Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cel...
Saved in:
Published in | Cell Vol. 176; no. 5; pp. 1026 - 1039.e15 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
21.02.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism.
[Display omitted]
•MERS-CoV/SARS-CoV S composite glycan shields analyzed by cryo-EM and mass spectrometry•Structures of MERS-CoV/SARS-CoV S with neutralizing antibodies from survivors•LCA60 inhibits receptor binding by interacting with MERS-CoV S protein/glycans•S230 blocks receptor binding and triggers fusogenic rearrangements via functional mimicry
Structural analysis of the SARS-CoV S and MERS-CoV S glycoproteins in complex with neutralizing antibodies from human survivors sheds light into the mechanisms of membrane fusion and neutralization |
---|---|
AbstractList | Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism.
[Display omitted]
•MERS-CoV/SARS-CoV S composite glycan shields analyzed by cryo-EM and mass spectrometry•Structures of MERS-CoV/SARS-CoV S with neutralizing antibodies from survivors•LCA60 inhibits receptor binding by interacting with MERS-CoV S protein/glycans•S230 blocks receptor binding and triggers fusogenic rearrangements via functional mimicry
Structural analysis of the SARS-CoV S and MERS-CoV S glycoproteins in complex with neutralizing antibodies from human survivors sheds light into the mechanisms of membrane fusion and neutralization Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism. Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism. Structural analysis of the SARS-CoV S and MERS-CoV S glycoproteins in complex with neutralizing antibodies from human survivors sheds light into the mechanisms of membrane fusion and neutralization Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism. Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism.Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism. |
Author | Lanzavecchia, Antonio Gopal, Robin Dai, Mian Veesler, David Xiong, Xiaoli Zambon, Maria Cameroni, Elisabetta Walls, Alexandra C. Snijder, Joost Tortorici, M. Alejandra Quispe, Joel Rey, Félix A. Corti, Davide Park, Young-Jun |
Author_xml | – sequence: 1 givenname: Alexandra C. surname: Walls fullname: Walls, Alexandra C. organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA – sequence: 2 givenname: Xiaoli surname: Xiong fullname: Xiong, Xiaoli organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA – sequence: 3 givenname: Young-Jun surname: Park fullname: Park, Young-Jun organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA – sequence: 4 givenname: M. Alejandra surname: Tortorici fullname: Tortorici, M. Alejandra organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA – sequence: 5 givenname: Joost surname: Snijder fullname: Snijder, Joost organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA – sequence: 6 givenname: Joel surname: Quispe fullname: Quispe, Joel organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA – sequence: 7 givenname: Elisabetta surname: Cameroni fullname: Cameroni, Elisabetta organization: Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 8 givenname: Robin surname: Gopal fullname: Gopal, Robin organization: National Infection Service, Public Health England, London NW9 5HT, UK – sequence: 9 givenname: Mian surname: Dai fullname: Dai, Mian organization: Crick Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK – sequence: 10 givenname: Antonio surname: Lanzavecchia fullname: Lanzavecchia, Antonio organization: Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland – sequence: 11 givenname: Maria surname: Zambon fullname: Zambon, Maria organization: National Infection Service, Public Health England, London NW9 5HT, UK – sequence: 12 givenname: Félix A. surname: Rey fullname: Rey, Félix A. organization: Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, 75015, Paris, France – sequence: 13 givenname: Davide surname: Corti fullname: Corti, Davide organization: Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 14 givenname: David surname: Veesler fullname: Veesler, David email: dveesler@uw.edu organization: Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30712865$$D View this record in MEDLINE/PubMed https://pasteur.hal.science/pasteur-02546514$$DView record in HAL |
BookMark | eNqNkk9v1DAQxS1URLeFL8AB5cglwZ7EfyIhpNWqpUiLkCp6thxnQr3KxoudRO23x2FLBT1UnCx5fu95xm_OyMngByTkLaMFo0x82BUW-74AylTBoKCgXpAVo7XMKybhhKworSFXQlan5CzGHaVUcc5fkdOSSgZK8BW5vhnw7oB2xDa7RouH0Yfschrs6Pxg-uyr2zsb7rOLfrKuNSPGbJ1qs1nqme-yjQ8JnF2YYtLFdPuavOxMH_HNw3lObi4vvm-u8u23z182621uBdAxl3XNeausggYb1VFelwCNaKQEVBIUEzUFYaCtUCpKUZWN7bAsO4tG1bUoz8mno-9havbYWhzGYHp9CG5vwr32xul_K4O71T_8rIXkjJWLQX40uH0iu1pv9cHEEaegKfBKcFbNLPHvHx4M_ueEcdR7F5cIzIB-ihqAl5Bg_h8ok3WlpJQqoe_-HuOxkT8ZJQCOgA0-xoDdI8KoXhZB7_RirZdF0AxSy4ureiKybvwdWvoK1z8v_XiUYgpvdhh0tA4Hi60LaVF0691z8l8lr86W |
CitedBy_id | crossref_primary_10_3390_ijms22168604 crossref_primary_10_3390_v13061126 crossref_primary_10_1126_science_abb2507 crossref_primary_10_1021_acscentsci_2c01471 crossref_primary_10_1080_19390211_2020_1834049 crossref_primary_10_1016_j_lfs_2020_118541 crossref_primary_10_1007_s10787_023_01385_9 crossref_primary_10_1155_2021_8160860 crossref_primary_10_15252_embr_202154199 crossref_primary_10_1088_1742_6596_2207_1_012016 crossref_primary_10_1371_journal_ppat_1011789 crossref_primary_10_1016_j_celrep_2022_111335 crossref_primary_10_1016_j_xcrm_2020_100126 crossref_primary_10_1111_ijcp_13893 crossref_primary_10_1111_pai_13271 crossref_primary_10_2147_JIR_S282213 crossref_primary_10_3390_s20113121 crossref_primary_10_1016_j_cell_2022_01_019 crossref_primary_10_1002_mas_21813 crossref_primary_10_1128_jvi_00531_24 crossref_primary_10_1016_j_ijantimicag_2020_105951 crossref_primary_10_1089_cmb_2020_0193 crossref_primary_10_3390_v12111289 crossref_primary_10_3390_biom10091346 crossref_primary_10_1016_j_addr_2021_01_014 crossref_primary_10_1155_2020_9238696 crossref_primary_10_1038_s41586_024_08121_5 crossref_primary_10_1038_s41586_021_03925_1 crossref_primary_10_1093_abt_tbaa028 crossref_primary_10_1016_j_sjbs_2021_02_077 crossref_primary_10_3389_fmicb_2022_988298 crossref_primary_10_1126_science_abq0203 crossref_primary_10_1016_j_jbc_2021_100375 crossref_primary_10_1126_sciimmunol_ade0958 crossref_primary_10_1038_s41594_019_0233_y crossref_primary_10_1111_febs_16239 crossref_primary_10_1146_annurev_biophys_062920_063711 crossref_primary_10_3390_bios12100785 crossref_primary_10_1007_s12035_021_02399_6 crossref_primary_10_1016_j_celrep_2024_114265 crossref_primary_10_1007_s42995_023_00215_9 crossref_primary_10_7554_eLife_75433 crossref_primary_10_1016_j_isci_2022_105726 crossref_primary_10_3390_ijms22041749 crossref_primary_10_3390_v14081837 crossref_primary_10_1073_pnas_2122769119 crossref_primary_10_1021_acsomega_1c02336 crossref_primary_10_1093_nsr_nwaa297 crossref_primary_10_1038_s42003_021_02030_3 crossref_primary_10_1126_science_abe3354 crossref_primary_10_1016_j_isci_2023_107085 crossref_primary_10_1093_abt_tbaa008 crossref_primary_10_1590_1678_7757_2020_0678 crossref_primary_10_1093_abt_tbaa007 crossref_primary_10_1016_j_bpj_2023_09_003 crossref_primary_10_1016_j_csbj_2021_06_041 crossref_primary_10_1016_j_peptides_2021_170583 crossref_primary_10_3389_fimmu_2020_01531 crossref_primary_10_1016_j_cell_2020_04_031 crossref_primary_10_1016_j_meegid_2020_104382 crossref_primary_10_1016_j_cell_2021_05_005 crossref_primary_10_1016_j_cell_2024_12_032 crossref_primary_10_1002_prot_26422 crossref_primary_10_1021_acs_jpcb_4c05270 crossref_primary_10_1038_s41598_020_71748_7 crossref_primary_10_7554_eLife_73027 crossref_primary_10_1038_s41586_021_03817_4 crossref_primary_10_1016_j_chom_2020_06_010 crossref_primary_10_1080_21645515_2020_1796425 crossref_primary_10_1186_s13104_021_05874_4 crossref_primary_10_1016_j_virusres_2020_198141 crossref_primary_10_1080_19420862_2024_2440586 crossref_primary_10_1016_j_virusres_2020_198021 crossref_primary_10_29333_jcei_8564 crossref_primary_10_1128_mmbr_00001_23 crossref_primary_10_1128_JVI_00785_19 crossref_primary_10_1016_j_crmicr_2020_06_003 crossref_primary_10_1126_science_abb7269 crossref_primary_10_1128_mBio_02764_19 crossref_primary_10_1126_science_abq2679 crossref_primary_10_1016_j_molliq_2020_113612 crossref_primary_10_1073_pnas_2101918118 crossref_primary_10_3390_ijms21165707 crossref_primary_10_1038_s41467_020_20501_9 crossref_primary_10_1038_s41598_020_74050_8 crossref_primary_10_2174_2666796701999201204123259 crossref_primary_10_1128_JVI_00861_20 crossref_primary_10_1360_SSC_2021_0249 crossref_primary_10_1016_j_jiph_2021_05_009 crossref_primary_10_1126_science_abj3321 crossref_primary_10_1021_acsomega_2c00844 crossref_primary_10_2174_1389201022666210509022313 crossref_primary_10_1021_acsnano_2c07681 crossref_primary_10_3389_fimmu_2023_1159326 crossref_primary_10_1016_j_molliq_2020_113968 crossref_primary_10_1038_s41598_023_48186_2 crossref_primary_10_1016_j_bbagen_2019_05_012 crossref_primary_10_1016_j_celrep_2022_110348 crossref_primary_10_1017_S1431927619007232 crossref_primary_10_1016_j_tips_2020_07_004 crossref_primary_10_3389_fmolb_2021_629873 crossref_primary_10_1371_journal_ppat_1008556 crossref_primary_10_1038_s41467_020_19204_y crossref_primary_10_3389_fimmu_2022_963023 crossref_primary_10_1038_s41467_022_31193_8 crossref_primary_10_1097_MNM_0000000000001269 crossref_primary_10_1016_j_compbiomed_2022_105758 crossref_primary_10_3389_fchem_2021_767448 crossref_primary_10_1146_annurev_biophys_102620_080956 crossref_primary_10_1016_j_xcrm_2021_100313 crossref_primary_10_3390_cells9071583 crossref_primary_10_1016_j_jiph_2022_12_019 crossref_primary_10_1021_jasms_3c00038 crossref_primary_10_1038_s41594_020_0478_5 crossref_primary_10_3390_v12010083 crossref_primary_10_1038_s41467_021_27610_z crossref_primary_10_1038_s41598_020_70863_9 crossref_primary_10_1016_j_str_2021_04_006 crossref_primary_10_1021_acs_analchem_2c02670 crossref_primary_10_1016_j_immuni_2020_06_001 crossref_primary_10_1128_JVI_00923_19 crossref_primary_10_1016_j_intimp_2020_106924 crossref_primary_10_3389_fonc_2020_572329 crossref_primary_10_3390_v14010144 crossref_primary_10_1021_acsinfecdis_3c00010 crossref_primary_10_1038_s41422_020_00446_w crossref_primary_10_2196_20699 crossref_primary_10_1016_j_intimp_2022_108786 crossref_primary_10_1099_jgv_0_001506 crossref_primary_10_1371_journal_pone_0241168 crossref_primary_10_1038_s41392_021_00809_8 crossref_primary_10_1038_s41598_021_84700_0 crossref_primary_10_3389_fchem_2020_572885 crossref_primary_10_1016_j_bbrc_2021_06_001 crossref_primary_10_1021_jacs_4c09996 crossref_primary_10_1038_s41467_019_10897_4 crossref_primary_10_1080_22221751_2020_1729069 crossref_primary_10_1021_jacs_1c02713 crossref_primary_10_1088_1742_6596_2058_1_012020 crossref_primary_10_1016_j_immuni_2021_08_025 crossref_primary_10_1073_pnas_2111199119 crossref_primary_10_1016_j_cell_2020_06_025 crossref_primary_10_1126_scitranslmed_abc3103 crossref_primary_10_1038_s41594_019_0334_7 crossref_primary_10_1038_s41467_020_16256_y crossref_primary_10_1038_s41598_021_84637_4 crossref_primary_10_1126_scitranslmed_abn1252 crossref_primary_10_1128_JVI_02015_19 crossref_primary_10_3389_fmolb_2021_637550 crossref_primary_10_1039_D0SC03920A crossref_primary_10_1002_anie_202100316 crossref_primary_10_1016_j_csbj_2020_11_002 crossref_primary_10_1080_07391102_2021_1933594 crossref_primary_10_1016_j_biochi_2021_10_013 crossref_primary_10_1074_mcp_RA120_002295 crossref_primary_10_1126_sciadv_adr8772 crossref_primary_10_1021_acs_jpcb_1c02398 crossref_primary_10_1038_s41385_020_00359_2 crossref_primary_10_1038_s41467_023_36761_0 crossref_primary_10_3390_ijms25168828 crossref_primary_10_1016_j_jchromb_2021_123015 crossref_primary_10_1038_s41586_021_03807_6 crossref_primary_10_1002_rmv_2439 crossref_primary_10_1126_sciadv_abq8276 crossref_primary_10_1063_5_0011141 crossref_primary_10_1007_s00521_023_08802_8 crossref_primary_10_1016_j_drudis_2020_10_018 crossref_primary_10_1128_jvi_01245_22 crossref_primary_10_1002_rmv_2464 crossref_primary_10_2174_2666958702101010065 crossref_primary_10_1080_17476348_2021_1854092 crossref_primary_10_1038_s41467_021_24963_3 crossref_primary_10_1016_j_tim_2021_05_002 crossref_primary_10_1126_science_abb9983 crossref_primary_10_1016_j_bea_2022_100054 crossref_primary_10_1002_cmdc_202000259 crossref_primary_10_1126_science_abm8143 crossref_primary_10_1016_j_jpha_2020_12_001 crossref_primary_10_3389_fimmu_2022_901217 crossref_primary_10_26508_lsa_202201796 crossref_primary_10_3389_fviro_2022_923018 crossref_primary_10_3389_fphys_2021_624675 crossref_primary_10_3389_fimmu_2022_864775 crossref_primary_10_1038_s41594_020_0479_4 crossref_primary_10_3390_biom11071048 crossref_primary_10_1007_s12539_020_00376_6 crossref_primary_10_1038_s41467_020_18440_6 crossref_primary_10_1016_j_ymthe_2023_08_010 crossref_primary_10_1371_journal_pcbi_1010230 crossref_primary_10_1038_s41423_020_0458_z crossref_primary_10_3389_fimmu_2021_636966 crossref_primary_10_1038_s41594_021_00596_4 crossref_primary_10_1016_j_immuni_2024_10_001 crossref_primary_10_1038_s41467_021_21968_w crossref_primary_10_1016_j_coviro_2021_12_015 crossref_primary_10_1016_j_lfs_2020_118056 crossref_primary_10_1126_sciadv_abe5575 crossref_primary_10_1126_sciadv_adk4920 crossref_primary_10_1021_jacs_1c00556 crossref_primary_10_1134_S0006297922070021 crossref_primary_10_1002_JLB_3COVCRA0920_628RR crossref_primary_10_3389_fimmu_2021_678570 crossref_primary_10_1016_j_jbc_2021_101151 crossref_primary_10_1038_s41467_020_20401_y crossref_primary_10_1038_s41594_021_00584_8 crossref_primary_10_3390_v14102178 crossref_primary_10_1016_j_str_2020_12_003 crossref_primary_10_3389_fimmu_2021_659071 crossref_primary_10_1038_s41586_020_2456_9 crossref_primary_10_1080_07391102_2020_1802338 crossref_primary_10_1016_j_cell_2020_08_012 crossref_primary_10_1038_s42003_022_03630_3 crossref_primary_10_1038_s41541_021_00417_1 crossref_primary_10_1111_ddg_14169 crossref_primary_10_1021_jasms_3c00309 crossref_primary_10_3389_fimmu_2021_637152 crossref_primary_10_3390_v15091886 crossref_primary_10_1021_acs_analchem_1c01772 crossref_primary_10_1007_s13337_021_00654_x crossref_primary_10_1016_j_cell_2021_03_028 crossref_primary_10_3389_fmed_2021_637642 crossref_primary_10_1016_j_ijbiomac_2021_02_071 crossref_primary_10_3389_fimmu_2020_576622 crossref_primary_10_13181_mji_oa_215559 crossref_primary_10_1016_j_clim_2020_108448 crossref_primary_10_1126_science_abc7424 crossref_primary_10_3389_fmolb_2020_00226 crossref_primary_10_1002_ange_202100316 crossref_primary_10_1111_imr_13383 crossref_primary_10_3390_v12040445 crossref_primary_10_1016_S0140_6736_20_31605_6 crossref_primary_10_1002_cti2_1228 crossref_primary_10_3390_ijms21134639 crossref_primary_10_14710_jksa_24_5_170_176 crossref_primary_10_3389_fimmu_2020_02008 crossref_primary_10_1016_j_immuni_2023_10_007 crossref_primary_10_1073_pnas_2314990121 crossref_primary_10_1080_07391102_2022_2095305 crossref_primary_10_3389_fimmu_2020_02130 crossref_primary_10_1177_11779322211025876 crossref_primary_10_1002_ange_202100345 crossref_primary_10_1016_j_cell_2020_09_049 crossref_primary_10_1177_2472555220979579 crossref_primary_10_1016_j_ajpath_2021_04_010 crossref_primary_10_1016_j_chom_2020_08_002 crossref_primary_10_1093_glycob_cwaa042 crossref_primary_10_1016_j_bpj_2021_11_009 crossref_primary_10_1016_j_virol_2021_09_001 crossref_primary_10_1038_s41577_023_00858_w crossref_primary_10_1016_j_chembiol_2023_05_011 crossref_primary_10_1007_s12026_020_09159_z crossref_primary_10_1038_s41586_023_06599_z crossref_primary_10_1038_s41467_020_19231_9 crossref_primary_10_1126_scitranslmed_abc9396 crossref_primary_10_1038_s41586_020_2180_5 crossref_primary_10_1016_j_cell_2022_05_019 crossref_primary_10_2174_1568026620666200922112300 crossref_primary_10_1016_j_cell_2020_09_035 crossref_primary_10_1016_j_cell_2020_09_032 crossref_primary_10_1016_j_pulmoe_2021_03_008 crossref_primary_10_3389_fmolb_2020_00204 crossref_primary_10_1016_j_cell_2020_09_037 crossref_primary_10_1186_s12859_020_03872_0 crossref_primary_10_3390_vaccines8030355 crossref_primary_10_1016_j_cell_2021_04_033 crossref_primary_10_1002_rmv_2183 crossref_primary_10_7717_peerj_11232 crossref_primary_10_1016_j_cell_2024_09_026 crossref_primary_10_4103_ijp_IJP_115_20 crossref_primary_10_1038_s41565_024_01655_9 crossref_primary_10_1007_s10439_022_03094_w crossref_primary_10_1021_acs_analchem_0c04339 crossref_primary_10_1021_acs_jpcb_1c00395 crossref_primary_10_1080_21645515_2024_2351664 crossref_primary_10_1016_j_bpj_2021_02_023 crossref_primary_10_1126_science_abd0826 crossref_primary_10_1016_j_celrep_2024_114530 crossref_primary_10_1016_j_gendis_2020_07_001 crossref_primary_10_1002_anie_202100345 crossref_primary_10_1021_acs_jpcb_0c10637 crossref_primary_10_1038_s41467_020_17371_6 crossref_primary_10_1021_acs_jcim_0c01320 crossref_primary_10_1186_s12985_021_01526_y crossref_primary_10_1038_s41467_024_51770_3 crossref_primary_10_1016_j_cell_2020_10_043 crossref_primary_10_1038_s41586_020_2349_y crossref_primary_10_1021_acs_jproteome_1c00442 crossref_primary_10_1039_D3AY01618H crossref_primary_10_1099_jgv_0_001408 crossref_primary_10_1016_j_str_2023_11_015 crossref_primary_10_1128_mbio_02030_21 crossref_primary_10_1080_22221751_2020_1821583 crossref_primary_10_1038_s41586_022_05513_3 crossref_primary_10_3389_fmicb_2020_00658 crossref_primary_10_1016_j_jpha_2021_09_006 crossref_primary_10_1016_j_idairyj_2021_105002 crossref_primary_10_1038_s41541_020_00237_9 crossref_primary_10_3389_fmolb_2021_671923 crossref_primary_10_1080_22221751_2022_2125348 crossref_primary_10_1016_j_cell_2021_09_015 crossref_primary_10_1007_s12033_024_01277_5 crossref_primary_10_1016_j_medntd_2020_100043 crossref_primary_10_1186_s40001_023_01210_7 crossref_primary_10_3390_ijms222011028 crossref_primary_10_1007_s13205_021_02657_3 crossref_primary_10_1016_j_cell_2024_06_006 crossref_primary_10_1016_j_idairyj_2022_105436 crossref_primary_10_3390_v12030254 crossref_primary_10_1007_s43538_021_00058_x crossref_primary_10_1039_D1CP01072G crossref_primary_10_1016_j_lfs_2020_117970 crossref_primary_10_1126_sciimmunol_adf1421 crossref_primary_10_3390_ijms21218268 crossref_primary_10_1038_s41392_020_00369_3 crossref_primary_10_1126_science_adc9127 crossref_primary_10_3390_ijms22031308 crossref_primary_10_1099_acmi_0_000166 crossref_primary_10_1186_s43042_022_00224_w crossref_primary_10_1038_s42003_022_03767_1 crossref_primary_10_1021_acsnano_1c04142 crossref_primary_10_1038_s42003_022_03262_7 crossref_primary_10_1126_sciadv_abf5632 crossref_primary_10_1016_j_ejmech_2020_112862 crossref_primary_10_1007_s41664_021_00197_6 crossref_primary_10_1016_j_addr_2020_12_004 crossref_primary_10_1016_j_biopha_2022_113190 crossref_primary_10_1126_sciadv_abq6527 crossref_primary_10_1128_JVI_01751_20 crossref_primary_10_2196_36100 crossref_primary_10_1080_22221751_2020_1781551 crossref_primary_10_1016_j_trac_2022_116738 crossref_primary_10_1016_j_biopha_2020_110559 crossref_primary_10_3390_v15020504 crossref_primary_10_1007_s42485_021_00074_x crossref_primary_10_1111_cbdd_13847 crossref_primary_10_12873_411vique crossref_primary_10_1007_s11033_022_07724_3 crossref_primary_10_1002_prot_26088 crossref_primary_10_1080_07391102_2023_2265485 crossref_primary_10_1016_j_celrep_2022_110786 crossref_primary_10_1007_s12033_021_00373_0 crossref_primary_10_1016_j_chom_2023_10_018 crossref_primary_10_1038_s41594_019_0308_9 crossref_primary_10_3389_fmicb_2023_1122868 crossref_primary_10_3390_pathogens9070565 crossref_primary_10_1111_jfs_12896 crossref_primary_10_1126_science_abe6230 crossref_primary_10_1016_j_it_2020_09_004 crossref_primary_10_1016_j_isci_2022_104239 crossref_primary_10_1016_j_micpath_2020_104719 crossref_primary_10_1016_j_pbiomolbio_2020_04_002 crossref_primary_10_1136_jim_2020_001559 crossref_primary_10_3390_molecules25215091 crossref_primary_10_1016_j_jbc_2022_101814 crossref_primary_10_1038_s41587_022_01382_3 crossref_primary_10_1016_j_jbc_2021_100306 crossref_primary_10_3390_microorganisms9010165 crossref_primary_10_1016_j_cell_2020_09_018 crossref_primary_10_1128_mbio_00171_23 crossref_primary_10_1038_s41467_021_25997_3 crossref_primary_10_7554_eLife_51230 crossref_primary_10_1097_IM9_0000000000000072 crossref_primary_10_1021_acsnano_0c04006 crossref_primary_10_1038_s41467_024_49656_5 crossref_primary_10_1002_jia2_25797 crossref_primary_10_1021_acs_biochem_1c00139 crossref_primary_10_1590_s0103_73312022320206 crossref_primary_10_1002_prot_26025 crossref_primary_10_1038_s41564_022_01235_4 crossref_primary_10_1038_s42003_021_02029_w crossref_primary_10_1021_acs_jproteome_0c00654 crossref_primary_10_1038_s41594_020_0483_8 crossref_primary_10_1016_j_chom_2021_02_002 crossref_primary_10_1038_s41586_024_07636_1 crossref_primary_10_1016_j_crstbi_2023_100120 crossref_primary_10_1016_j_celrep_2019_08_052 crossref_primary_10_1038_s42003_022_03207_0 crossref_primary_10_1038_s41467_020_16567_0 crossref_primary_10_3390_jcm9051473 crossref_primary_10_1007_s42247_020_00143_9 crossref_primary_10_24017_science_2020_ICHMS2020_10 crossref_primary_10_1080_19932820_2023_2209949 crossref_primary_10_1126_sciadv_abf1591 crossref_primary_10_1128_mSphere_00344_20 crossref_primary_10_1002_prot_26279 crossref_primary_10_1016_j_carpta_2021_100052 crossref_primary_10_1128_JVI_01301_20 crossref_primary_10_3390_microorganisms11010030 crossref_primary_10_1002_adts_202100152 crossref_primary_10_1016_j_meegid_2021_104729 crossref_primary_10_1126_science_abc5881 crossref_primary_10_1016_j_jaut_2020_102434 crossref_primary_10_1145_3465398 crossref_primary_10_1128_jvi_01626_21 crossref_primary_10_1007_s13205_023_03749_y crossref_primary_10_1016_j_cell_2020_02_058 crossref_primary_10_1038_s41421_021_00295_w crossref_primary_10_1038_s41598_021_82849_2 crossref_primary_10_1007_s00018_020_03580_1 crossref_primary_10_1080_07391102_2021_2019123 crossref_primary_10_3389_fimmu_2020_00932 crossref_primary_10_3390_nano12091602 crossref_primary_10_1016_j_intimp_2020_106654 crossref_primary_10_1016_j_isci_2020_101642 crossref_primary_10_3390_biomedicines10061339 crossref_primary_10_1016_j_ejmcr_2021_100003 crossref_primary_10_3389_fpls_2021_682953 crossref_primary_10_1111_ddg_14169_g crossref_primary_10_1016_j_celrep_2021_110210 crossref_primary_10_3390_antib12010005 crossref_primary_10_1073_pnas_2403260121 |
Cites_doi | 10.1099/vir.0.19505-0 10.1038/ncomms15092 10.1016/j.jsb.2009.01.004 10.1038/s41598-018-34171-7 10.1073/pnas.1707304114 10.1107/S1399004714021683 10.7554/eLife.18722 10.1073/pnas.1407087111 10.1016/j.jsb.2006.06.010 10.1107/S0907444909047337 10.1016/j.celrep.2016.07.074 10.1074/mcp.M300048-MCP200 10.1038/nature02145 10.1128/JVI.01279-15 10.1128/JVI.01739-14 10.1371/journal.ppat.1007236 10.1002/jcc.20084 10.1073/pnas.0809524106 10.1371/journal.ppat.1006698 10.1038/nature12328 10.1002/anie.201403102 10.1126/science.1118391 10.1038/nm.3985 10.1016/j.jmb.2003.07.013 10.1038/nmeth.4169 10.1016/j.jsb.2015.11.003 10.1038/nmeth.2115 10.1371/journal.ppat.1007009 10.1038/nm1080 10.1038/nature17200 10.1107/S0907444913000061 10.1073/pnas.1708727114 10.1016/j.cell.2015.08.035 10.1016/j.immuni.2018.03.026 10.1016/j.ab.2009.02.018 10.1038/ncomms13473 10.1038/cr.2016.152 10.1016/j.virol.2006.11.027 10.1073/pnas.1510199112 10.1016/j.str.2018.09.006 10.1107/S0907444910007493 10.1093/bioinformatics/btq054 10.1073/pnas.1517719113 10.1371/journal.ppat.1004502 10.1107/S0907444909042073 10.1107/S2059798318001353 10.1016/j.celrep.2018.07.080 10.3201/eid1911.131172 10.1128/JVI.72.1.497-503.1998 10.1107/S0907444909052925 10.1016/j.jsb.2005.03.010 10.1128/JVI.01628-17 10.1128/JVI.02377-07 10.3201/eid1112.041293 10.1126/science.1116480 10.1107/S0907444904016427 10.1038/sj.emboj.7600640 10.1107/S205225251801463X 10.1038/nsmb.3293 10.7554/eLife.17219 10.1016/j.jmb.2007.05.022 10.1128/JVI.00959-09 10.1038/nmeth.4193 10.1038/nsmb.3115 10.1038/nature12711 10.1002/pro.3235 10.1073/pnas.1803990115 10.1016/j.cell.2016.04.010 10.1107/S0907444906022116 10.1038/nature16988 10.1016/S1473-3099(13)70690-X 10.7554/eLife.42166 10.1038/nature12005 10.1016/j.ultramic.2013.06.004 10.1016/j.jsb.2009.01.002 10.1073/pnas.1608147113 10.1016/j.virol.2009.12.020 10.1128/JVI.78.13.6938-6945.2004 10.1021/pr301130k 10.1107/S0907444904023510 10.1016/j.chom.2014.08.009 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License 2018 Elsevier Inc. 2018 Elsevier Inc. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2018 Elsevier Inc. 2018 Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC 5PM |
DOI | 10.1016/j.cell.2018.12.028 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1039.e15 |
ExternalDocumentID | PMC6751136 oai_HAL_pasteur_02546514v1 30712865 10_1016_j_cell_2018_12_028 S0092867418316428 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM120553 – fundername: NIAID NIH HHS grantid: HHSN272201700059C – fundername: NIGMS NIH HHS grantid: T32 GM008268 – fundername: NIH HHS grantid: S10 OD021832 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 0SF CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC 5PM EFKBS |
ID | FETCH-LOGICAL-c620t-79955d8c82beb8f059322b6b772e8728169026a2d4e7800e83bcfe33fcea89963 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:08:37 EDT 2025 Sat Jun 14 06:31:05 EDT 2025 Fri Jul 11 16:05:48 EDT 2025 Thu Jul 10 20:01:25 EDT 2025 Thu Jan 02 22:59:39 EST 2025 Thu Apr 24 22:59:34 EDT 2025 Tue Jul 01 02:17:02 EDT 2025 Fri Feb 23 02:27:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | glycoproteomics spike glycoprotein SARS-CoV coronavirus neutralizing antibodies MERS-CoV N-linked glycosylation class I fusion protein membrane fusion |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c620t-79955d8c82beb8f059322b6b772e8728169026a2d4e7800e83bcfe33fcea89963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC6751136 Lead Contact These authors contributed equally |
ORCID | 0000-0002-2260-2577 0000-0002-9310-8226 0000-0002-9953-7988 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6751136 |
PMID | 30712865 |
PQID | 2179487778 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6751136 hal_primary_oai_HAL_pasteur_02546514v1 proquest_miscellaneous_2253246551 proquest_miscellaneous_2179487778 pubmed_primary_30712865 crossref_primary_10_1016_j_cell_2018_12_028 crossref_citationtrail_10_1016_j_cell_2018_12_028 elsevier_sciencedirect_doi_10_1016_j_cell_2018_12_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-21 |
PublicationDateYYYYMMDD | 2019-02-21 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Menachery, Yount, Sims, Debbink, Agnihothram, Gralinski, Graham, Scobey, Plante, Royal (bib39) 2016; 113 Traggiai, Becker, Subbarao, Kolesnikova, Uematsu, Gismondo, Murphy, Rappuoli, Lanzavecchia (bib63) 2004; 10 Wang, Qi, Yuan, Xuan, Han, Wan, Ji, Li, Wu, Wang (bib70) 2014; 16 Zhang, Wang, Li, Nie, Shi, Lian, Wang, Yin, Zhao, Qu (bib77) 2004; 78 Kimanius, Forsberg, Scheres, Lindahl (bib24) 2016; 5 Ritchie, Harvey, Feldmann, Stroeher, Feldmann, Royle, Dwek, Rudd (bib49) 2010; 399 Song, Gui, Wang, Xiang (bib58) 2018; 14 Brown, Long, Nicholls, Toots, Emsley, Murshudov (bib6) 2015; 71 Frenz, Rämisch, Borst, Walls, Adolf-Bryfogle, Schief, Veesler, DiMaio (bib15) 2019; 27 Raj, Mou, Smits, Dekkers, Müller, Dijkman, Muth, Demmers, Zaki, Fouchier (bib48) 2013; 495 Li, Li, Farzan, Harrison (bib30) 2005; 309 Kabsch (bib23) 2010; 66 Li, Moore, Vasilieva, Sui, Wong, Berne, Somasundaran, Sullivan, Luzuriaga, Greenough (bib29) 2003; 426 Frese, Zhou, Taus, Altelaar, Mechtler, Heck, Mohammed (bib16) 2013; 12 Voss, Yoshioka, Radermacher, Potter, Carragher (bib65) 2009; 166 Cowtan (bib11) 2006; 62 Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib78) 2017; 14 Memish, Mishra, Olival, Fagbo, Kapoor, Epstein, Alhakeem, Durosinloun, Al Asmari, Islam (bib37) 2013; 19 Punjani, Rubinstein, Fleet, Brubaker (bib47) 2017; 14 Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Gross-Kunstleve (bib1) 2010; 66 Gui, Song, Zhou, Xu, Chen, Xiang, Wang (bib20) 2017; 27 McCoy, Oeffner, Millan, Sammito, Uson, Read (bib82) 2018; 74 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib83) 2004; 25 Walls, Tortorici, Snijder, Xiong, Bosch, Rey, Veesler (bib68) 2017; 114 Wang, Song, Barad, Cheng, Fraser, DiMaio (bib71) 2016; 5 Ge, Li, Yang, Chmura, Zhu, Epstein, Mazet, Hu, Zhang, Peng (bib17) 2013; 503 Rossen, de Beer, Godeke, Raamsman, Horzinek, Vennema, Rottier (bib52) 1998; 72 Goddard, Huang, Ferrin (bib18) 2007; 157 Walls, Tortorici, Frenz, Snijder, Li, Rey, DiMaio, Bosch, Veesler (bib67) 2016; 23 Shang, Zheng, Yang, Liu, Geng, Luo, Zhang, Li (bib56) 2018; 14 Emsley, Lohkamp, Scott, Cowtan (bib13) 2010; 66 Stewart-Jones, Soto, Lemmin, Chuang, Druz, Kong, Thomas, Wagh, Zhou, Behrens (bib60) 2016; 165 Stertz, Reichelt, Spiegel, Kuri, Martínez-Sobrido, García-Sastre, Weber, Kochs (bib59) 2007; 361 Evans, Murshudov (bib14) 2013; 69 Chen, Arendall, Headd, Keedy, Immormino, Kapral, Murray, Richardson, Richardson (bib8) 2010; 66 Goddard, Huang, Meng, Pettersen, Couch, Morris, Ferrin (bib19) 2018; 27 Krokhin, Li, Andonov, Feldmann, Flick, Jones, Stroeher, Bastien, Dasuri, Cheng (bib27) 2003; 2 Michielssens, Peters, Ban, Pratihar, Seeliger, Sharma, Giller, Sabo, Becker, Lee (bib40) 2014; 53 Zhang (bib76) 2016; 193 Veesler, Blangy, Siponen, Vincentelli, Cambillau, Sciara (bib64) 2009; 388 Agirre, Iglesias-Fernández, Rovira, Davies, Wilson, Cowtan (bib2) 2015; 22 Zivanov, Nakane, Scheres (bib80) 2019; 6 Kirchdoerfer, Cottrell, Wang, Pallesen, Yassine, Turner, Corbett, Graham, McLellan, Ward (bib25) 2016; 531 Ng, Tan, See, Ooi, Ling (bib43) 2003; 84 Scheres, Chen (bib54) 2012; 9 Bern, Kil, Becker (bib4) 2012; Chapter 13 Zivanov, Nakane, Forsberg, Kimanius, Hagen, Lindahl, Scheres (bib79) 2018; 7 Walls, Tortorici, Bosch, Frenz, Rottier, DiMaio, Rey, Veesler (bib66) 2016; 531 Scharf, Wang, Gao, Chen, McDowall, Bjorkman (bib53) 2015; 162 Xiong, Tortorici, Snijder, Yoshioka, Walls, Li, McGuire, Rey, Bosch, Veesler (bib73) 2017 Nkolola, Bricault, Cheung, Shields, Perry, Kovacs, Giorgi, van Winsen, Apetri, Brinkman-van der Linden (bib44) 2014; 88 Haagmans, Al Dhahiry, Reusken, Raj, Galiano, Myers, Godeke, Jonges, Farag, Diab (bib21) 2014; 14 Struwe, Chertova, Allen, Seabright, Watanabe, Harvey, Medina-Ramirez, Roser, Smith, Westcott (bib61) 2018; 24 Matsuyama, Taguchi (bib35) 2009; 83 Yuan, Cao, Zhang, Ma, Qi, Wang, Lu, Wu, Yan, Shi (bib75) 2017; 8 Li, Zhang, Sui, Kuhn, Moore, Luo, Wong, Huang, Xu, Vasilieva (bib32) 2005; 24 Yang, Liu, Du, Jiang, Shi, Baric, Li (bib74) 2015; 89 Burkard, Verheije, Wicht, van Kasteren, van Kuppeveld, Haagmans, Pelkmans, Rottier, Bosch, de Haan (bib7) 2014; 10 Hu, Zeng, Yang, Ge, Zhang, Li, Xie, Shen, Zhang, Wang (bib22) 2017; 13 Snijder, Ortego, Weidle, Stuart, Gray, McElrath, Pancera, Veesler, McGuire (bib57) 2018; 48 Vagin, Steiner, Lebedev, Potterton, McNicholas, Long, Murshudov (bib84) 2004; 60 Suloway, Pulokas, Fellmann, Cheng, Guerra, Quispe, Stagg, Potter, Carragher (bib62) 2005; 151 Watanabe, Raghwani, Allen, Seabright, Li, Moser, Huiskonen, Strecker, Bowden, Crispin (bib72) 2018; 115 Wang, Yan, Xu, Liang, Kan, Zheng, Chen, Zheng, Xu, Zhang (bib69) 2005; 11 Lu, Hu, Wang, Qi, Gao, Li, Zhang, Zhang, Yuan, Bao (bib33) 2013; 500 Li, Shi, Yu, Ren, Smith, Epstein, Wang, Crameri, Hu, Zhang (bib31) 2005; 310 Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib45) 2017; 114 Lander, Stagg, Voss, Cheng, Fellmann, Pulokas, Yoshioka, Irving, Mulder, Lau (bib28) 2009; 166 Rockx, Corti, Donaldson, Sheahan, Stadler, Lanzavecchia, Baric (bib50) 2008; 82 Corti, Zhao, Pedotti, Simonelli, Agnihothram, Fett, Fernandez-Rodriguez, Foglierini, Agatic, Vanzetta (bib10) 2015; 112 Park, Li, Barlan, Fehr, Perlman, McCray, Gallagher (bib46) 2016; 113 Millet, Whittaker (bib41) 2014; 111 MacLean, Tomazela, Shulman, Chambers, Finney, Frewen, Kern, Tabb, Liebler, MacCoss (bib34) 2010; 26 Shang, Zheng, Yang, Liu, Geng, Tai, Du, Zhou, Zhang, Li (bib55) 2017; 92 Du, Tai, Yang, Zhao, Zhu, Sun, Liu, Tao, Tseng, Perlman (bib12) 2016; 7 Kirchdoerfer, Wang, Pallesen, Wrapp, Turner, Cottrell, Corbett, Graham, McLellan, Ward (bib26) 2018; 8 Menachery, Yount, Debbink, Agnihothram, Gralinski, Plante, Graham, Scobey, Ge, Donaldson (bib38) 2015; 21 Krissinel, Henrick (bib81) 2007; 372 Millet, Whittaker (bib42) 2016; 2016 Rosenthal, Henderson (bib51) 2003; 333 Chen, McMullan, Faruqi, Murshudov, Short, Scheres, Henderson (bib9) 2013; 135 McCoy, van Gils, Ozorowski, Messmer, Briney, Voss, Kulp, Macauley, Sok, Pauthner (bib36) 2016; 16 Belouzard, Chu, Whittaker (bib3) 2009; 106 Blanc, Roversi, Vonrhein, Flensburg, Lea, Bricogne (bib5) 2004; 60 Kirchdoerfer (10.1016/j.cell.2018.12.028_bib25) 2016; 531 Brown (10.1016/j.cell.2018.12.028_bib6) 2015; 71 MacLean (10.1016/j.cell.2018.12.028_bib34) 2010; 26 Scheres (10.1016/j.cell.2018.12.028_bib54) 2012; 9 Evans (10.1016/j.cell.2018.12.028_bib14) 2013; 69 Scharf (10.1016/j.cell.2018.12.028_bib53) 2015; 162 Cowtan (10.1016/j.cell.2018.12.028_bib11) 2006; 62 Belouzard (10.1016/j.cell.2018.12.028_bib3) 2009; 106 Krokhin (10.1016/j.cell.2018.12.028_bib27) 2003; 2 Stertz (10.1016/j.cell.2018.12.028_bib59) 2007; 361 Hu (10.1016/j.cell.2018.12.028_bib22) 2017; 13 Millet (10.1016/j.cell.2018.12.028_bib41) 2014; 111 Ng (10.1016/j.cell.2018.12.028_bib43) 2003; 84 Traggiai (10.1016/j.cell.2018.12.028_bib63) 2004; 10 Ritchie (10.1016/j.cell.2018.12.028_bib49) 2010; 399 Park (10.1016/j.cell.2018.12.028_bib46) 2016; 113 Blanc (10.1016/j.cell.2018.12.028_bib5) 2004; 60 Burkard (10.1016/j.cell.2018.12.028_bib7) 2014; 10 Rossen (10.1016/j.cell.2018.12.028_bib52) 1998; 72 Krissinel (10.1016/j.cell.2018.12.028_bib81) 2007; 372 Walls (10.1016/j.cell.2018.12.028_bib68) 2017; 114 Song (10.1016/j.cell.2018.12.028_bib58) 2018; 14 Millet (10.1016/j.cell.2018.12.028_bib42) 2016; 2016 Punjani (10.1016/j.cell.2018.12.028_bib47) 2017; 14 Veesler (10.1016/j.cell.2018.12.028_bib64) 2009; 388 Chen (10.1016/j.cell.2018.12.028_bib9) 2013; 135 Xiong (10.1016/j.cell.2018.12.028_bib73) 2017 Frenz (10.1016/j.cell.2018.12.028_bib15) 2019; 27 Walls (10.1016/j.cell.2018.12.028_bib66) 2016; 531 McCoy (10.1016/j.cell.2018.12.028_bib82) 2018; 74 Pallesen (10.1016/j.cell.2018.12.028_bib45) 2017; 114 Shang (10.1016/j.cell.2018.12.028_bib55) 2017; 92 Kimanius (10.1016/j.cell.2018.12.028_bib24) 2016; 5 Suloway (10.1016/j.cell.2018.12.028_bib62) 2005; 151 Wang (10.1016/j.cell.2018.12.028_bib69) 2005; 11 Watanabe (10.1016/j.cell.2018.12.028_bib72) 2018; 115 Kabsch (10.1016/j.cell.2018.12.028_bib23) 2010; 66 Vagin (10.1016/j.cell.2018.12.028_bib84) 2004; 60 McCoy (10.1016/j.cell.2018.12.028_bib36) 2016; 16 Voss (10.1016/j.cell.2018.12.028_bib65) 2009; 166 Ge (10.1016/j.cell.2018.12.028_bib17) 2013; 503 Li (10.1016/j.cell.2018.12.028_bib29) 2003; 426 Zhang (10.1016/j.cell.2018.12.028_bib77) 2004; 78 Matsuyama (10.1016/j.cell.2018.12.028_bib35) 2009; 83 Wang (10.1016/j.cell.2018.12.028_bib70) 2014; 16 Rockx (10.1016/j.cell.2018.12.028_bib50) 2008; 82 Goddard (10.1016/j.cell.2018.12.028_bib18) 2007; 157 Nkolola (10.1016/j.cell.2018.12.028_bib44) 2014; 88 Yuan (10.1016/j.cell.2018.12.028_bib75) 2017; 8 Bern (10.1016/j.cell.2018.12.028_bib4) 2012; Chapter 13 Zhang (10.1016/j.cell.2018.12.028_bib76) 2016; 193 Menachery (10.1016/j.cell.2018.12.028_bib38) 2015; 21 Haagmans (10.1016/j.cell.2018.12.028_bib21) 2014; 14 Michielssens (10.1016/j.cell.2018.12.028_bib40) 2014; 53 Walls (10.1016/j.cell.2018.12.028_bib67) 2016; 23 Struwe (10.1016/j.cell.2018.12.028_bib61) 2018; 24 Du (10.1016/j.cell.2018.12.028_bib12) 2016; 7 Rosenthal (10.1016/j.cell.2018.12.028_bib51) 2003; 333 Chen (10.1016/j.cell.2018.12.028_bib8) 2010; 66 Lu (10.1016/j.cell.2018.12.028_bib33) 2013; 500 Stewart-Jones (10.1016/j.cell.2018.12.028_bib60) 2016; 165 Yang (10.1016/j.cell.2018.12.028_bib74) 2015; 89 Lander (10.1016/j.cell.2018.12.028_bib28) 2009; 166 Zivanov (10.1016/j.cell.2018.12.028_bib80) 2019; 6 Kirchdoerfer (10.1016/j.cell.2018.12.028_bib26) 2018; 8 Li (10.1016/j.cell.2018.12.028_bib30) 2005; 309 Frese (10.1016/j.cell.2018.12.028_bib16) 2013; 12 Li (10.1016/j.cell.2018.12.028_bib32) 2005; 24 Zheng (10.1016/j.cell.2018.12.028_bib78) 2017; 14 Menachery (10.1016/j.cell.2018.12.028_bib39) 2016; 113 Memish (10.1016/j.cell.2018.12.028_bib37) 2013; 19 Wang (10.1016/j.cell.2018.12.028_bib71) 2016; 5 Goddard (10.1016/j.cell.2018.12.028_bib19) 2018; 27 Emsley (10.1016/j.cell.2018.12.028_bib13) 2010; 66 Zivanov (10.1016/j.cell.2018.12.028_bib79) 2018; 7 Gui (10.1016/j.cell.2018.12.028_bib20) 2017; 27 Corti (10.1016/j.cell.2018.12.028_bib10) 2015; 112 Li (10.1016/j.cell.2018.12.028_bib31) 2005; 310 Pettersen (10.1016/j.cell.2018.12.028_bib83) 2004; 25 Adams (10.1016/j.cell.2018.12.028_bib1) 2010; 66 Agirre (10.1016/j.cell.2018.12.028_bib2) 2015; 22 Snijder (10.1016/j.cell.2018.12.028_bib57) 2018; 48 Raj (10.1016/j.cell.2018.12.028_bib48) 2013; 495 Shang (10.1016/j.cell.2018.12.028_bib56) 2018; 14 33306956 - Cell. 2020 Dec 10;183(6):1732 |
References_xml | – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: bib81 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. – volume: 11 start-page: 1860 year: 2005 end-page: 1865 ident: bib69 article-title: SARS-CoV infection in a restaurant from palm civet publication-title: Emerg. Infect. Dis. – volume: 333 start-page: 721 year: 2003 end-page: 745 ident: bib51 article-title: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy publication-title: J. Mol. Biol. – volume: 26 start-page: 966 year: 2010 end-page: 968 ident: bib34 article-title: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments publication-title: Bioinformatics – volume: 113 start-page: 12262 year: 2016 end-page: 12267 ident: bib46 article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism publication-title: Proc. Natl. Acad. Sci. USA – volume: 135 start-page: 24 year: 2013 end-page: 35 ident: bib9 article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy publication-title: Ultramicroscopy – volume: 21 start-page: 1508 year: 2015 end-page: 1513 ident: bib38 article-title: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence publication-title: Nat. Med. – volume: 19 start-page: 1819 year: 2013 end-page: 1823 ident: bib37 article-title: Middle East respiratory syndrome coronavirus in bats, Saudi Arabia publication-title: Emerg. Infect. Dis. – volume: 111 start-page: 15214 year: 2014 end-page: 15219 ident: bib41 article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein publication-title: Proc. Natl. Acad. Sci. USA – volume: 84 start-page: 3291 year: 2003 end-page: 3303 ident: bib43 article-title: Proliferative growth of SARS coronavirus in Vero E6 cells publication-title: J. Gen. Virol. – volume: 66 start-page: 125 year: 2010 end-page: 132 ident: bib23 article-title: Xds publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 309 start-page: 1864 year: 2005 end-page: 1868 ident: bib30 article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor publication-title: Science – volume: 53 start-page: 10367 year: 2014 end-page: 10371 ident: bib40 article-title: A designed conformational shift to control protein binding specificity publication-title: Angew. Chem. Int. Ed. Engl. – volume: 503 start-page: 535 year: 2013 end-page: 538 ident: bib17 article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor publication-title: Nature – volume: 500 start-page: 227 year: 2013 end-page: 231 ident: bib33 article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 publication-title: Nature – volume: 60 start-page: 2184 year: 2004 end-page: 2195 ident: bib84 article-title: REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use publication-title: Acta. Crystallogr. D Biol. Crystallogr – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bib13 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 157 start-page: 281 year: 2007 end-page: 287 ident: bib18 article-title: Visualizing density maps with UCSF Chimera publication-title: J. Struct. Biol. – volume: 13 start-page: e1006698 year: 2017 ident: bib22 article-title: Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus publication-title: PLoS Pathog. – volume: 14 start-page: e1007009 year: 2018 ident: bib56 article-title: Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins publication-title: PLoS Pathog. – volume: 9 start-page: 853 year: 2012 end-page: 854 ident: bib54 article-title: Prevention of overfitting in cryo-EM structure determination publication-title: Nat. Methods – volume: 310 start-page: 676 year: 2005 end-page: 679 ident: bib31 article-title: Bats are natural reservoirs of SARS-like coronaviruses publication-title: Science – volume: 399 start-page: 257 year: 2010 end-page: 269 ident: bib49 article-title: Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein publication-title: Virology – volume: 115 start-page: 7320 year: 2018 end-page: 7325 ident: bib72 article-title: Structure of the Lassa virus glycan shield provides a model for immunological resistance publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 140 year: 2014 end-page: 145 ident: bib21 article-title: Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation publication-title: Lancet Infect. Dis. – volume: 112 start-page: 10473 year: 2015 end-page: 10478 ident: bib10 article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus publication-title: Proc. Natl. Acad. Sci. USA – volume: 166 start-page: 205 year: 2009 end-page: 213 ident: bib65 article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy publication-title: J. Struct. Biol. – volume: 8 start-page: 15701 year: 2018 ident: bib26 article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis publication-title: Sci. Rep. – volume: 113 start-page: 3048 year: 2016 end-page: 3053 ident: bib39 article-title: SARS-like WIV1-CoV poised for human emergence publication-title: Proc. Natl. Acad. Sci. USA – volume: 82 start-page: 3220 year: 2008 end-page: 3235 ident: bib50 article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge publication-title: J. Virol. – volume: 78 start-page: 6938 year: 2004 end-page: 6945 ident: bib77 article-title: Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies publication-title: J. Virol. – volume: 27 start-page: 14 year: 2018 end-page: 25 ident: bib19 article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis publication-title: Protein Sci. – volume: 14 start-page: e1007236 year: 2018 ident: bib58 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. – volume: 10 start-page: e1004502 year: 2014 ident: bib7 article-title: Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner publication-title: PLoS Pathog. – volume: 48 start-page: 799 year: 2018 end-page: 811 ident: bib57 article-title: An Antibody Targeting the Fusion Machinery Neutralizes Dual-Tropic Infection and Defines a Site of Vulnerability on Epstein-Barr Virus publication-title: Immunity – volume: 24 start-page: 1634 year: 2005 end-page: 1643 ident: bib32 article-title: Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 publication-title: EMBO J. – volume: 5 year: 2016 ident: bib24 article-title: Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 publication-title: eLife – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib83 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 166 start-page: 95 year: 2009 end-page: 102 ident: bib28 article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing publication-title: J. Struct. Biol. – volume: 60 start-page: 2210 year: 2004 end-page: 2221 ident: bib5 article-title: Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr publication-title: D Biol. Crystallogr – volume: 531 start-page: 118 year: 2016 end-page: 121 ident: bib25 article-title: Pre-fusion structure of a human coronavirus spike protein publication-title: Nature – volume: 72 start-page: 497 year: 1998 end-page: 503 ident: bib52 article-title: The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells publication-title: J. Virol. – volume: 151 start-page: 41 year: 2005 end-page: 60 ident: bib62 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. – volume: 6 start-page: 5 year: 2019 end-page: 17 ident: bib80 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis publication-title: IUCrJ – volume: Chapter 13 year: 2012 ident: bib4 article-title: Byonic: advanced peptide and protein identification software publication-title: Curr. Protoc. Bioinformatics – volume: 16 start-page: 2327 year: 2016 end-page: 2338 ident: bib36 article-title: Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies publication-title: Cell Rep. – volume: 89 start-page: 9119 year: 2015 end-page: 9123 ident: bib74 article-title: Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome Coronavirus publication-title: J. Virol. – volume: 16 start-page: 328 year: 2014 end-page: 337 ident: bib70 article-title: Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 publication-title: Cell Host Microbe – volume: 71 start-page: 136 year: 2015 end-page: 153 ident: bib6 article-title: Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 5 year: 2016 ident: bib71 article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta publication-title: eLife – volume: 92 year: 2017 ident: bib55 article-title: Cryo-Election Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State publication-title: J. Virol. – volume: 2 start-page: 346 year: 2003 end-page: 356 ident: bib27 article-title: Mass spectrometric characterization of proteins from the SARS virus: a preliminary report publication-title: Mol. Cell. Proteomics – volume: 2016 year: 2016 ident: bib42 article-title: Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection. Biol publication-title: Protoc. – volume: 531 start-page: 114 year: 2016 end-page: 117 ident: bib66 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature – volume: 23 start-page: 899 year: 2016 end-page: 905 ident: bib67 article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy publication-title: Nat. Struct. Mol. Biol. – volume: 114 start-page: 11157 year: 2017 end-page: 11162 ident: bib68 article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 134 year: 2019 end-page: 139.e3 ident: bib15 article-title: Automatically fixing errors in glycoprotein structures with Rosetta publication-title: Structure – volume: 7 start-page: 13473 year: 2016 ident: bib12 article-title: Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines publication-title: Nat. Commun. – volume: 162 start-page: 1379 year: 2015 end-page: 1390 ident: bib53 article-title: Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env publication-title: Cell – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: bib47 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – volume: 495 start-page: 251 year: 2013 end-page: 254 ident: bib48 article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC publication-title: Nature – volume: 24 start-page: 1958 year: 2018 end-page: 1966 ident: bib61 article-title: Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen publication-title: Cell Rep – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr publication-title: D Biol. Crystallogr – volume: 193 start-page: 1 year: 2016 end-page: 12 ident: bib76 article-title: Gctf: Real-time CTF determination and correction publication-title: J. Struct. Biol. – volume: 12 start-page: 1520 year: 2013 end-page: 1525 ident: bib16 article-title: Unambiguous phosphosite localization using electron-transfer/higher-energy collision dissociation (EThcD) publication-title: J. Proteome Res. – volume: 165 start-page: 813 year: 2016 end-page: 826 ident: bib60 article-title: Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G publication-title: Cell – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: bib78 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods – volume: 114 start-page: E7348 year: 2017 end-page: E7357 ident: bib45 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 year: 2018 ident: bib79 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife – volume: 10 start-page: 871 year: 2004 end-page: 875 ident: bib63 article-title: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus publication-title: Nat. Med. – volume: 388 start-page: 115 year: 2009 end-page: 121 ident: bib64 article-title: Production and biophysical characterization of the CorA transporter from Methanosarcina mazei publication-title: Anal. Biochem. – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: bib8 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 83 start-page: 11133 year: 2009 end-page: 11141 ident: bib35 article-title: Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis publication-title: J. Virol. – year: 2017 ident: bib73 article-title: Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections publication-title: J. Virol. – volume: 361 start-page: 304 year: 2007 end-page: 315 ident: bib59 article-title: The intracellular sites of early replication and budding of SARS-coronavirus publication-title: Virology – volume: 22 start-page: 833 year: 2015 end-page: 834 ident: bib2 article-title: Privateer: software for the conformational validation of carbohydrate structures publication-title: Nat. Struct. Mol. Biol. – volume: 106 start-page: 5871 year: 2009 end-page: 5876 ident: bib3 article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 119 year: 2017 end-page: 129 ident: bib20 article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding publication-title: Cell Res. – volume: 69 start-page: 1204 year: 2013 end-page: 1214 ident: bib14 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 426 start-page: 450 year: 2003 end-page: 454 ident: bib29 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature – volume: 8 start-page: 15092 year: 2017 ident: bib75 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. – volume: 62 start-page: 1002 year: 2006 end-page: 1011 ident: bib11 article-title: The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crytallogr publication-title: D Biol. Crystallogr – volume: 88 start-page: 9538 year: 2014 end-page: 9552 ident: bib44 article-title: Characterization and immunogenicity of a novel mosaic M HIV-1 gp140 trimer publication-title: J. Virol. – volume: 74 start-page: 279 year: 2018 end-page: 289 ident: bib82 article-title: Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement publication-title: Acta. Crystallogr. D Struct. Biol. – volume: 84 start-page: 3291 year: 2003 ident: 10.1016/j.cell.2018.12.028_bib43 article-title: Proliferative growth of SARS coronavirus in Vero E6 cells publication-title: J. Gen. Virol. doi: 10.1099/vir.0.19505-0 – volume: 8 start-page: 15092 year: 2017 ident: 10.1016/j.cell.2018.12.028_bib75 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. doi: 10.1038/ncomms15092 – volume: 166 start-page: 205 year: 2009 ident: 10.1016/j.cell.2018.12.028_bib65 article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2009.01.004 – volume: 8 start-page: 15701 year: 2018 ident: 10.1016/j.cell.2018.12.028_bib26 article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis publication-title: Sci. Rep. doi: 10.1038/s41598-018-34171-7 – volume: 114 start-page: E7348 year: 2017 ident: 10.1016/j.cell.2018.12.028_bib45 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1707304114 – volume: 71 start-page: 136 year: 2015 ident: 10.1016/j.cell.2018.12.028_bib6 article-title: Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S1399004714021683 – volume: 5 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib24 article-title: Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 publication-title: eLife doi: 10.7554/eLife.18722 – volume: 111 start-page: 15214 year: 2014 ident: 10.1016/j.cell.2018.12.028_bib41 article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1407087111 – volume: 157 start-page: 281 year: 2007 ident: 10.1016/j.cell.2018.12.028_bib18 article-title: Visualizing density maps with UCSF Chimera publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.06.010 – volume: 66 start-page: 125 year: 2010 ident: 10.1016/j.cell.2018.12.028_bib23 article-title: Xds publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909047337 – volume: 16 start-page: 2327 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib36 article-title: Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.07.074 – volume: 2 start-page: 346 year: 2003 ident: 10.1016/j.cell.2018.12.028_bib27 article-title: Mass spectrometric characterization of proteins from the SARS virus: a preliminary report publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M300048-MCP200 – volume: 426 start-page: 450 year: 2003 ident: 10.1016/j.cell.2018.12.028_bib29 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature doi: 10.1038/nature02145 – volume: 89 start-page: 9119 year: 2015 ident: 10.1016/j.cell.2018.12.028_bib74 article-title: Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome Coronavirus publication-title: J. Virol. doi: 10.1128/JVI.01279-15 – volume: 88 start-page: 9538 year: 2014 ident: 10.1016/j.cell.2018.12.028_bib44 article-title: Characterization and immunogenicity of a novel mosaic M HIV-1 gp140 trimer publication-title: J. Virol. doi: 10.1128/JVI.01739-14 – volume: 14 start-page: e1007236 year: 2018 ident: 10.1016/j.cell.2018.12.028_bib58 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007236 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.cell.2018.12.028_bib83 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 92 year: 2017 ident: 10.1016/j.cell.2018.12.028_bib55 article-title: Cryo-Election Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State publication-title: J. Virol. – volume: 106 start-page: 5871 year: 2009 ident: 10.1016/j.cell.2018.12.028_bib3 article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0809524106 – volume: 13 start-page: e1006698 year: 2017 ident: 10.1016/j.cell.2018.12.028_bib22 article-title: Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006698 – volume: 500 start-page: 227 year: 2013 ident: 10.1016/j.cell.2018.12.028_bib33 article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 publication-title: Nature doi: 10.1038/nature12328 – volume: 53 start-page: 10367 year: 2014 ident: 10.1016/j.cell.2018.12.028_bib40 article-title: A designed conformational shift to control protein binding specificity publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201403102 – volume: 310 start-page: 676 year: 2005 ident: 10.1016/j.cell.2018.12.028_bib31 article-title: Bats are natural reservoirs of SARS-like coronaviruses publication-title: Science doi: 10.1126/science.1118391 – volume: 21 start-page: 1508 year: 2015 ident: 10.1016/j.cell.2018.12.028_bib38 article-title: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence publication-title: Nat. Med. doi: 10.1038/nm.3985 – volume: 333 start-page: 721 year: 2003 ident: 10.1016/j.cell.2018.12.028_bib51 article-title: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.07.013 – volume: 14 start-page: 290 year: 2017 ident: 10.1016/j.cell.2018.12.028_bib47 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 193 start-page: 1 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib76 article-title: Gctf: Real-time CTF determination and correction publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.11.003 – volume: 9 start-page: 853 year: 2012 ident: 10.1016/j.cell.2018.12.028_bib54 article-title: Prevention of overfitting in cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.2115 – volume: 14 start-page: e1007009 year: 2018 ident: 10.1016/j.cell.2018.12.028_bib56 article-title: Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007009 – volume: 10 start-page: 871 year: 2004 ident: 10.1016/j.cell.2018.12.028_bib63 article-title: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus publication-title: Nat. Med. doi: 10.1038/nm1080 – volume: 531 start-page: 118 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib25 article-title: Pre-fusion structure of a human coronavirus spike protein publication-title: Nature doi: 10.1038/nature17200 – volume: 69 start-page: 1204 year: 2013 ident: 10.1016/j.cell.2018.12.028_bib14 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444913000061 – volume: 114 start-page: 11157 year: 2017 ident: 10.1016/j.cell.2018.12.028_bib68 article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1708727114 – volume: 162 start-page: 1379 year: 2015 ident: 10.1016/j.cell.2018.12.028_bib53 article-title: Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env publication-title: Cell doi: 10.1016/j.cell.2015.08.035 – volume: 48 start-page: 799 year: 2018 ident: 10.1016/j.cell.2018.12.028_bib57 article-title: An Antibody Targeting the Fusion Machinery Neutralizes Dual-Tropic Infection and Defines a Site of Vulnerability on Epstein-Barr Virus publication-title: Immunity doi: 10.1016/j.immuni.2018.03.026 – volume: 388 start-page: 115 year: 2009 ident: 10.1016/j.cell.2018.12.028_bib64 article-title: Production and biophysical characterization of the CorA transporter from Methanosarcina mazei publication-title: Anal. Biochem. doi: 10.1016/j.ab.2009.02.018 – volume: 7 start-page: 13473 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib12 article-title: Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines publication-title: Nat. Commun. doi: 10.1038/ncomms13473 – volume: 27 start-page: 119 year: 2017 ident: 10.1016/j.cell.2018.12.028_bib20 article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding publication-title: Cell Res. doi: 10.1038/cr.2016.152 – volume: 361 start-page: 304 year: 2007 ident: 10.1016/j.cell.2018.12.028_bib59 article-title: The intracellular sites of early replication and budding of SARS-coronavirus publication-title: Virology doi: 10.1016/j.virol.2006.11.027 – volume: 112 start-page: 10473 year: 2015 ident: 10.1016/j.cell.2018.12.028_bib10 article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1510199112 – volume: 27 start-page: 134 year: 2019 ident: 10.1016/j.cell.2018.12.028_bib15 article-title: Automatically fixing errors in glycoprotein structures with Rosetta publication-title: Structure doi: 10.1016/j.str.2018.09.006 – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.cell.2018.12.028_bib13 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910007493 – volume: 26 start-page: 966 year: 2010 ident: 10.1016/j.cell.2018.12.028_bib34 article-title: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq054 – volume: 113 start-page: 3048 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib39 article-title: SARS-like WIV1-CoV poised for human emergence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1517719113 – volume: 10 start-page: e1004502 year: 2014 ident: 10.1016/j.cell.2018.12.028_bib7 article-title: Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004502 – volume: 66 start-page: 12 year: 2010 ident: 10.1016/j.cell.2018.12.028_bib8 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909042073 – volume: 74 start-page: 279 year: 2018 ident: 10.1016/j.cell.2018.12.028_bib82 article-title: Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement publication-title: Acta. Crystallogr. D Struct. Biol. doi: 10.1107/S2059798318001353 – volume: 24 start-page: 1958 year: 2018 ident: 10.1016/j.cell.2018.12.028_bib61 article-title: Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen publication-title: Cell Rep doi: 10.1016/j.celrep.2018.07.080 – volume: 19 start-page: 1819 year: 2013 ident: 10.1016/j.cell.2018.12.028_bib37 article-title: Middle East respiratory syndrome coronavirus in bats, Saudi Arabia publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1911.131172 – volume: 72 start-page: 497 year: 1998 ident: 10.1016/j.cell.2018.12.028_bib52 article-title: The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells publication-title: J. Virol. doi: 10.1128/JVI.72.1.497-503.1998 – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.cell.2018.12.028_bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr publication-title: D Biol. Crystallogr doi: 10.1107/S0907444909052925 – volume: 151 start-page: 41 year: 2005 ident: 10.1016/j.cell.2018.12.028_bib62 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.03.010 – year: 2017 ident: 10.1016/j.cell.2018.12.028_bib73 article-title: Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections publication-title: J. Virol. doi: 10.1128/JVI.01628-17 – volume: 82 start-page: 3220 year: 2008 ident: 10.1016/j.cell.2018.12.028_bib50 article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge publication-title: J. Virol. doi: 10.1128/JVI.02377-07 – volume: 11 start-page: 1860 year: 2005 ident: 10.1016/j.cell.2018.12.028_bib69 article-title: SARS-CoV infection in a restaurant from palm civet publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1112.041293 – volume: 309 start-page: 1864 year: 2005 ident: 10.1016/j.cell.2018.12.028_bib30 article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor publication-title: Science doi: 10.1126/science.1116480 – volume: 60 start-page: 2210 year: 2004 ident: 10.1016/j.cell.2018.12.028_bib5 article-title: Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr publication-title: D Biol. Crystallogr doi: 10.1107/S0907444904016427 – volume: Chapter 13 year: 2012 ident: 10.1016/j.cell.2018.12.028_bib4 article-title: Byonic: advanced peptide and protein identification software publication-title: Curr. Protoc. Bioinformatics – volume: 24 start-page: 1634 year: 2005 ident: 10.1016/j.cell.2018.12.028_bib32 article-title: Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 publication-title: EMBO J. doi: 10.1038/sj.emboj.7600640 – volume: 6 start-page: 5 year: 2019 ident: 10.1016/j.cell.2018.12.028_bib80 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis publication-title: IUCrJ doi: 10.1107/S205225251801463X – volume: 23 start-page: 899 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib67 article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3293 – volume: 5 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib71 article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta publication-title: eLife doi: 10.7554/eLife.17219 – volume: 372 start-page: 774 year: 2007 ident: 10.1016/j.cell.2018.12.028_bib81 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 83 start-page: 11133 year: 2009 ident: 10.1016/j.cell.2018.12.028_bib35 article-title: Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis publication-title: J. Virol. doi: 10.1128/JVI.00959-09 – volume: 14 start-page: 331 year: 2017 ident: 10.1016/j.cell.2018.12.028_bib78 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 22 start-page: 833 year: 2015 ident: 10.1016/j.cell.2018.12.028_bib2 article-title: Privateer: software for the conformational validation of carbohydrate structures publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3115 – volume: 503 start-page: 535 year: 2013 ident: 10.1016/j.cell.2018.12.028_bib17 article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor publication-title: Nature doi: 10.1038/nature12711 – volume: 27 start-page: 14 year: 2018 ident: 10.1016/j.cell.2018.12.028_bib19 article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis publication-title: Protein Sci. doi: 10.1002/pro.3235 – volume: 115 start-page: 7320 year: 2018 ident: 10.1016/j.cell.2018.12.028_bib72 article-title: Structure of the Lassa virus glycan shield provides a model for immunological resistance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1803990115 – volume: 165 start-page: 813 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib60 article-title: Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G publication-title: Cell doi: 10.1016/j.cell.2016.04.010 – volume: 62 start-page: 1002 year: 2006 ident: 10.1016/j.cell.2018.12.028_bib11 article-title: The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crytallogr publication-title: D Biol. Crystallogr doi: 10.1107/S0907444906022116 – volume: 531 start-page: 114 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib66 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature doi: 10.1038/nature16988 – volume: 14 start-page: 140 year: 2014 ident: 10.1016/j.cell.2018.12.028_bib21 article-title: Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(13)70690-X – volume: 7 year: 2018 ident: 10.1016/j.cell.2018.12.028_bib79 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife doi: 10.7554/eLife.42166 – volume: 495 start-page: 251 year: 2013 ident: 10.1016/j.cell.2018.12.028_bib48 article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC publication-title: Nature doi: 10.1038/nature12005 – volume: 135 start-page: 24 year: 2013 ident: 10.1016/j.cell.2018.12.028_bib9 article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2013.06.004 – volume: 166 start-page: 95 year: 2009 ident: 10.1016/j.cell.2018.12.028_bib28 article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2009.01.002 – volume: 113 start-page: 12262 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib46 article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1608147113 – volume: 2016 year: 2016 ident: 10.1016/j.cell.2018.12.028_bib42 article-title: Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection. Biol publication-title: Protoc. 6.otherMillet and Whittaker – volume: 399 start-page: 257 year: 2010 ident: 10.1016/j.cell.2018.12.028_bib49 article-title: Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein publication-title: Virology doi: 10.1016/j.virol.2009.12.020 – volume: 78 start-page: 6938 year: 2004 ident: 10.1016/j.cell.2018.12.028_bib77 article-title: Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies publication-title: J. Virol. doi: 10.1128/JVI.78.13.6938-6945.2004 – volume: 12 start-page: 1520 year: 2013 ident: 10.1016/j.cell.2018.12.028_bib16 article-title: Unambiguous phosphosite localization using electron-transfer/higher-energy collision dissociation (EThcD) publication-title: J. Proteome Res. doi: 10.1021/pr301130k – volume: 60 start-page: 2184 year: 2004 ident: 10.1016/j.cell.2018.12.028_bib84 article-title: REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use publication-title: Acta. Crystallogr. D Biol. Crystallogr doi: 10.1107/S0907444904023510 – volume: 16 start-page: 328 year: 2014 ident: 10.1016/j.cell.2018.12.028_bib70 article-title: Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.08.009 – reference: 33306956 - Cell. 2020 Dec 10;183(6):1732 |
SSID | ssj0008555 |
Score | 2.6889133 |
Snippet | Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic,... |
SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1026 |
SubjectTerms | Animals Antibodies, Monoclonal Antibodies, Monoclonal - immunology Antibodies, Neutralizing Antibodies, Neutralizing - immunology Antibodies, Viral Antibodies, Viral - immunology Chlorocebus aethiops class I fusion protein Coronavirus Coronavirus - immunology Coronavirus - metabolism Coronavirus Infections Coronavirus Infections - immunology glycoproteins glycoproteomics HEK293 Cells Humans humoral immunity Immunity, Humoral Immunity, Humoral - immunology Life Sciences membrane fusion MERS-CoV Middle East Respiratory Syndrome Coronavirus Middle East Respiratory Syndrome Coronavirus - immunology Middle East Respiratory Syndrome Coronavirus - metabolism Molecular Mimicry Molecular Mimicry - immunology N-linked glycosylation neutralization neutralizing antibodies pandemic Protein Binding Receptors, Virus Receptors, Virus - metabolism SARS Virus SARS Virus - immunology SARS Virus - metabolism SARS-CoV Severe acute respiratory syndrome coronavirus spike glycoprotein Spike Glycoprotein, Coronavirus Spike Glycoprotein, Coronavirus - metabolism Spike Glycoprotein, Coronavirus - physiology Spike Glycoprotein, Coronavirus - ultrastructure Vero Cells Virus Internalization viruses |
Title | Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion |
URI | https://dx.doi.org/10.1016/j.cell.2018.12.028 https://www.ncbi.nlm.nih.gov/pubmed/30712865 https://www.proquest.com/docview/2179487778 https://www.proquest.com/docview/2253246551 https://pasteur.hal.science/pasteur-02546514 https://pubmed.ncbi.nlm.nih.gov/PMC6751136 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SQKCX0jZ9uI-gQOmlmNiSLcnH7ZJlm6Q9lC7sTViyTBxS77K7DuTfd8aPpZuUPfRoW_JjJI2-Gc98A_BJayI1c1nIS-XDRNgozLVSYVQoq6RXwvs2yveHnM6Si3k6P4DxkAtDYZW97u90equt-zNnvTTPllVFOb4Z15LYV0RMKBr1sEh0m8Q3_7rVxjpNuyoGGa58bN0nznQxXuQcp_Au3boEqSL7vzenJ9cUJfkYgj6MpPxra5o8h2c9pmSj7rVfwIGvX8JRV2Xy_hh-zmri8XeILRmiRL9EM5tNcD_r3IDse_W7cqt7dn7buIocAGs2ckPVM7Yo2ZhYDvK7atWssR-5117BbHL-azwN-1IKoZM82oRE-5YW2mluvdUl1fHj3EqL2NprxTX9LOMy50XiFUJIr4V1pReidD5Hi0yK13BYL2r_FljqHJ4vSy6cTdJM2sQVhc0TsrPLKHIBxIMMjet5xqncxa0ZAspuDMndkNxNzA3KPYAv2z7LjmVjb-t0GBqzM1cMbgN7-33Gcdw-gIi1p6Mrs8xxPTUrQ7wAEvHjXRzA6TDUBlcb3Sev_aJZG076iygU9Z42PEWUKhGKBvCmmx7bZ6JGjSkXOAC1M3F2Xmr3Sl1dt6zfaNlR_Z13__nx7-EpHmVtNn78AQ43q8Z_RDy1sSdoSXy7PGmXzR9smR9t |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB1kQdFeiqSr0o0Fil4KIRIlkdTRNWI4rZNDEQO-ESJFIQpS2bCtAPn7zGgx6rTwoVeJtKQhOXwcz7wH8EUpIjWzqc8L6fw4MoGfKSn9IJdGCicj55os30sxnsY_ZslsD4Z9LQylVXa-v_Xpjbfurpx21jxdlCXV-KZcCWJfiUJC0ftwiGhAkn7D-ez7xh2rJGllDFJc-ti8q5xpk7woOk75XaqJCZIk-793p_1rSpP8G4M-TqX8Y28aHcHzDlSyQfvex7DnqhfwpJWZvH8Jv6YVEflbBJcMYaJb4DmbjXBDa-OA7KL8XdrlPTu7rW1JEYAVG9he9ozNCzYkmoPsrlzWK-xH8bVXMB2dXQ3Hfqel4FvBg7VPvG9JrqzixhlVkJAf50YYBNdOSa7o3zIuMp7HTiKGdCoytnBRVFiX4ZFMRK_hoJpX7i2wxFq8XhQ8siZOUmFim-cmi-mgXQSB9SDsbahtRzROehe3us8ou9Fkd0121yHXaHcPvm36LFqajZ2tk35o9NZk0bgP7Oz3Fcdx8wBi1h4PJnqR4YKql5qIAQQCyLvQg8_9UGtcbvQ7WeXm9UpzcmDEoah2tOEJwlSBWNSDN-302DwTXWpIxcAeyK2Js_VS23eq8rqh_cajHQnwnPznx3-Cp-Ori4menF_-fAfP8E7alOaH7-FgvazdBwRXa_OxWTwPEqUhkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unexpected+Receptor+Functional+Mimicry+Elucidates+Activation+of+Coronavirus+Fusion&rft.jtitle=Cell&rft.au=Walls%2C+Alexandra+C.&rft.au=Xiong%2C+Xiaoli&rft.au=Park%2C+Young-Jun&rft.au=Tortorici%2C+M.+Alejandra&rft.date=2019-02-21&rft.issn=0092-8674&rft.volume=176&rft.issue=5&rft.spage=1026&rft.epage=1039.e15&rft_id=info:doi/10.1016%2Fj.cell.2018.12.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2018_12_028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |