_2023_1122868
crossref_primary_10_3390_pathogens9070565
crossref_primary_10_1111_jfs_12896
crossref_primary_10_1126_science_abe6230
crossref_primary_10_1016_j_it_2020_09_004
crossref_primary_10_1016_j_isci_2022_104239
crossref_primary_10_1016_j_micpath_2020_104719
crossref_primary_10_1016_j_pbiomolbio_2020_04_002
crossref_primary_10_1136_jim_2020_001559
crossref_primary_10_3390_molecules25215091
crossref_primary_10_1016_j_jbc_2022_101814
crossref_primary_10_1038_s41587_022_01382_3
crossref_primary_10_1016_j_jbc_2021_100306
crossref_primary_10_3390_microorganisms9010165
crossref_primary_10_1016_j_cell_2020_09_018
crossref_primary_10_1128_mbio_00171_23
crossref_primary_10_1038_s41467_021_25997_3
crossref_primary_10_7554_eLife_51230
crossref_primary_10_1097_IM9_0000000000000072
crossref_primary_10_1021_acsnano_0c04006
crossref_primary_10_1038_s41467_024_49656_5
crossref_primary_10_1002_jia2_25797
crossref_primary_10_1021_acs_biochem_1c00139
crossref_primary_10_1590_s0103_73312022320206
crossref_primary_10_1002_prot_26025
crossref_primary_10_1038_s41564_022_01235_4
crossref_primary_10_1038_s42003_021_02029_w
crossref_primary_10_1021_acs_jproteome_0c00654
crossref_primary_10_1038_s41594_020_0483_8
crossref_primary_10_1016_j_chom_2021_02_002
crossref_primary_10_1038_s41586_024_07636_1
crossref_primary_10_1016_j_crstbi_2023_100120
crossref_primary_10_1016_j_celrep_2019_08_052
crossref_primary_10_1038_s42003_022_03207_0
crossref_primary_10_1038_s41467_020_16567_0
crossref_primary_10_3390_jcm9051473
crossref_primary_10_1007_s42247_020_00143_9
crossref_primary_10_24017_science_2020_ICHMS2020_10
crossref_primary_10_1080_19932820_2023_2209949
crossref_primary_10_1126_sciadv_abf1591
crossref_primary_10_1128_mSphere_00344_20
crossref_primary_10_1002_prot_26279
crossref_primary_10_1016_j_carpta_2021_100052
crossref_primary_10_1128_JVI_01301_20
crossref_primary_10_3390_microorganisms11010030
crossref_primary_10_1002_adts_202100152
crossref_primary_10_1016_j_meegid_2021_104729
crossref_primary_10_1126_science_abc5881
crossref_primary_10_1016_j_jaut_2020_102434
crossref_primary_10_1145_3465398
crossref_primary_10_1128_jvi_01626_21
crossref_primary_10_1007_s13205_023_03749_y
crossref_primary_10_1016_j_cell_2020_02_058
crossref_primary_10_1038_s41421_021_00295_w
crossref_primary_10_1038_s41598_021_82849_2
crossref_primary_10_1007_s00018_020_03580_1
crossref_primary_10_1080_07391102_2021_2019123
crossref_primary_10_3389_fimmu_2020_00932
crossref_primary_10_3390_nano12091602
crossref_primary_10_1016_j_intimp_2020_106654
crossref_primary_10_1016_j_isci_2020_101642
crossref_primary_10_3390_biomedicines10061339
crossref_primary_10_1016_j_ejmcr_2021_100003
crossref_primary_10_3389_fpls_2021_682953
crossref_primary_10_1111_ddg_14169_g
crossref_primary_10_1016_j_celrep_2021_110210
crossref_primary_10_3390_antib12010005
crossref_primary_10_1073_pnas_2403260121
Cites_doi 10.1099/vir.0.19505-0
10.1038/ncomms15092
10.1016/j.jsb.2009.01.004
10.1038/s41598-018-34171-7
10.1073/pnas.1707304114
10.1107/S1399004714021683
10.7554/eLife.18722
10.1073/pnas.1407087111
10.1016/j.jsb.2006.06.010
10.1107/S0907444909047337
10.1016/j.celrep.2016.07.074
10.1074/mcp.M300048-MCP200
10.1038/nature02145
10.1128/JVI.01279-15
10.1128/JVI.01739-14
10.1371/journal.ppat.1007236
10.1002/jcc.20084
10.1073/pnas.0809524106
10.1371/journal.ppat.1006698
10.1038/nature12328
10.1002/anie.201403102
10.1126/science.1118391
10.1038/nm.3985
10.1016/j.jmb.2003.07.013
10.1038/nmeth.4169
10.1016/j.jsb.2015.11.003
10.1038/nmeth.2115
10.1371/journal.ppat.1007009
10.1038/nm1080
10.1038/nature17200
10.1107/S0907444913000061
10.1073/pnas.1708727114
10.1016/j.cell.2015.08.035
10.1016/j.immuni.2018.03.026
10.1016/j.ab.2009.02.018
10.1038/ncomms13473
10.1038/cr.2016.152
10.1016/j.virol.2006.11.027
10.1073/pnas.1510199112
10.1016/j.str.2018.09.006
10.1107/S0907444910007493
10.1093/bioinformatics/btq054
10.1073/pnas.1517719113
10.1371/journal.ppat.1004502
10.1107/S0907444909042073
10.1107/S2059798318001353
10.1016/j.celrep.2018.07.080
10.3201/eid1911.131172
10.1128/JVI.72.1.497-503.1998
10.1107/S0907444909052925
10.1016/j.jsb.2005.03.010
10.1128/JVI.01628-17
10.1128/JVI.02377-07
10.3201/eid1112.041293
10.1126/science.1116480
10.1107/S0907444904016427
10.1038/sj.emboj.7600640
10.1107/S205225251801463X
10.1038/nsmb.3293
10.7554/eLife.17219
10.1016/j.jmb.2007.05.022
10.1128/JVI.00959-09
10.1038/nmeth.4193
10.1038/nsmb.3115
10.1038/nature12711
10.1002/pro.3235
10.1073/pnas.1803990115
10.1016/j.cell.2016.04.010
10.1107/S0907444906022116
10.1038/nature16988
10.1016/S1473-3099(13)70690-X
10.7554/eLife.42166
10.1038/nature12005
10.1016/j.ultramic.2013.06.004
10.1016/j.jsb.2009.01.002
10.1073/pnas.1608147113
10.1016/j.virol.2009.12.020
10.1128/JVI.78.13.6938-6945.2004
10.1021/pr301130k
10.1107/S0907444904023510
10.1016/j.chom.2014.08.009
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
2018 Elsevier Inc. 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2018 Elsevier Inc. 2018 Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
5PM
DOI 10.1016/j.cell.2018.12.028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE


AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1039.e15
ExternalDocumentID PMC6751136
oai_HAL_pasteur_02546514v1
30712865
10_1016_j_cell_2018_12_028
S0092867418316428
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM120553
– fundername: NIAID NIH HHS
  grantid: HHSN272201700059C
– fundername: NIGMS NIH HHS
