DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status
A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B₁₂ and folate) and methionine, within normal ph...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 49; pp. 19351 - 19356 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
04.12.2007
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B₁₂ and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure-effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes. |
---|---|
AbstractList | A complex combination of adult health-related disorders can originate from developmental events that occur
in utero
. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B
12
and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure–effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes. A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B₁₂ and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure-effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes. A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B sub(12) and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure-effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes. A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B(12) and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure-effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes. A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B... and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure-effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Maloney, Christopher A McEvoy, Tom G Lea, Richard G Allegrucci, Cinzia Huntley, John F Sebastian, Sonia Young, Lorraine E Gardner, David S Rees, William D Craigon, Jim Sinclair, Kevin D Singh, Ravinder Bispham, Jayson Thurston, Alexandra |
Author_xml | – sequence: 1 fullname: Sinclair, Kevin D – sequence: 2 fullname: Allegrucci, Cinzia – sequence: 3 fullname: Singh, Ravinder – sequence: 4 fullname: Gardner, David S – sequence: 5 fullname: Sebastian, Sonia – sequence: 6 fullname: Bispham, Jayson – sequence: 7 fullname: Thurston, Alexandra – sequence: 8 fullname: Huntley, John F – sequence: 9 fullname: Rees, William D – sequence: 10 fullname: Maloney, Christopher A – sequence: 11 fullname: Lea, Richard G – sequence: 12 fullname: Craigon, Jim – sequence: 13 fullname: McEvoy, Tom G – sequence: 14 fullname: Young, Lorraine E |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18042717$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gzAmwOCAhdVt_xvEFqZRPqYID9Gw52cnWq8RObadi_wM_GodddYELJ9szz7zjmfcYHfjgAaGnlJxRovj56G06I4ooJmtKxAN0RImmi0pocoCOCGFqUQsmDtFxSmtCiJY1eYQOaU0EU1QdoZ_vvlzgAfLNprfZBX-KnU9T7zyOkFzK1rdwiq1f4qYPYYnHEk5ThILh0HVpjM6v8BIyxMF5KNgGD7a8vO3xCNG1oSiMs3QJvMV3LtsC_lac25Z4KcOlUZ7SY_Sws32CJ7vzBF1_eP_98tPi6uvHz5cXV4u2YiQvpLQaGNS8FpJTy4nmlHPNmOLcguKN0k1baeiqhlPKBFcAVLGGVeVK24afoDdb3XFqBli24HO0vSmzDDZuTLDO_J3x7saswp1hVNRM8yLwaicQw-0EKZvBpRb63noIUzKMSCKklgV8-Q-4DtO8m5mhXNS8mqHzLdTGkFKE7v4nlJjZZjPbbPY2l4rnfw6w53e-FgDvgLlyLyeM0IZqLmlBXv8HMd3U9xl-5MI-27LrlEO8h5kUkig67-PFNt_ZYOwqumSuv80DElJzXnPNfwF2ndLu |
CitedBy_id | crossref_primary_10_1530_REP_17_0466 crossref_primary_10_1016_j_jnutbio_2018_05_010 crossref_primary_10_1111_j_1740_8709_2010_00261_x crossref_primary_10_3389_fvets_2021_686609 crossref_primary_10_1111_j_1471_0528_2011_02984_x crossref_primary_10_3390_antiox9060498 crossref_primary_10_1002_wsbm_77 crossref_primary_10_1093_humrep_dep286 crossref_primary_10_1007_s00394_010_0119_6 crossref_primary_10_1016_j_yjmcc_2017_06_006 crossref_primary_10_1242_dev_103952 crossref_primary_10_1371_journal_pone_0077881 crossref_primary_10_1080_1028415X_2017_1331524 crossref_primary_10_1152_ajpregu_00391_2017 crossref_primary_10_1530_REP_10_0482 crossref_primary_10_3945_jn_112_172593 crossref_primary_10_1016_j_plefa_2015_04_007 crossref_primary_10_1080_15592294_2024_2333586 crossref_primary_10_1002_em_21916 crossref_primary_10_3109_03014460_2011_592513 crossref_primary_10_1038_ncomms12359 crossref_primary_10_1111_j_1749_6632_2010_05798_x crossref_primary_10_1186_s40104_019_0396_8 crossref_primary_10_1515_bmc_2015_0009 crossref_primary_10_3390_agriculture14071102 crossref_primary_10_1016_j_aquaculture_2015_03_032 crossref_primary_10_1016_j_gyobfe_2008_06_020 crossref_primary_10_1016_j_jnim_2019_100104 crossref_primary_10_1071_RD16102 crossref_primary_10_1002_mnfr_201100150 crossref_primary_10_1097_MCO_0b013e328361f96d crossref_primary_10_1152_japplphysiol_00068_2010 crossref_primary_10_3168_jds_2018_15110 crossref_primary_10_1371_journal_pone_0089839 crossref_primary_10_1038_s41568_019_0187_8 crossref_primary_10_1016_j_cnd_2013_07_002 crossref_primary_10_1002_oby_24012 crossref_primary_10_1016_j_tins_2013_08_002 crossref_primary_10_3945_an_110_1004 crossref_primary_10_1113_jphysiol_2007_150227 crossref_primary_10_1096_fj_12_224642 crossref_primary_10_1113_jphysiol_2007_149229 crossref_primary_10_1139_bcb_2017_0133 crossref_primary_10_3945_an_111_001008 crossref_primary_10_1016_j_arteri_2012_01_004 crossref_primary_10_1007_s00441_014_1824_x crossref_primary_10_1111_bph_12854 crossref_primary_10_2174_1573399818666220422085016 crossref_primary_10_1093_humrep_des459 crossref_primary_10_1093_humupd_dmp025 crossref_primary_10_1007_s00726_008_0193_8 crossref_primary_10_1371_journal_pone_0112991 crossref_primary_10_1007_s00246_015_1204_7 crossref_primary_10_1016_j_theriogenology_2016_04_023 crossref_primary_10_1371_journal_pgen_1001380 crossref_primary_10_3390_nu16111632 crossref_primary_10_3945_jn_111_144717 crossref_primary_10_1016_j_gyobfe_2012_07_010 crossref_primary_10_1071_RD11908 crossref_primary_10_1017_S1751731118001337 crossref_primary_10_1038_s41598_017_09522_5 crossref_primary_10_1134_S2079057014010159 crossref_primary_10_3390_diabetology4030023 crossref_primary_10_1016_j_atherosclerosis_2014_09_027 crossref_primary_10_1002_jcla_24846 crossref_primary_10_1155_2021_6652231 crossref_primary_10_1371_journal_pone_0007845 crossref_primary_10_3164_jcbn_13_48 crossref_primary_10_1530_REP_13_0478 crossref_primary_10_1080_15592294_2015_1117889 crossref_primary_10_1007_s12199_013_0328_8 crossref_primary_10_1002_jat_3430 crossref_primary_10_2903_j_efsa_2023_8353 crossref_primary_10_1152_ajpregu_90724_2008 crossref_primary_10_4162_nrp_2023_17_1_13 crossref_primary_10_1096_fj_202100991R crossref_primary_10_1186_s40104_017_0205_1 crossref_primary_10_1016_j_theriogenology_2018_07_008 crossref_primary_10_7759_cureus_31305 crossref_primary_10_1093_jn_nxab039 crossref_primary_10_1093_cvr_cvr201 crossref_primary_10_1016_j_ijgo_2008_11_034 crossref_primary_10_1093_molehr_gat020 crossref_primary_10_1016_j_jnutbio_2013_02_008 crossref_primary_10_1371_journal_pone_0026111 crossref_primary_10_4161_epi_7_3_19082 crossref_primary_10_1097_MCO_0b013e328338aa61 crossref_primary_10_1530_REP_09_0219 crossref_primary_10_1007_s11154_008_9087_z crossref_primary_10_3945_ajcn_110_000927 crossref_primary_10_1111_nbu_12281 crossref_primary_10_1576_toag_13_1_43_27640 crossref_primary_10_1017_jns_2014_69 crossref_primary_10_1002_mnfr_201700951 crossref_primary_10_1071_AN13140 crossref_primary_10_1152_physiolgenomics_00086_2018 crossref_primary_10_1097_EDE_0000000000000380 crossref_primary_10_1371_journal_pone_0118466 crossref_primary_10_1017_S0043933911000274 crossref_primary_10_1017_S0007114511003175 crossref_primary_10_1111_jpn_12933 crossref_primary_10_4161_epi_6_2_13516 crossref_primary_10_3390_genes13010031 crossref_primary_10_1002_vms3_750 crossref_primary_10_3390_nu7031378 crossref_primary_10_1007_s12098_012_0834_5 crossref_primary_10_1007_s00018_013_1427_9 crossref_primary_10_1038_ejcn_2013_232 crossref_primary_10_1017_S0007114515004663 crossref_primary_10_1017_S0007114519000497 crossref_primary_10_1007_s11356_021_13862_1 crossref_primary_10_3945_ajcn_112_048462 crossref_primary_10_1071_RD14377 crossref_primary_10_1161_HYPERTENSIONAHA_118_11171 crossref_primary_10_3389_fped_2018_00036 crossref_primary_10_1001_jamanetworkopen_2023_14934 crossref_primary_10_1093_toxsci_kfr024 crossref_primary_10_1590_1984_3143_ar2022_0076 crossref_primary_10_1111_j_1469_7580_2008_00977_x crossref_primary_10_1016_j_rbmo_2013_09_008 crossref_primary_10_1159_000352009 crossref_primary_10_3945_jn_109_111237 crossref_primary_10_1071_RD13290 crossref_primary_10_1017_S0007114509992662 crossref_primary_10_1038_s41430_023_01333_4 crossref_primary_10_3390_ijerph18189874 crossref_primary_10_1071_RD15353 crossref_primary_10_1017_S0007114514002827 crossref_primary_10_1111_j_1476_5381_2012_02002_x crossref_primary_10_1016_j_cvfa_2013_07_001 crossref_primary_10_1371_journal_pone_0028745 crossref_primary_10_1002_tox_23689 crossref_primary_10_1016_j_jacl_2012_04_079 crossref_primary_10_1002_jcp_25989 crossref_primary_10_1152_ajplung_00192_2023 crossref_primary_10_1186_s12916_014_0251_x crossref_primary_10_1556_OH_2009_28611 crossref_primary_10_1016_j_jnutbio_2022_109176 crossref_primary_10_1095_biolreprod_108_068213 crossref_primary_10_1111_1440_1681_12061 crossref_primary_10_3389_fgene_2018_00342 crossref_primary_10_1152_ajpheart_00981_2013 crossref_primary_10_1016_j_cbpb_2018_01_008 crossref_primary_10_1098_rstb_2012_0251 crossref_primary_10_3389_fvets_2023_1301986 crossref_primary_10_1515_tnsci_2017_0019 crossref_primary_10_1371_journal_pone_0065241 crossref_primary_10_1146_annurev_animal_020518_115206 crossref_primary_10_1242_dev_172205 crossref_primary_10_1038_s41598_018_24505_w crossref_primary_10_1071_RD23146 crossref_primary_10_2217_clp_09_4 crossref_primary_10_1017_S1368980019004580 crossref_primary_10_3945_ajcn_2009_27113F crossref_primary_10_1016_j_cell_2013_03_004 crossref_primary_10_3390_nu11030608 crossref_primary_10_1016_j_placenta_2020_10_020 crossref_primary_10_1071_RD12262 crossref_primary_10_3389_fcell_2020_619888 crossref_primary_10_1093_nutrit_nuw033 crossref_primary_10_1071_RD14455 crossref_primary_10_3389_fgene_2022_812764 crossref_primary_10_1093_af_vfac061 crossref_primary_10_1021_es3028082 crossref_primary_10_1111_mec_13436 crossref_primary_10_3389_fendo_2019_00673 crossref_primary_10_3390_nu7042748 crossref_primary_10_1007_s12263_010_0199_1 crossref_primary_10_1016_j_scitotenv_2023_165300 crossref_primary_10_3945_jn_109_106666 crossref_primary_10_1071_RD14333 crossref_primary_10_3390_ijms21093290 crossref_primary_10_1371_journal_pone_0249924 crossref_primary_10_1186_s12967_015_0384_5 crossref_primary_10_1017_S2040174415001105 crossref_primary_10_1016_j_arteri_2011_02_004 crossref_primary_10_1017_S204017441300038X crossref_primary_10_2527_jas_2011_4516 crossref_primary_10_34883_PI_2021_11_1_023 crossref_primary_10_1080_15592294_2021_2003043 crossref_primary_10_3389_fgene_2016_00182 crossref_primary_10_1017_S0007114508159025 crossref_primary_10_1016_j_mppsy_2008_10_006 crossref_primary_10_1556_OH_2012_29347 crossref_primary_10_1016_j_theriogenology_2012_06_012 crossref_primary_10_1152_physiolgenomics_00145_2012 crossref_primary_10_1016_j_jnutbio_2015_08_009 crossref_primary_10_2217_epi_14_84 crossref_primary_10_1016_j_theriogenology_2012_06_016 crossref_primary_10_1073_pnas_0806560105 crossref_primary_10_2527_jas_2015_9192 crossref_primary_10_3390_genes13081446 crossref_primary_10_1007_s40614_016_0068_3 crossref_primary_10_1080_19440049_2016_1191380 crossref_primary_10_3945_jn_109_116327 crossref_primary_10_1007_s12263_008_0095_0 crossref_primary_10_1017_S2040174416000477 crossref_primary_10_3390_ijms21083005 crossref_primary_10_1016_j_smallrumres_2017_06_021 crossref_primary_10_1093_jas_skae044 crossref_primary_10_3390_ijms22041838 crossref_primary_10_3168_jds_2019_16718 crossref_primary_10_3389_fgene_2022_791283 crossref_primary_10_1186_1743_1050_5_5 crossref_primary_10_1371_journal_pone_0082989 crossref_primary_10_3109_17477166_2010_486835 crossref_primary_10_1186_s12881_014_0108_3 crossref_primary_10_1289_ehp_1103927 crossref_primary_10_1017_S0007114513001463 crossref_primary_10_3390_nu6062165 crossref_primary_10_1056_NEJMra0708473 crossref_primary_10_1017_S2040174421000222 crossref_primary_10_1262_jrd_2011_002 crossref_primary_10_1093_humrep_den466 crossref_primary_10_3390_nu7042401 crossref_primary_10_1016_j_mam_2012_06_010 crossref_primary_10_1186_s12861_018_0176_2 crossref_primary_10_1002_bdr2_2063 crossref_primary_10_1111_j_1753_4887_2010_00326_x crossref_primary_10_1016_j_jnutbio_2009_06_008 crossref_primary_10_1038_nrrheum_2011_16 crossref_primary_10_1016_j_jevs_2016_03_019 crossref_primary_10_1016_j_gde_2015_06_003 crossref_primary_10_2353_ajpath_2010_090153 crossref_primary_10_1007_s00125_021_05510_7 crossref_primary_10_3390_ani11071934 crossref_primary_10_1096_fj_201701503RR crossref_primary_10_53588_alpa281201 crossref_primary_10_1016_j_rbmo_2013_06_003 crossref_primary_10_1002_em_20590 crossref_primary_10_3390_ijerph16152786 crossref_primary_10_1007_s10815_014_0255_7 crossref_primary_10_1111_jog_14599 crossref_primary_10_1203_PDR_0b013e31819d98be crossref_primary_10_1017_S2040174415001415 crossref_primary_10_3389_fped_2020_00587 crossref_primary_10_1152_ajpregu_00413_2009 crossref_primary_10_1017_S0007114515004936 crossref_primary_10_1111_rda_12341 crossref_primary_10_1007_s12192_023_01325_0 crossref_primary_10_1093_humrep_dew177 crossref_primary_10_1017_S0007114513002213 crossref_primary_10_1093_ije_dyr147 crossref_primary_10_7717_peerj_10762 crossref_primary_10_3945_jn_114_194571 crossref_primary_10_1093_toxsci_kfx092 crossref_primary_10_1093_af_vfab056 crossref_primary_10_1186_s12859_019_2825_2 crossref_primary_10_3389_fgene_2017_00115 crossref_primary_10_3389_fgene_2021_557934 crossref_primary_10_1186_s12937_022_00772_2 crossref_primary_10_1007_s11010_020_03713_x crossref_primary_10_1093_ije_dyr153 crossref_primary_10_3390_ani12080997 crossref_primary_10_1111_1471_0528_13574 crossref_primary_10_3389_fanim_2021_730356 crossref_primary_10_3390_nu10101407 crossref_primary_10_1007_s10528_018_9863_8 crossref_primary_10_1016_j_lfs_2014_09_026 crossref_primary_10_1016_j_placenta_2012_07_018 crossref_primary_10_1155_2020_9251980 crossref_primary_10_1093_nutrit_nuy006 crossref_primary_10_1371_journal_pone_0082616 crossref_primary_10_3390_biomedicines12020351 crossref_primary_10_1017_S2040174414000464 crossref_primary_10_1530_REP_09_0517 crossref_primary_10_1016_j_cvfa_2018_12_001 crossref_primary_10_1017_S0007114517002501 crossref_primary_10_1002_ptr_7343 crossref_primary_10_1016_j_jchromb_2022_123230 crossref_primary_10_1139_Y09_006 crossref_primary_10_1073_pnas_0913843107 crossref_primary_10_1017_S2040174412000487 crossref_primary_10_1089_ars_2012_4554 crossref_primary_10_1186_s13148_016_0174_9 crossref_primary_10_1113_jphysiol_2011_220186 crossref_primary_10_2139_ssrn_4152859 crossref_primary_10_1111_1471_0528_12592 crossref_primary_10_1016_j_placenta_2012_02_005 crossref_primary_10_1016_j_theriogenology_2016_01_024 crossref_primary_10_1080_15592294_2024_2318516 crossref_primary_10_1093_ajcn_nqac214 crossref_primary_10_4137_NMI_S29527 crossref_primary_10_1038_onc_2014_422 crossref_primary_10_1111_cea_13056 crossref_primary_10_1016_j_aninu_2022_07_002 crossref_primary_10_1016_j_ijvsm_2018_01_005 crossref_primary_10_3389_fmicb_2018_01379 crossref_primary_10_1016_j_physbeh_2016_01_041 crossref_primary_10_1093_toxsci_kfz008 crossref_primary_10_1007_s00125_013_3086_7 crossref_primary_10_1080_07420528_2017_1305964 crossref_primary_10_1530_JOE_18_0676 crossref_primary_10_1016_j_neuroscience_2019_09_016 crossref_primary_10_1016_j_mam_2017_01_008 crossref_primary_10_1208_s12248_013_9538_7 crossref_primary_10_1007_s12263_012_0314_6 crossref_primary_10_1016_j_domaniend_2014_10_003 crossref_primary_10_3945_jn_109_119453 crossref_primary_10_1093_tas_txz062 crossref_primary_10_1186_s12863_015_0303_z crossref_primary_10_1016_j_yjmcc_2014_12_006 crossref_primary_10_1016_j_animal_2020_100055 crossref_primary_10_1055_a_2159_9128 crossref_primary_10_1108_JHR_05_2020_0172 crossref_primary_10_1002_ajpa_23057 crossref_primary_10_1016_j_biochi_2013_10_003 crossref_primary_10_1093_nutrit_nuae048 crossref_primary_10_1017_S0954422411000102 crossref_primary_10_1002_mnfr_202000734 crossref_primary_10_1007_s10995_015_1824_9 crossref_primary_10_1007_s10654_010_9510_0 crossref_primary_10_1016_j_jnutbio_2015_04_013 crossref_primary_10_1016_j_jnutbio_2021_108796 crossref_primary_10_1017_S2040174413000317 crossref_primary_10_1039_D0FO00896F crossref_primary_10_1002_jez_b_22571 crossref_primary_10_1161_HYPERTENSIONAHA_119_14621 crossref_primary_10_1007_s12020_011_9548_0 crossref_primary_10_4161_epi_6_1_13392 crossref_primary_10_1093_ndt_gft537 crossref_primary_10_1371_journal_pone_0033290 crossref_primary_10_1210_en_2011_2161 crossref_primary_10_3945_ajcn_110_001040 crossref_primary_10_4239_wjd_v1_i3_89 crossref_primary_10_1111_jch_12899 crossref_primary_10_3389_fphar_2016_00050 crossref_primary_10_1017_S0029665108008744 crossref_primary_10_1073_pnas_1615688114 crossref_primary_10_1002_mrd_22605 crossref_primary_10_1017_S0007114522001490 crossref_primary_10_1371_journal_pone_0071691 crossref_primary_10_1186_s12935_019_1012_x crossref_primary_10_1007_s11356_023_25236_w crossref_primary_10_1038_nrg3142 crossref_primary_10_1371_journal_pone_0086822 crossref_primary_10_2217_epi_2017_0081 crossref_primary_10_1007_s10995_011_0782_0 crossref_primary_10_1016_j_drudis_2011_09_008 crossref_primary_10_1017_S0029665111003338 crossref_primary_10_1017_S1751731110000479 crossref_primary_10_1017_S1751731110000595 crossref_primary_10_1016_j_cell_2013_09_002 crossref_primary_10_1556_OH_2011_29169 crossref_primary_10_1016_j_jchromb_2016_01_026 crossref_primary_10_1093_jas_skab180 crossref_primary_10_7762_cnr_2014_3_1_1 crossref_primary_10_1016_j_jnutbio_2016_12_013 crossref_primary_10_1095_biolreprod_109_080952 crossref_primary_10_1186_2042_6410_5_2 crossref_primary_10_28982_josam_669066 crossref_primary_10_1186_s12977_014_0112_x crossref_primary_10_1186_s12864_021_07538_w crossref_primary_10_3390_nu14091918 crossref_primary_10_1152_ajpregu_00549_2016 crossref_primary_10_1242_dev_121731 crossref_primary_10_3168_jds_2022_23068 crossref_primary_10_1093_ije_dyu132 crossref_primary_10_1186_s12263_020_00677_x crossref_primary_10_1016_j_bbagen_2009_01_009 crossref_primary_10_1016_j_mce_2010_10_018 crossref_primary_10_1111_j_1469_7580_2008_01033_x crossref_primary_10_3390_ijerph18179380 crossref_primary_10_3390_ijms141224422 crossref_primary_10_1098_rstb_2009_0184 crossref_primary_10_3389_fnut_2022_1048122 crossref_primary_10_1038_s41598_017_04003_1 crossref_primary_10_3390_ijms19124055 crossref_primary_10_1007_s11154_012_9214_8 crossref_primary_10_1177_1933719115594018 crossref_primary_10_3390_nu7115467 crossref_primary_10_3389_fphar_2020_00097 crossref_primary_10_1002_wsbm_1333 crossref_primary_10_1177_0009922817729482 crossref_primary_10_3389_fcell_2021_726513 crossref_primary_10_1371_journal_pone_0244971 crossref_primary_10_1093_hmg_ddp088 crossref_primary_10_1017_S0021859620000210 crossref_primary_10_1155_2011_592408 crossref_primary_10_1371_journal_pone_0007393 crossref_primary_10_1038_ijo_2017_160 crossref_primary_10_14814_phy2_12564 crossref_primary_10_1017_S0007114509288994 crossref_primary_10_2147_CMAR_S275321 crossref_primary_10_1007_s00394_016_1359_x crossref_primary_10_1016_j_earlhumdev_2008_05_009 crossref_primary_10_1111_bph_13058 crossref_primary_10_1371_journal_pone_0072302 crossref_primary_10_1071_RD19278 crossref_primary_10_1016_j_pbiomolbio_2015_02_010 crossref_primary_10_1111_j_1528_1167_2012_03673_x crossref_primary_10_1016_j_placenta_2013_10_008 crossref_primary_10_1210_en_2011_1805 crossref_primary_10_1097_HJH_0000000000002156 crossref_primary_10_1093_biolre_iox018 crossref_primary_10_1530_REP_16_0336 crossref_primary_10_1038_nrendo_2009_102 crossref_primary_10_1002_bdr2_1959 crossref_primary_10_3389_fnut_2021_763809 crossref_primary_10_1097_FPC_0b013e328357f6af crossref_primary_10_3389_fcell_2023_1212199 crossref_primary_10_1007_s00394_017_1598_5 crossref_primary_10_1002_jsfa_13661 crossref_primary_10_1016_j_jff_2023_105965 crossref_primary_10_2217_epi_10_33 crossref_primary_10_1002_rmb2_12469 crossref_primary_10_1002_mnfr_201900377 crossref_primary_10_1007_s10654_008_9304_9 crossref_primary_10_3390_vetsci11040146 crossref_primary_10_1146_annurev_animal_031412_103649 crossref_primary_10_3945_an_113_004705 crossref_primary_10_1371_journal_pone_0063855 crossref_primary_10_1111_jnc_12677 crossref_primary_10_1186_1743_8977_10_22 crossref_primary_10_1590_S1415_47572013005000035 crossref_primary_10_1016_j_aquaculture_2016_11_039 crossref_primary_10_1016_j_pedn_2011_03_014 crossref_primary_10_1371_journal_pone_0072682 crossref_primary_10_1016_j_metabol_2024_155793 crossref_primary_10_3390_life12050609 crossref_primary_10_1186_s13072_016_0081_5 crossref_primary_10_1530_REP_11_0489 crossref_primary_10_1016_j_siny_2011_10_002 crossref_primary_10_1111_jhn_12212 crossref_primary_10_1016_j_pharmthera_2018_08_008 crossref_primary_10_1530_REP_11_0006 crossref_primary_10_1186_s12916_015_0293_8 crossref_primary_10_1017_S0007114509993783 crossref_primary_10_3390_ijms25084136 crossref_primary_10_1146_annurev_genom_031714_125740 crossref_primary_10_7243_2050_0866_1_16 crossref_primary_10_1017_S0029665109001396 crossref_primary_10_1007_s11859_013_0886_z crossref_primary_10_1007_s13148_011_0042_6 crossref_primary_10_1097_MOP_0000000000000191 crossref_primary_10_1152_ajpendo_00372_2015 crossref_primary_10_1007_s00018_013_1487_x crossref_primary_10_1002_msj_20176 crossref_primary_10_1089_ars_2011_4381 crossref_primary_10_1515_biol_2018_0024 crossref_primary_10_1089_ars_2011_4387 crossref_primary_10_1016_j_domaniend_2012_05_001 crossref_primary_10_3168_jds_2019_16562 crossref_primary_10_1096_fj_14_268979 crossref_primary_10_1071_RD08220 crossref_primary_10_3109_15622975_2013_860467 crossref_primary_10_1016_j_anireprosci_2023_107321 crossref_primary_10_1111_1440_1681_12954 crossref_primary_10_1371_journal_pone_0076705 crossref_primary_10_3390_nu15020380 crossref_primary_10_1007_s13105_017_0592_y crossref_primary_10_1016_S0140_6736_18_30312_X crossref_primary_10_1039_C6FO00148C crossref_primary_10_1021_acs_jafc_2c08373 crossref_primary_10_1093_hmg_ddp353 crossref_primary_10_1371_journal_pone_0133587 crossref_primary_10_1017_S2040174409990171 crossref_primary_10_1038_ijo_2015_189 crossref_primary_10_1016_j_rbmo_2013_02_009 crossref_primary_10_1016_j_fertnstert_2016_11_030 crossref_primary_10_1016_j_tifs_2020_04_021 crossref_primary_10_1007_s12263_013_0365_3 crossref_primary_10_15857_ksep_2022_00129 crossref_primary_10_1530_REP_18_0431 crossref_primary_10_3109_14767058_2013_879702 crossref_primary_10_1096_fj_14_266387 crossref_primary_10_1095_biolreprod_109_082164 crossref_primary_10_2217_epi_2016_0003 crossref_primary_10_14341_omet2015310_17 crossref_primary_10_1093_humupd_dms042 crossref_primary_10_1016_j_anireprosci_2015_06_017 crossref_primary_10_1007_s00424_013_1339_4 crossref_primary_10_1096_fj_14_255364 crossref_primary_10_1007_s13679_015_0175_6 crossref_primary_10_1515_bmc_2014_0038 crossref_primary_10_1007_s10654_020_00697_2 crossref_primary_10_1095_biolreprod_108_072074 crossref_primary_10_1177_2516865720970575 crossref_primary_10_1111_j_1467_789X_2009_00595_x crossref_primary_10_1001_jamanetworkopen_2022_50621 crossref_primary_10_2139_ssrn_2016469 crossref_primary_10_1038_s41598_019_54070_9 crossref_primary_10_1111_j_1365_2362_2011_02639_x crossref_primary_10_1073_pnas_1618545114 crossref_primary_10_1002_bdrc_20164 crossref_primary_10_1016_j_tem_2014_02_001 crossref_primary_10_1095_biolreprod_114_121087 crossref_primary_10_1038_nrendo_2016_37 crossref_primary_10_1210_en_2009_0481 crossref_primary_10_1017_S2040174409990195 crossref_primary_10_1210_en_2010_0094 crossref_primary_10_1186_1471_2164_14_472 crossref_primary_10_1016_j_pnpbp_2017_12_016 crossref_primary_10_1161_CIRCRESAHA_115_305206 crossref_primary_10_1007_s11892_018_1003_7 crossref_primary_10_1016_j_jaci_2010_05_025 crossref_primary_10_1152_ajpendo_00033_2017 crossref_primary_10_1177_1474651409358015 crossref_primary_10_1186_s12864_022_09066_7 crossref_primary_10_1111_dme_12390 crossref_primary_10_3390_ijms25095044 crossref_primary_10_1530_REP_14_0260 crossref_primary_10_2217_epi_2016_0022 crossref_primary_10_1017_S0967199420000635 crossref_primary_10_1071_RD16276 crossref_primary_10_1016_j_nut_2024_112383 crossref_primary_10_1186_s13148_015_0046_8 crossref_primary_10_1111_brv_12396 crossref_primary_10_1152_ajpregu_00432_2013 crossref_primary_10_1371_journal_pgen_1000811 crossref_primary_10_1530_JOE_14_0448 crossref_primary_10_2174_1874325001711011466 crossref_primary_10_1016_j_nic_2011_11_002 crossref_primary_10_1038_s41598_022_14141_w crossref_primary_10_1093_ajh_hpx003 crossref_primary_10_2478_aoas_2021_0057 crossref_primary_10_1017_S0029665112003035 crossref_primary_10_3389_fendo_2024_1287255 crossref_primary_10_1038_s41390_022_02117_5 crossref_primary_10_1111_j_1753_4887_2009_00265_x crossref_primary_10_1093_jas_skac419 crossref_primary_10_1016_j_anireprosci_2014_05_017 crossref_primary_10_1186_s40104_023_00970_w crossref_primary_10_1371_journal_pone_0189581 crossref_primary_10_1016_j_bbadis_2020_165908 crossref_primary_10_1371_journal_pone_0052791 crossref_primary_10_3390_nu12071925 crossref_primary_10_3390_ijms22126426 |
Cites_doi | 10.1079/PNS2005478 10.1093/ajcn/85.1.285S 10.1128/MCB.23.15.5293-5300.2003 10.1002/humu.20522 10.1161/01.ATV.0000134293.31512.be 10.1210/jc.2003-031965 10.1093/hmg/ddm074 10.1093/jn/128.3.661 10.1016/S1046-2023(02)00067-1 10.1079/9780851991283.0000 10.1093/ajcn/86.1.131 10.1093/hmg/ddi114 10.1016/j.mrfmmm.2005.06.028 10.1016/0305-0491(87)90317-8 10.1152/physrev.00053.2003 10.1071/R98021 10.1038/sj.onc.1205608 10.1016/j.theriogenology.2006.09.017 10.1111/j.1365-2362.1995.tb01730.x 10.1161/01.HYP.0000126991.67203.7b 10.1136/vr.134.2.33 10.1016/S0047-6374(02)00080-5 10.1016/j.vaccine.2004.04.022 10.1093/jn/135.6.1382 10.1073/pnas.0408436102 10.1016/S0140-6736(99)01046-6 10.1016/S1472-6483(10)61120-0 10.1095/biolreprod.105.041483 |
ContentType | Journal Article |
Copyright | Copyright 2007 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 4, 2007 2007 by The National Academy of Sciences of the USA 2007 |
Copyright_xml | – notice: Copyright 2007 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 4, 2007 – notice: 2007 by The National Academy of Sciences of the USA 2007 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.0707258104 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 19356 |
ExternalDocumentID | 1394694071 10_1073_pnas_0707258104 18042717 104_49_19351 25450713 US201300833839 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: U01-HD044638 – fundername: NICHD NIH HHS grantid: U01 HD044638 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ADACV AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c620t-55a9e2e8384531a3093133922733ae73b79bc69ef6b3112437ee172b264371cb3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:15:55 EDT 2024 Fri Oct 25 23:07:01 EDT 2024 Tue Nov 19 05:05:56 EST 2024 Fri Dec 06 02:52:52 EST 2024 Sat Sep 28 07:55:19 EDT 2024 Wed Nov 11 00:29:46 EST 2020 Thu May 30 08:51:21 EDT 2019 Tue Dec 10 23:05:38 EST 2024 Wed Dec 27 19:16:04 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c620t-55a9e2e8384531a3093133922733ae73b79bc69ef6b3112437ee172b264371cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved October 15, 2007 Author contributions: K.D.S., W.D.R., C.A.M., R.G.L., and L.E.Y. designed research; K.D.S., C.A., R.S., D.S.G., S.S., J.B., A.T., J.F.H., and T.G.M. performed research; K.D.S., C.A., S.S., J.B., A.T., and J.C. analyzed data; and K.D.S. and L.E.Y. wrote the paper. |
OpenAccessLink | https://europepmc.org/articles/pmc2148293?pdf=render |
PMID | 18042717 |
PQID | 201348365 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | jstor_primary_25450713 fao_agris_US201300833839 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2148293 pubmed_primary_18042717 proquest_miscellaneous_20504595 pnas_primary_104_49_19351_fulltext proquest_journals_201348365 crossref_primary_10_1073_pnas_0707258104 pnas_primary_104_49_19351 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2007-12-04 |
PublicationDateYYYYMMDD | 2007-12-04 |
PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-04 day: 04 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2007 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences – name: National Acad Sciences |
References | 15809273 - Hum Mol Genet. 2005 Apr 15;14 Spec No 1:R47-58 15181041 - J Clin Endocrinol Metab. 2004 Jun;89(6):2678-83 17049592 - Theriogenology. 2007 Jan 1;67(1):43-53 12154404 - Oncogene. 2002 Aug 12;21(35):5414-26 10335783 - Lancet. 1999 May 15;353(9165):1649-52 8135004 - Vet Rec. 1994 Jan 8;134(2):33-6 17616772 - Am J Clin Nutr. 2007 Jul;86(1):131-8 15970006 - Reprod Biomed Online. 2005 Jun;10(6):755-66 12861015 - Mol Cell Biol. 2003 Aug;23(15):5293-300 15078864 - Hypertension. 2004 Jun;43(6):1290-6 9482778 - J Nutr. 1998 Mar;128(3):661-3 12425956 - Mech Ageing Dev. 2002 Sep;123(11):1487-503 15364441 - Vaccine. 2004 Sep 28;22(29-30):3929-41 15930441 - J Nutr. 2005 Jun;135(6):1382-6 11596873 - Reprod Fertil Dev. 1998;10(3):263-9 16144704 - Mutat Res. 2006 Jan 29;593(1-2):80-7 17409196 - Hum Mol Genet. 2007 May 15;16(10):1253-68 15972884 - Biol Reprod. 2005 Nov;73(5):918-26 16441949 - Proc Nutr Soc. 2006 Feb;65(1):97-105 16909914 - Curr Top Microbiol Immunol. 2006;310:251-74 3322658 - Comp Biochem Physiol B. 1987;88(2):383-94 17436311 - Hum Mutat. 2007 Sep;28(9):856-65 15178569 - Arterioscler Thromb Vasc Biol. 2004 Aug;24(8):1498-502 15788706 - Physiol Rev. 2005 Apr;85(2):571-633 7556362 - Eur J Clin Invest. 1995 Jul;25(7):457-63 15728362 - Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3336-41 10222835 - Vital Health Stat 11. 1998 Dec;(243):1-78 12095273 - Methods. 2002 Jun;27(2):144-9 Glasby CA (e_1_3_3_27_2) 2002; 51 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_12_2 Underwood EJ (e_1_3_3_5_2) 1999 e_1_3_3_15_2 e_1_3_3_14_2 (e_1_3_3_13_2) 1980 Ehrlich M (e_1_3_3_23_2) 2006; 310 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 (e_1_3_3_33_2) 2002 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 Wright JD (e_1_3_3_6_2) 1998; 243 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_3_2 doi: 10.1079/PNS2005478 – ident: e_1_3_3_15_2 doi: 10.1093/ajcn/85.1.285S – volume-title: Release 6 Reference Manual year: 2002 ident: e_1_3_3_33_2 – ident: e_1_3_3_8_2 doi: 10.1128/MCB.23.15.5293-5300.2003 – ident: e_1_3_3_25_2 doi: 10.1002/humu.20522 – ident: e_1_3_3_19_2 doi: 10.1161/01.ATV.0000134293.31512.be – ident: e_1_3_3_17_2 doi: 10.1210/jc.2003-031965 – ident: e_1_3_3_24_2 doi: 10.1093/hmg/ddm074 – ident: e_1_3_3_11_2 doi: 10.1093/jn/128.3.661 – ident: e_1_3_3_32_2 doi: 10.1016/S1046-2023(02)00067-1 – volume-title: The Mineral Nutrition of Livestock year: 1999 ident: e_1_3_3_5_2 doi: 10.1079/9780851991283.0000 contributor: fullname: Underwood EJ – ident: e_1_3_3_7_2 doi: 10.1093/ajcn/86.1.131 – ident: e_1_3_3_10_2 doi: 10.1093/hmg/ddi114 – ident: e_1_3_3_16_2 doi: 10.1016/j.mrfmmm.2005.06.028 – ident: e_1_3_3_12_2 doi: 10.1016/0305-0491(87)90317-8 – ident: e_1_3_3_2_2 doi: 10.1152/physrev.00053.2003 – ident: e_1_3_3_14_2 doi: 10.1071/R98021 – ident: e_1_3_3_22_2 doi: 10.1038/sj.onc.1205608 – volume: 51 start-page: 209 year: 2002 ident: e_1_3_3_27_2 publication-title: Appl Stat contributor: fullname: Glasby CA – ident: e_1_3_3_4_2 doi: 10.1016/j.theriogenology.2006.09.017 – ident: e_1_3_3_1_2 doi: 10.1111/j.1365-2362.1995.tb01730.x – ident: e_1_3_3_31_2 doi: 10.1161/01.HYP.0000126991.67203.7b – ident: e_1_3_3_28_2 doi: 10.1136/vr.134.2.33 – ident: e_1_3_3_21_2 doi: 10.1016/S0047-6374(02)00080-5 – ident: e_1_3_3_29_2 doi: 10.1016/j.vaccine.2004.04.022 – ident: e_1_3_3_9_2 doi: 10.1093/jn/135.6.1382 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.0408436102 – ident: e_1_3_3_18_2 doi: 10.1016/S0140-6736(99)01046-6 – volume-title: The Nutrient Requirements of Ruminant Livestock year: 1980 ident: e_1_3_3_13_2 – volume: 310 start-page: 251 year: 2006 ident: e_1_3_3_23_2 publication-title: Curr Top Microbiol Immunol contributor: fullname: Ehrlich M – ident: e_1_3_3_26_2 doi: 10.1016/S1472-6483(10)61120-0 – volume: 243 start-page: 1 year: 1998 ident: e_1_3_3_6_2 publication-title: Vital Health Stat 11 contributor: fullname: Wright JD – ident: e_1_3_3_30_2 doi: 10.1095/biolreprod.105.041483 |
SSID | ssj0009580 |
Score | 2.5276504 |
Snippet | A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be... A complex combination of adult health-related disorders can originate from developmental events that occur in utero . The periconceptional period may also be... A complex combination of adult health-related disorders can originate from developmental events that occur in utero . The periconceptional period may also be... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19351 |
SubjectTerms | Amino acids Animals Animals, Newborn - immunology Animals, Newborn - metabolism Biological Sciences Blood plasma Blood Pressure Body Composition - drug effects Deoxyribonucleic acid Diet DNA DNA methylation DNA Methylation - drug effects Embryo, Mammalian - metabolism Embryos Epigenesis, Genetic - drug effects epigenetics ewes Female Fertilization Folic Acid - administration & dosage Genetic loci Genomics Genotype & phenotype Glucose - metabolism Granulosa cells Heart Rate - drug effects immune response Immunity Insulin Insulin Resistance Male animals maternal nutrition methionine Methionine - administration & dosage Methylation nutritional status oocytes periconceptional diet Pregnancy Pregnancy - drug effects Pregnancy - genetics Pregnancy - metabolism Pregnancy Outcome progeny Sheep Sheep - embryology Sheep - metabolism Vitamin B Vitamin B 12 - administration & dosage Vitamin B Complex - administration & dosage vitamin B12 |
Title | DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status |
URI | https://www.jstor.org/stable/25450713 http://www.pnas.org/content/104/49/19351.abstract https://www.ncbi.nlm.nih.gov/pubmed/18042717 https://www.proquest.com/docview/201348365 https://search.proquest.com/docview/20504595 https://pubmed.ncbi.nlm.nih.gov/PMC2148293 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB01PXFBFChdWoqFOBSpmzS298PHUqgqpFZIEKk3y_baEIluoiZB6n_oj2bG600oggtnj-2V7Nl5Yz-_AXjrZO2kkC7HbFnmkvuT3MrG5aXBWEbFbkN84X15VV5M5Kfr4noLiv4tTCTtOzsdtj9uhu30e-RWzm_cqOeJjT5fnnESr1RiNIABht8-RV8r7dbduxOOv1_JZa_nU4nRvDWLIenb8KLGNIQEQ2uqNRGrlW2i0iCYWU9PJM1T7PU3_PknjfK3uHT-BB4nQMlOuw_fgS3fPoWd5LILdpR0pd89g_sPV6eMKkbfdfy3Y5aI6AxTboKR2OGYmbZhkc3OIkV2devRjM1C6G5wWZP4Mx7N7hji3SgizUgw2XVPIOPhInvPfk6XBg3jiDRtPPn1jJ4wrRbPYXL-8evZRZ6KMeSu5CfLvCiM8tzXopbotoYuUDG9VRzhjzC-ErZS1pXKh9IKxHBSVN4jOLKcbgbHzopd2G5nrd8DZpuK6jth8AwNZj_GChxINaFu6qoZB57BUb8Yet5pbuh4V14JTYuhN0uYwR4uljbf8I-oJ1843cMiqMS0W2WwG1dwPQSmwgR-RQZZHGUztNRSaUSyxTiDN_9s0yHRcTLY7zeDTh6_0DS1pO2dwet1K7oq3b-Y1s9WZFIggFZo8aLbOJtp0jbMoHqwpdYGJAL-sAV9I4qBJ194-d899-FRPK8mio48gO3l7cq_QqC1tIcU5orD6F6_AEzyJRg |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbhMxEB215QCXigKl2wK1EIcidZPG9mbXx1KoAjQREo3Um2V7vSUS3URNgtR_4KOZ8XoTiuDC2WN7JXvWbzzPbwDeOFk4KaRLMVqWqeT-JLWydGnf4FlGxW6r8MJ7OOoPxvLTVXa1AVn7FiaQ9p2ddOrvN5168i1wK2c3rtvyxLpfhmecxCuV6G7Cg0zkqtcG6Sut3aJ5ecLxByy5bBV9ctGd1WbeIYUbnhUYiJBkaEHVJkK9svW5tFmZaUtQJNVT7PU3BPonkfK3k-n8MWxHSMlOm0_fgQ1fP4Gd6LRzdhSVpd8-hZ_vR6eMakbfNQy4Yxap6AyDbgKS2OGYmbpkgc_OAkl2eevRjE2rqsnhsjIyaDya3TFEvEFGmpFksmseQYbrRfaO_ZgsDBqGEWnacPfrGT1iWs6fwfj8w-XZII3lGFLX5yeLNMuM8twXopDouIZSqBjgKo4ASBifC5sr6_rKV30rEMVJkXuP8Mhyyg32nBW7sFVPa78HzJY5VXjC47MqMf4xVuBAqqyKssjLXsUTOGoXQ88a1Q0dsuW50LQYer2ECezhYmlzjf9EPf7KKROLsBIDb5XAbljB1RAYDBP8FQkkYZT10FJLpRHLZr0EXv-zTVeRkJPAQbsZdPT5uaapJW3wBA5XreislIExtZ8uySRDCK3Q4nmzcdbTxG2YQH5vS60MSAb8fgt6R5ADj96w_989D-Hh4HJ4oS8-jj4fwKNwe02EHfkCtha3S_8SYdfCvgpO9gvwnyeH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB3RIiEuiAKlS4FaiEORuklje7-OpSUqH40qQaTeLNtrl0h0EzUJUv8DP5oZrzdpEVw4e2yv5Jn1G_v5DcBbK0srhbQpZssyldwdpkbWNs017mVU7NaHF95no_x0LD9dZBe3Sn0F0r41k17z46rXTL4HbuXsyvY7nlj__OyYk3hlJfqz2vc34H4m0Mm6RH2lt1u2r084_oQll52qT4G9Gj3vkcoNz0pMRkg2tKSKE6Fm2Xpv2vB62pEUSfkUe_0Nhf5Jpry1Ow0fw6MIK9lR-_lbcM81T2ArBu6c7Ud16XdP4dfJ6IhR3eiblgV3wCIdnWHiTWASOxww3dQscNpZIMourx2asan37T0uqyOLxqHZDUPUG6SkGckm2_YhZDhiZO_Zz8lCo2EYkaYN57-O0UOm5fwZjIcfvh2fprEkQ2pzfrhIs0xXjrtSlBKDV9M1Kia5FUcQJLQrhCkqY_PK-dwIRHJSFM4hRDKc7gcH1oht2GymjdsBZuqCqjzhFuprzIG0EThQVfuyLot64HkC-91iqFmrvKHCjXkhFC2GWi9hAju4WEpf4n9Rjb9yuo1FaInJd5XAdljB1RCYEBMEFgkkYZT10FLJSiGezQYJvPlnm_KRlJPAbucMKsb9XNHUkpw8gb1VKwYs3cLoxk2XZJIhjK7Q4nnrOOtpohsmUNxxqZUBSYHfbcEICZLgMSJe_HfPPXhwfjJUXz6OPu_Cw3CATZwd-RI2F9dL9wqR18K8DjH2GzGJKJo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+Methylation%2C+Insulin+Resistance%2C+and+Blood+Pressure+in+Offspring+Determined+by+Maternal+Periconceptional+B+Vitamin+and+Methionine+Status&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sinclair%2C+Kevin+D.&rft.au=Allegrucci%2C+Cinzia&rft.au=Singh%2C+Ravinder&rft.au=Gardner%2C+David+S.&rft.date=2007-12-04&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=104&rft.issue=49&rft.spage=19351&rft.epage=19356&rft_id=info:doi/10.1073%2Fpnas.0707258104&rft.externalDocID=25450713 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F49.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F49.cover.gif |