Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans
Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negati...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 36; pp. 14501 - 14506 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
04.09.2007
National Acad Sciences |
Series | From the Cover |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit. |
---|---|
AbstractList | Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the alpha CaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit. Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit. [PUBLICATION ABSTRACT] Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit. Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit. model MRI translational parvalbumin depression Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the alphaCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/depression-like deficit. Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the asymmetrical change in anatomy found in brains of patients with schizophrenia. Furthermore, selective reduction in the immunoreactivity of parvalbumin in the cortex, a marker for an interneuron deficit that may underlie cortical asynchrony, is observed in the DN-DISC1 mice. These results suggest that these transgenic mice may be used as a model for schizophrenia. DN-DISC1 mice also display several behavioral abnormalities, including hyperactivity, disturbance in sensorimotor gating and olfactory-associated behavior, and an anhedonia/ depression-like deficit. |
Author | Andradé, Manuella Hikida, Takatoshi Kida, Satoshi Tankou, Stephanie Sawa, Akira Wu, Di Gallagher, Michela Jaaro-Peled, Hanna Hookway, Caroline Xue, Rong Ishizuka, Koko Oishi, Kenichi Pletnikov, Mikhail Seshadri, Saurav Mori, Susumu Kong, Stephanie |
Author_xml | – sequence: 1 fullname: Hikida, Takatoshi – sequence: 2 fullname: Jaaro-Peled, Hanna – sequence: 3 fullname: Seshadri, Saurav – sequence: 4 fullname: Oishi, Kenichi – sequence: 5 fullname: Hookway, Caroline – sequence: 6 fullname: Kong, Stephanie – sequence: 7 fullname: Wu, Di – sequence: 8 fullname: Xue, Rong – sequence: 9 fullname: Andradé, Manuella – sequence: 10 fullname: Tankou, Stephanie – sequence: 11 fullname: Mori, Susumu – sequence: 12 fullname: Gallagher, Michela – sequence: 13 fullname: Ishizuka, Koko – sequence: 14 fullname: Pletnikov, Mikhail – sequence: 15 fullname: Kida, Satoshi – sequence: 16 fullname: Sawa, Akira |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17675407$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLcLZ05AxAGJQ9px7NjJpRLa8lGpEofSs-U4s7teJXaInYrlwr-Ol111gUtPlub95mneeM7IifMOCXlJ4ZyCZBeD0-EcJHApOQX-hMwo1DQXvIYTMgMoZF7xgp-SsxA2AFCXFTwjp1QKWXKQM_LryvfWaRdzhysd7T1mV9e3C5rFUbuwQmdN1luDWWvD0OltFsza_vTDekySznUI3lgdsc2GNToftwOGrMWIZldrtlmPOkxjKv4x7HTUTYdZ9Nl66lPhOXm61F3AF4d3Tu4-ffy2-JLffP18vfhwkxtRQMwFKzilVEJTAke6LKkWwJtWACaFpbgla0vTMiwEK1vDW7mkrDF1VbVG85rNyeXed5iaHluDLs3TqWG0vR63ymur_lWcXauVv1e0FrySLBm8OxiM_vuEIareBoNdpx36KShRFawuePEoWEAFwGiVwLf_gRs_jS5tITG0qKualwm62ENm9CGMuHwYmYLanYDanYA6nkDqeP130iN_-PMEZAdg13m044oJRXkJNCHvH0HUcuq6iD9iYl_t2U2IfnyAi5IzIVPSOXmz15faK70abVB3tykgg7QIzqhgvwHnXtwp |
CitedBy_id | crossref_primary_10_1038_mp_2017_47 crossref_primary_10_1523_ENEURO_0496_19_2020 crossref_primary_10_1248_bpb_34_1364 crossref_primary_10_1073_pnas_0904636106 crossref_primary_10_1002_ajmg_b_30926 crossref_primary_10_1016_j_brainresbull_2009_09_010 crossref_primary_10_1016_j_mri_2019_05_021 crossref_primary_10_1016_j_neuropharm_2011_01_049 crossref_primary_10_1016_j_neuropharm_2009_06_002 crossref_primary_10_3371_CSRP_4_2_4 crossref_primary_10_1038_nrd3649 crossref_primary_10_1016_j_biopsych_2013_06_009 crossref_primary_10_1038_mp_2012_37 crossref_primary_10_1038_ncomms10965 crossref_primary_10_1016_j_neuint_2010_08_012 crossref_primary_10_1016_j_biopsych_2016_03_2101 crossref_primary_10_1007_s00115_008_2591_2 crossref_primary_10_1038_s41467_021_21713_3 crossref_primary_10_1093_schbul_sbz043 crossref_primary_10_1007_s00213_021_05787_x crossref_primary_10_1093_cercor_bhu293 crossref_primary_10_1016_j_isci_2023_107099 crossref_primary_10_1523_ENEURO_0081_17_2017 crossref_primary_10_1016_j_schres_2008_08_015 crossref_primary_10_1186_s13041_016_0270_y crossref_primary_10_1093_hmg_ddn361 crossref_primary_10_1093_hmg_ddx147 crossref_primary_10_1248_bpb_34_1358 crossref_primary_10_1172_JCI67510 crossref_primary_10_1093_schbul_sbv136 crossref_primary_10_1073_pnas_0903413106 crossref_primary_10_1523_JNEUROSCI_3355_09_2009 crossref_primary_10_1093_schbul_sbp153 crossref_primary_10_1016_j_gde_2008_07_002 crossref_primary_10_1016_j_neubiorev_2015_01_016 crossref_primary_10_16946_kjsr_2014_17_1_12 crossref_primary_10_1159_000438788 crossref_primary_10_1038_npp_2013_239 crossref_primary_10_1093_schbul_sbt071 crossref_primary_10_1038_sj_mp_4002125 crossref_primary_10_1007_s00429_013_0577_8 crossref_primary_10_1038_mp_2015_194 crossref_primary_10_1016_j_neubiorev_2014_07_001 crossref_primary_10_1093_hmg_dds169 crossref_primary_10_1371_journal_pone_0088506 crossref_primary_10_1016_j_neuron_2012_12_033 crossref_primary_10_1038_s41380_021_01037_w crossref_primary_10_1371_journal_pone_0156082 crossref_primary_10_1038_s41398_019_0429_2 crossref_primary_10_1002_cne_24813 crossref_primary_10_1016_j_pharmthera_2011_07_005 crossref_primary_10_1016_j_biopsych_2017_10_014 crossref_primary_10_1242_bio_012005 crossref_primary_10_1371_journal_pone_0004906 crossref_primary_10_1016_j_jad_2019_07_008 crossref_primary_10_1523_JNEUROSCI_4345_15_2017 crossref_primary_10_1002_wrna_1184 crossref_primary_10_1016_j_neures_2019_02_007 crossref_primary_10_1089_ars_2012_4907 crossref_primary_10_1155_2015_492367 crossref_primary_10_1016_j_neures_2015_02_002 crossref_primary_10_1038_s41380_022_01832_z crossref_primary_10_1093_hmg_ddt007 crossref_primary_10_1021_bi900901e crossref_primary_10_1007_s12035_013_8534_3 crossref_primary_10_1093_schbul_sbp125 crossref_primary_10_1016_j_schres_2014_06_021 crossref_primary_10_31887_DCNS_2013_15_3_puhlhaas crossref_primary_10_1038_nrn_2015_19 crossref_primary_10_1093_hmg_dds273 crossref_primary_10_1146_annurev_neuro_051508_135535 crossref_primary_10_1093_jb_mvy116 crossref_primary_10_1186_2045_3701_3_19 crossref_primary_10_7554_eLife_79471 crossref_primary_10_1007_s00439_009_0782_y crossref_primary_10_1038_nrn3155 crossref_primary_10_1093_schbul_sbp132 crossref_primary_10_1093_schbul_sbp133 crossref_primary_10_1007_s00213_009_1712_3 crossref_primary_10_1038_srep16778 crossref_primary_10_1523_JNEUROSCI_5096_14_2015 crossref_primary_10_1371_journal_pone_0258364 crossref_primary_10_1111_j_1601_183X_2009_00477_x crossref_primary_10_1523_JNEUROSCI_3299_08_2008 crossref_primary_10_1038_sj_mp_4002106 crossref_primary_10_1038_mp_2013_49 crossref_primary_10_1186_s12920_015_0098_9 crossref_primary_10_1038_s41420_022_01271_3 crossref_primary_10_1186_s13041_018_0370_y crossref_primary_10_1111_pcn_12830 crossref_primary_10_1073_pnas_0806669105 crossref_primary_10_1155_2018_7590958 crossref_primary_10_1038_mp_2009_144 crossref_primary_10_1038_s41598_018_20090_0 crossref_primary_10_1017_S1462399411001955 crossref_primary_10_1159_000488030 crossref_primary_10_1007_s00213_016_4288_8 crossref_primary_10_1093_hmg_dds106 crossref_primary_10_1016_j_biopsych_2021_11_008 crossref_primary_10_1016_j_nbd_2012_11_013 crossref_primary_10_1016_j_neuron_2009_08_008 crossref_primary_10_1093_hmg_ddn215 crossref_primary_10_1093_hmg_ddw019 crossref_primary_10_47102_annals_acadmedsg_V38N5p425 crossref_primary_10_1111_j_1460_9568_2012_08130_x crossref_primary_10_1016_j_neubiorev_2014_09_005 crossref_primary_10_1021_jm701094q crossref_primary_10_1074_jbc_M110_179481 crossref_primary_10_1074_jbc_M111_271593 crossref_primary_10_1097_YCO_0000000000000054 crossref_primary_10_1111_febs_15872 crossref_primary_10_1016_j_mcn_2013_01_006 crossref_primary_10_1073_pnas_0802615105 crossref_primary_10_3390_ijms21165704 crossref_primary_10_4236_wjns_2018_81001 crossref_primary_10_1093_schbul_sbn054 crossref_primary_10_3389_fpsyt_2015_00013 crossref_primary_10_1016_j_gene_2018_01_069 crossref_primary_10_1016_j_pharmthera_2015_01_005 crossref_primary_10_1016_j_neuron_2010_06_002 crossref_primary_10_1038_mp_2012_97 crossref_primary_10_1093_hmg_ddx139 crossref_primary_10_1016_j_biopsych_2015_04_014 crossref_primary_10_1111_ejn_12500 crossref_primary_10_1038_scibx_2013_882 crossref_primary_10_1038_mp_2014_35 crossref_primary_10_1016_j_bbr_2011_07_049 crossref_primary_10_1523_ENEURO_0426_20_2020 crossref_primary_10_1016_j_jneumeth_2013_05_013 crossref_primary_10_1517_14728222_2012_719879 crossref_primary_10_3109_15622975_2013_841993 crossref_primary_10_1523_JNEUROSCI_3658_14_2015 crossref_primary_10_1186_1744_9081_10_45 crossref_primary_10_1038_s41598_019_41991_8 crossref_primary_10_1177_1073858412470168 crossref_primary_10_1371_journal_pone_0034053 crossref_primary_10_1259_bjr_20180885 crossref_primary_10_1038_srep34946 crossref_primary_10_1016_j_biopsych_2010_09_022 crossref_primary_10_1371_journal_pone_0053114 crossref_primary_10_1016_j_earlhumdev_2012_02_003 crossref_primary_10_1016_j_bbr_2014_08_064 crossref_primary_10_1016_j_biopsych_2015_04_023 crossref_primary_10_1016_j_pnpbp_2012_04_015 crossref_primary_10_1134_S1022795415010032 crossref_primary_10_2217_fnl_11_39 crossref_primary_10_1016_j_wneu_2019_05_093 crossref_primary_10_1093_nc_niw015 crossref_primary_10_1242_dmm_008268 crossref_primary_10_1038_s41380_022_01708_2 crossref_primary_10_1042_BST0370308 crossref_primary_10_1101_lm_921708 crossref_primary_10_1080_13546800903059829 crossref_primary_10_1016_j_nbd_2015_06_006 crossref_primary_10_1002_ajmg_b_30887 crossref_primary_10_1038_npp_2015_117 crossref_primary_10_1093_hmg_ddu285 crossref_primary_10_1007_s11515_012_1254_7 crossref_primary_10_1016_j_neuron_2024_03_028 crossref_primary_10_1038_s41380_020_00939_5 crossref_primary_10_1016_j_neuint_2014_06_009 crossref_primary_10_1002_syn_20649 crossref_primary_10_1523_JNEUROSCI_3857_09_2010 crossref_primary_10_1016_j_neubiorev_2020_07_038 crossref_primary_10_1038_450006a crossref_primary_10_1016_j_schres_2013_02_007 crossref_primary_10_1177_0004867414533012 crossref_primary_10_1016_j_cell_2019_07_023 crossref_primary_10_1038_srep00016 crossref_primary_10_4161_pri_18989 crossref_primary_10_1093_hmg_ddp266 crossref_primary_10_1016_j_bbr_2010_01_030 crossref_primary_10_3389_fgene_2016_00040 crossref_primary_10_1038_npjschz_2015_11 crossref_primary_10_3389_fnsyn_2016_00015 crossref_primary_10_1159_000444257 crossref_primary_10_3389_fnbeh_2015_00141 crossref_primary_10_1177_0706743718773728 crossref_primary_10_3390_metabo10020079 crossref_primary_10_1016_j_biopsych_2021_09_001 crossref_primary_10_1159_000488081 crossref_primary_10_1016_j_schres_2012_04_006 crossref_primary_10_1038_s41398_018_0122_x crossref_primary_10_1016_j_neubiorev_2015_03_007 crossref_primary_10_1016_j_nbd_2017_04_008 crossref_primary_10_1155_2016_2173748 crossref_primary_10_1111_ejn_12549 crossref_primary_10_3389_fncir_2021_741767 crossref_primary_10_1016_j_bbr_2012_05_037 crossref_primary_10_18632_oncotarget_21381 crossref_primary_10_1016_j_pneurobio_2015_10_002 crossref_primary_10_1016_j_npep_2016_12_010 crossref_primary_10_7554_eLife_64567 crossref_primary_10_1038_s41598_024_53237_3 crossref_primary_10_1007_s40473_014_0013_2 crossref_primary_10_1016_j_molmed_2011_09_002 crossref_primary_10_1093_schbul_sbv065 crossref_primary_10_1016_j_biopsych_2018_03_008 crossref_primary_10_1038_tp_2013_104 crossref_primary_10_1016_j_pnpbp_2010_12_011 crossref_primary_10_1016_j_neubiorev_2017_06_010 crossref_primary_10_1073_pnas_1114113108 crossref_primary_10_1172_JCI82636 crossref_primary_10_1586_epr_09_85 crossref_primary_10_1038_mp_2008_101 crossref_primary_10_1093_schbul_sbr028 crossref_primary_10_1186_s12868_017_0396_6 crossref_primary_10_1523_JNEUROSCI_5389_07_2008 crossref_primary_10_1007_s12576_016_0502_z crossref_primary_10_1111_bph_15043 crossref_primary_10_1254_jphs_14R02CR crossref_primary_10_1016_j_cell_2008_12_044 crossref_primary_10_1016_j_neures_2016_06_006 crossref_primary_10_1016_j_tins_2009_02_003 crossref_primary_10_1038_s41598_019_38910_2 crossref_primary_10_1186_s40478_022_01460_2 crossref_primary_10_3389_fncel_2014_00119 crossref_primary_10_1254_jphs_12R15CP crossref_primary_10_1016_j_bbr_2009_04_001 crossref_primary_10_1098_rsos_190574 crossref_primary_10_1016_j_neubiorev_2015_04_014 crossref_primary_10_1016_j_neulet_2010_11_043 crossref_primary_10_1073_pnas_1307925110 crossref_primary_10_1038_mp_2015_61 crossref_primary_10_1038_tp_2011_31 crossref_primary_10_1002_syn_20839 crossref_primary_10_3390_life14050578 crossref_primary_10_1073_pnas_2203711119 crossref_primary_10_1002_ajmg_b_32863 crossref_primary_10_1016_j_neures_2016_01_006 crossref_primary_10_1242_dev_111773 crossref_primary_10_1093_schbul_sbx106 crossref_primary_10_1111_j_1476_5381_2011_01386_x crossref_primary_10_1038_nrn3120 crossref_primary_10_1038_sj_npp_1301639 crossref_primary_10_1111_cns_12261 crossref_primary_10_1016_j_euroneuro_2013_08_009 crossref_primary_10_1016_j_neures_2021_04_009 crossref_primary_10_1038_tp_2011_41 crossref_primary_10_1186_1756_0500_5_108 crossref_primary_10_1016_j_neuroscience_2015_12_061 crossref_primary_10_1126_science_1226931 crossref_primary_10_1016_j_biopsych_2014_09_007 crossref_primary_10_1093_hmg_ddr400 crossref_primary_10_1007_s12264_021_00731_7 crossref_primary_10_1093_schbul_sbad123 crossref_primary_10_1371_journal_pone_0069883 crossref_primary_10_1186_1756_6606_6_20 crossref_primary_10_1523_JNEUROSCI_4623_10_2010 crossref_primary_10_1038_npjschz_2016_24 crossref_primary_10_1016_j_bbr_2015_01_010 crossref_primary_10_1080_15622970902875152 crossref_primary_10_1038_s41386_021_00962_2 crossref_primary_10_1016_j_nbd_2013_01_009 crossref_primary_10_1111_j_1601_183X_2010_00665_x crossref_primary_10_1016_j_neubiorev_2009_08_002 crossref_primary_10_1016_j_neuron_2010_08_037 crossref_primary_10_1016_j_mcn_2007_10_006 crossref_primary_10_2515_therapie_2008041 crossref_primary_10_1038_news070820_6 crossref_primary_10_1074_jbc_M116_715078 crossref_primary_10_1016_j_schres_2011_04_021 crossref_primary_10_1002_jnr_23024 crossref_primary_10_3389_fnins_2015_00074 crossref_primary_10_1017_S095457940800062X crossref_primary_10_1523_JNEUROSCI_4219_10_2011 crossref_primary_10_1016_j_wneu_2018_08_241 crossref_primary_10_1074_jbc_M110_172536 crossref_primary_10_1111_cge_12111 crossref_primary_10_1002_ajmg_b_31087 crossref_primary_10_1017_S146114571100085X crossref_primary_10_1523_JNEUROSCI_4166_08_2008 crossref_primary_10_3390_biom10010160 crossref_primary_10_1111_j_1601_183X_2010_00615_x crossref_primary_10_3389_fncel_2023_1321632 crossref_primary_10_1016_j_pbb_2019_02_005 crossref_primary_10_1016_j_nbd_2012_10_025 crossref_primary_10_1016_j_neuroscience_2011_07_051 crossref_primary_10_1007_s00018_017_2539_4 crossref_primary_10_1093_schbul_sbq135 crossref_primary_10_1515_REVNEURO_2009_20_5_6_321 crossref_primary_10_1016_j_bbr_2008_10_011 crossref_primary_10_1016_j_neuron_2017_07_034 crossref_primary_10_1186_1756_6606_7_12 crossref_primary_10_1155_2016_7694385 crossref_primary_10_1016_j_schres_2008_10_003 crossref_primary_10_1038_npp_2008_215 crossref_primary_10_1016_j_nbd_2013_05_012 crossref_primary_10_1159_000380765 crossref_primary_10_1590_S0101_60832012005000007 crossref_primary_10_1038_tp_2016_282 crossref_primary_10_3389_fnbeh_2014_00253 |
Cites_doi | 10.1523/JNEUROSCI.10-06-01788.1990 10.1016/j.neuron.2004.05.003 10.1523/JNEUROSCI.5054-05.2006 10.1016/j.biopsych.2006.03.065 10.1016/S0006-3223(00)01120-3 10.1073/pnas.0500515102 10.1007/BF02193086 10.1093/brain/122.4.593 10.1016/S0920-9964(97)00087-X 10.1126/science.1121114 10.1111/j.1368-5031.2005.00501.x 10.1016/0166-4328(95)00162-X 10.1016/j.tins.2004.03.012 10.1016/S0006-3223(99)00018-9 10.1074/jbc.M604959200 10.1016/j.tig.2003.12.006 10.1038/ncb1328 10.1001/archpsyc.62.11.1205 10.1016/j.neuron.2006.09.023 10.1073/pnas.0702157104 10.1126/science.1112915 10.1093/hmg/8.3.387 10.1038/sj.mp.4001457 10.1016/j.neuron.2007.04.015 10.1073/pnas.0500330102 10.1016/j.biopsych.2006.02.024 10.1097/01.wnr.0000175248.25535.f6 10.1016/S0920-9964(96)00122-3 10.1016/S0920-9964(01)00163-3 10.1038/nrn1648 10.1038/sj.mp.4001574 10.1073/pnas.0511189103 10.1016/j.biopsych.2006.03.032 10.1016/S0925-4927(01)00072-5 10.1523/JNEUROSCI.23-15-06315.2003 10.1176/appi.ajp.157.4.489 10.1002/mrm.1910400403 10.1038/sj.mp.4001731 10.1002/mrm.1174 10.1007/s002130100810 10.1016/j.biopsych.2006.04.008 10.1038/nn819 |
ContentType | Journal Article |
Copyright | Copyright 2007 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Sep 4, 2007 2007 by The National Academy of Sciences of the USA 2007 |
Copyright_xml | – notice: Copyright 2007 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Sep 4, 2007 – notice: 2007 by The National Academy of Sciences of the USA 2007 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 7X8 5PM |
DOI | 10.1073/pnas.0704774104 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Biotechnology Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts Virology and AIDS Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 14506 |
ExternalDocumentID | 1331424411 10_1073_pnas_0704774104 17675407 104_36_14501 25436700 US201300804316 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH069853 – fundername: NIA NIH HHS grantid: P01-AG-017688 – fundername: NIMH NIH HHS grantid: MH-069853 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ADACV AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 7X8 5PM |
ID | FETCH-LOGICAL-c620t-632411170b504e1f51a604bd60e324349053d5cd3e2635dc4d7f13bc988dca493 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:07:49 EDT 2024 Fri Oct 25 23:22:27 EDT 2024 Fri Oct 25 22:09:47 EDT 2024 Thu Oct 10 17:14:43 EDT 2024 Fri Dec 06 02:52:49 EST 2024 Sat Nov 02 11:54:59 EDT 2024 Thu May 30 08:51:16 EDT 2019 Wed Nov 11 00:29:44 EST 2020 Tue Dec 10 23:05:27 EST 2024 Wed Dec 27 19:01:28 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c620t-632411170b504e1f51a604bd60e324349053d5cd3e2635dc4d7f13bc988dca493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: T.H. and H.J.-P. contributed equally to this work; T.H., H.J.-P., and A.S. designed research; T.H., H.J.-P., S.S., C.H., S. Kong, R.X., M.A., and S.T. performed research; S.M., M.G., M.P., and S. Kida contributed new reagents/analytic tools; T.H., H.J.-P., K.O., D.W., and K.I. analyzed data; and T.H., H.J.-P., and A.S. wrote the paper. Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 5, 2007 |
OpenAccessLink | https://europepmc.org/articles/pmc1964873?pdf=render |
PMID | 17675407 |
PQID | 201298945 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1964873 crossref_primary_10_1073_pnas_0704774104 pnas_primary_104_36_14501 proquest_miscellaneous_68239242 proquest_journals_201298945 pubmed_primary_17675407 pnas_primary_104_36_14501_fulltext jstor_primary_25436700 proquest_miscellaneous_20800318 fao_agris_US201300804316 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2007-09-04 |
PublicationDateYYYYMMDD | 2007-09-04 |
PublicationDate_xml | – month: 09 year: 2007 text: 2007-09-04 day: 04 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2007 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 Pletnikov MV (e_1_3_4_13_2) 2007 e_1_3_4_28_2 e_1_3_4_29_2 Ishizuka K (e_1_3_4_7_2) 2007 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_17_2 doi: 10.1523/JNEUROSCI.10-06-01788.1990 – ident: e_1_3_4_18_2 doi: 10.1016/j.neuron.2004.05.003 – ident: e_1_3_4_27_2 doi: 10.1523/JNEUROSCI.5054-05.2006 – ident: e_1_3_4_4_2 doi: 10.1016/j.biopsych.2006.03.065 – ident: e_1_3_4_23_2 doi: 10.1016/S0006-3223(00)01120-3 – ident: e_1_3_4_36_2 doi: 10.1073/pnas.0500515102 – ident: e_1_3_4_21_2 doi: 10.1007/BF02193086 – year: 2007 ident: e_1_3_4_13_2 publication-title: Neurosci Res contributor: fullname: Pletnikov MV – ident: e_1_3_4_31_2 doi: 10.1093/brain/122.4.593 – ident: e_1_3_4_22_2 doi: 10.1016/S0920-9964(97)00087-X – ident: e_1_3_4_10_2 doi: 10.1126/science.1121114 – ident: e_1_3_4_33_2 doi: 10.1111/j.1368-5031.2005.00501.x – ident: e_1_3_4_2_2 doi: 10.1016/0166-4328(95)00162-X – ident: e_1_3_4_41_2 doi: 10.1016/j.tins.2004.03.012 – ident: e_1_3_4_20_2 doi: 10.1016/S0006-3223(99)00018-9 – ident: e_1_3_4_19_2 doi: 10.1074/jbc.M604959200 – ident: e_1_3_4_30_2 doi: 10.1016/j.tig.2003.12.006 – ident: e_1_3_4_12_2 doi: 10.1038/ncb1328 – ident: e_1_3_4_37_2 doi: 10.1001/archpsyc.62.11.1205 – ident: e_1_3_4_1_2 doi: 10.1016/j.neuron.2006.09.023 – ident: e_1_3_4_16_2 doi: 10.1073/pnas.0702157104 – year: 2007 ident: e_1_3_4_7_2 publication-title: Mol Psychiatry contributor: fullname: Ishizuka K – ident: e_1_3_4_11_2 doi: 10.1126/science.1112915 – ident: e_1_3_4_15_2 doi: 10.1093/hmg/8.3.387 – ident: e_1_3_4_29_2 doi: 10.1038/sj.mp.4001457 – ident: e_1_3_4_8_2 doi: 10.1016/j.neuron.2007.04.015 – ident: e_1_3_4_39_2 doi: 10.1073/pnas.0500330102 – ident: e_1_3_4_3_2 doi: 10.1016/j.biopsych.2006.02.024 – ident: e_1_3_4_35_2 doi: 10.1097/01.wnr.0000175248.25535.f6 – ident: e_1_3_4_25_2 doi: 10.1016/S0920-9964(96)00122-3 – ident: e_1_3_4_34_2 doi: 10.1016/S0920-9964(01)00163-3 – ident: e_1_3_4_24_2 doi: 10.1038/nrn1648 – ident: e_1_3_4_14_2 doi: 10.1038/sj.mp.4001574 – ident: e_1_3_4_6_2 doi: 10.1073/pnas.0511189103 – ident: e_1_3_4_9_2 doi: 10.1016/j.biopsych.2006.03.032 – ident: e_1_3_4_32_2 doi: 10.1016/S0925-4927(01)00072-5 – ident: e_1_3_4_26_2 doi: 10.1523/JNEUROSCI.23-15-06315.2003 – ident: e_1_3_4_40_2 doi: 10.1176/appi.ajp.157.4.489 – ident: e_1_3_4_43_2 doi: 10.1002/mrm.1910400403 – ident: e_1_3_4_38_2 doi: 10.1038/sj.mp.4001731 – ident: e_1_3_4_44_2 doi: 10.1002/mrm.1174 – ident: e_1_3_4_28_2 doi: 10.1007/s002130100810 – ident: e_1_3_4_5_2 doi: 10.1016/j.biopsych.2006.04.008 – ident: e_1_3_4_42_2 doi: 10.1038/nn819 |
SSID | ssj0009580 |
Score | 2.472113 |
Snippet | Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14501 |
SubjectTerms | Animals Behavior modeling Behavior, Animal Biological Sciences Biomarkers Disease models Disease Models, Animal Genes, Dominant - genetics Genetics Genotype & phenotype Hippocampus Human genetics Humans Lateral ventricles Medical genetics Mental illness Mice Mice, Transgenic Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neurons Phenotype Rodents Schizophrenia Schizophrenia - diagnosis Schizophrenia - genetics Schizophrenia - physiopathology Transgenic animals |
Title | Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans |
URI | https://www.jstor.org/stable/25436700 http://www.pnas.org/content/104/36/14501.abstract https://www.ncbi.nlm.nih.gov/pubmed/17675407 https://www.proquest.com/docview/201298945 https://search.proquest.com/docview/20800318 https://search.proquest.com/docview/68239242 https://pubmed.ncbi.nlm.nih.gov/PMC1964873 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61PXFBFCgNhWIhDuWQ3SR2Xke0pSpIRUhlpd4sv1JW2k1WJD30xF9nxkl2t4heuMaOFWVmPGPPN98AfDBxbI2NdOjI3ESqdViWaRHamLvSaoVqQMXJV9-yy7n4epPe7EE61sJ40L7Ri0m9XE3qxU-PrVyvzHTEiU2_X82IRKrI-XQf9tH9jkf0DdNu0dedJLj9ikSMfD44f12rdoI6LjDmwWMIEYYSl4mgXrI7Xmm_Us0ITyTOU3zrX_Hn3zDKHb908QyeDgEl-9R_-CHsufo5HA4m27KzgVf64wv4fd70uJewdree75udf7mexawjf4WKtDCMmtMzu2jXS3XP2l1AXqgGQTrLCBfW0OVty6yjLAQ-0_ds1d83tv2CS9VRWRbrGuYbAbYvYX7x-cfsMhz6L4QmS6IuJCb3mDrT6DQSLq7SWGWR0DaLHI5wUaIB29RY7ojRxhph8yrm2pRFYY0SJT-Cg7qp3TGwOM-jCs9K1piEEvplWUWcY7RjVSHKJA_gbPz_ct3TbEifHs-5pP8vt1IL4BjlI9UtboJyfp1Q6hXDXirpD-DIC22zBFX6Ux1SAIFfZbu0kDzDY08axQG8f3RMVgMCJ4CTUf5yMPJWJnSJV5QiDeDdZhStk1IuqnbNHU0p_Lb5-IysSDBEFUkAr3pt2n7IoJsB5A_0bDOBmMEfjqDBeIbwwUBe__ebJ_Ckv8SmzNkbOOh-3bm3GH11-pR8X3rqbe4P0Zwswg |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPbSXqrSlBFqwqh7oIbtx7Dx8rBbQ0rKoEqzEzXJsh660m6xIOHDqX68nj92lKpde44eszIw99nzzDcAXTanRJsh8i-bGoyzzhYhS31BmhcmUUwNMTp5cxeMp_34b3W5B1OfCNKB9nc0GxXwxKGa_GmzlcqGHPU5s-HMyQhKpNGHDbXgRsUTQ_pK-4tpN28yT0G3APOQ9o48bsSxUNXBazp3X4y4iSBmKbCYcq8lunEvbuSp7gCKynrpR__JA_wZSbpxM52_gdedSkm_t0ndhyxZvYbcz2oqcdMzSX9_B79OyRb74hb1rGL_J6cX1iJIaTyynSjNNsDw9MbNqOVePpNqE5PmqE6U1BJFhJT7fVsRYjEO4b9kjWbQvjlU74VzVmJhF6pI0pQCr9zA9P7sZjf2uAoOv4zCofeRyp1ibJosCbmkeURUHPDNxYF0L48KZsIm0YRY5bYzmJskpy7RIU6MVF2wPdoqysPtAaJIEubstGa1DDOkLkQeMOX_HqJSLMPHgpP__ctkSbcgmQJ4wif9frqXmwb6Tj1R3bhuU0-sQg6_O8cWkfg_2GqGtpsBcf8xE8sBrZllPzSWL3cUnCqgHn59tk3mHwfHgsJe_7My8kiE-46WCRx4cr1qdfWLQRRW2fMAuabNxPt8jTkPnpPLQgw-tNq0X0ummB8kTPVt1QG7wpy3OZBqO8M5EDv575DG8HN9MLuXlxdWPQ3jVPmljHO0j7NT3D_aT88Xq7KixvD-tly8x |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIiEuiAKlpkAtxKEc0k1i53VEu6xaoFWlslJvlmM7ZaXdZEXSQ0_8dWby2N0ieuEaP2RlZuyx55tvAD6aILDG-rnnyNxklOdelkWpZwPhMptrVANKTj6_iE9n8ut1dL1V6qsF7Zt8flIulifl_GeLrVwtzWjAiY0uz8dEIpUmYrSyxWgHHkcClWy4qK_5dtMu-yTETViGcmD1oVGlrk9Q0yV6PngZIdpQYjSRVFF262zaKXQ1gBSJ-RRH_csL_RtMuXU6TZ_Ds96t5J-75e_BI1e-gL3ecGt-3LNLf3oJvydVh37xSnfTsn7zydnVOOANnVqoTnPDqUQ9t_N6tdB3vN6G5Xm6F6eznNBhFT3h1tw6ikXgt_yOL7tXx7qbcKEbSs7iTcXbcoD1K5hNv_wYn3p9FQbPxKHfeMTnHlB9mjzypQuKKNCxL3Mb-w5bhMzQjG1krHDEa2ONtEkRiNxkaWqNlpnYh92yKt0B8CBJ_AJvTNaYkML6WVb4QqDPY3UqszBhcDz8f7XqyDZUGyRPhKL_rzZSY3CA8lH6BrdCNbsKKQCLzi8l9jPYb4W2noLy_SkbiQFrZ9lMLZWI8fIT-QGDDw-2qaLH4TA4HOSvelOvVUhPeWkmIwZH61a0UQq86NJVt9QlbTfPh3vEaYiOqgwZvO60abOQXjcZJPf0bN2B-MHvt6DZtDzhvZm8-e-RR_DkcjJV388uvh3C0-5Vm0Jpb2G3-XXr3qE71uTvW8P7AwiAMEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dominant-negative+DISC1+transgenic+mice+display+schizophrenia-associated+phenotypes+detected+by+measures+translatable+to+humans&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Takatoshi+Hikida&rft.au=Hanna+Jaaro-Peled&rft.au=Saurav+Seshadri&rft.au=Kenichi+Oishi&rft.date=2007-09-04&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=104&rft.issue=36&rft.spage=14501&rft_id=info:doi/10.1073%2Fpnas.0704774104&rft_id=info%3Apmid%2F17675407&rft.externalDBID=n%2Fa&rft.externalDocID=104_36_14501 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F36.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F36.cover.gif |