  grantid: T32 GM008268
– fundername: NIH HHS
  grantid: S10 OD021832
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
5PM
EFKBS
ID FETCH-LOGICAL-c620t-79955d8c82beb8f059322b6b772e8728169026a2d4e7800e83bcfe33fcea89963
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:08:37 EDT 2025
Sat Jun 14 06:31:05 EDT 2025
Fri Jul 11 16:05:48 EDT 2025
Thu Jul 10 20:01:25 EDT 2025
Thu Jan 02 22:59:39 EST 2025
Thu Apr 24 22:59:34 EDT 2025
Tue Jul 01 02:17:02 EDT 2025
Fri Feb 23 02:27:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords glycoproteomics
spike glycoprotein
SARS-CoV
coronavirus
neutralizing antibodies
MERS-CoV
N-linked glycosylation
class I fusion protein
membrane fusion
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620t-79955d8c82beb8f059322b6b772e8728169026a2d4e7800e83bcfe33fcea89963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC6751136
Lead Contact
These authors contributed equally
ORCID 0000-0002-2260-2577
0000-0002-9310-8226
0000-0002-9953-7988
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6751136
PMID 30712865
PQID 2179487778
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6751136
hal_primary_oai_HAL_pasteur_02546514v1
proquest_miscellaneous_2253246551
proquest_miscellaneous_2179487778
pubmed_primary_30712865
crossref_primary_10_1016_j_cell_2018_12_028
crossref_citationtrail_10_1016_j_cell_2018_12_028
elsevier_sciencedirect_doi_10_1016_j_cell_2018_12_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-21
PublicationDateYYYYMMDD 2019-02-21
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Menachery, Yount, Sims, Debbink, Agnihothram, Gralinski, Graham, Scobey, Plante, Royal (bib39) 2016; 113
Traggiai, Becker, Subbarao, Kolesnikova, Uematsu, Gismondo, Murphy, Rappuoli, Lanzavecchia (bib63) 2004; 10
Wang, Qi, Yuan, Xuan, Han, Wan, Ji, Li, Wu, Wang (bib70) 2014; 16
Zhang, Wang, Li, Nie, Shi, Lian, Wang, Yin, Zhao, Qu (bib77) 2004; 78
Kimanius, Forsberg, Scheres, Lindahl (bib24) 2016; 5
Ritchie, Harvey, Feldmann, Stroeher, Feldmann, Royle, Dwek, Rudd (bib49) 2010; 399
Song, Gui, Wang, Xiang (bib58) 2018; 14
Brown, Long, Nicholls, Toots, Emsley, Murshudov (bib6) 2015; 71
Frenz, Rämisch, Borst, Walls, Adolf-Bryfogle, Schief, Veesler, DiMaio (bib15) 2019; 27
Raj, Mou, Smits, Dekkers, Müller, Dijkman, Muth, Demmers, Zaki, Fouchier (bib48) 2013; 495
Li, Li, Farzan, Harrison (bib30) 2005; 309
Kabsch (bib23) 2010; 66
Li, Moore, Vasilieva, Sui, Wong, Berne, Somasundaran, Sullivan, Luzuriaga, Greenough (bib29) 2003; 426
Frese, Zhou, Taus, Altelaar, Mechtler, Heck, Mohammed (bib16) 2013; 12
Voss, Yoshioka, Radermacher, Potter, Carragher (bib65) 2009; 166
Cowtan (bib11) 2006; 62
Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib78) 2017; 14
Memish, Mishra, Olival, Fagbo, Kapoor, Epstein, Alhakeem, Durosinloun, Al Asmari, Islam (bib37) 2013; 19
Punjani, Rubinstein, Fleet, Brubaker (bib47) 2017; 14
Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Gross-Kunstleve (bib1) 2010; 66
Gui, Song, Zhou, Xu, Chen, Xiang, Wang (bib20) 2017; 27
McCoy, Oeffner, Millan, Sammito, Uson, Read (bib82) 2018; 74
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib83) 2004; 25
Walls, Tortorici, Snijder, Xiong, Bosch, Rey, Veesler (bib68) 2017; 114
Wang, Song, Barad, Cheng, Fraser, DiMaio (bib71) 2016; 5
Ge, Li, Yang, Chmura, Zhu, Epstein, Mazet, Hu, Zhang, Peng (bib17) 2013; 503
Rossen, de Beer, Godeke, Raamsman, Horzinek, Vennema, Rottier (bib52) 1998; 72
Goddard, Huang, Ferrin (bib18) 2007; 157
Walls, Tortorici, Frenz, Snijder, Li, Rey, DiMaio, Bosch, Veesler (bib67) 2016; 23
Shang, Zheng, Yang, Liu, Geng, Luo, Zhang, Li (bib56) 2018; 14
Emsley, Lohkamp, Scott, Cowtan (bib13) 2010; 66
Stewart-Jones, Soto, Lemmin, Chuang, Druz, Kong, Thomas, Wagh, Zhou, Behrens (bib60) 2016; 165
Stertz, Reichelt, Spiegel, Kuri, Martínez-Sobrido, García-Sastre, Weber, Kochs (bib59) 2007; 361
Evans, Murshudov (bib14) 2013; 69
Chen, Arendall, Headd, Keedy, Immormino, Kapral, Murray, Richardson, Richardson (bib8) 2010; 66
Goddard, Huang, Meng, Pettersen, Couch, Morris, Ferrin (bib19) 2018; 27
Krokhin, Li, Andonov, Feldmann, Flick, Jones, Stroeher, Bastien, Dasuri, Cheng (bib27) 2003; 2
Michielssens, Peters, Ban, Pratihar, Seeliger, Sharma, Giller, Sabo, Becker, Lee (bib40) 2014; 53
Zhang (bib76) 2016; 193
Veesler, Blangy, Siponen, Vincentelli, Cambillau, Sciara (bib64) 2009; 388
Agirre, Iglesias-Fernández, Rovira, Davies, Wilson, Cowtan (bib2) 2015; 22
Zivanov, Nakane, Scheres (bib80) 2019; 6
Kirchdoerfer, Cottrell, Wang, Pallesen, Yassine, Turner, Corbett, Graham, McLellan, Ward (bib25) 2016; 531
Ng, Tan, See, Ooi, Ling (bib43) 2003; 84
Scheres, Chen (bib54) 2012; 9
Bern, Kil, Becker (bib4) 2012; Chapter 13
Zivanov, Nakane, Forsberg, Kimanius, Hagen, Lindahl, Scheres (bib79) 2018; 7
Walls, Tortorici, Bosch, Frenz, Rottier, DiMaio, Rey, Veesler (bib66) 2016; 531
Scharf, Wang, Gao, Chen, McDowall, Bjorkman (bib53) 2015; 162
Xiong, Tortorici, Snijder, Yoshioka, Walls, Li, McGuire, Rey, Bosch, Veesler (bib73) 2017
Nkolola, Bricault, Cheung, Shields, Perry, Kovacs, Giorgi, van Winsen, Apetri, Brinkman-van der Linden (bib44) 2014; 88
Haagmans, Al Dhahiry, Reusken, Raj, Galiano, Myers, Godeke, Jonges, Farag, Diab (bib21) 2014; 14
Struwe, Chertova, Allen, Seabright, Watanabe, Harvey, Medina-Ramirez, Roser, Smith, Westcott (bib61) 2018; 24
Matsuyama, Taguchi (bib35) 2009; 83
Yuan, Cao, Zhang, Ma, Qi, Wang, Lu, Wu, Yan, Shi (bib75) 2017; 8
Li, Zhang, Sui, Kuhn, Moore, Luo, Wong, Huang, Xu, Vasilieva (bib32) 2005; 24
Yang, Liu, Du, Jiang, Shi, Baric, Li (bib74) 2015; 89
Burkard, Verheije, Wicht, van Kasteren, van Kuppeveld, Haagmans, Pelkmans, Rottier, Bosch, de Haan (bib7) 2014; 10
Hu, Zeng, Yang, Ge, Zhang, Li, Xie, Shen, Zhang, Wang (bib22) 2017; 13
Snijder, Ortego, Weidle, Stuart, Gray, McElrath, Pancera, Veesler, McGuire (bib57) 2018; 48
Vagin, Steiner, Lebedev, Potterton, McNicholas, Long, Murshudov (bib84) 2004; 60
Suloway, Pulokas, Fellmann, Cheng, Guerra, Quispe, Stagg, Potter, Carragher (bib62) 2005; 151
Watanabe, Raghwani, Allen, Seabright, Li, Moser, Huiskonen, Strecker, Bowden, Crispin (bib72) 2018; 115
Wang, Yan, Xu, Liang, Kan, Zheng, Chen, Zheng, Xu, Zhang (bib69) 2005; 11
Lu, Hu, Wang, Qi, Gao, Li, Zhang, Zhang, Yuan, Bao (bib33) 2013; 500
Li, Shi, Yu, Ren, Smith, Epstein, Wang, Crameri, Hu, Zhang (bib31) 2005; 310
Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib45) 2017; 114
Lander, Stagg, Voss, Cheng, Fellmann, Pulokas, Yoshioka, Irving, Mulder, Lau (bib28) 2009; 166
Rockx, Corti, Donaldson, Sheahan, Stadler, Lanzavecchia, Baric (bib50) 2008; 82
Corti, Zhao, Pedotti, Simonelli, Agnihothram, Fett, Fernandez-Rodriguez, Foglierini, Agatic, Vanzetta (bib10) 2015; 112
Park, Li, Barlan, Fehr, Perlman, McCray, Gallagher (bib46) 2016; 113
Millet, Whittaker (bib41) 2014; 111
MacLean, Tomazela, Shulman, Chambers, Finney, Frewen, Kern, Tabb, Liebler, MacCoss (bib34) 2010; 26
Shang, Zheng, Yang, Liu, Geng, Tai, Du, Zhou, Zhang, Li (bib55) 2017; 92
Du, Tai, Yang, Zhao, Zhu, Sun, Liu, Tao, Tseng, Perlman (bib12) 2016; 7
Kirchdoerfer, Wang, Pallesen, Wrapp, Turner, Cottrell, Corbett, Graham, McLellan, Ward (bib26) 2018; 8
Menachery, Yount, Debbink, Agnihothram, Gralinski, Plante, Graham, Scobey, Ge, Donaldson (bib38) 2015; 21
Krissinel, Henrick (bib81) 2007; 372
Millet, Whittaker (bib42) 2016; 2016
Rosenthal, Henderson (bib51) 2003; 333
Chen, McMullan, Faruqi, Murshudov, Short, Scheres, Henderson (bib9) 2013; 135
McCoy, van Gils, Ozorowski, Messmer, Briney, Voss, Kulp, Macauley, Sok, Pauthner (bib36) 2016; 16
Belouzard, Chu, Whittaker (bib3) 2009; 106
Blanc, Roversi, Vonrhein, Flensburg, Lea, Bricogne (bib5) 2004; 60
Kirchdoerfer (10.1016/j.cell.2018.12.028_bib25) 2016; 531
Brown (10.1016/j.cell.2018.12.028_bib6) 2015; 71
MacLean (10.1016/j.cell.2018.12.028_bib34) 2010; 26
Scheres (10.1016/j.cell.2018.12.028_bib54) 2012; 9
Evans (10.1016/j.cell.2018.12.028_bib14) 2013; 69
Scharf (10.1016/j.cell.2018.12.028_bib53) 2015; 162
Cowtan (10.1016/j.cell.2018.12.028_bib11) 2006; 62
Belouzard (10.1016/j.cell.2018.12.028_bib3) 2009; 106
Krokhin (10.1016/j.cell.2018.12.028_bib27) 2003; 2
Stertz (10.1016/j.cell.2018.12.028_bib59) 2007; 361
Hu (10.1016/j.cell.2018.12.028_bib22) 2017; 13
Millet (10.1016/j.cell.2018.12.028_bib41) 2014; 111
Ng (10.1016/j.cell.2018.12.028_bib43) 2003; 84
Traggiai (10.1016/j.cell.2018.12.028_bib63) 2004; 10
Ritchie (10.1016/j.cell.2018.12.028_bib49) 2010; 399
Park (10.1016/j.cell.2018.12.028_bib46) 2016; 113
Blanc (10.1016/j.cell.2018.12.028_bib5) 2004; 60
Burkard (10.1016/j.cell.2018.12.028_bib7) 2014; 10
Rossen (10.1016/j.cell.2018.12.028_bib52) 1998; 72
Krissinel (10.1016/j.cell.2018.12.028_bib81) 2007; 372
Walls (10.1016/j.cell.2018.12.028_bib68) 2017; 114
Song (10.1016/j.cell.2018.12.028_bib58) 2018; 14
Millet (10.1016/j.cell.2018.12.028_bib42) 2016; 2016
Punjani (10.1016/j.cell.2018.12.028_bib47) 2017; 14
Veesler (10.1016/j.cell.2018.12.028_bib64) 2009; 388
Chen (10.1016/j.cell.2018.12.028_bib9) 2013; 135
Xiong (10.1016/j.cell.2018.12.028_bib73) 2017
Frenz (10.1016/j.cell.2018.12.028_bib15) 2019; 27
Walls (10.1016/j.cell.2018.12.028_bib66) 2016; 531
McCoy (10.1016/j.cell.2018.12.028_bib82) 2018; 74
Pallesen (10.1016/j.cell.2018.12.028_bib45) 2017; 114
Shang (10.1016/j.cell.2018.12.028_bib55) 2017; 92
Kimanius (10.1016/j.cell.2018.12.028_bib24) 2016; 5
Suloway (10.1016/j.cell.2018.12.028_bib62) 2005; 151
Wang (10.1016/j.cell.2018.12.028_bib69) 2005; 11
Watanabe (10.1016/j.cell.2018.12.028_bib72) 2018; 115
Kabsch (10.1016/j.cell.2018.12.028_bib23) 2010; 66
Vagin (10.1016/j.cell.2018.12.028_bib84) 2004; 60
McCoy (10.1016/j.cell.2018.12.028_bib36) 2016; 16
Voss (10.1016/j.cell.2018.12.028_bib65) 2009; 166
Ge (10.1016/j.cell.2018.12.028_bib17) 2013; 503
Li (10.1016/j.cell.2018.12.028_bib29) 2003; 426
Zhang (10.1016/j.cell.2018.12.028_bib77) 2004; 78
Matsuyama (10.1016/j.cell.2018.12.028_bib35) 2009; 83
Wang (10.1016/j.cell.2018.12.028_bib70) 2014; 16
Rockx (10.1016/j.cell.2018.12.028_bib50) 2008; 82
Goddard (10.1016/j.cell.2018.12.028_bib18) 2007; 157
Nkolola (10.1016/j.cell.2018.12.028_bib44) 2014; 88
Yuan (10.1016/j.cell.2018.12.028_bib75) 2017; 8
Bern (10.1016/j.cell.2018.12.028_bib4) 2012; Chapter 13
Zhang (10.1016/j.cell.2018.12.028_bib76) 2016; 193
Menachery (10.1016/j.cell.2018.12.028_bib38) 2015; 21
Haagmans (10.1016/j.cell.2018.12.028_bib21) 2014; 14
Michielssens (10.1016/j.cell.2018.12.028_bib40) 2014; 53
Walls (10.1016/j.cell.2018.12.028_bib67) 2016; 23
Struwe (10.1016/j.cell.2018.12.028_bib61) 2018; 24
Du (10.1016/j.cell.2018.12.028_bib12) 2016; 7
Rosenthal (10.1016/j.cell.2018.12.028_bib51) 2003; 333
Chen (10.1016/j.cell.2018.12.028_bib8) 2010; 66
Lu (10.1016/j.cell.2018.12.028_bib33) 2013; 500
Stewart-Jones (10.1016/j.cell.2018.12.028_bib60) 2016; 165
Yang (10.1016/j.cell.2018.12.028_bib74) 2015; 89
Lander (10.1016/j.cell.2018.12.028_bib28) 2009; 166
Zivanov (10.1016/j.cell.2018.12.028_bib80) 2019; 6
Kirchdoerfer (10.1016/j.cell.2018.12.028_bib26) 2018; 8
Li (10.1016/j.cell.2018.12.028_bib30) 2005; 309
Frese (10.1016/j.cell.2018.12.028_bib16) 2013; 12
Li (10.1016/j.cell.2018.12.028_bib32) 2005; 24
Zheng (10.1016/j.cell.2018.12.028_bib78) 2017; 14
Menachery (10.1016/j.cell.2018.12.028_bib39) 2016; 113
Memish (10.1016/j.cell.2018.12.028_bib37) 2013; 19
Wang (10.1016/j.cell.2018.12.028_bib71) 2016; 5
Goddard (10.1016/j.cell.2018.12.028_bib19) 2018; 27
Emsley (10.1016/j.cell.2018.12.028_bib13) 2010; 66
Zivanov (10.1016/j.cell.2018.12.028_bib79) 2018; 7
Gui (10.1016/j.cell.2018.12.028_bib20) 2017; 27
Corti (10.1016/j.cell.2018.12.028_bib10) 2015; 112
Li (10.1016/j.cell.2018.12.028_bib31) 2005; 310
Pettersen (10.1016/j.cell.2018.12.028_bib83) 2004; 25
Adams (10.1016/j.cell.2018.12.028_bib1) 2010; 66
Agirre (10.1016/j.cell.2018.12.028_bib2) 2015; 22
Snijder (10.1016/j.cell.2018.12.028_bib57) 2018; 48
Raj (10.1016/j.cell.2018.12.028_bib48) 2013; 495
Shang (10.1016/j.cell.2018.12.028_bib56) 2018; 14
33306956 - Cell. 2020 Dec 10;183(6):1732
References_xml – volume: 372
  start-page: 774
  year: 2007
  end-page: 797
  ident: bib81
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J. Mol. Biol.
– volume: 11
  start-page: 1860
  year: 2005
  end-page: 1865
  ident: bib69
  article-title: SARS-CoV infection in a restaurant from palm civet
  publication-title: Emerg. Infect. Dis.
– volume: 333
  start-page: 721
  year: 2003
  end-page: 745
  ident: bib51
  article-title: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy
  publication-title: J. Mol. Biol.
– volume: 26
  start-page: 966
  year: 2010
  end-page: 968
  ident: bib34
  article-title: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments
  publication-title: Bioinformatics
– volume: 113
  start-page: 12262
  year: 2016
  end-page: 12267
  ident: bib46
  article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 135
  start-page: 24
  year: 2013
  end-page: 35
  ident: bib9
  article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
  publication-title: Ultramicroscopy
– volume: 21
  start-page: 1508
  year: 2015
  end-page: 1513
  ident: bib38
  article-title: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence
  publication-title: Nat. Med.
– volume: 19
  start-page: 1819
  year: 2013
  end-page: 1823
  ident: bib37
  article-title: Middle East respiratory syndrome coronavirus in bats, Saudi Arabia
  publication-title: Emerg. Infect. Dis.
– volume: 111
  start-page: 15214
  year: 2014
  end-page: 15219
  ident: bib41
  article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 84
  start-page: 3291
  year: 2003
  end-page: 3303
  ident: bib43
  article-title: Proliferative growth of SARS coronavirus in Vero E6 cells
  publication-title: J. Gen. Virol.
– volume: 66
  start-page: 125
  year: 2010
  end-page: 132
  ident: bib23
  article-title: Xds
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 309
  start-page: 1864
  year: 2005
  end-page: 1868
  ident: bib30
  article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
  publication-title: Science
– volume: 53
  start-page: 10367
  year: 2014
  end-page: 10371
  ident: bib40
  article-title: A designed conformational shift to control protein binding specificity
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 503
  start-page: 535
  year: 2013
  end-page: 538
  ident: bib17
  article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor
  publication-title: Nature
– volume: 500
  start-page: 227
  year: 2013
  end-page: 231
  ident: bib33
  article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26
  publication-title: Nature
– volume: 60
  start-page: 2184
  year: 2004
  end-page: 2195
  ident: bib84
  article-title: REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use
  publication-title: Acta. Crystallogr. D Biol. Crystallogr
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: bib13
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 157
  start-page: 281
  year: 2007
  end-page: 287
  ident: bib18
  article-title: Visualizing density maps with UCSF Chimera
  publication-title: J. Struct. Biol.
– volume: 13
  start-page: e1006698
  year: 2017
  ident: bib22
  article-title: Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus
  publication-title: PLoS Pathog.
– volume: 14
  start-page: e1007009
  year: 2018
  ident: bib56
  article-title: Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins
  publication-title: PLoS Pathog.
– volume: 9
  start-page: 853
  year: 2012
  end-page: 854
  ident: bib54
  article-title: Prevention of overfitting in cryo-EM structure determination
  publication-title: Nat. Methods
– volume: 310
  start-page: 676
  year: 2005
  end-page: 679
  ident: bib31
  article-title: Bats are natural reservoirs of SARS-like coronaviruses
  publication-title: Science
– volume: 399
  start-page: 257
  year: 2010
  end-page: 269
  ident: bib49
  article-title: Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein
  publication-title: Virology
– volume: 115
  start-page: 7320
  year: 2018
  end-page: 7325
  ident: bib72
  article-title: Structure of the Lassa virus glycan shield provides a model for immunological resistance
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 140
  year: 2014
  end-page: 145
  ident: bib21
  article-title: Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation
  publication-title: Lancet Infect. Dis.
– volume: 112
  start-page: 10473
  year: 2015
  end-page: 10478
  ident: bib10
  article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 166
  start-page: 205
  year: 2009
  end-page: 213
  ident: bib65
  article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy
  publication-title: J. Struct. Biol.
– volume: 8
  start-page: 15701
  year: 2018
  ident: bib26
  article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis
  publication-title: Sci. Rep.
– volume: 113
  start-page: 3048
  year: 2016
  end-page: 3053
  ident: bib39
  article-title: SARS-like WIV1-CoV poised for human emergence
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 82
  start-page: 3220
  year: 2008
  end-page: 3235
  ident: bib50
  article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge
  publication-title: J. Virol.
– volume: 78
  start-page: 6938
  year: 2004
  end-page: 6945
  ident: bib77
  article-title: Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies
  publication-title: J. Virol.
– volume: 27
  start-page: 14
  year: 2018
  end-page: 25
  ident: bib19
  article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
– volume: 14
  start-page: e1007236
  year: 2018
  ident: bib58
  article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
  publication-title: PLoS Pathog.
– volume: 10
  start-page: e1004502
  year: 2014
  ident: bib7
  article-title: Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner
  publication-title: PLoS Pathog.
– volume: 48
  start-page: 799
  year: 2018
  end-page: 811
  ident: bib57
  article-title: An Antibody Targeting the Fusion Machinery Neutralizes Dual-Tropic Infection and Defines a Site of Vulnerability on Epstein-Barr Virus
  publication-title: Immunity
– volume: 24
  start-page: 1634
  year: 2005
  end-page: 1643
  ident: bib32
  article-title: Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2
  publication-title: EMBO J.
– volume: 5
  year: 2016
  ident: bib24
  article-title: Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2
  publication-title: eLife
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib83
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 166
  start-page: 95
  year: 2009
  end-page: 102
  ident: bib28
  article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing
  publication-title: J. Struct. Biol.
– volume: 60
  start-page: 2210
  year: 2004
  end-page: 2221
  ident: bib5
  article-title: Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr
  publication-title: D Biol. Crystallogr
– volume: 531
  start-page: 118
  year: 2016
  end-page: 121
  ident: bib25
  article-title: Pre-fusion structure of a human coronavirus spike protein
  publication-title: Nature
– volume: 72
  start-page: 497
  year: 1998
  end-page: 503
  ident: bib52
  article-title: The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells
  publication-title: J. Virol.
– volume: 151
  start-page: 41
  year: 2005
  end-page: 60
  ident: bib62
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
– volume: 6
  start-page: 5
  year: 2019
  end-page: 17
  ident: bib80
  article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis
  publication-title: IUCrJ
– volume: Chapter 13
  year: 2012
  ident: bib4
  article-title: Byonic: advanced peptide and protein identification software
  publication-title: Curr. Protoc. Bioinformatics
– volume: 16
  start-page: 2327
  year: 2016
  end-page: 2338
  ident: bib36
  article-title: Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies
  publication-title: Cell Rep.
– volume: 89
  start-page: 9119
  year: 2015
  end-page: 9123
  ident: bib74
  article-title: Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome Coronavirus
  publication-title: J. Virol.
– volume: 16
  start-page: 328
  year: 2014
  end-page: 337
  ident: bib70
  article-title: Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26
  publication-title: Cell Host Microbe
– volume: 71
  start-page: 136
  year: 2015
  end-page: 153
  ident: bib6
  article-title: Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 5
  year: 2016
  ident: bib71
  article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta
  publication-title: eLife
– volume: 92
  year: 2017
  ident: bib55
  article-title: Cryo-Election Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State
  publication-title: J. Virol.
– volume: 2
  start-page: 346
  year: 2003
  end-page: 356
  ident: bib27
  article-title: Mass spectrometric characterization of proteins from the SARS virus: a preliminary report
  publication-title: Mol. Cell. Proteomics
– volume: 2016
  year: 2016
  ident: bib42
  article-title: Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection. Biol
  publication-title: Protoc.
– volume: 531
  start-page: 114
  year: 2016
  end-page: 117
  ident: bib66
  article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
  publication-title: Nature
– volume: 23
  start-page: 899
  year: 2016
  end-page: 905
  ident: bib67
  article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy
  publication-title: Nat. Struct. Mol. Biol.
– volume: 114
  start-page: 11157
  year: 2017
  end-page: 11162
  ident: bib68
  article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 134
  year: 2019
  end-page: 139.e3
  ident: bib15
  article-title: Automatically fixing errors in glycoprotein structures with Rosetta
  publication-title: Structure
– volume: 7
  start-page: 13473
  year: 2016
  ident: bib12
  article-title: Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines
  publication-title: Nat. Commun.
– volume: 162
  start-page: 1379
  year: 2015
  end-page: 1390
  ident: bib53
  article-title: Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env
  publication-title: Cell
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  ident: bib47
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
– volume: 495
  start-page: 251
  year: 2013
  end-page: 254
  ident: bib48
  article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC
  publication-title: Nature
– volume: 24
  start-page: 1958
  year: 2018
  end-page: 1966
  ident: bib61
  article-title: Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen
  publication-title: Cell Rep
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: bib1
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr
  publication-title: D Biol. Crystallogr
– volume: 193
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib76
  article-title: Gctf: Real-time CTF determination and correction
  publication-title: J. Struct. Biol.
– volume: 12
  start-page: 1520
  year: 2013
  end-page: 1525
  ident: bib16
  article-title: Unambiguous phosphosite localization using electron-transfer/higher-energy collision dissociation (EThcD)
  publication-title: J. Proteome Res.
– volume: 165
  start-page: 813
  year: 2016
  end-page: 826
  ident: bib60
  article-title: Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G
  publication-title: Cell
– volume: 14
  start-page: 331
  year: 2017
  end-page: 332
  ident: bib78
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
– volume: 114
  start-page: E7348
  year: 2017
  end-page: E7357
  ident: bib45
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  year: 2018
  ident: bib79
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
– volume: 10
  start-page: 871
  year: 2004
  end-page: 875
  ident: bib63
  article-title: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus
  publication-title: Nat. Med.
– volume: 388
  start-page: 115
  year: 2009
  end-page: 121
  ident: bib64
  article-title: Production and biophysical characterization of the CorA transporter from Methanosarcina mazei
  publication-title: Anal. Biochem.
– volume: 66
  start-page: 12
  year: 2010
  end-page: 21
  ident: bib8
  article-title: MolProbity: all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 83
  start-page: 11133
  year: 2009
  end-page: 11141
  ident: bib35
  article-title: Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis
  publication-title: J. Virol.
– year: 2017
  ident: bib73
  article-title: Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections
  publication-title: J. Virol.
– volume: 361
  start-page: 304
  year: 2007
  end-page: 315
  ident: bib59
  article-title: The intracellular sites of early replication and budding of SARS-coronavirus
  publication-title: Virology
– volume: 22
  start-page: 833
  year: 2015
  end-page: 834
  ident: bib2
  article-title: Privateer: software for the conformational validation of carbohydrate structures
  publication-title: Nat. Struct. Mol. Biol.
