Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells

Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel...

Full description

Saved in:
Bibliographic Details
Published inCancer letters Vol. 307; no. 2; pp. 141 - 148
Main Authors Xi, Guangmin, Hu, Xiaoyan, Wu, Baolin, Jiang, Hanming, Young, Charles Y.F., Pang, Yingxin, Yuan, Huiqing
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 28.08.2011
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene beclin 1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent.
AbstractList Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene beclin 1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent.
Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene beclin1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent.
Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic genebeclin1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent.
Abstract Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene beclin 1 . These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent.
Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene beclin1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent.Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a line of evidence that promotion of apoptotic cell death by paclitaxel was accompanied with induction of autophagy in A549 cells. Paclitaxel treatment could lead to the formation of acidic vesicular organelles (AVOs), the induction of Atg5, Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3) expressions, and the increase of punctate fluorescent signals in A549 cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. Interestingly, paclitaxel-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA against the autophagic gene beclin1. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual cell death, and inhibition of autophagy could be an adjunctive strategy for enhancing chemotherapeutic effect of paclitaxel as an antitumor agent.
Author Jiang, Hanming
Young, Charles Y.F.
Wu, Baolin
Yuan, Huiqing
Xi, Guangmin
Pang, Yingxin
Hu, Xiaoyan
Author_xml – sequence: 1
  givenname: Guangmin
  surname: Xi
  fullname: Xi, Guangmin
  organization: Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
– sequence: 2
  givenname: Xiaoyan
  surname: Hu
  fullname: Hu, Xiaoyan
  organization: Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
– sequence: 3
  givenname: Baolin
  surname: Wu
  fullname: Wu, Baolin
  organization: Department of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210, USA
– sequence: 4
  givenname: Hanming
  surname: Jiang
  fullname: Jiang, Hanming
  organization: Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
– sequence: 5
  givenname: Charles Y.F.
  surname: Young
  fullname: Young, Charles Y.F.
  organization: Department of Urology, Mayo Clinical College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
– sequence: 6
  givenname: Yingxin
  surname: Pang
  fullname: Pang, Yingxin
  organization: Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
– sequence: 7
  givenname: Huiqing
  surname: Yuan
  fullname: Yuan, Huiqing
  email: lyuanhq@sdu.edu.cn
  organization: Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21511395$$D View this record in MEDLINE/PubMed
BookMark eNqFkt2L1DAUxYOsuB_6H4gWfNCXjjdJk6YiwrL4yYIP64JvIU1udzN2mpq04vz3pswuwoDOU15-59ybc-4pORrCgIQ8pbCiQOXr9cqaocdpxYDSFfAVMPmAnFBVs7JuFByRE-BQlVxxcUxOU1oDgKhq8YgcMyoo5Y04IV_O5ymMt-ZmW_jh1rd-8mEoxhg2YcJUjMb2fjK_sS_94GaLrjBjGKeQfMqCIq9gMRYW-z49Jg870yd8cveekesP779dfCovv378fHF-WVrJYColdhUDXrdoqGqcVU0DFXcUGK8sdGiVNA2tO9rWrhWudVYIZhUYdKKRneVn5OXON2_5c8Y06Y1PywZmwDAnrWQjFKeKZ_LVf0kqawZSMiUz-mIPXYc5DvkfmubQeCUVbTL17I6a2w06PUa_MXGr7_PMwJsdYGNIKWKnbY5vyXSKxveagl7K02u9K08v5WngOpeXxdWe-N7_gOz5TtaZoM1N9ElfX2VA5L45k82y9rsdgbmWXx6jTtZjbs75iHbSLvhDI_YN8lkM3pr-B24x_Y1KJ6ZBXy2Ht9wdpQD5IL9ng7f_Njg8_w9oDecV
CitedBy_id crossref_primary_10_1039_D1QM00089F
crossref_primary_10_1021_acsomega_4c02234
crossref_primary_10_3109_15376516_2014_956915
crossref_primary_10_2147_IJN_S455407
crossref_primary_10_1016_j_canlet_2017_10_001
