Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans

Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negati...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 104; no. 36; pp. 14501 - 14506
Main Authors Hikida, Takatoshi, Jaaro-Peled, Hanna, Seshadri, Saurav, Oishi, Kenichi, Hookway, Caroline, Kong, Stephanie, Wu, Di, Xue, Rong, Andradé, Manuella, Tankou, Stephanie, Mori, Susumu, Gallagher, Michela, Ishizuka, Koko, Pletnikov, Mikhail, Kida, Satoshi, Sawa, Akira
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.09.2007
National Acad Sciences
SeriesFrom the Cover
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit.
AbstractList Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the alpha CaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit.
Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit. [PUBLICATION ABSTRACT]
Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit.
Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit. model MRI translational parvalbumin depression
Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the alphaCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit.
Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/ depression-like deficit.
Author Andradé, Manuella
Hikida, Takatoshi
Kida, Satoshi
Tankou, Stephanie
Sawa, Akira
Wu, Di
Gallagher, Michela
Jaaro-Peled, Hanna
Hookway, Caroline
Xue, Rong
Ishizuka, Koko
Oishi, Kenichi
Pletnikov, Mikhail
Seshadri, Saurav
Mori, Susumu
Kong, Stephanie
Author_xml – sequence: 1
  fullname: Hikida, Takatoshi
– sequence: 2
  fullname: Jaaro-Peled, Hanna
– sequence: 3
  fullname: Seshadri, Saurav
– sequence: 4
  fullname: Oishi, Kenichi
– sequence: 5
  fullname: Hookway, Caroline
– sequence: 6
  fullname: Kong, Stephanie
– sequence: 7
  fullname: Wu, Di
– sequence: 8
  fullname: Xue, Rong
– sequence: 9
  fullname: Andradé, Manuella
– sequence: 10
  fullname: Tankou, Stephanie
– sequence: 11
  fullname: Mori, Susumu
– sequence: 12
  fullname: Gallagher, Michela
– sequence: 13
  fullname: Ishizuka, Koko
– sequence: 14
  fullname: Pletnikov, Mikhail
– sequence: 15
  fullname: Kida, Satoshi
– sequence: 16
  fullname: Sawa, Akira
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17675407$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLcLZ05AxAGJQ9px7NjJpRLa8lGpEofSs-U4s7teJXaInYrlwr-Ol111gUtPlub95mneeM7IifMOCXlJ4ZyCZBeD0-EcJHApOQX-hMwo1DQXvIYTMgMoZF7xgp-SsxA2AFCXFTwjp1QKWXKQM_LryvfWaRdzhysd7T1mV9e3C5rFUbuwQmdN1luDWWvD0OltFsza_vTDekySznUI3lgdsc2GNToftwOGrMWIZldrtlmPOkxjKv4x7HTUTYdZ9Nl66lPhOXm61F3AF4d3Tu4-ffy2-JLffP18vfhwkxtRQMwFKzilVEJTAke6LKkWwJtWACaFpbgla0vTMiwEK1vDW7mkrDF1VbVG85rNyeXed5iaHluDLs3TqWG0vR63ymur_lWcXauVv1e0FrySLBm8OxiM_vuEIareBoNdpx36KShRFawuePEoWEAFwGiVwLf_gRs_jS5tITG0qKualwm62ENm9CGMuHwYmYLanYDanYA6nkDqeP130iN_-PMEZAdg13m044oJRXkJNCHvH0HUcuq6iD9iYl_t2U2IfnyAi5IzIVPSOXmz15faK70abVB3tykgg7QIzqhgvwHnXtwp
CitedBy_id crossref_primary_10_1038_mp_2017_47
crossref_primary_10_1523_ENEURO_0496_19_2020
crossref_primary_10_1248_bpb_34_1364
crossref_primary_10_1073_pnas_0904636106
crossref_primary_10_1002_ajmg_b_30926
crossref_primary_10_1016_j_brainresbull_2009_09_010
crossref_primary_10_1016_j_mri_2019_05_021
crossref_primary_10_1016_j_neuropharm_2011_01_049
crossref_primary_10_1016_j_neuropharm_2009_06_002
crossref_primary_10_3371_CSRP_4_2_4
crossref_primary_10_1038_nrd3649
crossref_primary_10_1016_j_biopsych_2013_06_009
crossref_primary_10_1038_mp_2012_37
crossref_primary_10_1038_ncomms10965
crossref_primary_10_1016_j_neuint_2010_08_012
crossref_primary_10_1016_j_biopsych_2016_03_2101
crossref_primary_10_1007_s00115_008_2591_2
crossref_primary_10_1038_s41467_021_21713_3
crossref_primary_10_1093_schbul_sbz043
crossref_primary_10_1007_s00213_021_05787_x
crossref_primary_10_1093_cercor_bhu293
crossref_primary_10_1016_j_isci_2023_107099
crossref_primary_10_1523_ENEURO_0081_17_2017
crossref_primary_10_1016_j_schres_2008_08_015
crossref_primary_10_1186_s13041_016_0270_y
crossref_primary_10_1093_hmg_ddn361
crossref_primary_10_1093_hmg_ddx147
crossref_primary_10_1248_bpb_34_1358
crossref_primary_10_1172_JCI67510
crossref_primary_10_1093_schbul_sbv136
crossref_primary_10_1073_pnas_0903413106
crossref_primary_10_1523_JNEUROSCI_3355_09_2009
crossref_primary_10_1093_schbul_sbp153
crossref_primary_10_1016_j_gde_2008_07_002
crossref_primary_10_1016_j_neubiorev_2015_01_016
crossref_primary_10_16946_kjsr_2014_17_1_12
crossref_primary_10_1159_000438788
crossref_primary_10_1038_npp_2013_239
crossref_primary_10_1093_schbul_sbt071
crossref_primary_10_1038_sj_mp_4002125
crossref_primary_10_1007_s00429_013_0577_8
crossref_primary_10_1038_mp_2015_194
crossref_primary_10_1016_j_neubiorev_2014_07_001
crossref_primary_10_1093_hmg_dds169
crossref_primary_10_1371_journal_pone_0088506
crossref_primary_10_1016_j_neuron_2012_12_033
crossref_primary_10_1038_s41380_021_01037_w
crossref_primary_10_1371_journal_pone_0156082
crossref_primary_10_1038_s41398_019_0429_2
crossref_primary_10_1002_cne_24813
crossref_primary_10_1016_j_pharmthera_2011_07_005
crossref_primary_10_1016_j_biopsych_2017_10_014
crossref_primary_10_1242_bio_012005
crossref_primary_10_1371_journal_pone_0004906
crossref_primary_10_1016_j_jad_2019_07_008
crossref_primary_10_1523_JNEUROSCI_4345_15_2017
crossref_primary_10_1002_wrna_1184
crossref_primary_10_1016_j_neures_2019_02_007
crossref_primary_10_1089_ars_2012_4907
crossref_primary_10_1155_2015_492367
crossref_primary_10_1016_j_neures_2015_02_002
crossref_primary_10_1038_s41380_022_01832_z
crossref_primary_10_1093_hmg_ddt007
crossref_primary_10_1021_bi900901e
crossref_primary_10_1007_s12035_013_8534_3
crossref_primary_10_1093_schbul_sbp125
crossref_primary_10_1016_j_schres_2014_06_021
crossref_primary_10_31887_DCNS_2013_15_3_puhlhaas
crossref_primary_10_1038_nrn_2015_19
crossref_primary_10_1093_hmg_dds273
crossref_primary_10_1146_annurev_neuro_051508_135535
crossref_primary_10_1093_jb_mvy116
crossref_primary_10_1186_2045_3701_3_19
crossref_primary_10_7554_eLife_79471
crossref_primary_10_1007_s00439_009_0782_y
crossref_primary_10_1038_nrn3155
crossref_primary_10_1093_schbul_sbp132
crossref_primary_10_1093_schbul_sbp133
crossref_primary_10_1007_s00213_009_1712_3
crossref_primary_10_1038_srep16778
crossref_primary_10_1523_JNEUROSCI_5096_14_2015
crossref_primary_10_1371_journal_pone_0258364
crossref_primary_10_1111_j_1601_183X_2009_00477_x
crossref_primary_10_1523_JNEUROSCI_3299_08_2008
crossref_primary_10_1038_sj_mp_4002106
crossref_primary_10_1038_mp_2013_49
crossref_primary_10_1186_s12920_015_0098_9
crossref_primary_10_1038_s41420_022_01271_3
crossref_primary_10_1186_s13041_018_0370_y
crossref_primary_10_1111_pcn_12830
crossref_primary_10_1073_pnas_0806669105
crossref_primary_10_1155_2018_7590958
crossref_primary_10_1038_mp_2009_144
crossref_primary_10_1038_s41598_018_20090_0
crossref_primary_10_1017_S1462399411001955
crossref_primary_10_1159_000488030
crossref_primary_10_1007_s00213_016_4288_8
crossref_primary_10_1093_hmg_dds106
crossref_primary_10_1016_j_biopsych_2021_11_008
crossref_primary_10_1016_j_nbd_2012_11_013
crossref_primary_10_1016_j_neuron_2009_08_008
crossref_primary_10_1093_hmg_ddn215
crossref_primary_10_1093_hmg_ddw019
crossref_primary_10_47102_annals_acadmedsg_V38N5p425
crossref_primary_10_1111_j_1460_9568_2012_08130_x
crossref_primary_10_1016_j_neubiorev_2014_09_005
crossref_primary_10_1021_jm701094q
crossref_primary_10_1074_jbc_M110_179481
crossref_primary_10_1074_jbc_M111_271593
crossref_primary_10_1097_YCO_0000000000000054
crossref_primary_10_1111_febs_15872
crossref_primary_10_1016_j_mcn_2013_01_006
crossref_primary_10_1073_pnas_0802615105
crossref_primary_10_3390_ijms21165704
crossref_primary_10_4236_wjns_2018_81001
crossref_primary_10_1093_schbul_sbn054
crossref_primary_10_3389_fpsyt_2015_00013
crossref_primary_10_1016_j_gene_2018_01_069
crossref_primary_10_1016_j_pharmthera_2015_01_005
crossref_primary_10_1016_j_neuron_2010_06_002
crossref_primary_10_1038_mp_2012_97
crossref_primary_10_1093_hmg_ddx139
crossref_primary_10_1016_j_biopsych_2015_04_014
crossref_primary_10_1111_ejn_12500
crossref_primary_10_1038_scibx_2013_882
crossref_primary_10_1038_mp_2014_35
crossref_primary_10_1016_j_bbr_2011_07_049
crossref_primary_10_1523_ENEURO_0426_20_2020
crossref_primary_10_1016_j_jneumeth_2013_05_013
crossref_primary_10_1517_14728222_2012_719879
crossref_primary_10_3109_15622975_2013_841993
crossref_primary_10_1523_JNEUROSCI_3658_14_2015
crossref_primary_10_1186_1744_9081_10_45
crossref_primary_10_1038_s41598_019_41991_8
crossref_primary_10_1177_1073858412470168
crossref_primary_10_1371_journal_pone_0034053
crossref_primary_10_1259_bjr_20180885
crossref_primary_10_1038_srep34946
crossref_primary_10_1016_j_biopsych_2010_09_022
crossref_primary_10_1371_journal_pone_0053114
crossref_primary_10_1016_j_earlhumdev_2012_02_003
crossref_primary_10_1016_j_bbr_2014_08_064
crossref_primary_10_1016_j_biopsych_2015_04_023
crossref_primary_10_1016_j_pnpbp_2012_04_015
crossref_primary_10_1134_S1022795415010032
crossref_primary_10_2217_fnl_11_39
crossref_primary_10_1016_j_wneu_2019_05_093
crossref_primary_10_1093_nc_niw015
crossref_primary_10_1242_dmm_008268
crossref_primary_10_1038_s41380_022_01708_2
crossref_primary_10_1042_BST0370308
crossref_primary_10_1101_lm_921708
crossref_primary_10_1080_13546800903059829
crossref_primary_10_1016_j_nbd_2015_06_006
crossref_primary_10_1002_ajmg_b_30887
crossref_primary_10_1038_npp_2015_117
crossref_primary_10_1093_hmg_ddu285
crossref_primary_10_1007_s11515_012_1254_7
crossref_primary_10_1016_j_neuron_2024_03_028
crossref_primary_10_1038_s41380_020_00939_5
crossref_primary_10_1016_j_neuint_2014_06_009
crossref_primary_10_1002_syn_20649
crossref_primary_10_1523_JNEUROSCI_3857_09_2010
crossref_primary_10_1016_j_neubiorev_2020_07_038
crossref_primary_10_1038_450006a
crossref_primary_10_1016_j_schres_2013_02_007
crossref_primary_10_1177_0004867414533012
crossref_primary_10_1016_j_cell_2019_07_023
crossref_primary_10_1038_srep00016
crossref_primary_10_4161_pri_18989
crossref_primary_10_1093_hmg_ddp266
crossref_primary_10_1016_j_bbr_2010_01_030
crossref_primary_10_3389_fgene_2016_00040
crossref_primary_10_1038_npjschz_2015_11
crossref_primary_10_3389_fnsyn_2016_00015
crossref_primary_10_1159_000444257
crossref_primary_10_3389_fnbeh_2015_00141
crossref_primary_10_1177_0706743718773728
crossref_primary_10_3390_metabo10020079
crossref_primary_10_1016_j_biopsych_2021_09_001
crossref_primary_10_1159_000488081
crossref_primary_10_1016_j_schres_2012_04_006
crossref_primary_10_1038_s41398_018_0122_x
crossref_primary_10_1016_j_neubiorev_2015_03_007
crossref_primary_10_1016_j_nbd_2017_04_008
crossref_primary_10_1155_2016_2173748
crossref_primary_10_1111_ejn_12549
crossref_primary_10_3389_fncir_2021_741767
crossref_primary_10_1016_j_bbr_2012_05_037
crossref_primary_10_18632_oncotarget_21381
crossref_primary_10_1016_j_pneurobio_2015_10_002
crossref_primary_10_1016_j_npep_2016_12_010
crossref_primary_10_7554_eLife_64567
crossref_primary_10_1038_s41598_024_53237_3
crossref_primary_10_1007_s40473_014_0013_2
crossref_primary_10_1016_j_molmed_2011_09_002
crossref_primary_10_1093_schbul_sbv065
crossref_primary_10_1016_j_biopsych_2018_03_008
crossref_primary_10_1038_tp_2013_104
crossref_primary_10_1016_j_pnpbp_2010_12_011
crossref_primary_10_1016_j_neubiorev_2017_06_010
crossref_primary_10_1073_pnas_1114113108
crossref_primary_10_1172_JCI82636
crossref_primary_10_1586_epr_09_85
crossref_primary_10_1038_mp_2008_101
crossref_primary_10_1093_schbul_sbr028
crossref_primary_10_1186_s12868_017_0396_6
crossref_primary_10_1523_JNEUROSCI_5389_07_2008
crossref_primary_10_1007_s12576_016_0502_z
crossref_primary_10_1111_bph_15043
crossref_primary_10_1254_jphs_14R02CR
crossref_primary_10_1016_j_cell_2008_12_044
crossref_primary_10_1016_j_neures_2016_06_006
crossref_primary_10_1016_j_tins_2009_02_003
crossref_primary_10_1038_s41598_019_38910_2
crossref_primary_10_1186_s40478_022_01460_2
crossref_primary_10_3389_fncel_2014_00119
crossref_primary_10_1254_jphs_12R15CP
crossref_primary_10_1016_j_bbr_2009_04_001
crossref_primary_10_1098_rsos_190574
crossref_primary_10_1016_j_neubiorev_2015_04_014
crossref_primary_10_1016_j_neulet_2010_11_043
crossref_primary_10_1073_pnas_1307925110
crossref_primary_10_1038_mp_2015_61
crossref_primary_10_1038_tp_2011_31
crossref_primary_10_1002_syn_20839
crossref_primary_10_3390_life14050578
crossref_primary_10_1073_pnas_2203711119
crossref_primary_10_1002_ajmg_b_32863
crossref_primary_10_1016_j_neures_2016_01_006
crossref_primary_10_1242_dev_111773
crossref_primary_10_1093_schbul_sbx106
crossref_primary_10_1111_j_1476_5381_2011_01386_x
crossref_primary_10_1038_nrn3120
crossref_primary_10_1038_sj_npp_1301639
crossref_primary_10_1111_cns_12261
crossref_primary_10_1016_j_euroneuro_2013_08_009
crossref_primary_10_1016_j_neures_2021_04_009
crossref_primary_10_1038_tp_2011_41
crossref_primary_10_1186_1756_0500_5_108
crossref_primary_10_1016_j_neuroscience_2015_12_061
crossref_primary_10_1126_science_1226931
crossref_primary_10_1016_j_biopsych_2014_09_007
crossref_primary_10_1093_hmg_ddr400
crossref_primary_10_1007_s12264_021_00731_7
crossref_primary_10_1093_schbul_sbad123
crossref_primary_10_1371_journal_pone_0069883
crossref_primary_10_1186_1756_6606_6_20
crossref_primary_10_1523_JNEUROSCI_4623_10_2010
crossref_primary_10_1038_npjschz_2016_24
crossref_primary_10_1016_j_bbr_2015_01_010
crossref_primary_10_1080_15622970902875152
crossref_primary_10_1038_s41386_021_00962_2
crossref_primary_10_1016_j_nbd_2013_01_009
crossref_primary_10_1111_j_1601_183X_2010_00665_x
crossref_primary_10_1016_j_neubiorev_2009_08_002
crossref_primary_10_1016_j_neuron_2010_08_037
crossref_primary_10_1016_j_mcn_2007_10_006
crossref_primary_10_2515_therapie_2008041
crossref_primary_10_1038_news070820_6
crossref_primary_10_1074_jbc_M116_715078
crossref_primary_10_1016_j_schres_2011_04_021
crossref_primary_10_1002_jnr_23024
crossref_primary_10_3389_fnins_2015_00074
crossref_primary_10_1017_S095457940800062X
crossref_primary_10_1523_JNEUROSCI_4219_10_2011
crossref_primary_10_1016_j_wneu_2018_08_241
crossref_primary_10_1074_jbc_M110_172536
crossref_primary_10_1111_cge_12111
crossref_primary_10_1002_ajmg_b_31087
crossref_primary_10_1017_S146114571100085X
crossref_primary_10_1523_JNEUROSCI_4166_08_2008
crossref_primary_10_3390_biom10010160
crossref_primary_10_1111_j_1601_183X_2010_00615_x
crossref_primary_10_3389_fncel_2023_1321632
crossref_primary_10_1016_j_pbb_2019_02_005
crossref_primary_10_1016_j_nbd_2012_10_025
crossref_primary_10_1016_j_neuroscience_2011_07_051
crossref_primary_10_1007_s00018_017_2539_4
crossref_primary_10_1093_schbul_sbq135
crossref_primary_10_1515_REVNEURO_2009_20_5_6_321
crossref_primary_10_1016_j_bbr_2008_10_011
crossref_primary_10_1016_j_neuron_2017_07_034
crossref_primary_10_1186_1756_6606_7_12
crossref_primary_10_1155_2016_7694385
crossref_primary_10_1016_j_schres_2008_10_003
crossref_primary_10_1038_npp_2008_215
crossref_primary_10_1016_j_nbd_2013_05_012
crossref_primary_10_1159_000380765
crossref_primary_10_1590_S0101_60832012005000007
crossref_primary_10_1038_tp_2016_282
crossref_primary_10_3389_fnbeh_2014_00253
Cites_doi 10.1523/JNEUROSCI.10-06-01788.1990
10.1016/j.neuron.2004.05.003
10.1523/JNEUROSCI.5054-05.2006
10.1016/j.biopsych.2006.03.065
10.1016/S0006-3223(00)01120-3
10.1073/pnas.0500515102
10.1007/BF02193086
10.1093/brain/122.4.593
10.1016/S0920-9964(97)00087-X
10.1126/science.1121114
10.1111/j.1368-5031.2005.00501.x
10.1016/0166-4328(95)00162-X
10.1016/j.tins.2004.03.012
10.1016/S0006-3223(99)00018-9
10.1074/jbc.M604959200
10.1016/j.tig.2003.12.006
10.1038/ncb1328
10.1001/archpsyc.62.11.1205
10.1016/j.neuron.2006.09.023
10.1073/pnas.0702157104
10.1126/science.1112915
10.1093/hmg/8.3.387
10.1038/sj.mp.4001457
10.1016/j.neuron.2007.04.015
10.1073/pnas.0500330102
10.1016/j.biopsych.2006.02.024
10.1097/01.wnr.0000175248.25535.f6
10.1016/S0920-9964(96)00122-3
10.1016/S0920-9964(01)00163-3
10.1038/nrn1648
10.1038/sj.mp.4001574
10.1073/pnas.0511189103
10.1016/j.biopsych.2006.03.032
10.1016/S0925-4927(01)00072-5
10.1523/JNEUROSCI.23-15-06315.2003
10.1176/appi.ajp.157.4.489
10.1002/mrm.1910400403
10.1038/sj.mp.4001731
10.1002/mrm.1174
10.1007/s002130100810
10.1016/j.biopsych.2006.04.008
10.1038/nn819
ContentType Journal Article
Copyright Copyright 2007 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Sep 4, 2007
2007 by The National Academy of Sciences of the USA 2007
Copyright_xml – notice: Copyright 2007 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Sep 4, 2007
– notice: 2007 by The National Academy of Sciences of the USA 2007
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7X8
5PM
DOI 10.1073/pnas.0704774104
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
Virology and AIDS Abstracts
CrossRef


MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 14506
ExternalDocumentID 1331424411
10_1073_pnas_0704774104
17675407
104_36_14501
25436700
US201300804316
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH069853
– fundername: NIA NIH HHS
  grantid: P01-AG-017688
– fundername: NIMH NIH HHS
  grantid: MH-069853
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ADACV
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7X8
5PM
ID FETCH-LOGICAL-c620t-632411170b504e1f51a604bd60e324349053d5cd3e2635dc4d7f13bc988dca493
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:07:49 EDT 2024
Fri Oct 25 23:22:27 EDT 2024
Fri Oct 25 22:09:47 EDT 2024
Thu Oct 10 17:14:43 EDT 2024
Fri Dec 06 02:52:49 EST 2024
Sat Nov 02 11:54:59 EDT 2024
Thu May 30 08:51:16 EDT 2019
Wed Nov 11 00:29:44 EST 2020
Tue Dec 10 23:05:27 EST 2024
Wed Dec 27 19:01:28 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620t-632411170b504e1f51a604bd60e324349053d5cd3e2635dc4d7f13bc988dca493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: T.H. and H.J.-P. contributed equally to this work; T.H., H.J.-P., and A.S. designed research; T.H., H.J.-P., S.S., C.H., S. Kong, R.X., M.A., and S.T. performed research; S.M., M.G., M.P., and S. Kida contributed new reagents/analytic tools; T.H., H.J.-P., K.O., D.W., and K.I. analyzed data; and T.H., H.J.-P., and A.S. wrote the paper.
Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 5, 2007
OpenAccessLink https://europepmc.org/articles/pmc1964873?pdf=render
PMID 17675407
PQID 201298945
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1964873
crossref_primary_10_1073_pnas_0704774104
pnas_primary_104_36_14501
proquest_miscellaneous_68239242
proquest_journals_201298945
pubmed_primary_17675407
pnas_primary_104_36_14501_fulltext
jstor_primary_25436700
proquest_miscellaneous_20800318
fao_agris_US201300804316
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2007-09-04
PublicationDateYYYYMMDD 2007-09-04
PublicationDate_xml – month: 09
  year: 2007
  text: 2007-09-04
  day: 04
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2007
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
Pletnikov MV (e_1_3_4_13_2) 2007
e_1_3_4_28_2
e_1_3_4_29_2
Ishizuka K (e_1_3_4_7_2) 2007
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_17_2
  doi: 10.1523/JNEUROSCI.10-06-01788.1990
– ident: e_1_3_4_18_2
  doi: 10.1016/j.neuron.2004.05.003
– ident: e_1_3_4_27_2
  doi: 10.1523/JNEUROSCI.5054-05.2006
– ident: e_1_3_4_4_2
  doi: 10.1016/j.biopsych.2006.03.065
– ident: e_1_3_4_23_2
  doi: 10.1016/S0006-3223(00)01120-3
– ident: e_1_3_4_36_2
  doi: 10.1073/pnas.0500515102
– ident: e_1_3_4_21_2
  doi: 10.1007/BF02193086
– year: 2007
  ident: e_1_3_4_13_2
  publication-title: Neurosci Res
  contributor:
    fullname: Pletnikov MV
– ident: e_1_3_4_31_2
  doi: 10.1093/brain/122.4.593
– ident: e_1_3_4_22_2
  doi: 10.1016/S0920-9964(97)00087-X
– ident: e_1_3_4_10_2
  doi: 10.1126/science.1121114
– ident: e_1_3_4_33_2
  doi: 10.1111/j.1368-5031.2005.00501.x
– ident: e_1_3_4_2_2
  doi: 10.1016/0166-4328(95)00162-X
– ident: e_1_3_4_41_2
  doi: 10.1016/j.tins.2004.03.012
– ident: e_1_3_4_20_2
  doi: 10.1016/S0006-3223(99)00018-9
– ident: e_1_3_4_19_2
  doi: 10.1074/jbc.M604959200
– ident: e_1_3_4_30_2
  doi: 10.1016/j.tig.2003.12.006
– ident: e_1_3_4_12_2
  doi: 10.1038/ncb1328
– ident: e_1_3_4_37_2
  doi: 10.1001/archpsyc.62.11.1205
– ident: e_1_3_4_1_2
  doi: 10.1016/j.neuron.2006.09.023
– ident: e_1_3_4_16_2
  doi: 10.1073/pnas.0702157104
– year: 2007
  ident: e_1_3_4_7_2
  publication-title: Mol Psychiatry
  contributor:
    fullname: Ishizuka K
– ident: e_1_3_4_11_2
  doi: 10.1126/science.1112915
– ident: e_1_3_4_15_2
  doi: 10.1093/hmg/8.3.387
– ident: e_1_3_4_29_2
  doi: 10.1038/sj.mp.4001457
– ident: e_1_3_4_8_2
  doi: 10.1016/j.neuron.2007.04.015
– ident: e_1_3_4_39_2
  doi: 10.1073/pnas.0500330102
– ident: e_1_3_4_3_2
  doi: 10.1016/j.biopsych.2006.02.024
– ident: e_1_3_4_35_2
  doi: 10.1097/01.wnr.0000175248.25535.f6
– ident: e_1_3_4_25_2
  doi: 10.1016/S0920-9964(96)00122-3
– ident: e_1_3_4_34_2
  doi: 10.1016/S0920-9964(01)00163-3
– ident: e_1_3_4_24_2
  doi: 10.1038/nrn1648
– ident: e_1_3_4_14_2
  doi: 10.1038/sj.mp.4001574
– ident: e_1_3_4_6_2
  doi: 10.1073/pnas.0511189103
– ident: e_1_3_4_9_2
  doi: 10.1016/j.biopsych.2006.03.032
– ident: e_1_3_4_32_2
  doi: 10.1016/S0925-4927(01)00072-5
– ident: e_1_3_4_26_2
  doi: 10.1523/JNEUROSCI.23-15-06315.2003
– ident: e_1_3_4_40_2
  doi: 10.1176/appi.ajp.157.4.489
– ident: e_1_3_4_43_2
  doi: 10.1002/mrm.1910400403
– ident: e_1_3_4_38_2
  doi: 10.1038/sj.mp.4001731
– ident: e_1_3_4_44_2
  doi: 10.1002/mrm.1174
– ident: e_1_3_4_28_2
  doi: 10.1007/s002130100810
– ident: e_1_3_4_5_2
  doi: 10.1016/j.biopsych.2006.04.008
– ident: e_1_3_4_42_2
  doi: 10.1038/nn819
SSID ssj0009580
Score 2.472113
Snippet Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14501
SubjectTerms Animals
Behavior modeling
Behavior, Animal
Biological Sciences
Biomarkers
Disease models
Disease Models, Animal
Genes, Dominant - genetics
Genetics
Genotype & phenotype
Hippocampus
Human genetics
Humans
Lateral ventricles
Medical genetics
Mental illness
Mice
Mice, Transgenic
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neurons
Phenotype
Rodents
Schizophrenia
Schizophrenia - diagnosis
Schizophrenia - genetics
Schizophrenia - physiopathology
Transgenic animals
Title Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans
URI https://www.jstor.org/stable/25436700
http://www.pnas.org/content/104/36/14501.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17675407
https://www.proquest.com/docview/201298945
https://search.proquest.com/docview/20800318
https://search.proquest.com/docview/68239242
https://pubmed.ncbi.nlm.nih.gov/PMC1964873
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61PXFBFCgNhWIhDuWQ3SR2Xke0pSpIRUhlpd4sv1JW2k1WJD30xF9nxkl2t4heuMaOFWVmPGPPN98AfDBxbI2NdOjI3ESqdViWaRHamLvSaoVqQMXJV9-yy7n4epPe7EE61sJ40L7Ri0m9XE3qxU-PrVyvzHTEiU2_X82IRKrI-XQf9tH9jkf0DdNu0dedJLj9ikSMfD44f12rdoI6LjDmwWMIEYYSl4mgXrI7Xmm_Us0ITyTOU3zrX_Hn3zDKHb908QyeDgEl-9R_-CHsufo5HA4m27KzgVf64wv4fd70uJewdree75udf7mexawjf4WKtDCMmtMzu2jXS3XP2l1AXqgGQTrLCBfW0OVty6yjLAQ-0_ds1d83tv2CS9VRWRbrGuYbAbYvYX7x-cfsMhz6L4QmS6IuJCb3mDrT6DQSLq7SWGWR0DaLHI5wUaIB29RY7ojRxhph8yrm2pRFYY0SJT-Cg7qp3TGwOM-jCs9K1piEEvplWUWcY7RjVSHKJA_gbPz_ct3TbEifHs-5pP8vt1IL4BjlI9UtboJyfp1Q6hXDXirpD-DIC22zBFX6Ux1SAIFfZbu0kDzDY08axQG8f3RMVgMCJ4CTUf5yMPJWJnSJV5QiDeDdZhStk1IuqnbNHU0p_Lb5-IysSDBEFUkAr3pt2n7IoJsB5A_0bDOBmMEfjqDBeIbwwUBe__ebJ_Ckv8SmzNkbOOh-3bm3GH11-pR8X3rqbe4P0Zwswg
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPbSXqrSlBFqwqh7oIbtx7Dx8rBbQ0rKoEqzEzXJsh660m6xIOHDqX68nj92lKpde44eszIw99nzzDcAXTanRJsh8i-bGoyzzhYhS31BmhcmUUwNMTp5cxeMp_34b3W5B1OfCNKB9nc0GxXwxKGa_GmzlcqGHPU5s-HMyQhKpNGHDbXgRsUTQ_pK-4tpN28yT0G3APOQ9o48bsSxUNXBazp3X4y4iSBmKbCYcq8lunEvbuSp7gCKynrpR__JA_wZSbpxM52_gdedSkm_t0ndhyxZvYbcz2oqcdMzSX9_B79OyRb74hb1rGL_J6cX1iJIaTyynSjNNsDw9MbNqOVePpNqE5PmqE6U1BJFhJT7fVsRYjEO4b9kjWbQvjlU74VzVmJhF6pI0pQCr9zA9P7sZjf2uAoOv4zCofeRyp1ibJosCbmkeURUHPDNxYF0L48KZsIm0YRY5bYzmJskpy7RIU6MVF2wPdoqysPtAaJIEubstGa1DDOkLkQeMOX_HqJSLMPHgpP__ctkSbcgmQJ4wif9frqXmwb6Tj1R3bhuU0-sQg6_O8cWkfg_2GqGtpsBcf8xE8sBrZllPzSWL3cUnCqgHn59tk3mHwfHgsJe_7My8kiE-46WCRx4cr1qdfWLQRRW2fMAuabNxPt8jTkPnpPLQgw-tNq0X0ummB8kTPVt1QG7wpy3OZBqO8M5EDv575DG8HN9MLuXlxdWPQ3jVPmljHO0j7NT3D_aT88Xq7KixvD-tly8x
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIiEuiAKlpkAtxKEc0k1i53VEu6xaoFWlslJvlmM7ZaXdZEXSQ0_8dWby2N0ieuEaP2RlZuyx55tvAD6aILDG-rnnyNxklOdelkWpZwPhMptrVANKTj6_iE9n8ut1dL1V6qsF7Zt8flIulifl_GeLrVwtzWjAiY0uz8dEIpUmYrSyxWgHHkcClWy4qK_5dtMu-yTETViGcmD1oVGlrk9Q0yV6PngZIdpQYjSRVFF262zaKXQ1gBSJ-RRH_csL_RtMuXU6TZ_Ds96t5J-75e_BI1e-gL3ecGt-3LNLf3oJvydVh37xSnfTsn7zydnVOOANnVqoTnPDqUQ9t_N6tdB3vN6G5Xm6F6eznNBhFT3h1tw6ikXgt_yOL7tXx7qbcKEbSs7iTcXbcoD1K5hNv_wYn3p9FQbPxKHfeMTnHlB9mjzypQuKKNCxL3Mb-w5bhMzQjG1krHDEa2ONtEkRiNxkaWqNlpnYh92yKt0B8CBJ_AJvTNaYkML6WVb4QqDPY3UqszBhcDz8f7XqyDZUGyRPhKL_rzZSY3CA8lH6BrdCNbsKKQCLzi8l9jPYb4W2noLy_SkbiQFrZ9lMLZWI8fIT-QGDDw-2qaLH4TA4HOSvelOvVUhPeWkmIwZH61a0UQq86NJVt9QlbTfPh3vEaYiOqgwZvO60abOQXjcZJPf0bN2B-MHvt6DZtDzhvZm8-e-RR_DkcjJV388uvh3C0-5Vm0Jpb2G3-XXr3qE71uTvW8P7AwiAMEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dominant-negative+DISC1+transgenic+mice+display+schizophrenia-associated+phenotypes+detected+by+measures+translatable+to+humans&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Takatoshi+Hikida&rft.au=Hanna+Jaaro-Peled&rft.au=Saurav+Seshadri&rft.au=Kenichi+Oishi&rft.date=2007-09-04&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=104&rft.issue=36&rft.spage=14501&rft_id=info:doi/10.1073%2Fpnas.0704774104&rft_id=info%3Apmid%2F17675407&rft.externalDBID=n%2Fa&rft.externalDocID=104_36_14501
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F36.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F36.cover.gif