– volume: 106
  start-page: 5871
  year: 2009
  end-page: 5876
  ident: bib3
  article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 119
  year: 2017
  end-page: 129
  ident: bib20
  article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding
  publication-title: Cell Res.
– volume: 69
  start-page: 1204
  year: 2013
  end-page: 1214
  ident: bib14
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 426
  start-page: 450
  year: 2003
  end-page: 454
  ident: bib29
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature
– volume: 8
  start-page: 15092
  year: 2017
  ident: bib75
  article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
  publication-title: Nat. Commun.
– volume: 62
  start-page: 1002
  year: 2006
  end-page: 1011
  ident: bib11
  article-title: The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crytallogr
  publication-title: D Biol. Crystallogr
– volume: 88
  start-page: 9538
  year: 2014
  end-page: 9552
  ident: bib44
  article-title: Characterization and immunogenicity of a novel mosaic M HIV-1 gp140 trimer
  publication-title: J. Virol.
– volume: 74
  start-page: 279
  year: 2018
  end-page: 289
  ident: bib82
  article-title: Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement
  publication-title: Acta. Crystallogr. D Struct. Biol.
– volume: 84
  start-page: 3291
  year: 2003
  ident: 10.1016/j.cell.2018.12.028_bib43
  article-title: Proliferative growth of SARS coronavirus in Vero E6 cells
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.19505-0
– volume: 8
  start-page: 15092
  year: 2017
  ident: 10.1016/j.cell.2018.12.028_bib75
  article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15092
– volume: 166
  start-page: 205
  year: 2009
  ident: 10.1016/j.cell.2018.12.028_bib65
  article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.01.004
– volume: 8
  start-page: 15701
  year: 2018
  ident: 10.1016/j.cell.2018.12.028_bib26
  article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34171-7
– volume: 114
  start-page: E7348
  year: 2017
  ident: 10.1016/j.cell.2018.12.028_bib45
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1707304114
– volume: 71
  start-page: 136
  year: 2015
  ident: 10.1016/j.cell.2018.12.028_bib6
  article-title: Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S1399004714021683
– volume: 5
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib24
  article-title: Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2
  publication-title: eLife
  doi: 10.7554/eLife.18722
– volume: 111
  start-page: 15214
  year: 2014
  ident: 10.1016/j.cell.2018.12.028_bib41
  article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1407087111
– volume: 157
  start-page: 281
  year: 2007
  ident: 10.1016/j.cell.2018.12.028_bib18
  article-title: Visualizing density maps with UCSF Chimera
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.06.010
– volume: 66
  start-page: 125
  year: 2010
  ident: 10.1016/j.cell.2018.12.028_bib23
  article-title: Xds
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909047337
– volume: 16
  start-page: 2327
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib36
  article-title: Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.07.074
– volume: 2
  start-page: 346
  year: 2003
  ident: 10.1016/j.cell.2018.12.028_bib27
  article-title: Mass spectrometric characterization of proteins from the SARS virus: a preliminary report
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M300048-MCP200
– volume: 426
  start-page: 450
  year: 2003
  ident: 10.1016/j.cell.2018.12.028_bib29
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature
  doi: 10.1038/nature02145
– volume: 89
  start-page: 9119
  year: 2015
  ident: 10.1016/j.cell.2018.12.028_bib74
  article-title: Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome Coronavirus
  publication-title: J. Virol.
  doi: 10.1128/JVI.01279-15
– volume: 88
  start-page: 9538
  year: 2014
  ident: 10.1016/j.cell.2018.12.028_bib44
  article-title: Characterization and immunogenicity of a novel mosaic M HIV-1 gp140 trimer
  publication-title: J. Virol.
  doi: 10.1128/JVI.01739-14
– volume: 14
  start-page: e1007236
  year: 2018
  ident: 10.1016/j.cell.2018.12.028_bib58
  article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007236
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.cell.2018.12.028_bib83
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 92
  year: 2017
  ident: 10.1016/j.cell.2018.12.028_bib55
  article-title: Cryo-Election Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State
  publication-title: J. Virol.
– volume: 106
  start-page: 5871
  year: 2009
  ident: 10.1016/j.cell.2018.12.028_bib3
  article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0809524106
– volume: 13
  start-page: e1006698
  year: 2017
  ident: 10.1016/j.cell.2018.12.028_bib22
  article-title: Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006698
– volume: 500
  start-page: 227
  year: 2013
  ident: 10.1016/j.cell.2018.12.028_bib33
  article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26
  publication-title: Nature
  doi: 10.1038/nature12328
– volume: 53
  start-page: 10367
  year: 2014
  ident: 10.1016/j.cell.2018.12.028_bib40
  article-title: A designed conformational shift to control protein binding specificity
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201403102
– volume: 310
  start-page: 676
  year: 2005
  ident: 10.1016/j.cell.2018.12.028_bib31
  article-title: Bats are natural reservoirs of SARS-like coronaviruses
  publication-title: Science
  doi: 10.1126/science.1118391
– volume: 21
  start-page: 1508
  year: 2015
  ident: 10.1016/j.cell.2018.12.028_bib38
  article-title: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence
  publication-title: Nat. Med.
  doi: 10.1038/nm.3985
– volume: 333
  start-page: 721
  year: 2003
  ident: 10.1016/j.cell.2018.12.028_bib51
  article-title: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2003.07.013
– volume: 14
  start-page: 290
  year: 2017
  ident: 10.1016/j.cell.2018.12.028_bib47
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 193
  start-page: 1
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib76
  article-title: Gctf: Real-time CTF determination and correction
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.11.003
– volume: 9
  start-page: 853
  year: 2012
  ident: 10.1016/j.cell.2018.12.028_bib54
  article-title: Prevention of overfitting in cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2115
– volume: 14
  start-page: e1007009
  year: 2018
  ident: 10.1016/j.cell.2018.12.028_bib56
  article-title: Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007009
– volume: 10
  start-page: 871
  year: 2004
  ident: 10.1016/j.cell.2018.12.028_bib63
  article-title: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus
  publication-title: Nat. Med.
  doi: 10.1038/nm1080
– volume: 531
  start-page: 118
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib25
  article-title: Pre-fusion structure of a human coronavirus spike protein
  publication-title: Nature
  doi: 10.1038/nature17200
– volume: 69
  start-page: 1204
  year: 2013
  ident: 10.1016/j.cell.2018.12.028_bib14
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444913000061
– volume: 114
  start-page: 11157
  year: 2017
  ident: 10.1016/j.cell.2018.12.028_bib68
  article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1708727114
– volume: 162
  start-page: 1379
  year: 2015
  ident: 10.1016/j.cell.2018.12.028_bib53
  article-title: Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.035
– volume: 48
  start-page: 799
  year: 2018
  ident: 10.1016/j.cell.2018.12.028_bib57
  article-title: An Antibody Targeting the Fusion Machinery Neutralizes Dual-Tropic Infection and Defines a Site of Vulnerability on Epstein-Barr Virus
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.03.026
– volume: 388
  start-page: 115
  year: 2009
  ident: 10.1016/j.cell.2018.12.028_bib64
  article-title: Production and biophysical characterization of the CorA transporter from Methanosarcina mazei
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2009.02.018
– volume: 7
  start-page: 13473
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib12
  article-title: Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13473
– volume: 27
  start-page: 119
  year: 2017
  ident: 10.1016/j.cell.2018.12.028_bib20
  article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.152
– volume: 361
  start-page: 304
  year: 2007
  ident: 10.1016/j.cell.2018.12.028_bib59
  article-title: The intracellular sites of early replication and budding of SARS-coronavirus
  publication-title: Virology
  doi: 10.1016/j.virol.2006.11.027
– volume: 112
  start-page: 10473
  year: 2015
  ident: 10.1016/j.cell.2018.12.028_bib10
  article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1510199112
– volume: 27
  start-page: 134
  year: 2019
  ident: 10.1016/j.cell.2018.12.028_bib15
  article-title: Automatically fixing errors in glycoprotein structures with Rosetta
  publication-title: Structure
  doi: 10.1016/j.str.2018.09.006
– volume: 66
  start-page: 486
  year: 2010
  ident: 10.1016/j.cell.2018.12.028_bib13
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910007493
– volume: 26
  start-page: 966
  year: 2010
  ident: 10.1016/j.cell.2018.12.028_bib34
  article-title: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq054
– volume: 113
  start-page: 3048
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib39
  article-title: SARS-like WIV1-CoV poised for human emergence
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1517719113
– volume: 10
  start-page: e1004502
  year: 2014
  ident: 10.1016/j.cell.2018.12.028_bib7
  article-title: Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004502
– volume: 66
  start-page: 12
  year: 2010
  ident: 10.1016/j.cell.2018.12.028_bib8
  article-title: MolProbity: all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909042073
– volume: 74
  start-page: 279
  year: 2018
  ident: 10.1016/j.cell.2018.12.028_bib82
  article-title: Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement
  publication-title: Acta. Crystallogr. D Struct. Biol.
  doi: 10.1107/S2059798318001353
– volume: 24
  start-page: 1958
  year: 2018
  ident: 10.1016/j.cell.2018.12.028_bib61
  article-title: Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.07.080
– volume: 19
  start-page: 1819
  year: 2013
  ident: 10.1016/j.cell.2018.12.028_bib37
  article-title: Middle East respiratory syndrome coronavirus in bats, Saudi Arabia
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1911.131172
– volume: 72
  start-page: 497
  year: 1998
  ident: 10.1016/j.cell.2018.12.028_bib52
  article-title: The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.1.497-503.1998
– volume: 66
  start-page: 213
  year: 2010
  ident: 10.1016/j.cell.2018.12.028_bib1
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr
  publication-title: D Biol. Crystallogr
  doi: 10.1107/S0907444909052925
– volume: 151
  start-page: 41
  year: 2005
  ident: 10.1016/j.cell.2018.12.028_bib62
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.03.010
– year: 2017
  ident: 10.1016/j.cell.2018.12.028_bib73
  article-title: Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections
  publication-title: J. Virol.
  doi: 10.1128/JVI.01628-17
– volume: 82
  start-page: 3220
  year: 2008
  ident: 10.1016/j.cell.2018.12.028_bib50
  article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge
  publication-title: J. Virol.
  doi: 10.1128/JVI.02377-07
– volume: 11
  start-page: 1860
  year: 2005
  ident: 10.1016/j.cell.2018.12.028_bib69
  article-title: SARS-CoV infection in a restaurant from palm civet
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1112.041293
– volume: 309
  start-page: 1864
  year: 2005
  ident: 10.1016/j.cell.2018.12.028_bib30
  article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
  publication-title: Science
  doi: 10.1126/science.1116480
– volume: 60
  start-page: 2210
  year: 2004
  ident: 10.1016/j.cell.2018.12.028_bib5
  article-title: Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr
  publication-title: D Biol. Crystallogr
  doi: 10.1107/S0907444904016427
– volume: Chapter 13
  year: 2012
  ident: 10.1016/j.cell.2018.12.028_bib4
  article-title: Byonic: advanced peptide and protein identification software
  publication-title: Curr. Protoc. Bioinformatics
– volume: 24
  start-page: 1634
  year: 2005
  ident: 10.1016/j.cell.2018.12.028_bib32
  article-title: Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600640
– volume: 6
  start-page: 5
  year: 2019
  ident: 10.1016/j.cell.2018.12.028_bib80
  article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis
  publication-title: IUCrJ
  doi: 10.1107/S205225251801463X
– volume: 23
  start-page: 899
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib67
  article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3293
– volume: 5
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib71
  article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta
  publication-title: eLife
  doi: 10.7554/eLife.17219
– volume: 372
  start-page: 774
  year: 2007
  ident: 10.1016/j.cell.2018.12.028_bib81
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.022
– volume: 83
  start-page: 11133
  year: 2009
  ident: 10.1016/j.cell.2018.12.028_bib35
  article-title: Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis
  publication-title: J. Virol.
  doi: 10.1128/JVI.00959-09
– volume: 14
  start-page: 331
  year: 2017
  ident: 10.1016/j.cell.2018.12.028_bib78
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 22
  start-page: 833
  year: 2015
  ident: 10.1016/j.cell.2018.12.028_bib2
  article-title: Privateer: software for the conformational validation of carbohydrate structures
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3115
– volume: 503
  start-page: 535
  year: 2013
  ident: 10.1016/j.cell.2018.12.028_bib17
  article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor
  publication-title: Nature
  doi: 10.1038/nature12711
– volume: 27
  start-page: 14
  year: 2018
  ident: 10.1016/j.cell.2018.12.028_bib19
  article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– volume: 115
  start-page: 7320
  year: 2018
  ident: 10.1016/j.cell.2018.12.028_bib72
  article-title: Structure of the Lassa virus glycan shield provides a model for immunological resistance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1803990115
– volume: 165
  start-page: 813
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib60
  article-title: Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.010
– volume: 62
  start-page: 1002
  year: 2006
  ident: 10.1016/j.cell.2018.12.028_bib11
  article-title: The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crytallogr
  publication-title: D Biol. Crystallogr
  doi: 10.1107/S0907444906022116
– volume: 531
  start-page: 114
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib66
  article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
  publication-title: Nature
  doi: 10.1038/nature16988
– volume: 14
  start-page: 140
  year: 2014
  ident: 10.1016/j.cell.2018.12.028_bib21
  article-title: Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(13)70690-X
– volume: 7
  year: 2018
  ident: 10.1016/j.cell.2018.12.028_bib79
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
  doi: 10.7554/eLife.42166
– volume: 495
  start-page: 251
  year: 2013
  ident: 10.1016/j.cell.2018.12.028_bib48
  article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC
  publication-title: Nature
  doi: 10.1038/nature12005
– volume: 135
  start-page: 24
  year: 2013
  ident: 10.1016/j.cell.2018.12.028_bib9
  article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2013.06.004
– volume: 166
  start-page: 95
  year: 2009
  ident: 10.1016/j.cell.2018.12.028_bib28
  article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.01.002
– volume: 113
  start-page: 12262
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib46
  article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1608147113
– volume: 2016
  year: 2016
  ident: 10.1016/j.cell.2018.12.028_bib42
  article-title: Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection. Biol
  publication-title: Protoc. 6.otherMillet and Whittaker
– volume: 399
  start-page: 257
  year: 2010
  ident: 10.1016/j.cell.2018.12.028_bib49
  article-title: Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein
  publication-title: Virology
  doi: 10.1016/j.virol.2009.12.020
– volume: 78
  start-page: 6938
  year: 2004
  ident: 10.1016/j.cell.2018.12.028_bib77
  article-title: Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.13.6938-6945.2004
– volume: 12
  start-page: 1520
  year: 2013
  ident: 10.1016/j.cell.2018.12.028_bib16
  article-title: Unambiguous phosphosite localization using electron-transfer/higher-energy collision dissociation (EThcD)
  publication-title: J. Proteome Res.
  doi: 10.1021/pr301130k
– volume: 60
  start-page: 2184
  year: 2004
  ident: 10.1016/j.cell.2018.12.028_bib84
  article-title: REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use
  publication-title: Acta. Crystallogr. D Biol. Crystallogr
  doi: 10.1107/S0907444904023510
– volume: 16
  start-page: 328
  year: 2014
  ident: 10.1016/j.cell.2018.12.028_bib70
  article-title: Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.08.009
– reference: 33306956 - Cell. 2020 Dec 10;183(6):1732
SSID ssj0008555
Score 2.6889133
Snippet Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic,...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1026
SubjectTerms Animals
Antibodies, Monoclonal
Antibodies, Monoclonal - immunology
Antibodies, Neutralizing
Antibodies, Neutralizing - immunology
Antibodies, Viral
Antibodies, Viral - immunology
Chlorocebus aethiops
class I fusion protein
Coronavirus
Coronavirus - immunology
Coronavirus - metabolism
Coronavirus Infections
Coronavirus Infections - immunology
glycoproteins
glycoproteomics
HEK293 Cells
Humans
humoral immunity
Immunity, Humoral
Immunity, Humoral - immunology
Life Sciences
membrane fusion
MERS-CoV
Middle East Respiratory Syndrome Coronavirus
Middle East Respiratory Syndrome Coronavirus - immunology
Middle East Respiratory Syndrome Coronavirus - metabolism
Molecular Mimicry
Molecular Mimicry - immunology
N-linked glycosylation
neutralization
neutralizing antibodies
pandemic
Protein Binding
Receptors, Virus
Receptors, Virus - metabolism
SARS Virus
SARS Virus - immunology
SARS Virus - metabolism
SARS-CoV
Severe acute respiratory syndrome coronavirus
spike glycoprotein
Spike Glycoprotein, Coronavirus
Spike Glycoprotein, Coronavirus - metabolism
Spike Glycoprotein, Coronavirus - physiology
Spike Glycoprotein, Coronavirus - ultrastructure
Vero Cells
Virus Internalization
viruses
Title Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
URI https://dx.doi.org/10.1016/j.cell.2018.12.028
https://www.ncbi.nlm.nih.gov/pubmed/30712865
https://www.proquest.com/docview/2179487778
https://www.proquest.com/docview/2253246551
https://pasteur.hal.science/pasteur-02546514
https://pubmed.ncbi.nlm.nih.gov/PMC6751136
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SQKCX0jZ9uI-gQOmlmNiSLcnH7ZJlm6Q9lC7sTViyTBxS77K7DuTfd8aPpZuUPfRoW_JjJI2-Gc98A_BJayI1c1nIS-XDRNgozLVSYVQoq6RXwvs2yveHnM6Si3k6P4DxkAtDYZW97u90equt-zNnvTTPllVFOb4Z15LYV0RMKBr1sEh0m8Q3_7rVxjpNuyoGGa58bN0nznQxXuQcp_Au3boEqSL7vzenJ9cUJfkYgj6MpPxra5o8h2c9pmSj7rVfwIGvX8JRV2Xy_hh-zmri8XeILRmiRL9EM5tNcD_r3IDse_W7cqt7dn7buIocAGs2ckPVM7Yo2ZhYDvK7atWssR-5117BbHL-azwN-1IKoZM82oRE-5YW2mluvdUl1fHj3EqL2NprxTX9LOMy50XiFUJIr4V1pReidD5Hi0yK13BYL2r_FljqHJ4vSy6cTdJM2sQVhc0TsrPLKHIBxIMMjet5xqncxa0ZAspuDMndkNxNzA3KPYAv2z7LjmVjb-t0GBqzM1cMbgN7-33Gcdw-gIi1p6Mrs8xxPTUrQ7wAEvHjXRzA6TDUBlcb3Sev_aJZG076iygU9Z42PEWUKhGKBvCmmx7bZ6JGjSkXOAC1M3F2Xmr3Sl1dt6zfaNlR_Z13__nx7-EpHmVtNn78AQ43q8Z_RDy1sSdoSXy7PGmXzR9smR9t
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB1kQdFeiqSr0o0Fil4KIRIlkdTRNWI4rZNDEQO-ESJFIQpS2bCtAPn7zGgx6rTwoVeJtKQhOXwcz7wH8EUpIjWzqc8L6fw4MoGfKSn9IJdGCicj55os30sxnsY_ZslsD4Z9LQylVXa-v_Xpjbfurpx21jxdlCXV-KZcCWJfiUJC0ftwiGhAkn7D-ez7xh2rJGllDFJc-ti8q5xpk7woOk75XaqJCZIk-793p_1rSpP8G4M-TqX8Y28aHcHzDlSyQfvex7DnqhfwpJWZvH8Jv6YVEflbBJcMYaJb4DmbjXBDa-OA7KL8XdrlPTu7rW1JEYAVG9he9ozNCzYkmoPsrlzWK-xH8bVXMB2dXQ3Hfqel4FvBg7VPvG9JrqzixhlVkJAf50YYBNdOSa7o3zIuMp7HTiKGdCoytnBRVFiX4ZFMRK_hoJpX7i2wxFq8XhQ8siZOUmFim-cmi-mgXQSB9SDsbahtRzROehe3us8ou9Fkd0121yHXaHcPvm36LFqajZ2tk35o9NZk0bgP7Oz3Fcdx8wBi1h4PJnqR4YKql5qIAQQCyLvQg8_9UGtcbvQ7WeXm9UpzcmDEoah2tOEJwlSBWNSDN-302DwTXWpIxcAeyK2Js_VS23eq8rqh_cajHQnwnPznx3-Cp-Ori4menF_-fAfP8E7alOaH7-FgvazdBwRXa_OxWTwPEqUhkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unexpected+Receptor+Functional+Mimicry+Elucidates+Activation+of+Coronavirus+Fusion&rft.jtitle=Cell&rft.au=Walls%2C+Alexandra+C.&rft.au=Xiong%2C+Xiaoli&rft.au=Park%2C+Young-Jun&rft.au=Tortorici%2C+M.+Alejandra&rft.date=2019-02-21&rft.issn=0092-8674&rft.volume=176&rft.issue=5&rft.spage=1026&rft.epage=1039.e15&rft_id=info:doi/10.1016%2Fj.cell.2018.12.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2018_12_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon