Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells
Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel...
Saved in:
Published in | Cancer letters Vol. 307; no. 2; pp. 141 - 148 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier Ireland Ltd
28.08.2011
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene
beclin
1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent. |
---|---|
AbstractList | Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene
beclin
1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent. Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene beclin1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent. Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic genebeclin1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent. Abstract Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene beclin 1 . These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent. Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene beclin1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent.Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene beclin1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent. |
Author | Jiang, Hanming Young, Charles Y.F. Wu, Baolin Yuan, Huiqing Xi, Guangmin Pang, Yingxin Hu, Xiaoyan |
Author_xml | – sequence: 1 givenname: Guangmin surname: Xi fullname: Xi, Guangmin organization: Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China – sequence: 2 givenname: Xiaoyan surname: Hu fullname: Hu, Xiaoyan organization: Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China – sequence: 3 givenname: Baolin surname: Wu fullname: Wu, Baolin organization: Department of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210, USA – sequence: 4 givenname: Hanming surname: Jiang fullname: Jiang, Hanming organization: Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China – sequence: 5 givenname: Charles Y.F. surname: Young fullname: Young, Charles Y.F. organization: Department of Urology, Mayo Clinical College of Medicine, Mayo Clinic, Rochester, MN 55905, USA – sequence: 6 givenname: Yingxin surname: Pang fullname: Pang, Yingxin organization: Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China – sequence: 7 givenname: Huiqing surname: Yuan fullname: Yuan, Huiqing email: lyuanhq@sdu.edu.cn organization: Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21511395$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt2L1DAUxYOsuB_6H4gWfNCXjjdJk6YiwrL4yYIP64JvIU1udzN2mpq04vz3pswuwoDOU15-59ybc-4pORrCgIQ8pbCiQOXr9cqaocdpxYDSFfAVMPmAnFBVs7JuFByRE-BQlVxxcUxOU1oDgKhq8YgcMyoo5Y04IV_O5ymMt-ZmW_jh1rd-8mEoxhg2YcJUjMb2fjK_sS_94GaLrjBjGKeQfMqCIq9gMRYW-z49Jg870yd8cveekesP779dfCovv378fHF-WVrJYColdhUDXrdoqGqcVU0DFXcUGK8sdGiVNA2tO9rWrhWudVYIZhUYdKKRneVn5OXON2_5c8Y06Y1PywZmwDAnrWQjFKeKZ_LVf0kqawZSMiUz-mIPXYc5DvkfmubQeCUVbTL17I6a2w06PUa_MXGr7_PMwJsdYGNIKWKnbY5vyXSKxveagl7K02u9K08v5WngOpeXxdWe-N7_gOz5TtaZoM1N9ElfX2VA5L45k82y9rsdgbmWXx6jTtZjbs75iHbSLvhDI_YN8lkM3pr-B24x_Y1KJ6ZBXy2Ht9wdpQD5IL9ng7f_Njg8_w9oDecV |
CitedBy_id | crossref_primary_10_1039_D1QM00089F crossref_primary_10_1021_acsomega_4c02234 crossref_primary_10_3109_15376516_2014_956915 crossref_primary_10_2147_IJN_S455407 crossref_primary_10_1016_j_canlet_2017_10_001 crossref_primary_10_1097_IGC_0000000000001003 crossref_primary_10_3390_biology11111581 crossref_primary_10_1371_journal_pone_0106206 crossref_primary_10_1111_jcmm_12364 crossref_primary_10_3389_fonc_2021_626309 crossref_primary_10_1016_j_cej_2022_136795 crossref_primary_10_1038_cddis_2012_148 crossref_primary_10_2174_1871520619666191015104458 crossref_primary_10_1016_j_pharep_2017_04_007 crossref_primary_10_1007_s11101_014_9339_3 crossref_primary_10_1016_j_bbrc_2016_03_132 crossref_primary_10_1093_carcin_bgw058 crossref_primary_10_1111_jphp_12140 crossref_primary_10_3390_biomedicines8110517 crossref_primary_10_3892_ol_2016_5213 crossref_primary_10_1186_1471_2407_14_276 crossref_primary_10_1007_s13402_020_00557_x crossref_primary_10_3389_fphar_2022_854239 crossref_primary_10_1111_jphp_12706 crossref_primary_10_2147_IJN_S321343 crossref_primary_10_1016_j_jvir_2011_12_017 crossref_primary_10_1038_onc_2012_92 crossref_primary_10_1080_15384047_2015_1016658 crossref_primary_10_1021_acsabm_8b00764 crossref_primary_10_3109_10408363_2015_1135103 crossref_primary_10_3390_molecules22111934 crossref_primary_10_1080_15548627_2021_2002108 crossref_primary_10_1186_s12935_018_0692_y crossref_primary_10_1371_journal_pone_0056679 crossref_primary_10_18632_oncotarget_22875 crossref_primary_10_1186_s13046_015_0211_0 crossref_primary_10_1038_s41598_017_12795_5 crossref_primary_10_1038_s41420_023_01508_9 crossref_primary_10_1111_cas_15469 crossref_primary_10_1155_2012_317645 crossref_primary_10_3390_gels7020033 crossref_primary_10_1371_journal_pone_0095716 crossref_primary_10_1002_2211_5463_12855 crossref_primary_10_1016_j_fochx_2023_100758 crossref_primary_10_1016_j_semcancer_2020_05_015 crossref_primary_10_1016_j_semcancer_2019_08_020 crossref_primary_10_1038_srep05382 crossref_primary_10_1155_2012_872091 crossref_primary_10_2147_OTT_S240434 crossref_primary_10_1016_j_bbrc_2013_01_106 crossref_primary_10_1371_journal_pone_0078958 crossref_primary_10_1038_aps_2013_68 crossref_primary_10_1016_j_nano_2020_102270 crossref_primary_10_1111_cas_13279 crossref_primary_10_1016_j_semcancer_2015_03_001 crossref_primary_10_3390_ijms19103221 crossref_primary_10_1016_j_cclet_2024_109689 crossref_primary_10_3892_ijo_2015_2937 crossref_primary_10_1016_j_cellsig_2014_11_023 crossref_primary_10_18632_oncotarget_10126 crossref_primary_10_1016_j_biomaterials_2021_120891 crossref_primary_10_1039_c2ob25514f crossref_primary_10_1007_s10565_022_09756_8 crossref_primary_10_1631_jzus_B2100804 crossref_primary_10_1016_j_mtchem_2017_08_002 crossref_primary_10_3390_cancers13092232 crossref_primary_10_1186_s12935_016_0288_3 crossref_primary_10_1016_j_bbacli_2015_03_003 crossref_primary_10_1016_j_apmt_2023_101886 crossref_primary_10_1177_08853282211060252 crossref_primary_10_1002_mc_22284 crossref_primary_10_1111_pcmr_12227 crossref_primary_10_1016_j_canlet_2012_07_029 crossref_primary_10_1016_j_phymed_2019_152847 crossref_primary_10_1016_j_biomaterials_2013_07_075 crossref_primary_10_4143_crt_2013_222 crossref_primary_10_1186_s12957_016_0815_7 crossref_primary_10_1186_s13578_020_00521_0 crossref_primary_10_3923_ijcr_2020_40_47 crossref_primary_10_5468_OGS_2013_56_2_84 crossref_primary_10_1371_journal_pone_0225450 crossref_primary_10_3892_mmr_2022_12588 crossref_primary_10_1177_1010428317694314 crossref_primary_10_1007_s11101_013_9318_0 crossref_primary_10_1111_acem_12352 crossref_primary_10_1177_1933719115572481 crossref_primary_10_3892_ol_2016_5274 crossref_primary_10_1016_j_bbrc_2013_05_040 crossref_primary_10_1074_jbc_M112_422071 crossref_primary_10_3390_molecules25040971 crossref_primary_10_3748_wjg_v30_i31_3628 crossref_primary_10_1038_s41467_022_33946_x crossref_primary_10_1016_j_biopha_2023_114458 crossref_primary_10_3892_ijo_2013_1884 crossref_primary_10_1016_j_lfs_2020_118745 crossref_primary_10_1038_cddis_2014_467 crossref_primary_10_1016_j_canlet_2013_03_023 crossref_primary_10_1007_s11064_020_03174_0 crossref_primary_10_1016_j_colsurfa_2015_07_041 crossref_primary_10_1111_j_1365_2184_2012_00833_x crossref_primary_10_1111_j_1600_065X_2012_01141_x crossref_primary_10_1016_j_bcp_2018_03_030 crossref_primary_10_1016_j_canlet_2014_11_027 crossref_primary_10_1021_mp5000423 crossref_primary_10_1097_CAD_0000000000000499 crossref_primary_10_1007_s11255_018_1801_5 crossref_primary_10_1016_j_taap_2013_11_018 crossref_primary_10_1007_s10495_016_1335_1 crossref_primary_10_1080_09553002_2021_1872812 crossref_primary_10_3892_ol_2016_5367 crossref_primary_10_1016_j_clon_2011_09_010 crossref_primary_10_1038_nrc3264 crossref_primary_10_3389_fonc_2014_00153 crossref_primary_10_3390_biomedicines10071632 crossref_primary_10_1002_jbt_21694 crossref_primary_10_1371_journal_pone_0131464 crossref_primary_10_1016_j_exer_2014_03_008 crossref_primary_10_3390_ijms19030889 crossref_primary_10_1080_15548627_2014_998931 crossref_primary_10_1016_j_canlet_2018_02_030 crossref_primary_10_3892_ijmm_2023_5318 crossref_primary_10_1016_j_fct_2014_04_010 crossref_primary_10_1016_j_ijpharm_2015_12_003 crossref_primary_10_1016_j_intimp_2022_108806 crossref_primary_10_1124_jpet_112_197590 crossref_primary_10_3892_ijmm_2019_4089 crossref_primary_10_1016_j_bbrc_2015_10_143 crossref_primary_10_18632_oncotarget_13321 crossref_primary_10_1007_s12672_024_01049_2 crossref_primary_10_1016_j_bcp_2021_114865 crossref_primary_10_1016_j_jddst_2019_101157 crossref_primary_10_2174_1389450121666200504072635 crossref_primary_10_1016_j_bcp_2014_05_009 crossref_primary_10_1038_cddis_2013_167 crossref_primary_10_3389_fphar_2021_748149 crossref_primary_10_4161_cc_11_6_19670 crossref_primary_10_3892_ol_2013_1154 crossref_primary_10_5352_JLS_2014_24_11_1244 crossref_primary_10_1038_s41419_019_1415_6 crossref_primary_10_3390_cancers11111775 crossref_primary_10_1016_j_bcp_2022_115060 crossref_primary_10_1016_j_nantod_2024_102317 crossref_primary_10_7314_APJCP_2012_13_12_6211 crossref_primary_10_1002_cncr_31978 crossref_primary_10_1039_C4RA16306K crossref_primary_10_1016_j_jep_2019_112093 crossref_primary_10_1016_j_ijpharm_2017_09_007 crossref_primary_10_2174_1389557520666200729162510 crossref_primary_10_1007_s10495_022_01750_z crossref_primary_10_1371_journal_pone_0114607 |
Cites_doi | 10.1016/j.molonc.2009.05.007 10.1016/j.ejca.2010.02.021 10.1016/0165-6147(92)90048-B 10.1371/journal.pone.0001476 10.1182/blood-2006-10-050260 10.1074/jbc.M109.090530 10.1172/JCI26390 10.1093/carcin/17.8.1595 10.1002/ijc.24030 10.4161/cc.3.9.1097 10.1038/nrm2239 10.1158/0008-5472.CAN-06-0139 10.1007/s10495-008-0307-5 10.1158/0008-5472.CAN-08-4344 10.1038/nrc2254 10.1158/0008-5472.CAN-08-1983 10.1017/S1462399409001306 10.1158/0008-5472.CAN-08-4401 10.1056/NEJM199504133321507 10.1016/j.bmc.2010.07.055 10.1038/sj.cdd.4402030 10.1038/45257 10.1002/ijc.24500 10.1158/0008-5472.CAN-04-3640 10.1038/cdd.2009.46 10.1038/nature06639 10.1093/embo-reports/kve061 10.1093/emboj/19.21.5720 10.1038/sj.cdd.4401359 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ireland Ltd Elsevier Ireland Ltd Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. Copyright Elsevier Limited Aug 28, 2011 |
Copyright_xml | – notice: 2011 Elsevier Ireland Ltd – notice: Elsevier Ireland Ltd – notice: Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. – notice: Copyright Elsevier Limited Aug 28, 2011 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TO 7U9 H94 K9. NAPCQ 7S9 L.6 7X8 |
DOI | 10.1016/j.canlet.2011.03.026 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7980 |
EndPage | 148 |
ExternalDocumentID | 3380263941 21511395 10_1016_j_canlet_2011_03_026 US201500032699 S030438351100187X 1_s2_0_S030438351100187X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 6J9 6PF 7-5 71M 8FE 8FH 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HED HMK HMO HVGLF HZ~ IH2 IHE J1W K-O KOM LK8 M29 M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSU SSZ T5K UDS VH1 WUQ X7M Z5R ZGI ~G- 3V. 7RV 7X7 8C1 8FI AACTN AFCTW AFKRA AFKWA AJOXV AMFUW AZQEC BBNVY BENPR BHPHI FYUFA GUQSH HCIFZ M1P M2M M2O M7P RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU DOVZS EFLBG F3I LCYCR XFK ABPIF ABPTK AEQTP FBQ AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7TO 7U9 H94 K9. NAPCQ 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c620t-6ef42037bea189dc899043d10234c0fec86a917f1b7db5dbdc552c80aed596fc3 |
IEDL.DBID | .~1 |
ISSN | 0304-3835 1872-7980 |
IngestDate | Mon Jul 21 11:41:36 EDT 2025 Mon Jul 21 10:00:58 EDT 2025 Wed Aug 13 03:34:21 EDT 2025 Thu Apr 03 06:49:22 EDT 2025 Tue Jul 01 01:29:45 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Wed Dec 27 18:51:52 EST 2023 Fri Feb 23 02:29:32 EST 2024 Sun Feb 23 10:19:07 EST 2025 Tue Aug 26 17:54:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Lung cancer AVOs Paclitaxel 3-MA MTT LC3 Autophagy Apoptosis microtubule-associated protein 1 light chain 3 acidic vesicular organelles 3-methyladenine 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c620t-6ef42037bea189dc899043d10234c0fec86a917f1b7db5dbdc552c80aed596fc3 |
Notes | http://dx.doi.org/10.1016/j.canlet.2011.03.026 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 21511395 |
PQID | 1547346819 |
PQPubID | 2031080 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_869583183 proquest_miscellaneous_1672066286 proquest_journals_1547346819 pubmed_primary_21511395 crossref_citationtrail_10_1016_j_canlet_2011_03_026 crossref_primary_10_1016_j_canlet_2011_03_026 fao_agris_US201500032699 elsevier_sciencedirect_doi_10_1016_j_canlet_2011_03_026 elsevier_clinicalkeyesjournals_1_s2_0_S030438351100187X elsevier_clinicalkey_doi_10_1016_j_canlet_2011_03_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-28 |
PublicationDateYYYYMMDD | 2011-08-28 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland – name: Clare |
PublicationTitle | Cancer letters |
PublicationTitleAlternate | Cancer Lett |
PublicationYear | 2011 |
Publisher | Elsevier Ireland Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ireland Ltd – name: Elsevier Limited |
References | Herman-Antosiewicz, Johnson, Singh (b0170) 2006; 66 Horwitz (b0010) 1992; 13 Horwitz (b0125) 1992; 13 Brech, Ahlquist, Lothe, Stenmark (b0025) 2009; 3 Rosenfeldt, Ryan (b0090) 2009; 11 Foss, Wilcox, Alsop, Zhang (b0120) 2008; 3 Carew, Nawrocki, Kahue, Zhang, Yang, Chung, Houghton, Huang, Giles, Cleveland (b0095) 2007; 110 Mizushima, Levine, Cuervo, Klionsky (b0015) 2008; 451 Shingu, Fujiwara, Bogler, Akiyama, Moritake, Shinojima, Tamada, Yokoyama, Kondo (b0105) 2009; 124 Sy, Yan, Lok, Man, Che (b0080) 2008; 68 Apel, Zentgraf, Buchler, Herr (b0130) 2009; 125 Yamamoto, Tanaka, Sakimura, Okada, Nakamura, Li, Takasaki, Nakabeppu, Iwamoto (b0155) 2008; 28 Li, Hou, Faried, Tsutsumi, Kuwano (b0165) 2010; 46 Xi, Sun, Jiang, Kong, Yuan, Lou (b0060) 2010; 18 Laane, Tamm, Buentke, Ito, Kharaziha, Khahariza, Oscarsson, Corcoran, Bjorklund, Hultenby, Lundin, Heyman, Soderhall, Mazur, Porwit, Pandolfi, Zhivotovsky, Panaretakis, Grander (b0145) 2009; 16 Rowinsky, Donehower (b0005) 1995; 332 Shingu, Fujiwara, Bogler, Akiyama, Moritake, Shinojima, Tamada, Yokoyama, Kondo (b0055) 2009; 124 Levine, Yuan (b0030) 2005; 115 Bommareddy, Hahm, Xiao, Powolny, Fisher, Jiang, Singh (b0150) 2009; 69 Goussetis, Altman, Glaser, McNeer, Tallman, Platanias (b0100) 2010; 285 Liang, Jackson, Seaman, Brown, Kempkes, Hibshoosh, Levine (b0085) 1999; 402 Katayama, Kawaguchi, Berger, Pieper (b0035) 2007; 14 Kihara, Kabeya, Ohsumi, Yoshimori (b0075) 2001; 2 Maiuri, Zalckvar, Kimchi, Kroemer (b0040) 2007; 8 Bommareddy, Hahm, Xiao, Powolny, Fisher, Jiang, Singh (b0070) 2009; 69 Mathew, Karantza-Wadsworth, White (b0020) 2007; 7 Bursch, Ellinger, Kienzl, Torok, Pandey, Sikorska, Walker, Hermann (b0115) 1996; 17 Kiyono, Suzuki, Matsuyama, Morishita, Komuro, Kano, Sugimoto, Miyazono (b0160) 2009; 69 Kanzawa, Germano, Komata, Ito, Kondo, Kondo (b0045) 2004; 11 Kabeya, Mizushima, Ueno, Yamamoto, Kirisako, Noda, Kominami, Ohsumi, Yoshimori (b0065) 2000; 19 Paglin, Hollister, Delohery, Hackett, McMahill, Sphicas, Domingo, Yahalom (b0110) 2001; 61 Eisenberg-Lerner, Kimchi (b0140) 2009; 14 Takeuchi, Kondo, Fujiwara, Kanzawa, Aoki, Mills, Kondo (b0050) 2005; 65 Yu, Lenardo, Baehrecke (b0135) 2004; 3 Sy (10.1016/j.canlet.2011.03.026_b0080) 2008; 68 Carew (10.1016/j.canlet.2011.03.026_b0095) 2007; 110 Foss (10.1016/j.canlet.2011.03.026_b0120) 2008; 3 Kanzawa (10.1016/j.canlet.2011.03.026_b0045) 2004; 11 Rowinsky (10.1016/j.canlet.2011.03.026_b0005) 1995; 332 Mathew (10.1016/j.canlet.2011.03.026_b0020) 2007; 7 Katayama (10.1016/j.canlet.2011.03.026_b0035) 2007; 14 Li (10.1016/j.canlet.2011.03.026_b0165) 2010; 46 Bursch (10.1016/j.canlet.2011.03.026_b0115) 1996; 17 Brech (10.1016/j.canlet.2011.03.026_b0025) 2009; 3 Kabeya (10.1016/j.canlet.2011.03.026_b0065) 2000; 19 Kihara (10.1016/j.canlet.2011.03.026_b0075) 2001; 2 Rosenfeldt (10.1016/j.canlet.2011.03.026_b0090) 2009; 11 Paglin (10.1016/j.canlet.2011.03.026_b0110) 2001; 61 Bommareddy (10.1016/j.canlet.2011.03.026_b0070) 2009; 69 Laane (10.1016/j.canlet.2011.03.026_b0145) 2009; 16 Levine (10.1016/j.canlet.2011.03.026_b0030) 2005; 115 Shingu (10.1016/j.canlet.2011.03.026_b0105) 2009; 124 Yamamoto (10.1016/j.canlet.2011.03.026_b0155) 2008; 28 Mizushima (10.1016/j.canlet.2011.03.026_b0015) 2008; 451 Liang (10.1016/j.canlet.2011.03.026_b0085) 1999; 402 Horwitz (10.1016/j.canlet.2011.03.026_b0010) 1992; 13 Maiuri (10.1016/j.canlet.2011.03.026_b0040) 2007; 8 Kiyono (10.1016/j.canlet.2011.03.026_b0160) 2009; 69 Horwitz (10.1016/j.canlet.2011.03.026_b0125) 1992; 13 Apel (10.1016/j.canlet.2011.03.026_b0130) 2009; 125 Shingu (10.1016/j.canlet.2011.03.026_b0055) 2009; 124 Herman-Antosiewicz (10.1016/j.canlet.2011.03.026_b0170) 2006; 66 Goussetis (10.1016/j.canlet.2011.03.026_b0100) 2010; 285 Eisenberg-Lerner (10.1016/j.canlet.2011.03.026_b0140) 2009; 14 Xi (10.1016/j.canlet.2011.03.026_b0060) 2010; 18 Bommareddy (10.1016/j.canlet.2011.03.026_b0150) 2009; 69 Takeuchi (10.1016/j.canlet.2011.03.026_b0050) 2005; 65 Yu (10.1016/j.canlet.2011.03.026_b0135) 2004; 3 |
References_xml | – volume: 332 start-page: 1004 year: 1995 end-page: 1014 ident: b0005 article-title: Paclitaxel (taxol) publication-title: N. Engl. J. Med. – volume: 11 start-page: 448 year: 2004 end-page: 457 ident: b0045 article-title: Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells publication-title: Cell Death Differ. – volume: 7 start-page: 961 year: 2007 end-page: 967 ident: b0020 article-title: Role of autophagy in cancer publication-title: Nat. Rev. Cancer – volume: 110 start-page: 313 year: 2007 end-page: 322 ident: b0095 article-title: Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance publication-title: Blood – volume: 69 start-page: 8844 year: 2009 end-page: 8852 ident: b0160 article-title: Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells publication-title: Cancer Res. – volume: 115 start-page: 2679 year: 2005 end-page: 2688 ident: b0030 article-title: Autophagy in cell death: an innocent convict? publication-title: J. Clin. Invest. – volume: 14 start-page: 548 year: 2007 end-page: 558 ident: b0035 article-title: DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells publication-title: Cell Death Differ. – volume: 285 start-page: 29989 year: 2010 end-page: 29997 ident: b0100 article-title: Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide publication-title: J. Biol. Chem. – volume: 124 start-page: 1060 year: 2009 end-page: 1071 ident: b0055 article-title: Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells publication-title: Int. J. Cancer – volume: 124 start-page: 1060 year: 2009 end-page: 1071 ident: b0105 article-title: Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells publication-title: Int. J. Cancer – volume: 3 start-page: 1124 year: 2004 end-page: 1126 ident: b0135 article-title: Autophagy and caspases: a new cell death program publication-title: Cell Cycle (Georgetown, Tex) – volume: 402 start-page: 672 year: 1999 end-page: 676 ident: b0085 article-title: Induction of autophagy and inhibition of tumorigenesis by beclin 1 publication-title: Nature – volume: 18 start-page: 6725 year: 2010 end-page: 6733 ident: b0060 article-title: Bisbibenzyl derivatives sensitize vincristine-resistant KB/VCR cells to chemotherapeutic agents by retarding P-gp activity publication-title: Bioorg. Med. Chem. – volume: 13 start-page: 134 year: 1992 end-page: 136 ident: b0125 article-title: Mechanism of action of taxol publication-title: Trends Pharmacol. Sci. – volume: 46 start-page: 1900 year: 2010 end-page: 1909 ident: b0165 article-title: Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model publication-title: Eur. J. Cancer – volume: 69 start-page: 3704 year: 2009 end-page: 3712 ident: b0070 article-title: Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells publication-title: Cancer Res. – volume: 451 start-page: 1069 year: 2008 end-page: 1075 ident: b0015 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature – volume: 17 start-page: 1595 year: 1996 end-page: 1607 ident: b0115 article-title: Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy publication-title: Carcinogenesis – volume: 2 start-page: 330 year: 2001 end-page: 335 ident: b0075 article-title: Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network publication-title: EMBO Rep. – volume: 11 start-page: e36 year: 2009 ident: b0090 article-title: The role of autophagy in tumour development and cancer therapy publication-title: Expert Rev. Mol. Med. – volume: 61 start-page: 439 year: 2001 end-page: 444 ident: b0110 article-title: A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles publication-title: Cancer Res. – volume: 66 start-page: 5828 year: 2006 end-page: 5835 ident: b0170 article-title: Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells publication-title: Cancer Res. – volume: 3 start-page: 366 year: 2009 end-page: 375 ident: b0025 article-title: Autophagy in tumour suppression and promotion publication-title: Mol. Oncol. – volume: 19 start-page: 5720 year: 2000 end-page: 5728 ident: b0065 article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing publication-title: EMBO J. – volume: 65 start-page: 3336 year: 2005 end-page: 3346 ident: b0050 article-title: Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors publication-title: Cancer Res. – volume: 69 start-page: 3704 year: 2009 end-page: 3712 ident: b0150 article-title: Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells publication-title: Cancer Res. – volume: 3 start-page: e1476 year: 2008 ident: b0120 article-title: Taxol crystals can masquerade as stabilized microtubules publication-title: PLoS One – volume: 16 start-page: 1018 year: 2009 end-page: 1029 ident: b0145 article-title: Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy publication-title: Cell Death Differ. – volume: 13 start-page: 134 year: 1992 end-page: 136 ident: b0010 article-title: Mechanism of action of taxol publication-title: Trends Pharmacol. Sci. – volume: 68 start-page: 10229 year: 2008 end-page: 10237 ident: b0080 article-title: Timosaponin A-III induces autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells publication-title: Cancer Res. – volume: 28 start-page: 1585 year: 2008 end-page: 1591 ident: b0155 article-title: Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or autophagy-associated cell death in chondrosarcoma cell lines publication-title: Anticancer Res. – volume: 8 start-page: 741 year: 2007 end-page: 752 ident: b0040 article-title: Self-eating and self-killing: crosstalk between autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 125 start-page: 991 year: 2009 end-page: 995 ident: b0130 article-title: Autophagy-A double-edged sword in oncology publication-title: Int. J. Cancer – volume: 14 start-page: 376 year: 2009 end-page: 391 ident: b0140 article-title: The paradox of autophagy and its implication in cancer etiology and therapy publication-title: Apoptosis – volume: 61 start-page: 439 year: 2001 ident: 10.1016/j.canlet.2011.03.026_b0110 article-title: A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles publication-title: Cancer Res. – volume: 3 start-page: 366 year: 2009 ident: 10.1016/j.canlet.2011.03.026_b0025 article-title: Autophagy in tumour suppression and promotion publication-title: Mol. Oncol. doi: 10.1016/j.molonc.2009.05.007 – volume: 28 start-page: 1585 year: 2008 ident: 10.1016/j.canlet.2011.03.026_b0155 article-title: Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or autophagy-associated cell death in chondrosarcoma cell lines publication-title: Anticancer Res. – volume: 46 start-page: 1900 year: 2010 ident: 10.1016/j.canlet.2011.03.026_b0165 article-title: Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2010.02.021 – volume: 13 start-page: 134 year: 1992 ident: 10.1016/j.canlet.2011.03.026_b0010 article-title: Mechanism of action of taxol publication-title: Trends Pharmacol. Sci. doi: 10.1016/0165-6147(92)90048-B – volume: 3 start-page: e1476 year: 2008 ident: 10.1016/j.canlet.2011.03.026_b0120 article-title: Taxol crystals can masquerade as stabilized microtubules publication-title: PLoS One doi: 10.1371/journal.pone.0001476 – volume: 110 start-page: 313 year: 2007 ident: 10.1016/j.canlet.2011.03.026_b0095 article-title: Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance publication-title: Blood doi: 10.1182/blood-2006-10-050260 – volume: 285 start-page: 29989 year: 2010 ident: 10.1016/j.canlet.2011.03.026_b0100 article-title: Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.090530 – volume: 115 start-page: 2679 year: 2005 ident: 10.1016/j.canlet.2011.03.026_b0030 article-title: Autophagy in cell death: an innocent convict? publication-title: J. Clin. Invest. doi: 10.1172/JCI26390 – volume: 17 start-page: 1595 year: 1996 ident: 10.1016/j.canlet.2011.03.026_b0115 article-title: Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy publication-title: Carcinogenesis doi: 10.1093/carcin/17.8.1595 – volume: 124 start-page: 1060 year: 2009 ident: 10.1016/j.canlet.2011.03.026_b0055 article-title: Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells publication-title: Int. J. Cancer doi: 10.1002/ijc.24030 – volume: 3 start-page: 1124 year: 2004 ident: 10.1016/j.canlet.2011.03.026_b0135 article-title: Autophagy and caspases: a new cell death program publication-title: Cell Cycle (Georgetown, Tex) doi: 10.4161/cc.3.9.1097 – volume: 8 start-page: 741 year: 2007 ident: 10.1016/j.canlet.2011.03.026_b0040 article-title: Self-eating and self-killing: crosstalk between autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2239 – volume: 66 start-page: 5828 year: 2006 ident: 10.1016/j.canlet.2011.03.026_b0170 article-title: Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-0139 – volume: 14 start-page: 376 year: 2009 ident: 10.1016/j.canlet.2011.03.026_b0140 article-title: The paradox of autophagy and its implication in cancer etiology and therapy publication-title: Apoptosis doi: 10.1007/s10495-008-0307-5 – volume: 69 start-page: 3704 year: 2009 ident: 10.1016/j.canlet.2011.03.026_b0150 article-title: Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-4344 – volume: 7 start-page: 961 year: 2007 ident: 10.1016/j.canlet.2011.03.026_b0020 article-title: Role of autophagy in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2254 – volume: 68 start-page: 10229 year: 2008 ident: 10.1016/j.canlet.2011.03.026_b0080 article-title: Timosaponin A-III induces autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-1983 – volume: 124 start-page: 1060 year: 2009 ident: 10.1016/j.canlet.2011.03.026_b0105 article-title: Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells publication-title: Int. J. Cancer doi: 10.1002/ijc.24030 – volume: 11 start-page: e36 year: 2009 ident: 10.1016/j.canlet.2011.03.026_b0090 article-title: The role of autophagy in tumour development and cancer therapy publication-title: Expert Rev. Mol. Med. doi: 10.1017/S1462399409001306 – volume: 69 start-page: 8844 year: 2009 ident: 10.1016/j.canlet.2011.03.026_b0160 article-title: Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-4401 – volume: 13 start-page: 134 year: 1992 ident: 10.1016/j.canlet.2011.03.026_b0125 article-title: Mechanism of action of taxol publication-title: Trends Pharmacol. Sci. doi: 10.1016/0165-6147(92)90048-B – volume: 332 start-page: 1004 year: 1995 ident: 10.1016/j.canlet.2011.03.026_b0005 article-title: Paclitaxel (taxol) publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199504133321507 – volume: 18 start-page: 6725 year: 2010 ident: 10.1016/j.canlet.2011.03.026_b0060 article-title: Bisbibenzyl derivatives sensitize vincristine-resistant KB/VCR cells to chemotherapeutic agents by retarding P-gp activity publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2010.07.055 – volume: 14 start-page: 548 year: 2007 ident: 10.1016/j.canlet.2011.03.026_b0035 article-title: DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402030 – volume: 402 start-page: 672 year: 1999 ident: 10.1016/j.canlet.2011.03.026_b0085 article-title: Induction of autophagy and inhibition of tumorigenesis by beclin 1 publication-title: Nature doi: 10.1038/45257 – volume: 125 start-page: 991 year: 2009 ident: 10.1016/j.canlet.2011.03.026_b0130 article-title: Autophagy-A double-edged sword in oncology publication-title: Int. J. Cancer doi: 10.1002/ijc.24500 – volume: 65 start-page: 3336 year: 2005 ident: 10.1016/j.canlet.2011.03.026_b0050 article-title: Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-3640 – volume: 16 start-page: 1018 year: 2009 ident: 10.1016/j.canlet.2011.03.026_b0145 article-title: Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy publication-title: Cell Death Differ. doi: 10.1038/cdd.2009.46 – volume: 451 start-page: 1069 year: 2008 ident: 10.1016/j.canlet.2011.03.026_b0015 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature doi: 10.1038/nature06639 – volume: 2 start-page: 330 year: 2001 ident: 10.1016/j.canlet.2011.03.026_b0075 article-title: Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network publication-title: EMBO Rep. doi: 10.1093/embo-reports/kve061 – volume: 69 start-page: 3704 year: 2009 ident: 10.1016/j.canlet.2011.03.026_b0070 article-title: Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-4344 – volume: 19 start-page: 5720 year: 2000 ident: 10.1016/j.canlet.2011.03.026_b0065 article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing publication-title: EMBO J. doi: 10.1093/emboj/19.21.5720 – volume: 11 start-page: 448 year: 2004 ident: 10.1016/j.canlet.2011.03.026_b0045 article-title: Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401359 |
SSID | ssj0005475 |
Score | 2.4348702 |
Snippet | Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a... Abstract Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 141 |
SubjectTerms | Antibiotics Antineoplastic Agents, Phytogenic Antineoplastic Agents, Phytogenic - pharmacology Apoptosis Apoptosis - drug effects Autophagy Autophagy - drug effects Blotting, Western Cancer Cancer therapies Cell Line, Tumor Chemotherapy Cytotoxicity drug effects genes green fluorescent protein Hematology, Oncology and Palliative Medicine Humans Lung cancer organelles Paclitaxel Paclitaxel - pharmacology pharmacology Proteins RNA Interference RNA, Small Interfering small interfering RNA |
Title | Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S030438351100187X https://www.clinicalkey.es/playcontent/1-s2.0-S030438351100187X https://dx.doi.org/10.1016/j.canlet.2011.03.026 https://www.ncbi.nlm.nih.gov/pubmed/21511395 https://www.proquest.com/docview/1547346819 https://www.proquest.com/docview/1672066286 https://www.proquest.com/docview/869583183 |
Volume | 307 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkRAXVJ4NLVWQuKabOPEjx1VFtRS1l7LS3iy_UoKqJGp2Jbjw25lJnKWIVkVcd2d2nfH484wz85mQD1IUleQO0hJX5pCgMAM46FnCROZcKipAS-xGPr_gi2VxtmKrHXIy9cJgWWXA_hHTB7QOn8yCNWddXc8u8aUe5FcMSc8yKVbYwV4I9PLjn7fKPIqBbBeFE5Se2ueGGi8YPVgnEHnmxwPFwt3b06NKt_cHocNmdLpHnoUoMp6PA31Odnzzgjw5D-_JX5Kz-QYJA_TVj7huvtZmqMuKu6H0zvcx5MnIzf3dXyeQksPkulh3bbdu-7oHhdiiK9zEeKjfvyLL049fThZJuDUhsZym64T7qqBpLozXmSydhYQK7OSQoqGwaeWt5BpytCozwhnmjLOMUStT7R0reWXz12S3aRu_T-JSm6qkzoi80JDGeZ0a2M2tBTtmmc2qiOSTsZQNlOJ4s8W1mmrHvqnRxApNrNJcgYkjkmy1upFS4wF5Ns2DmtpFAeAUYP4DeuIuPd-HVdqrTPVUpeovT7qt-Ycz_sN_7oOjKH0FCK2WlxTPkwA3KS_LiBxO3qN-jwCvfi44hGUReb_9GlY4zrBufLsBGS6Qc59K-PX4HhnJSyYRniPyZnTMrWkxpoMwn73974c6IE-nk3QqD8nu-mbj30EotjZHw1o7Io_nnz4vLn4BeNQv7A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIgGXimebUsBIcEw3cWLHOXCogGr72F7alfZm_EoJqpKo2RX0wp_iDzJOnKWIVkVIve56vN7Pk88z8fgzQm95lhacGUhLTJ5AgkIV8KClIc1iY6KsALZ0p5Enx2w8TQ9mdLaCfg5nYVxZpef-ntM7tvafjDyao6YsRyduUw_yK-pEz2KezXxl5aG9_AZ5W_t-_yNM8jtC9j6dfhiH_mqBUDMSzUNmi5RESaasjHluNGQd0JlxOgapjgqrOZOQyBSxyoyiRhlNKdE8ktbQnBU6gX5X0b0U6MJdm7Dz40pdSdqp-7rRhW54w3m9rqgM4ILp8MqhyU6n6XD9erhayPrmqLdb_fYeoXUftuLdHpnHaMVWT9D9id-Yf4oOdhdOoUCeXeKy-lKqrhAMN12tn20xJOZODPy7PQ_LyoA3GSybupnXbdmCAdbO9y6w20Von6HpnWD5HK1VdWU3Ec6lKnJiVJakEvJGKyMF4YPWgGMc67gIUDKAJbTXMHdXaZyLoVjtq-ghFg5iESUCIA5QuLRqeg2PW9rTYR7EcD4VGFXAInOLXXadnW09LbQiFi0RkfjLda9a_uH9__Cbm-AoQp7BkiCmJ8S9wAKiJizPA7Q9eI_4PQJ313TKIA4M0Jvl10ApboZlZesFtGGZE_knHHrHN7ThLKfcrQcB2ugdcwmtCyIhr6Bb__2nXqMH49PJkTjaPz58gR4Or_EJ30Zr84uFfQlx4Fy96p47jD7f9YP-C4npbHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+inhibition+promotes+paclitaxel-induced+apoptosis+in+cancer+cells&rft.jtitle=Cancer+letters&rft.au=Xi%2C+Guangmin&rft.au=Hu%2C+Xiaoyan&rft.au=Wu%2C+Baolin&rft.au=Jiang%2C+Hanming&rft.date=2011-08-28&rft.eissn=1872-7980&rft.volume=307&rft.issue=2&rft.spage=141&rft_id=info:doi/10.1016%2Fj.canlet.2011.03.026&rft_id=info%3Apmid%2F21511395&rft.externalDocID=21511395 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03043835%2FS0304383511X00149%2Fcov150h.gif |