crossref_primary_10_1097_IGC_0000000000001003
crossref_primary_10_3390_biology11111581
crossref_primary_10_1371_journal_pone_0106206
crossref_primary_10_1111_jcmm_12364
crossref_primary_10_3389_fonc_2021_626309
crossref_primary_10_1016_j_cej_2022_136795
crossref_primary_10_1038_cddis_2012_148
crossref_primary_10_2174_1871520619666191015104458
crossref_primary_10_1016_j_pharep_2017_04_007
crossref_primary_10_1007_s11101_014_9339_3
crossref_primary_10_1016_j_bbrc_2016_03_132
crossref_primary_10_1093_carcin_bgw058
crossref_primary_10_1111_jphp_12140
crossref_primary_10_3390_biomedicines8110517
crossref_primary_10_3892_ol_2016_5213
crossref_primary_10_1186_1471_2407_14_276
crossref_primary_10_1007_s13402_020_00557_x
crossref_primary_10_3389_fphar_2022_854239
crossref_primary_10_1111_jphp_12706
crossref_primary_10_2147_IJN_S321343
crossref_primary_10_1016_j_jvir_2011_12_017
crossref_primary_10_1038_onc_2012_92
crossref_primary_10_1080_15384047_2015_1016658
crossref_primary_10_1021_acsabm_8b00764
crossref_primary_10_3109_10408363_2015_1135103
crossref_primary_10_3390_molecules22111934
crossref_primary_10_1080_15548627_2021_2002108
crossref_primary_10_1186_s12935_018_0692_y
crossref_primary_10_1371_journal_pone_0056679
crossref_primary_10_18632_oncotarget_22875
crossref_primary_10_1186_s13046_015_0211_0
crossref_primary_10_1038_s41598_017_12795_5
crossref_primary_10_1038_s41420_023_01508_9
crossref_primary_10_1111_cas_15469
crossref_primary_10_1155_2012_317645
crossref_primary_10_3390_gels7020033
crossref_primary_10_1371_journal_pone_0095716
crossref_primary_10_1002_2211_5463_12855
crossref_primary_10_1016_j_fochx_2023_100758
crossref_primary_10_1016_j_semcancer_2020_05_015
crossref_primary_10_1016_j_semcancer_2019_08_020
crossref_primary_10_1038_srep05382
crossref_primary_10_1155_2012_872091
crossref_primary_10_2147_OTT_S240434
crossref_primary_10_1016_j_bbrc_2013_01_106
crossref_primary_10_1371_journal_pone_0078958
crossref_primary_10_1038_aps_2013_68
crossref_primary_10_1016_j_nano_2020_102270
crossref_primary_10_1111_cas_13279
crossref_primary_10_1016_j_semcancer_2015_03_001
crossref_primary_10_3390_ijms19103221
crossref_primary_10_1016_j_cclet_2024_109689
crossref_primary_10_3892_ijo_2015_2937
crossref_primary_10_1016_j_cellsig_2014_11_023
crossref_primary_10_18632_oncotarget_10126
crossref_primary_10_1016_j_biomaterials_2021_120891
crossref_primary_10_1039_c2ob25514f
crossref_primary_10_1007_s10565_022_09756_8
crossref_primary_10_1631_jzus_B2100804
crossref_primary_10_1016_j_mtchem_2017_08_002
crossref_primary_10_3390_cancers13092232
crossref_primary_10_1186_s12935_016_0288_3
crossref_primary_10_1016_j_bbacli_2015_03_003
crossref_primary_10_1016_j_apmt_2023_101886
crossref_primary_10_1177_08853282211060252
crossref_primary_10_1002_mc_22284
crossref_primary_10_1111_pcmr_12227
crossref_primary_10_1016_j_canlet_2012_07_029
crossref_primary_10_1016_j_phymed_2019_152847
crossref_primary_10_1016_j_biomaterials_2013_07_075
crossref_primary_10_4143_crt_2013_222
crossref_primary_10_1186_s12957_016_0815_7
crossref_primary_10_1186_s13578_020_00521_0
crossref_primary_10_3923_ijcr_2020_40_47
crossref_primary_10_5468_OGS_2013_56_2_84
crossref_primary_10_1371_journal_pone_0225450
crossref_primary_10_3892_mmr_2022_12588
crossref_primary_10_1177_1010428317694314
crossref_primary_10_1007_s11101_013_9318_0
crossref_primary_10_1111_acem_12352
crossref_primary_10_1177_1933719115572481
crossref_primary_10_3892_ol_2016_5274
crossref_primary_10_1016_j_bbrc_2013_05_040
crossref_primary_10_1074_jbc_M112_422071
crossref_primary_10_3390_molecules25040971
crossref_primary_10_3748_wjg_v30_i31_3628
crossref_primary_10_1038_s41467_022_33946_x
crossref_primary_10_1016_j_biopha_2023_114458
crossref_primary_10_3892_ijo_2013_1884
crossref_primary_10_1016_j_lfs_2020_118745
crossref_primary_10_1038_cddis_2014_467
crossref_primary_10_1016_j_canlet_2013_03_023
crossref_primary_10_1007_s11064_020_03174_0
crossref_primary_10_1016_j_colsurfa_2015_07_041
crossref_primary_10_1111_j_1365_2184_2012_00833_x
crossref_primary_10_1111_j_1600_065X_2012_01141_x
crossref_primary_10_1016_j_bcp_2018_03_030
crossref_primary_10_1016_j_canlet_2014_11_027
crossref_primary_10_1021_mp5000423
crossref_primary_10_1097_CAD_0000000000000499
crossref_primary_10_1007_s11255_018_1801_5
crossref_primary_10_1016_j_taap_2013_11_018
crossref_primary_10_1007_s10495_016_1335_1
crossref_primary_10_1080_09553002_2021_1872812
crossref_primary_10_3892_ol_2016_5367
crossref_primary_10_1016_j_clon_2011_09_010
crossref_primary_10_1038_nrc3264
crossref_primary_10_3389_fonc_2014_00153
crossref_primary_10_3390_biomedicines10071632
crossref_primary_10_1002_jbt_21694
crossref_primary_10_1371_journal_pone_0131464
crossref_primary_10_1016_j_exer_2014_03_008
crossref_primary_10_3390_ijms19030889
crossref_primary_10_1080_15548627_2014_998931
crossref_primary_10_1016_j_canlet_2018_02_030
crossref_primary_10_3892_ijmm_2023_5318
crossref_primary_10_1016_j_fct_2014_04_010
crossref_primary_10_1016_j_ijpharm_2015_12_003
crossref_primary_10_1016_j_intimp_2022_108806
crossref_primary_10_1124_jpet_112_197590
crossref_primary_10_3892_ijmm_2019_4089
crossref_primary_10_1016_j_bbrc_2015_10_143
crossref_primary_10_18632_oncotarget_13321
crossref_primary_10_1007_s12672_024_01049_2
crossref_primary_10_1016_j_bcp_2021_114865
crossref_primary_10_1016_j_jddst_2019_101157
crossref_primary_10_2174_1389450121666200504072635
crossref_primary_10_1016_j_bcp_2014_05_009
crossref_primary_10_1038_cddis_2013_167
crossref_primary_10_3389_fphar_2021_748149
crossref_primary_10_4161_cc_11_6_19670
crossref_primary_10_3892_ol_2013_1154
crossref_primary_10_5352_JLS_2014_24_11_1244
crossref_primary_10_1038_s41419_019_1415_6
crossref_primary_10_3390_cancers11111775
crossref_primary_10_1016_j_bcp_2022_115060
crossref_primary_10_1016_j_nantod_2024_102317
crossref_primary_10_7314_APJCP_2012_13_12_6211
crossref_primary_10_1002_cncr_31978
crossref_primary_10_1039_C4RA16306K
crossref_primary_10_1016_j_jep_2019_112093
crossref_primary_10_1016_j_ijpharm_2017_09_007
crossref_primary_10_2174_1389557520666200729162510
crossref_primary_10_1007_s10495_022_01750_z
crossref_primary_10_1371_journal_pone_0114607
Cites_doi 10.1016/j.molonc.2009.05.007
10.1016/j.ejca.2010.02.021
10.1016/0165-6147(92)90048-B
10.1371/journal.pone.0001476
10.1182/blood-2006-10-050260
10.1074/jbc.M109.090530
10.1172/JCI26390
10.1093/carcin/17.8.1595
10.1002/ijc.24030
10.4161/cc.3.9.1097
10.1038/nrm2239
10.1158/0008-5472.CAN-06-0139
10.1007/s10495-008-0307-5
10.1158/0008-5472.CAN-08-4344
10.1038/nrc2254
10.1158/0008-5472.CAN-08-1983
10.1017/S1462399409001306
10.1158/0008-5472.CAN-08-4401
10.1056/NEJM199504133321507
10.1016/j.bmc.2010.07.055
10.1038/sj.cdd.4402030
10.1038/45257
10.1002/ijc.24500
10.1158/0008-5472.CAN-04-3640
10.1038/cdd.2009.46
10.1038/nature06639
10.1093/embo-reports/kve061
10.1093/emboj/19.21.5720
10.1038/sj.cdd.4401359
ContentType Journal Article
Copyright 2011 Elsevier Ireland Ltd
Elsevier Ireland Ltd
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Copyright Elsevier Limited Aug 28, 2011
Copyright_xml – notice: 2011 Elsevier Ireland Ltd
– notice: Elsevier Ireland Ltd
– notice: Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Aug 28, 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U9
H94
K9.
NAPCQ
7S9
L.6
7X8
DOI 10.1016/j.canlet.2011.03.026
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
AGRICOLA
MEDLINE


AIDS and Cancer Research Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7980
EndPage 148
ExternalDocumentID 3380263941
21511395
10_1016_j_canlet_2011_03_026
US201500032699
S030438351100187X
1_s2_0_S030438351100187X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
6J9
6PF
7-5
71M
8FE
8FH
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HED
HMK
HMO
HVGLF
HZ~
IH2
IHE
J1W
K-O
KOM
LK8
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UDS
VH1
WUQ
X7M
Z5R
ZGI
~G-
3V.
7RV
7X7
8C1
8FI
AACTN
AFCTW
AFKRA
AFKWA
AJOXV
AMFUW
AZQEC
BBNVY
BENPR
BHPHI
FYUFA
GUQSH
HCIFZ
M1P
M2M
M2O
M7P
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
DOVZS
EFLBG
F3I
LCYCR
XFK
ABPIF
ABPTK
AEQTP
FBQ
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U9
H94
K9.
NAPCQ
7S9
L.6
7X8
ID FETCH-LOGICAL-c620t-6ef42037bea189dc899043d10234c0fec86a917f1b7db5dbdc552c80aed596fc3
IEDL.DBID .~1
ISSN 0304-3835
1872-7980
IngestDate Mon Jul 21 11:41:36 EDT 2025
Mon Jul 21 10:00:58 EDT 2025
Wed Aug 13 03:34:21 EDT 2025
Thu Apr 03 06:49:22 EDT 2025
Tue Jul 01 01:29:45 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Wed Dec 27 18:51:52 EST 2023
Fri Feb 23 02:29:32 EST 2024
Sun Feb 23 10:19:07 EST 2025
Tue Aug 26 17:54:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Lung cancer
AVOs
Paclitaxel
3-MA
MTT
LC3
Autophagy
Apoptosis
microtubule-associated protein 1 light chain 3
acidic vesicular organelles
3-methyladenine
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620t-6ef42037bea189dc899043d10234c0fec86a917f1b7db5dbdc552c80aed596fc3
Notes http://dx.doi.org/10.1016/j.canlet.2011.03.026
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 21511395
PQID 1547346819
PQPubID 2031080
PageCount 8
ParticipantIDs proquest_miscellaneous_869583183
proquest_miscellaneous_1672066286
proquest_journals_1547346819
pubmed_primary_21511395
crossref_citationtrail_10_1016_j_canlet_2011_03_026
crossref_primary_10_1016_j_canlet_2011_03_026
fao_agris_US201500032699
elsevier_sciencedirect_doi_10_1016_j_canlet_2011_03_026
elsevier_clinicalkeyesjournals_1_s2_0_S030438351100187X
elsevier_clinicalkey_doi_10_1016_j_canlet_2011_03_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-28
PublicationDateYYYYMMDD 2011-08-28
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-28
  day: 28
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
– name: Clare
PublicationTitle Cancer letters
PublicationTitleAlternate Cancer Lett
PublicationYear 2011
Publisher Elsevier Ireland Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ireland Ltd
– name: Elsevier Limited
References Herman-Antosiewicz, Johnson, Singh (b0170) 2006; 66
Horwitz (b0010) 1992; 13
Horwitz (b0125) 1992; 13
Brech, Ahlquist, Lothe, Stenmark (b0025) 2009; 3
Rosenfeldt, Ryan (b0090) 2009; 11
Foss, Wilcox, Alsop, Zhang (b0120) 2008; 3
Carew, Nawrocki, Kahue, Zhang, Yang, Chung, Houghton, Huang, Giles, Cleveland (b0095) 2007; 110
Mizushima, Levine, Cuervo, Klionsky (b0015) 2008; 451
Shingu, Fujiwara, Bogler, Akiyama, Moritake, Shinojima, Tamada, Yokoyama, Kondo (b0105) 2009; 124
Sy, Yan, Lok, Man, Che (b0080) 2008; 68
Apel, Zentgraf, Buchler, Herr (b0130) 2009; 125
Yamamoto, Tanaka, Sakimura, Okada, Nakamura, Li, Takasaki, Nakabeppu, Iwamoto (b0155) 2008; 28
Li, Hou, Faried, Tsutsumi, Kuwano (b0165) 2010; 46
Xi, Sun, Jiang, Kong, Yuan, Lou (b0060) 2010; 18
Laane, Tamm, Buentke, Ito, Kharaziha, Khahariza, Oscarsson, Corcoran, Bjorklund, Hultenby, Lundin, Heyman, Soderhall, Mazur, Porwit, Pandolfi, Zhivotovsky, Panaretakis, Grander (b0145) 2009; 16
Rowinsky, Donehower (b0005) 1995; 332
Shingu, Fujiwara, Bogler, Akiyama, Moritake, Shinojima, Tamada, Yokoyama, Kondo (b0055) 2009; 124
Levine, Yuan (b0030) 2005; 115
Bommareddy, Hahm, Xiao, Powolny, Fisher, Jiang, Singh (b0150) 2009; 69
Goussetis, Altman, Glaser, McNeer, Tallman, Platanias (b0100) 2010; 285
Liang, Jackson, Seaman, Brown, Kempkes, Hibshoosh, Levine (b0085) 1999; 402
Katayama, Kawaguchi, Berger, Pieper (b0035) 2007; 14
Kihara, Kabeya, Ohsumi, Yoshimori (b0075) 2001; 2
Maiuri, Zalckvar, Kimchi, Kroemer (b0040) 2007; 8
Bommareddy, Hahm, Xiao, Powolny, Fisher, Jiang, Singh (b0070) 2009; 69
Mathew, Karantza-Wadsworth, White (b0020) 2007; 7
Bursch, Ellinger, Kienzl, Torok, Pandey, Sikorska, Walker, Hermann (b0115) 1996; 17
Kiyono, Suzuki, Matsuyama, Morishita, Komuro, Kano, Sugimoto, Miyazono (b0160) 2009; 69
Kanzawa, Germano, Komata, Ito, Kondo, Kondo (b0045) 2004; 11
Kabeya, Mizushima, Ueno, Yamamoto, Kirisako, Noda, Kominami, Ohsumi, Yoshimori (b0065) 2000; 19
Paglin, Hollister, Delohery, Hackett, McMahill, Sphicas, Domingo, Yahalom (b0110) 2001; 61
Eisenberg-Lerner, Kimchi (b0140) 2009; 14
Takeuchi, Kondo, Fujiwara, Kanzawa, Aoki, Mills, Kondo (b0050) 2005; 65
Yu, Lenardo, Baehrecke (b0135) 2004; 3
Sy (10.1016/j.canlet.2011.03.026_b0080) 2008; 68
Carew (10.1016/j.canlet.2011.03.026_b0095) 2007; 110
Foss (10.1016/j.canlet.2011.03.026_b0120) 2008; 3
Kanzawa (10.1016/j.canlet.2011.03.026_b0045) 2004; 11
Rowinsky (10.1016/j.canlet.2011.03.026_b0005) 1995; 332
Mathew (10.1016/j.canlet.2011.03.026_b0020) 2007; 7
Katayama (10.1016/j.canlet.2011.03.026_b0035) 2007; 14
Li (10.1016/j.canlet.2011.03.026_b0165) 2010; 46
Bursch (10.1016/j.canlet.2011.03.026_b0115) 1996; 17
Brech (10.1016/j.canlet.2011.03.026_b0025) 2009; 3
Kabeya (10.1016/j.canlet.2011.03.026_b0065) 2000; 19
Kihara (10.1016/j.canlet.2011.03.026_b0075) 2001; 2
Rosenfeldt (10.1016/j.canlet.2011.03.026_b0090) 2009; 11
Paglin (10.1016/j.canlet.2011.03.026_b0110) 2001; 61
Bommareddy (10.1016/j.canlet.2011.03.026_b0070) 2009; 69
Laane (10.1016/j.canlet.2011.03.026_b0145) 2009; 16
Levine (10.1016/j.canlet.2011.03.026_b0030) 2005; 115
Shingu (10.1016/j.canlet.2011.03.026_b0105) 2009; 124
Yamamoto (10.1016/j.canlet.2011.03.026_b0155) 2008; 28
Mizushima (10.1016/j.canlet.2011.03.026_b0015) 2008; 451
Liang (10.1016/j.canlet.2011.03.026_b0085) 1999; 402
Horwitz (10.1016/j.canlet.2011.03.026_b0010) 1992; 13
Maiuri (10.1016/j.canlet.2011.03.026_b0040) 2007; 8
Kiyono (10.1016/j.canlet.2011.03.026_b0160) 2009; 69
Horwitz (10.1016/j.canlet.2011.03.026_b0125) 1992; 13
Apel (10.1016/j.canlet.2011.03.026_b0130) 2009; 125
Shingu (10.1016/j.canlet.2011.03.026_b0055) 2009; 124
Herman-Antosiewicz (10.1016/j.canlet.2011.03.026_b0170) 2006; 66
Goussetis (10.1016/j.canlet.2011.03.026_b0100) 2010; 285
Eisenberg-Lerner (10.1016/j.canlet.2011.03.026_b0140) 2009; 14
Xi (10.1016/j.canlet.2011.03.026_b0060) 2010; 18
Bommareddy (10.1016/j.canlet.2011.03.026_b0150) 2009; 69
Takeuchi (10.1016/j.canlet.2011.03.026_b0050) 2005; 65
Yu (10.1016/j.canlet.2011.03.026_b0135) 2004; 3
References_xml – volume: 332
  start-page: 1004
  year: 1995
  end-page: 1014
  ident: b0005
  article-title: Paclitaxel (taxol)
  publication-title: N. Engl. J. Med.
– volume: 11
  start-page: 448
  year: 2004
  end-page: 457
  ident: b0045
  article-title: Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells
  publication-title: Cell Death Differ.
– volume: 7
  start-page: 961
  year: 2007
  end-page: 967
  ident: b0020
  article-title: Role of autophagy in cancer
  publication-title: Nat. Rev. Cancer
– volume: 110
  start-page: 313
  year: 2007
  end-page: 322
  ident: b0095
  article-title: Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance
  publication-title: Blood
– volume: 69
  start-page: 8844
  year: 2009
  end-page: 8852
  ident: b0160
  article-title: Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells
  publication-title: Cancer Res.
– volume: 115
  start-page: 2679
  year: 2005
  end-page: 2688
  ident: b0030
  article-title: Autophagy in cell death: an innocent convict?
  publication-title: J. Clin. Invest.
– volume: 14
  start-page: 548
  year: 2007
  end-page: 558
  ident: b0035
  article-title: DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells
  publication-title: Cell Death Differ.
– volume: 285
  start-page: 29989
  year: 2010
  end-page: 29997
  ident: b0100
  article-title: Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide
  publication-title: J. Biol. Chem.
– volume: 124
  start-page: 1060
  year: 2009
  end-page: 1071
  ident: b0055
  article-title: Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells
  publication-title: Int. J. Cancer
– volume: 124
  start-page: 1060
  year: 2009
  end-page: 1071
  ident: b0105
  article-title: Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells
  publication-title: Int. J. Cancer
– volume: 3
  start-page: 1124
  year: 2004
  end-page: 1126
  ident: b0135
  article-title: Autophagy and caspases: a new cell death program
  publication-title: Cell Cycle (Georgetown, Tex)
– volume: 402
  start-page: 672
  year: 1999
  end-page: 676
  ident: b0085
  article-title: Induction of autophagy and inhibition of tumorigenesis by beclin 1
  publication-title: Nature
– volume: 18
  start-page: 6725
  year: 2010
  end-page: 6733
  ident: b0060
  article-title: Bisbibenzyl derivatives sensitize vincristine-resistant KB/VCR cells to chemotherapeutic agents by retarding P-gp activity
  publication-title: Bioorg. Med. Chem.
– volume: 13
  start-page: 134
  year: 1992
  end-page: 136
  ident: b0125
  article-title: Mechanism of action of taxol
  publication-title: Trends Pharmacol. Sci.
– volume: 46
  start-page: 1900
  year: 2010
  end-page: 1909
  ident: b0165
  article-title: Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model
  publication-title: Eur. J. Cancer
– volume: 69
  start-page: 3704
  year: 2009
  end-page: 3712
  ident: b0070
  article-title: Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells
  publication-title: Cancer Res.
– volume: 451
  start-page: 1069
  year: 2008
  end-page: 1075
  ident: b0015
  article-title: Autophagy fights disease through cellular self-digestion
  publication-title: Nature
– volume: 17
  start-page: 1595
  year: 1996
  end-page: 1607
  ident: b0115
  article-title: Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy
  publication-title: Carcinogenesis
– volume: 2
  start-page: 330
  year: 2001
  end-page: 335
  ident: b0075
  article-title: Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network
  publication-title: EMBO Rep.
– volume: 11
  start-page: e36
  year: 2009
  ident: b0090
  article-title: The role of autophagy in tumour development and cancer therapy
  publication-title: Expert Rev. Mol. Med.
– volume: 61
  start-page: 439
  year: 2001
  end-page: 444
  ident: b0110
  article-title: A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles
  publication-title: Cancer Res.
– volume: 66
  start-page: 5828
  year: 2006
  end-page: 5835
  ident: b0170
  article-title: Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells
  publication-title: Cancer Res.
– volume: 3
  start-page: 366
  year: 2009
  end-page: 375
  ident: b0025
  article-title: Autophagy in tumour suppression and promotion
  publication-title: Mol. Oncol.
– volume: 19
  start-page: 5720
  year: 2000
  end-page: 5728
  ident: b0065
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: EMBO J.
– volume: 65
  start-page: 3336
  year: 2005
  end-page: 3346
  ident: b0050
  article-title: Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors
  publication-title: Cancer Res.
– volume: 69
  start-page: 3704
  year: 2009
  end-page: 3712
  ident: b0150
  article-title: Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells
  publication-title: Cancer Res.
– volume: 3
  start-page: e1476
  year: 2008
  ident: b0120
  article-title: Taxol crystals can masquerade as stabilized microtubules
  publication-title: PLoS One
– volume: 16
  start-page: 1018
  year: 2009
  end-page: 1029
  ident: b0145
  article-title: Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy
  publication-title: Cell Death Differ.
– volume: 13
  start-page: 134
  year: 1992
  end-page: 136
  ident: b0010
  article-title: Mechanism of action of taxol
  publication-title: Trends Pharmacol. Sci.
– volume: 68
  start-page: 10229
  year: 2008
  end-page: 10237
  ident: b0080
  article-title: Timosaponin A-III induces autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells
  publication-title: Cancer Res.
– volume: 28
  start-page: 1585
  year: 2008
  end-page: 1591
  ident: b0155
  article-title: Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or autophagy-associated cell death in chondrosarcoma cell lines
  publication-title: Anticancer Res.
– volume: 8
  start-page: 741
  year: 2007
  end-page: 752
  ident: b0040
  article-title: Self-eating and self-killing: crosstalk between autophagy and apoptosis
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 125
  start-page: 991
  year: 2009
  end-page: 995
  ident: b0130
  article-title: Autophagy-A double-edged sword in oncology
  publication-title: Int. J. Cancer
– volume: 14
  start-page: 376
  year: 2009
  end-page: 391
  ident: b0140
  article-title: The paradox of autophagy and its implication in cancer etiology and therapy
  publication-title: Apoptosis
– volume: 61
  start-page: 439
  year: 2001
  ident: 10.1016/j.canlet.2011.03.026_b0110
  article-title: A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles
  publication-title: Cancer Res.
– volume: 3
  start-page: 366
  year: 2009
  ident: 10.1016/j.canlet.2011.03.026_b0025
  article-title: Autophagy in tumour suppression and promotion
  publication-title: Mol. Oncol.
  doi: 10.1016/j.molonc.2009.05.007
– volume: 28
  start-page: 1585
  year: 2008
  ident: 10.1016/j.canlet.2011.03.026_b0155
  article-title: Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or autophagy-associated cell death in chondrosarcoma cell lines
  publication-title: Anticancer Res.
– volume: 46
  start-page: 1900
  year: 2010
  ident: 10.1016/j.canlet.2011.03.026_b0165
  article-title: Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2010.02.021
– volume: 13
  start-page: 134
  year: 1992
  ident: 10.1016/j.canlet.2011.03.026_b0010
  article-title: Mechanism of action of taxol
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/0165-6147(92)90048-B
– volume: 3
  start-page: e1476
  year: 2008
  ident: 10.1016/j.canlet.2011.03.026_b0120
  article-title: Taxol crystals can masquerade as stabilized microtubules
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001476
– volume: 110
  start-page: 313
  year: 2007
  ident: 10.1016/j.canlet.2011.03.026_b0095
  article-title: Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance
  publication-title: Blood
  doi: 10.1182/blood-2006-10-050260
– volume: 285
  start-page: 29989
  year: 2010
  ident: 10.1016/j.canlet.2011.03.026_b0100
  article-title: Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.090530
– volume: 115
  start-page: 2679
  year: 2005
  ident: 10.1016/j.canlet.2011.03.026_b0030
  article-title: Autophagy in cell death: an innocent convict?
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI26390
– volume: 17
  start-page: 1595
  year: 1996
  ident: 10.1016/j.canlet.2011.03.026_b0115
  article-title: Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/17.8.1595
– volume: 124
  start-page: 1060
  year: 2009
  ident: 10.1016/j.canlet.2011.03.026_b0055
  article-title: Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.24030
– volume: 3
  start-page: 1124
  year: 2004
  ident: 10.1016/j.canlet.2011.03.026_b0135
  article-title: Autophagy and caspases: a new cell death program
  publication-title: Cell Cycle (Georgetown, Tex)
  doi: 10.4161/cc.3.9.1097
– volume: 8
  start-page: 741
  year: 2007
  ident: 10.1016/j.canlet.2011.03.026_b0040
  article-title: Self-eating and self-killing: crosstalk between autophagy and apoptosis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2239
– volume: 66
  start-page: 5828
  year: 2006
  ident: 10.1016/j.canlet.2011.03.026_b0170
  article-title: Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-0139
– volume: 14
  start-page: 376
  year: 2009
  ident: 10.1016/j.canlet.2011.03.026_b0140
  article-title: The paradox of autophagy and its implication in cancer etiology and therapy
  publication-title: Apoptosis
  doi: 10.1007/s10495-008-0307-5
– volume: 69
  start-page: 3704
  year: 2009
  ident: 10.1016/j.canlet.2011.03.026_b0150
  article-title: Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-4344
– volume: 7
  start-page: 961
  year: 2007
  ident: 10.1016/j.canlet.2011.03.026_b0020
  article-title: Role of autophagy in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2254
– volume: 68
  start-page: 10229
  year: 2008
  ident: 10.1016/j.canlet.2011.03.026_b0080
  article-title: Timosaponin A-III induces autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-1983
– volume: 124
  start-page: 1060
  year: 2009
  ident: 10.1016/j.canlet.2011.03.026_b0105
  article-title: Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.24030
– volume: 11
  start-page: e36
  year: 2009
  ident: 10.1016/j.canlet.2011.03.026_b0090
  article-title: The role of autophagy in tumour development and cancer therapy
  publication-title: Expert Rev. Mol. Med.
  doi: 10.1017/S1462399409001306
– volume: 69
  start-page: 8844
  year: 2009
  ident: 10.1016/j.canlet.2011.03.026_b0160
  article-title: Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-4401
– volume: 13
  start-page: 134
  year: 1992
  ident: 10.1016/j.canlet.2011.03.026_b0125
  article-title: Mechanism of action of taxol
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/0165-6147(92)90048-B
– volume: 332
  start-page: 1004
  year: 1995
  ident: 10.1016/j.canlet.2011.03.026_b0005
  article-title: Paclitaxel (taxol)
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199504133321507
– volume: 18
  start-page: 6725
  year: 2010
  ident: 10.1016/j.canlet.2011.03.026_b0060
  article-title: Bisbibenzyl derivatives sensitize vincristine-resistant KB/VCR cells to chemotherapeutic agents by retarding P-gp activity
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2010.07.055
– volume: 14
  start-page: 548
  year: 2007
  ident: 10.1016/j.canlet.2011.03.026_b0035
  article-title: DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4402030
– volume: 402
  start-page: 672
  year: 1999
  ident: 10.1016/j.canlet.2011.03.026_b0085
  article-title: Induction of autophagy and inhibition of tumorigenesis by beclin 1
  publication-title: Nature
  doi: 10.1038/45257
– volume: 125
  start-page: 991
  year: 2009
  ident: 10.1016/j.canlet.2011.03.026_b0130
  article-title: Autophagy-A double-edged sword in oncology
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.24500
– volume: 65
  start-page: 3336
  year: 2005
  ident: 10.1016/j.canlet.2011.03.026_b0050
  article-title: Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-3640
– volume: 16
  start-page: 1018
  year: 2009
  ident: 10.1016/j.canlet.2011.03.026_b0145
  article-title: Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2009.46
– volume: 451
  start-page: 1069
  year: 2008
  ident: 10.1016/j.canlet.2011.03.026_b0015
  article-title: Autophagy fights disease through cellular self-digestion
  publication-title: Nature
  doi: 10.1038/nature06639
– volume: 2
  start-page: 330
  year: 2001
  ident: 10.1016/j.canlet.2011.03.026_b0075
  article-title: Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network
  publication-title: EMBO Rep.
  doi: 10.1093/embo-reports/kve061
– volume: 69
  start-page: 3704
  year: 2009
  ident: 10.1016/j.canlet.2011.03.026_b0070
  article-title: Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-4344
– volume: 19
  start-page: 5720
  year: 2000
  ident: 10.1016/j.canlet.2011.03.026_b0065
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.21.5720
– volume: 11
  start-page: 448
  year: 2004
  ident: 10.1016/j.canlet.2011.03.026_b0045
  article-title: Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401359
SSID ssj0005475
Score 2.4348702
Snippet Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have provided a...
Abstract Paclitaxel has been demonstrated to be an effective mitotic inhibitor and apoptosis inducer to treat aggressive malignancies. In this paper, we have...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 141
SubjectTerms Antibiotics
Antineoplastic Agents, Phytogenic
Antineoplastic Agents, Phytogenic - pharmacology
Apoptosis
Apoptosis - drug effects
Autophagy
Autophagy - drug effects
Blotting, Western
Cancer
Cancer therapies
Cell Line, Tumor
Chemotherapy
Cytotoxicity
drug effects
genes
green fluorescent protein
Hematology, Oncology and Palliative Medicine
Humans
Lung cancer
organelles
Paclitaxel
Paclitaxel - pharmacology
pharmacology
Proteins
RNA Interference
RNA, Small Interfering
small interfering RNA
Title Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells
URI https://www.clinicalkey.com/#!/content/1-s2.0-S030438351100187X
https://www.clinicalkey.es/playcontent/1-s2.0-S030438351100187X
https://dx.doi.org/10.1016/j.canlet.2011.03.026
https://www.ncbi.nlm.nih.gov/pubmed/21511395
https://www.proquest.com/docview/1547346819
https://www.proquest.com/docview/1672066286
https://www.proquest.com/docview/869583183
Volume 307
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkRAXVJ4NLVWQuKabOPEjx1VFtRS1l7LS3iy_UoKqJGp2Jbjw25lJnKWIVkVcd2d2nfH484wz85mQD1IUleQO0hJX5pCgMAM46FnCROZcKipAS-xGPr_gi2VxtmKrHXIy9cJgWWXA_hHTB7QOn8yCNWddXc8u8aUe5FcMSc8yKVbYwV4I9PLjn7fKPIqBbBeFE5Se2ueGGi8YPVgnEHnmxwPFwt3b06NKt_cHocNmdLpHnoUoMp6PA31Odnzzgjw5D-_JX5Kz-QYJA_TVj7huvtZmqMuKu6H0zvcx5MnIzf3dXyeQksPkulh3bbdu-7oHhdiiK9zEeKjfvyLL049fThZJuDUhsZym64T7qqBpLozXmSydhYQK7OSQoqGwaeWt5BpytCozwhnmjLOMUStT7R0reWXz12S3aRu_T-JSm6qkzoi80JDGeZ0a2M2tBTtmmc2qiOSTsZQNlOJ4s8W1mmrHvqnRxApNrNJcgYkjkmy1upFS4wF5Ns2DmtpFAeAUYP4DeuIuPd-HVdqrTPVUpeovT7qt-Ycz_sN_7oOjKH0FCK2WlxTPkwA3KS_LiBxO3qN-jwCvfi44hGUReb_9GlY4zrBufLsBGS6Qc59K-PX4HhnJSyYRniPyZnTMrWkxpoMwn73974c6IE-nk3QqD8nu-mbj30EotjZHw1o7Io_nnz4vLn4BeNQv7A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIgGXimebUsBIcEw3cWLHOXCogGr72F7alfZm_EoJqpKo2RX0wp_iDzJOnKWIVkVIve56vN7Pk88z8fgzQm95lhacGUhLTJ5AgkIV8KClIc1iY6KsALZ0p5Enx2w8TQ9mdLaCfg5nYVxZpef-ntM7tvafjDyao6YsRyduUw_yK-pEz2KezXxl5aG9_AZ5W_t-_yNM8jtC9j6dfhiH_mqBUDMSzUNmi5RESaasjHluNGQd0JlxOgapjgqrOZOQyBSxyoyiRhlNKdE8ktbQnBU6gX5X0b0U6MJdm7Dz40pdSdqp-7rRhW54w3m9rqgM4ILp8MqhyU6n6XD9erhayPrmqLdb_fYeoXUftuLdHpnHaMVWT9D9id-Yf4oOdhdOoUCeXeKy-lKqrhAMN12tn20xJOZODPy7PQ_LyoA3GSybupnXbdmCAdbO9y6w20Von6HpnWD5HK1VdWU3Ec6lKnJiVJakEvJGKyMF4YPWgGMc67gIUDKAJbTXMHdXaZyLoVjtq-ghFg5iESUCIA5QuLRqeg2PW9rTYR7EcD4VGFXAInOLXXadnW09LbQiFi0RkfjLda9a_uH9__Cbm-AoQp7BkiCmJ8S9wAKiJizPA7Q9eI_4PQJ313TKIA4M0Jvl10ApboZlZesFtGGZE_knHHrHN7ThLKfcrQcB2ugdcwmtCyIhr6Bb__2nXqMH49PJkTjaPz58gR4Or_EJ30Zr84uFfQlx4Fy96p47jD7f9YP-C4npbHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+inhibition+promotes+paclitaxel-induced+apoptosis+in+cancer+cells&rft.jtitle=Cancer+letters&rft.au=Xi%2C+Guangmin&rft.au=Hu%2C+Xiaoyan&rft.au=Wu%2C+Baolin&rft.au=Jiang%2C+Hanming&rft.date=2011-08-28&rft.eissn=1872-7980&rft.volume=307&rft.issue=2&rft.spage=141&rft_id=info:doi/10.1016%2Fj.canlet.2011.03.026&rft_id=info%3Apmid%2F21511395&rft.externalDocID=21511395
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03043835%2FS0304383511X00149%2Fcov150h.gif