Hydrogen sulfide mediates the vasoactivity of garlic

The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H₂S), an endogenous cardioprotective vascular cell sig...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 104; no. 46; pp. 17977 - 17982
Main Authors Benavides, Gloria A, Squadrito, Giuseppe L, Mills, Robert W, Patel, Hetal D, Isbell, T. Scott, Patel, Rakesh P, Darley-Usmar, Victor M, Doeller, Jeannette E, Kraus, David W
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.11.2007
National Acad Sciences
SeriesFrom the Cover
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H₂S), an endogenous cardioprotective vascular cell signaling molecule. This H₂S production, measured in real time by a novel polarographic H₂S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H₂S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the α carbon of the allyl substituent, thereby forming a hydropolysulfide (RSnH), a key intermediate during the formation of H₂S. Organic polysulfides (R-Sn-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RSnH and H₂S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H₂S. The vasoactivity of garlic compounds is synchronous with H₂S production, and their potency to mediate relaxation increases with H₂S yield, strongly supporting our hypothesis that H₂S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H₂S can be used to standardize garlic dietary supplements.
AbstractList The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H 2 S), an endogenous cardioprotective vascular cell signaling molecule. This H 2 S production, measured in real time by a novel polarographic H 2 S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H 2 S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the α carbon of the allyl substituent, thereby forming a hydropolysulfide (RS n H), a key intermediate during the formation of H 2 S. Organic polysulfides (R-S n -R′; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RS n H and H 2 S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H 2 S. The vasoactivity of garlic compounds is synchronous with H 2 S production, and their potency to mediate relaxation increases with H 2 S yield, strongly supporting our hypothesis that H 2 S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H 2 S can be used to standardize garlic dietary supplements. Allium aorta polysulfides red blood cells vasorelaxation
The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (...), an endogenous cardioprotective vascular cell signaling molecule. This ... production, measured in real time by a novel polarographic ... sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. ... production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the carbon of the allyl substituent, thereby forming a hydropolysulfide (...), a key intermediate during the formation of ... Organic polysulfides (R-S...-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding ... and ... Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate ... The vasoactivity of garlic compounds is synchronous with ... production, and their potency to mediate relaxation increases with ... yield, strongly supporting our hypothesis that ... mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce ... can be used to standardize garlic dietary supplements. (ProQuest: ... denotes formulae/symbols omitted.)
The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H 2 S), an endogenous cardioprotective vascular cell signaling molecule. This H 2 S production, measured in real time by a novel polarographic H 2 S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H 2 S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the α carbon of the allyl substituent, thereby forming a hydropolysulfide (RS n H), a key intermediate during the formation of H 2 S. Organic polysulfides (R-S n -R′; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RS n H and H 2 S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H 2 S. The vasoactivity of garlic compounds is synchronous with H 2 S production, and their potency to mediate relaxation increases with H 2 S yield, strongly supporting our hypothesis that H 2 S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H 2 S can be used to standardize garlic dietary supplements.
The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H(2)S), an endogenous cardioprotective vascular cell signaling molecule. This H(2)S production, measured in real time by a novel polarographic H(2)S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H(2)S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the alpha carbon of the allyl substituent, thereby forming a hydropolysulfide (RS(n)H), a key intermediate during the formation of H(2)S. Organic polysulfides (R-S(n)-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RS(n)H and H(2)S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H(2)S. The vasoactivity of garlic compounds is synchronous with H(2)S production, and their potency to mediate relaxation increases with H(2)S yield, strongly supporting our hypothesis that H(2)S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H(2)S can be used to standardize garlic dietary supplements.
The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H(2)S), an endogenous cardioprotective vascular cell signaling molecule. This H(2)S production, measured in real time by a novel polarographic H(2)S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H(2)S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the alpha carbon of the allyl substituent, thereby forming a hydropolysulfide (RS(n)H), a key intermediate during the formation of H(2)S. Organic polysulfides (R-S(n)-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RS(n)H and H(2)S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H(2)S. The vasoactivity of garlic compounds is synchronous with H(2)S production, and their potency to mediate relaxation increases with H(2)S yield, strongly supporting our hypothesis that H(2)S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H(2)S can be used to standardize garlic dietary supplements.The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H(2)S), an endogenous cardioprotective vascular cell signaling molecule. This H(2)S production, measured in real time by a novel polarographic H(2)S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H(2)S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the alpha carbon of the allyl substituent, thereby forming a hydropolysulfide (RS(n)H), a key intermediate during the formation of H(2)S. Organic polysulfides (R-S(n)-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RS(n)H and H(2)S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H(2)S. The vasoactivity of garlic compounds is synchronous with H(2)S production, and their potency to mediate relaxation increases with H(2)S yield, strongly supporting our hypothesis that H(2)S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H(2)S can be used to standardize garlic dietary supplements.
The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H₂S), an endogenous cardioprotective vascular cell signaling molecule. This H₂S production, measured in real time by a novel polarographic H₂S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H₂S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the α carbon of the allyl substituent, thereby forming a hydropolysulfide (RSnH), a key intermediate during the formation of H₂S. Organic polysulfides (R-Sn-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RSnH and H₂S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H₂S. The vasoactivity of garlic compounds is synchronous with H₂S production, and their potency to mediate relaxation increases with H₂S yield, strongly supporting our hypothesis that H₂S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H₂S can be used to standardize garlic dietary supplements.
The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H₂S), an endogenous cardioprotective vascular cell signaling molecule. This H₂S production, measured in real time by a novel polarographic H₂S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H₂S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the α carbon of the allyl substituent, thereby forming a hydropolysulfide$({\rm RS}_{{\rm n}}{\rm H})$, a key intermediate during the formation of H₂S. Organic polysulfides (${\rm R}\text{-}{\rm S}_{{\rm n}}\text{-}{\rm R}^{\prime}$; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding${\rm RS}_{{\rm n}}{\rm H}$and H₂S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H₂S. The vasoactivity of garlic compounds is synchronous with H₂S production, and their potency to mediate relaxation increases with H₂S yield, strongly supporting our hypothesis that H₂S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H₂S can be used to standardize garlic dietary supplements.
Author Doeller, Jeannette E
Benavides, Gloria A
Isbell, T. Scott
Kraus, David W
Patel, Hetal D
Mills, Robert W
Squadrito, Giuseppe L
Darley-Usmar, Victor M
Patel, Rakesh P
Author_xml – sequence: 1
  fullname: Benavides, Gloria A
– sequence: 2
  fullname: Squadrito, Giuseppe L
– sequence: 3
  fullname: Mills, Robert W
– sequence: 4
  fullname: Patel, Hetal D
– sequence: 5
  fullname: Isbell, T. Scott
– sequence: 6
  fullname: Patel, Rakesh P
– sequence: 7
  fullname: Darley-Usmar, Victor M
– sequence: 8
  fullname: Doeller, Jeannette E
– sequence: 9
  fullname: Kraus, David W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17951430$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFMycg4lCJQ9rxRxz7UglVtEWq1APlbDmOs_UqGy-2s2L_exx224Ue2tMc3u_NvJk5QgeDHyxC7zGcYqjp2WrQ8RRqqGoMGNgrNMMgccmZhAM0AyB1KRhhh-goxgUAyErAG3SIa1lhRmGG2PWmDX5uhyKOfedaWyxt63SysUj3tljr6LVJbu3SpvBdMdehd-Ytet3pPtp3u3qM7i6_3V1clze3V98vvt6UhhNIJQUpOemMZtIQKlpKRCsa3lEuiOSgudbCMmuYER2WtjGNxaTRrDaYN5bQY3S-bbsam5zK2CEF3atVcEsdNsprp_5XBnev5n6tCOSlxdTgZNcg-F-jjUktXTS27_Vg_RgVFxVghumLIBOYCcA4g5-fgAs_hiEfIQ_FFLiQPEMf_839GPjh6hk42wIm-BiD7fYIqOmvavqr2v81O6onDuOSTs5Pi7v-Gd-XXZRJ2E9hivEpT12rbuz7ZH-nzBYvsBn5sEUWMfnwyJCKVUArmfVPW73TXul5cFH9_PH3MCBILYmkfwCu59Ig
CitedBy_id crossref_primary_10_1021_acssensors_6b00291
crossref_primary_10_1016_j_lfs_2016_08_030
crossref_primary_10_3390_cells10061477
crossref_primary_10_1016_j_biopha_2018_03_131
crossref_primary_10_1111_j_1525_1594_2011_01256_x
crossref_primary_10_1016_j_niox_2012_03_004
crossref_primary_10_1016_j_nutres_2013_12_005
crossref_primary_10_1134_S1990747815040078
crossref_primary_10_15415_jptrm_2018_61004
crossref_primary_10_1016_j_abb_2016_09_018
crossref_primary_10_3390_antiox5040046
crossref_primary_10_1139_cjpp_2015_0316
crossref_primary_10_3390_targets2030012
crossref_primary_10_1038_s41598_017_11608_z
crossref_primary_10_1021_tx500464t
crossref_primary_10_1016_j_niox_2015_01_005
crossref_primary_10_3390_antiox10030429
crossref_primary_10_1111_j_1471_4159_2008_05502_x
crossref_primary_10_1515_revac_2013_0008
crossref_primary_10_1016_j_ejphar_2008_07_029
crossref_primary_10_1016_j_pharmthera_2013_12_005
crossref_primary_10_1002_ptr_6923
crossref_primary_10_3390_antiox11112136
crossref_primary_10_1002_slct_202404855
crossref_primary_10_1016_j_foodchem_2015_06_072
crossref_primary_10_1016_j_cplett_2015_11_038
crossref_primary_10_1016_j_bbabio_2010_04_004
crossref_primary_10_1021_acsbiomaterials_2c00266
crossref_primary_10_1007_s11094_017_1576_5
crossref_primary_10_1016_j_maturitas_2010_06_001
crossref_primary_10_1016_j_bcp_2012_10_019
crossref_primary_10_1016_j_jff_2015_05_020
crossref_primary_10_1089_ars_2019_7824
crossref_primary_10_1039_c0md00203h
crossref_primary_10_1089_jmf_2009_0258
crossref_primary_10_1016_j_bioorg_2019_102941
crossref_primary_10_1016_j_jff_2017_01_001
crossref_primary_10_1016_j_kim_2007_11_025
crossref_primary_10_1002_adtp_201800084
crossref_primary_10_1080_10402004_2020_1842573
crossref_primary_10_20960_nh_04471
crossref_primary_10_3390_antiox13020245
crossref_primary_10_3390_molecules23030699
crossref_primary_10_3945_jn_114_208066
crossref_primary_10_1002_chem_201804895
crossref_primary_10_2174_1568026623666230106144509
crossref_primary_10_1111_nure_12050
crossref_primary_10_1007_s11684_015_0427_6
crossref_primary_10_1016_j_cclet_2016_04_023
crossref_primary_10_1021_acsomega_1c02585
crossref_primary_10_1002_anie_202404139
crossref_primary_10_2174_1389557523666230427152234
crossref_primary_10_1042_BSR20150147
crossref_primary_10_1186_s12906_023_04038_0
crossref_primary_10_1152_ajpcell_00028_2016
crossref_primary_10_3389_fphar_2014_00119
crossref_primary_10_3390_ijms21124349
crossref_primary_10_1155_2020_8609364
crossref_primary_10_1002_anie_202219156
crossref_primary_10_3389_fendo_2018_00055
crossref_primary_10_1016_j_intimp_2016_04_015
crossref_primary_10_1089_ars_2019_7841
crossref_primary_10_3390_cells14060420
crossref_primary_10_1002_smll_202402673
crossref_primary_10_1097_SHK_0000000000000894
crossref_primary_10_3390_chemosensors8030049
crossref_primary_10_1016_j_bcp_2017_11_014
crossref_primary_10_1186_1471_2261_8_13
crossref_primary_10_3390_antiox6010014
crossref_primary_10_1039_C9CC02829C
crossref_primary_10_3390_ijms241511886
crossref_primary_10_3390_biom11050682
crossref_primary_10_1016_j_tips_2018_03_009
crossref_primary_10_1111_bph_12961
crossref_primary_10_1016_j_jff_2017_01_024
crossref_primary_10_1007_s11101_019_09634_y
crossref_primary_10_1039_C7CC01695F
crossref_primary_10_1097_SHK_0b013e31817c07d0
crossref_primary_10_1002_jrs_4754
crossref_primary_10_1016_j_phrs_2016_09_032
crossref_primary_10_1016_j_niox_2022_07_001
crossref_primary_10_1016_j_phymed_2015_10_016
crossref_primary_10_1089_ars_2017_7224
crossref_primary_10_3390_ijms242216131
crossref_primary_10_1016_j_apsb_2020_10_019
crossref_primary_10_1038_s41598_024_81304_2
crossref_primary_10_1039_C6RA14100E
crossref_primary_10_1002_ptr_8181
crossref_primary_10_1007_s00592_019_01366_x
crossref_primary_10_3389_fphys_2020_587674
crossref_primary_10_3390_antiox12030650
crossref_primary_10_1089_ars_2009_2657
crossref_primary_10_3389_fnut_2018_00122
crossref_primary_10_3390_biom11121899
crossref_primary_10_1002_tox_21901
crossref_primary_10_1038_s41467_018_06373_0
crossref_primary_10_3389_fnut_2015_00001
crossref_primary_10_1002_ange_202302957
crossref_primary_10_1371_journal_pone_0015358
crossref_primary_10_3390_ijms232012202
crossref_primary_10_3390_molecules27113389
crossref_primary_10_1002_adma_202301099
crossref_primary_10_1016_j_cej_2024_152849
crossref_primary_10_3390_ma14216701
crossref_primary_10_1016_j_cca_2014_07_012
crossref_primary_10_1016_j_jconrel_2023_11_014
crossref_primary_10_1152_ajpheart_00723_2016
crossref_primary_10_1016_j_ab_2011_01_044
crossref_primary_10_2174_0929867330666230126100638
crossref_primary_10_3390_md21120641
crossref_primary_10_1021_jp508471v
crossref_primary_10_3390_molecules24214006
crossref_primary_10_3390_biomedicines9091107
crossref_primary_10_1021_jacs_5b04196
crossref_primary_10_1186_s12976_015_0006_1
crossref_primary_10_1002_mabi_201500430
crossref_primary_10_2478_ausal_2018_0009
crossref_primary_10_3390_antiox11010048
crossref_primary_10_1002_ptr_8291
crossref_primary_10_1089_ars_2019_7864
crossref_primary_10_1517_14728222_2012_673591
crossref_primary_10_1038_s41467_018_04306_5
crossref_primary_10_1155_2021_8817288
crossref_primary_10_1039_D1FO03180E
crossref_primary_10_1021_acs_orglett_8b02043
crossref_primary_10_1155_2019_8961837
crossref_primary_10_1039_C9CC05562B
crossref_primary_10_1016_j_ejmech_2020_112665
crossref_primary_10_1016_j_ijom_2015_06_015
crossref_primary_10_1016_j_jocn_2014_01_006
crossref_primary_10_1073_pnas_0709010104
crossref_primary_10_1002_adtp_202200349
crossref_primary_10_1016_j_procbio_2022_11_009
crossref_primary_10_1111_bph_12869
crossref_primary_10_1142_S1793545810000836
crossref_primary_10_1080_17415990802195623
crossref_primary_10_1007_s12035_017_0617_0
crossref_primary_10_1016_j_redox_2012_11_006
crossref_primary_10_1016_j_postharvbio_2023_112394
crossref_primary_10_1007_s00018_022_04636_0
crossref_primary_10_1111_j_1476_5381_2009_00248_x
crossref_primary_10_1021_acs_inorgchem_0c01194
crossref_primary_10_1021_acsami_7b12524
crossref_primary_10_1042_EBC20190049
crossref_primary_10_1016_j_ijcard_2015_05_111
crossref_primary_10_3389_fphar_2021_720703
crossref_primary_10_1126_scisignal_268re2
crossref_primary_10_1021_jf901301w
crossref_primary_10_1007_s13659_020_00281_x
crossref_primary_10_1016_j_jff_2016_08_062
crossref_primary_10_3390_cells12232684
crossref_primary_10_1002_ame2_12233
crossref_primary_10_1016_j_phrs_2020_104677
crossref_primary_10_1016_j_phrs_2021_105842
crossref_primary_10_1113_JP270963
crossref_primary_10_1021_ac3008863
crossref_primary_10_1089_ars_2009_2882
crossref_primary_10_3389_fphar_2022_919898
crossref_primary_10_1073_pnas_1119658109
crossref_primary_10_1016_j_phrs_2016_08_019
crossref_primary_10_1371_journal_pone_0064495
crossref_primary_10_1016_j_niox_2009_05_006
crossref_primary_10_1039_D5CC00252D
crossref_primary_10_1089_ars_2019_7888
crossref_primary_10_1016_j_jinorgbio_2012_01_001
crossref_primary_10_1161_CIRCHEARTFAILURE_113_000299
crossref_primary_10_1002_ptr_7065
crossref_primary_10_3390_cells12040669
crossref_primary_10_1021_acs_analchem_2c02961
crossref_primary_10_1155_2016_8108549
crossref_primary_10_3390_antiox10071065
crossref_primary_10_1111_bph_14824
crossref_primary_10_1111_j_1399_3054_2008_01080_x
crossref_primary_10_1021_acs_chemrestox_9b00494
crossref_primary_10_1039_D3FO03914E
crossref_primary_10_1016_j_lfs_2016_03_057
crossref_primary_10_1089_ars_2023_0535
crossref_primary_10_1016_j_cellsig_2020_109870
crossref_primary_10_1080_13102818_2014_991565
crossref_primary_10_1021_acschemneuro_2c00789
crossref_primary_10_1042_BSR20221006
crossref_primary_10_1152_ajplung_00327_2014
crossref_primary_10_3390_ijms18081645
crossref_primary_10_1016_j_jchromb_2009_11_047
crossref_primary_10_1007_s11010_021_04213_2
crossref_primary_10_1016_j_arabjc_2023_105004
crossref_primary_10_1155_2015_186908
crossref_primary_10_3389_fimmu_2018_00499
crossref_primary_10_1155_2017_1406726
crossref_primary_10_1016_j_bcp_2017_09_010
crossref_primary_10_3390_biom12040581
crossref_primary_10_31665_JFB_2019_6186
crossref_primary_10_1111_j_1582_4934_2008_00446_x
crossref_primary_10_1016_j_biopha_2016_01_009
crossref_primary_10_1152_physrev_00028_2021
crossref_primary_10_1186_2251_6581_13_50
crossref_primary_10_1111_pcmr_12312
crossref_primary_10_1080_17460441_2021_1850688
crossref_primary_10_1089_ars_2023_0404
crossref_primary_10_3390_nu7095371
crossref_primary_10_3389_fphar_2022_943967
crossref_primary_10_1096_fj_201901304R
crossref_primary_10_1016_j_talanta_2014_10_034
crossref_primary_10_1007_s11468_013_9592_0
crossref_primary_10_1039_b907115f
crossref_primary_10_1038_s41420_024_01868_w
crossref_primary_10_1016_j_jphs_2018_07_009
crossref_primary_10_1002_anie_202302957
crossref_primary_10_1038_nrd_2015_1
crossref_primary_10_1016_j_niox_2021_08_004
crossref_primary_10_1093_ndt_gfr737
crossref_primary_10_3389_fendo_2022_937956
crossref_primary_10_1089_ars_2023_0531
crossref_primary_10_1021_acs_orglett_0c02992
crossref_primary_10_3390_cells11030325
crossref_primary_10_1039_C7CC05339H
crossref_primary_10_3390_ijms19082368
crossref_primary_10_1186_1476_0711_11_8
crossref_primary_10_1002_biof_1061
crossref_primary_10_1016_j_bcp_2012_08_024
crossref_primary_10_1038_s41371_019_0257_0
crossref_primary_10_3390_biom10020323
crossref_primary_10_1253_circj_CJ_16_1097
crossref_primary_10_17827_aktd_1066415
crossref_primary_10_1007_s00210_017_1393_0
crossref_primary_10_3389_fphar_2017_00664
crossref_primary_10_1016_S1875_5364_20_30037_6
crossref_primary_10_1007_s00394_022_02895_y
crossref_primary_10_1016_j_jconrel_2022_05_001
crossref_primary_10_3390_antiox10030486
crossref_primary_10_1016_j_apsb_2015_06_004
crossref_primary_10_53393_rial_2009_v68_32736
crossref_primary_10_1021_jf903322x
crossref_primary_10_3390_molecules190812591
crossref_primary_10_1039_C6RA01242F
crossref_primary_10_1002_ptr_8350
crossref_primary_10_1021_acs_chemrev_0c00663
crossref_primary_10_1039_D0BM01544J
crossref_primary_10_1254_fpj_141_350
crossref_primary_10_1016_j_fct_2013_10_020
crossref_primary_10_1016_j_phymed_2016_11_016
crossref_primary_10_12688_f1000research_7987_1
crossref_primary_10_3390_molecules25184111
crossref_primary_10_3389_fnagi_2017_00324
crossref_primary_10_1021_acs_accounts_9b00315
crossref_primary_10_1021_am2007678
crossref_primary_10_1002_ange_202404139
crossref_primary_10_1021_ic900238v
crossref_primary_10_1124_mol_118_113910
crossref_primary_10_1016_j_ajpath_2016_12_002
crossref_primary_10_1515_dmpt_2015_0035
crossref_primary_10_1002_ange_202219156
crossref_primary_10_1021_cr300163e
crossref_primary_10_1161_CIRCULATIONAHA_107_753467
crossref_primary_10_1517_17460441_2016_1122590
crossref_primary_10_2174_1568026621666210622130002
crossref_primary_10_1002_cbic_201300552
crossref_primary_10_1021_ja1085723
crossref_primary_10_1016_j_cej_2025_160345
crossref_primary_10_1016_j_freeradbiomed_2009_09_018
crossref_primary_10_1016_j_ijpharm_2024_124143
crossref_primary_10_1016_j_polymer_2019_02_004
crossref_primary_10_4103_ijp_ijp_310_23
crossref_primary_10_3390_nu13072332
crossref_primary_10_1007_s00044_020_02687_1
crossref_primary_10_1007_s00210_024_03086_8
crossref_primary_10_1002_ange_201806854
crossref_primary_10_1038_ejcn_2012_178
crossref_primary_10_1016_j_freeradbiomed_2019_07_022
crossref_primary_10_1080_10408398_2010_537000
crossref_primary_10_1016_j_niox_2021_09_002
crossref_primary_10_1089_ars_2014_5933
crossref_primary_10_1016_j_bbagen_2019_03_012
crossref_primary_10_1039_C6CS00212A
crossref_primary_10_3389_fphar_2021_651884
crossref_primary_10_3892_etm_2019_8375
crossref_primary_10_3892_etm_2019_8374
crossref_primary_10_1016_j_fct_2016_07_016
crossref_primary_10_1002_ptr_6278
crossref_primary_10_1002_med_21913
crossref_primary_10_1038_s42003_019_0431_5
crossref_primary_10_3892_etm_2019_8377
crossref_primary_10_1039_c3fo60479a
crossref_primary_10_1186_s40066_018_0197_x
crossref_primary_10_1113_expphysiol_2011_059725
crossref_primary_10_1016_j_niox_2024_11_006
crossref_primary_10_1016_j_niox_2024_11_008
crossref_primary_10_1074_jbc_M111_270884
crossref_primary_10_1016_j_cbpa_2012_07_014
crossref_primary_10_1254_fpj_136_335
crossref_primary_10_1016_j_cej_2022_139089
crossref_primary_10_1155_2019_5470470
crossref_primary_10_3390_antiox10020247
crossref_primary_10_1016_j_jff_2016_01_034
crossref_primary_10_1089_ars_2022_0077
crossref_primary_10_1111_bph_12811
crossref_primary_10_3390_ijtm2030032
crossref_primary_10_11002_kjfp_2022_29_2_254
crossref_primary_10_3389_fpubh_2019_00128
crossref_primary_10_1039_c2an16307a
crossref_primary_10_1111_j_1476_5381_2010_01026_x
crossref_primary_10_1152_ajplung_90240_2008
crossref_primary_10_1111_jfpp_15969
crossref_primary_10_3109_01902148_2011_641668
crossref_primary_10_1016_j_foodchem_2016_10_076
crossref_primary_10_1111_bph_12806
crossref_primary_10_1080_00387010_2017_1390767
crossref_primary_10_1111_j_1440_1681_2010_05371_x
crossref_primary_10_1016_j_cbpa_2024_102511
crossref_primary_10_3389_fphar_2021_752244
crossref_primary_10_1002_ange_201511244
crossref_primary_10_1016_j_freeradbiomed_2018_12_025
crossref_primary_10_1002_anie_201608052
crossref_primary_10_1016_j_bcp_2018_01_017
crossref_primary_10_1016_j_ejmech_2017_10_068
crossref_primary_10_1111_bph_16170
crossref_primary_10_1002_cbf_1835
crossref_primary_10_1016_j_freeradbiomed_2021_01_010
crossref_primary_10_1016_j_neuint_2018_07_010
crossref_primary_10_3390_ijms25189831
crossref_primary_10_1021_acscentsci_6b00113
crossref_primary_10_3390_ijms21051638
crossref_primary_10_1016_j_fbio_2024_103838
crossref_primary_10_1063_1_5100733
crossref_primary_10_1016_j_colsurfb_2023_113313
crossref_primary_10_1021_acs_biomac_0c01347
crossref_primary_10_1002_med_21433
crossref_primary_10_1021_tx300066z
crossref_primary_10_1097_HJH_0000000000002433
crossref_primary_10_1016_j_cellsig_2023_110628
crossref_primary_10_1096_fj_14_257113
crossref_primary_10_1016_j_niox_2017_01_002
crossref_primary_10_1007_s10068_017_0077_3
crossref_primary_10_1016_j_jff_2017_05_040
crossref_primary_10_1186_s12967_018_1753_7
crossref_primary_10_1097_MD_0000000000013065
crossref_primary_10_3390_biom14091145
crossref_primary_10_1016_j_taap_2011_09_026
crossref_primary_10_1016_j_bioadv_2023_213622
crossref_primary_10_1016_j_dyepig_2017_07_016
crossref_primary_10_7759_cureus_45369
crossref_primary_10_1021_acs_orglett_9b02117
crossref_primary_10_1016_j_bcp_2020_113819
crossref_primary_10_1016_j_biochi_2024_02_001
crossref_primary_10_1186_s10020_020_00216_9
crossref_primary_10_1002_med_20234
crossref_primary_10_1021_acs_joc_8b03262
crossref_primary_10_1016_j_placenta_2012_02_015
crossref_primary_10_1021_acs_jafc_0c02358
crossref_primary_10_1371_journal_pone_0241685
crossref_primary_10_1039_D2CS00553K
crossref_primary_10_1021_acsbiomedchemau_3c00028
crossref_primary_10_1016_j_niox_2017_01_012
crossref_primary_10_1038_s41598_018_25154_9
crossref_primary_10_3923_ajbs_2024_156_168
crossref_primary_10_1016_j_cbi_2017_01_013
crossref_primary_10_1021_acs_jpcb_7b03683
crossref_primary_10_1042_CS20100462
crossref_primary_10_1016_j_biomaterials_2018_07_044
crossref_primary_10_3389_fcvm_2022_876639
crossref_primary_10_1016_j_tetlet_2021_152944
crossref_primary_10_3390_antiox11061036
crossref_primary_10_1002_ptr_7567
crossref_primary_10_1007_s00018_016_2406_8
crossref_primary_10_1002_anie_201803087
crossref_primary_10_1108_NFS_05_2019_0157
crossref_primary_10_1021_acs_joc_9b01873
crossref_primary_10_3390_cancers15010249
crossref_primary_10_1016_j_jinsphys_2010_07_009
crossref_primary_10_1021_jo5014838
crossref_primary_10_1371_journal_pone_0105772
crossref_primary_10_1271_kagakutoseibutsu_60_317
crossref_primary_10_1080_02713683_2021_1975764
crossref_primary_10_1556_APhysiol_99_2012_4_5
crossref_primary_10_1371_journal_pone_0023788
crossref_primary_10_1002_ptr_6586
crossref_primary_10_2174_0929867325666180912105036
crossref_primary_10_1016_j_inoche_2024_113688
crossref_primary_10_3390_ijms18091980
crossref_primary_10_1089_jmf_2021_0146
crossref_primary_10_1016_j_msec_2019_109954
crossref_primary_10_3945_jn_114_202192
crossref_primary_10_1002_slct_201600756
crossref_primary_10_1016_j_niox_2017_10_010
crossref_primary_10_1038_nrd2425
crossref_primary_10_3390_antiox13050543
crossref_primary_10_3390_ijms22136667
crossref_primary_10_1021_acsmacrolett_3c00558
crossref_primary_10_1021_acschembio_7b00279
crossref_primary_10_3390_nu11071581
crossref_primary_10_1089_ars_2021_0203
crossref_primary_10_3390_antiox12051095
crossref_primary_10_1039_C4CC01095G
crossref_primary_10_1186_s12951_024_02961_z
crossref_primary_10_1016_j_bcp_2022_115302
crossref_primary_10_3390_ijms232315107
crossref_primary_10_1016_j_bbamcr_2025_119909
crossref_primary_10_1016_j_niox_2017_08_004
crossref_primary_10_1021_acsomega_1c04196
crossref_primary_10_1089_ars_2010_3698
crossref_primary_10_1080_10942912_2021_1967386
crossref_primary_10_1021_cb400090d
crossref_primary_10_1111_j_1476_5381_2010_01191_x
crossref_primary_10_3390_antiox10060961
crossref_primary_10_1111_bph_15230
crossref_primary_10_18632_oncotarget_12609
crossref_primary_10_1016_j_phrs_2022_106519
crossref_primary_10_1080_14737175_2019_1668270
crossref_primary_10_1007_s40495_018_0153_2
crossref_primary_10_1111_j_1365_2125_2010_03636_x
crossref_primary_10_1016_j_jece_2017_10_053
crossref_primary_10_1016_j_niox_2018_02_003
crossref_primary_10_1089_ars_2020_8206
crossref_primary_10_1111_j_1365_2982_2010_01571_x
crossref_primary_10_1039_C4RA11870G
crossref_primary_10_1124_pr_117_014050
crossref_primary_10_1104_pp_108_123273
crossref_primary_10_1039_D3AY01802D
crossref_primary_10_1161_CIRCRESAHA_114_300505
crossref_primary_10_1016_j_jhazmat_2020_123698
crossref_primary_10_1039_C4CC00968A
crossref_primary_10_1016_j_cca_2014_10_037
crossref_primary_10_1021_jf4030213
crossref_primary_10_1039_C5TB00354G
crossref_primary_10_1074_jbc_M110_115261
crossref_primary_10_1089_ars_2021_0149
crossref_primary_10_1016_j_bmc_2012_02_028
crossref_primary_10_1159_000357232
crossref_primary_10_3389_fphar_2015_00323
crossref_primary_10_1007_s00726_017_2484_4
crossref_primary_10_1089_ars_2012_4612
crossref_primary_10_3934_agrfood_2019_2_386
crossref_primary_10_1089_ars_2020_8217
crossref_primary_10_1152_ajpheart_00044_2012
crossref_primary_10_1016_j_niox_2013_07_001
crossref_primary_10_1016_j_niox_2013_07_002
crossref_primary_10_3390_antiox10010049
crossref_primary_10_1007_s00604_021_04783_4
crossref_primary_10_1002_biuz_201010422
crossref_primary_10_1152_physrev_00017_2011
crossref_primary_10_1007_s00204_018_2208_x
crossref_primary_10_1039_C8RA03658F
crossref_primary_10_1124_jpet_116_235119
crossref_primary_10_1161_CIRCRESAHA_118_311134
crossref_primary_10_1074_jbc_M808026200
crossref_primary_10_1016_j_resp_2012_03_009
crossref_primary_10_1126_sciadv_abn1701
crossref_primary_10_1152_ajpregu_00061_2016
crossref_primary_10_3390_ijms22042194
crossref_primary_10_1016_j_bcp_2020_113931
crossref_primary_10_3390_ijms22010047
crossref_primary_10_1053_j_gastro_2009_04_012
crossref_primary_10_1002_ange_201803087
crossref_primary_10_3390_molecules20011731
crossref_primary_10_1016_j_ijcard_2014_01_068
crossref_primary_10_1039_C9TB02614B
crossref_primary_10_1053_j_jrn_2010_05_004
crossref_primary_10_1021_acs_analchem_7b00069
crossref_primary_10_1093_ndt_gfp378
crossref_primary_10_1021_acsami_4c05588
crossref_primary_10_1089_ars_2010_3678
crossref_primary_10_1038_s41467_020_18029_z
crossref_primary_10_1089_ars_2010_3677
crossref_primary_10_3390_nano11051354
crossref_primary_10_1039_c3mb70145j
crossref_primary_10_1136_postgradmedj_2019_137267
crossref_primary_10_3390_antiox9070621
crossref_primary_10_1016_j_plaphy_2023_03_006
crossref_primary_10_1007_s12011_021_02592_7
crossref_primary_10_1089_ars_2011_4351
crossref_primary_10_2174_2665978601666200228092006
crossref_primary_10_1016_j_colsurfb_2024_114460
crossref_primary_10_1016_j_vph_2013_11_003
crossref_primary_10_1089_ars_2021_0088
crossref_primary_10_1093_ajh_hpu165
crossref_primary_10_1021_acs_orglett_5c00257
crossref_primary_10_3389_fphar_2021_613989
crossref_primary_10_1089_ars_2011_4359
crossref_primary_10_3390_nu14030435
crossref_primary_10_1002_anie_201511244
crossref_primary_10_1016_j_abb_2011_09_015
crossref_primary_10_1586_ecp_10_56
crossref_primary_10_1016_j_ab_2019_03_021
crossref_primary_10_1089_ars_2011_4349
crossref_primary_10_1021_ml400239a
crossref_primary_10_3390_ijms23105648
crossref_primary_10_1515_corrrev_2022_0046
crossref_primary_10_1016_j_fct_2021_112760
crossref_primary_10_3233_JCB_230098
crossref_primary_10_1097_MD_0000000000033636
crossref_primary_10_1155_2013_125649
crossref_primary_10_1089_ars_2013_5324
crossref_primary_10_1089_ars_2009_2900
crossref_primary_10_1146_annurev_food_052720_010127
crossref_primary_10_1021_jacs_5b10675
crossref_primary_10_1039_C5AN02208H
crossref_primary_10_1146_annurev_pharmtox_010510_100505
crossref_primary_10_1038_s41598_017_03941_0
crossref_primary_10_3897_rrpharmacology_8_80376
crossref_primary_10_1016_j_phrs_2023_106947
crossref_primary_10_1007_s00018_009_0250_9
crossref_primary_10_1016_j_pharep_2017_10_007
crossref_primary_10_1016_j_abb_2021_108920
crossref_primary_10_1111_ajt_14080
crossref_primary_10_1016_j_phanu_2023_100345
crossref_primary_10_1161_CIRCGENETICS_113_000381
crossref_primary_10_1016_j_jksus_2021_101772
crossref_primary_10_1586_ecp_10_122
crossref_primary_10_1021_acs_chemrev_7b00205
crossref_primary_10_1038_s41598_017_06879_5
crossref_primary_10_1155_2015_293271
crossref_primary_10_1016_j_bbabio_2020_148338
crossref_primary_10_1016_j_jare_2020_05_010
crossref_primary_10_1016_j_jff_2015_02_007
crossref_primary_10_1016_j_phrs_2024_107180
crossref_primary_10_1586_ecp_10_129
crossref_primary_10_1586_ecp_10_127
crossref_primary_10_3389_fcimb_2021_743454
crossref_primary_10_1016_j_cbi_2009_02_008
crossref_primary_10_1021_jf101606s
crossref_primary_10_1074_jbc_R110_128363
crossref_primary_10_1089_ars_2020_8060
crossref_primary_10_1016_j_ijcard_2011_12_059
crossref_primary_10_1039_C8CP05503C
crossref_primary_10_1021_jf500739n
crossref_primary_10_1089_ars_2017_7083
crossref_primary_10_1021_jacs_7b09527
crossref_primary_10_1126_scisignal_2000464
crossref_primary_10_3390_nu16172895
crossref_primary_10_1586_ecp_10_131
crossref_primary_10_1016_j_semcancer_2020_11_020
crossref_primary_10_1002_mnfr_202300622
crossref_primary_10_1016_j_biomaterials_2025_123258
crossref_primary_10_1586_ecp_10_130
crossref_primary_10_3390_ijms141224055
crossref_primary_10_1002_asia_202400124
crossref_primary_10_1007_s10557_020_07000_1
crossref_primary_10_1038_s41514_020_0044_8
crossref_primary_10_1096_fj_12_226415
crossref_primary_10_3390_cimb46030154
crossref_primary_10_1152_japplphysiol_00672_2012
crossref_primary_10_1016_j_saa_2018_07_058
crossref_primary_10_1016_j_biopha_2023_114506
crossref_primary_10_1016_j_jss_2015_02_061
crossref_primary_10_1089_ars_2010_3517
crossref_primary_10_1016_j_jare_2020_05_015
crossref_primary_10_3390_ph17101408
crossref_primary_10_1016_j_cbi_2024_111226
crossref_primary_10_1016_j_niox_2016_04_002
crossref_primary_10_1039_C7CC03820H
crossref_primary_10_1152_ajpgi_00249_2017
crossref_primary_10_1021_bc500150s
crossref_primary_10_1039_C6NJ03355E
crossref_primary_10_1016_j_niox_2014_02_006
crossref_primary_10_1152_japplphysiol_00365_2015
crossref_primary_10_1021_acs_joc_6b02517
crossref_primary_10_1016_j_ejmech_2017_06_012
crossref_primary_10_1039_C5PY01059D
crossref_primary_10_1016_j_biopha_2022_113137
crossref_primary_10_18632_aging_101026
crossref_primary_10_1007_s00726_011_0834_1
crossref_primary_10_1021_bi901844d
crossref_primary_10_3390_antiox10050633
crossref_primary_10_1016_j_pharmthera_2020_107687
crossref_primary_10_1152_physrev_00004_2012
crossref_primary_10_3390_biom13010027
crossref_primary_10_1002_jcp_29761
crossref_primary_10_1093_jxb_err145
crossref_primary_10_1021_jacs_4c05874
crossref_primary_10_1124_pharmrev_123_000928
crossref_primary_10_12720_jomb_5_1_24_27
crossref_primary_10_3390_ijms21041180
crossref_primary_10_3390_nu11020295
crossref_primary_10_1039_C9OB02273B
crossref_primary_10_1111_jch_12473
crossref_primary_10_1016_j_clnu_2020_02_016
crossref_primary_10_1039_D4QO01844C
crossref_primary_10_1089_ars_2020_8171
crossref_primary_10_1111_bph_14645
crossref_primary_10_3389_fphar_2017_00810
crossref_primary_10_1096_fj_14_266015
crossref_primary_10_1155_2018_4010395
crossref_primary_10_1093_molbev_msab030
crossref_primary_10_2174_1570161119999201103191242
crossref_primary_10_1016_j_ijcard_2012_09_080
crossref_primary_10_1152_ajpheart_00660_2015
crossref_primary_10_1002_ange_201608052
crossref_primary_10_1039_D3SC03194B
crossref_primary_10_1089_ars_2017_7046
crossref_primary_10_1021_acs_jmedchem_7b00888
crossref_primary_10_1039_C9OB00854C
crossref_primary_10_1152_ajpregu_00045_2011
crossref_primary_10_1021_jacs_2c04695
crossref_primary_10_1007_s00394_013_0595_6
crossref_primary_10_1111_j_1476_5381_2010_00704_x
crossref_primary_10_1016_j_ejphar_2021_173916
crossref_primary_10_1002_asia_201402860
crossref_primary_10_1021_jacs_7b09795
crossref_primary_10_1089_ars_2011_4451
crossref_primary_10_1021_jacs_8b07268
crossref_primary_10_3390_ijms232415593
crossref_primary_10_1007_s00018_014_1598_z
crossref_primary_10_1002_adhm_202101984
crossref_primary_10_1002_jcp_24039
crossref_primary_10_34172_jcvtr_2020_33
crossref_primary_10_1016_j_actbio_2015_09_010
crossref_primary_10_1021_acs_chemmater_1c01872
crossref_primary_10_3390_molecules191117697
crossref_primary_10_1080_22243682_2018_1493951
crossref_primary_10_1016_j_jare_2021_05_008
crossref_primary_10_1016_j_phrs_2020_105125
crossref_primary_10_1021_acs_orglett_7b00858
crossref_primary_10_1089_ars_2017_7058
crossref_primary_10_1007_s12265_010_9201_y
crossref_primary_10_1021_acscatal_3c03663
crossref_primary_10_1021_acs_orglett_5b01962
crossref_primary_10_1002_bio_3831
crossref_primary_10_1016_j_pharmthera_2015_04_004
crossref_primary_10_1007_s40618_015_0313_8
crossref_primary_10_1039_C5SC04091D
crossref_primary_10_1002_wnan_1934
crossref_primary_10_1161_HYPERTENSIONAHA_114_04281
crossref_primary_10_3390_metabo13060688
crossref_primary_10_1155_2015_725023
crossref_primary_10_3390_biom12020280
crossref_primary_10_1152_ajpgi_00169_2013
crossref_primary_10_1016_j_atherosclerosis_2009_10_004
crossref_primary_10_1155_2020_4105382
crossref_primary_10_1016_j_electacta_2016_04_111
crossref_primary_10_1002_anie_201806854
Cites_doi 10.1021/ed063p687
10.1073/pnas.0609598103
10.1080/15216540310001592843
10.1016/j.ab.2005.03.024
10.1016/S0955-2863(99)00033-9
10.1152/ajpregu.00614.2005
10.1186/1475-2891-1-4
10.18388/abp.2000_3993
10.1021/jf00057a004
10.1093/emboj/20.21.6008
10.1016/S0076-6879(05)96047-3
10.1074/jbc.271.51.32515
10.1073/pnas.0505356102
10.1016/j.jep.2003.06.001
10.1016/S0891-5849(03)00144-8
10.1080/00498250310001636840
10.1093/jn/136.3.736S
10.1039/B703832A
10.1016/j.freeradbiomed.2003.08.013
10.1002/(SICI)1097-010X(19981015)282:3<310::AID-JEZ4>3.0.CO;2-P
10.1016/0021-9673(92)87034-6
10.1093/jn/136.3.716S
10.1099/mic.0.26212-0
10.1016/S0378-4347(00)00534-X
10.1046/j.1440-1681.2002.03596.x
10.1289/ehp.01109893
10.1096/fj.02-0211hyp
10.1016/S0960-894X(03)00103-3
10.1073/pnas.0234600100
10.1016/S0005-2736(99)00174-1
10.1093/jn/136.3.774S
10.1097/01.shk.0000225722.56681.64
ContentType Journal Article
Copyright Copyright 2007 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Nov 13, 2007
2007 by The National Academy of Sciences of the USA 2007
Copyright_xml – notice: Copyright 2007 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Nov 13, 2007
– notice: 2007 by The National Academy of Sciences of the USA 2007
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0705710104
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
CrossRef
MEDLINE
MEDLINE - Academic

AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 17982
ExternalDocumentID PMC2084282
1383829231
17951430
10_1073_pnas_0705710104
104_46_17977
25450359
US201300827929
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: T32 HL007918
– fundername: PHS HHS
  grantid: 08RGM073049A
– fundername: NIGMS NIH HHS
  grantid: R21 GM073049
– fundername: NHLBI NIH HHS
  grantid: R01 HL058031
– fundername: NHLBI NIH HHS
  grantid: HL58031
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c620t-309962fca49c238d328d8b6f3682960a6aa8e4ec4c8f19ebcbe12ba47c16be23
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:17:19 EDT 2025
Fri Jul 11 09:26:39 EDT 2025
Thu Jul 10 18:03:47 EDT 2025
Mon Jun 30 08:36:28 EDT 2025
Thu Apr 03 07:00:01 EDT 2025
Tue Jul 01 02:38:47 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Thu May 30 08:51:20 EDT 2019
Wed Nov 11 00:29:45 EST 2020
Thu May 29 08:42:42 EDT 2025
Wed Dec 27 19:04:56 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c620t-309962fca49c238d328d8b6f3682960a6aa8e4ec4c8f19ebcbe12ba47c16be23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: G.A.B., G.L.S., V.M.D.-U., J.E.D., and D.W.K. designed research; G.A.B., R.W.M., H.D.P., T.S.I., and D.W.K. performed research; G.L.S., T.S.I., R.P.P., and D.W.K. contributed new reagents/analytic tools; G.A.B., G.L.S., J.E.D., and D.W.K. analyzed data; and G.A.B., G.L.S., T.S.I., R.P.P., V.M.D.-U., J.E.D., and D.W.K. wrote the paper.
Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved September 12, 2007
OpenAccessLink http://doi.org/10.1073/pnas.0705710104
PMID 17951430
PQID 201306896
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_68501413
crossref_primary_10_1073_pnas_0705710104
jstor_primary_25450359
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2084282
pnas_primary_104_46_17977
pubmed_primary_17951430
crossref_citationtrail_10_1073_pnas_0705710104
proquest_miscellaneous_48148011
proquest_journals_201306896
fao_agris_US201300827929
pnas_primary_104_46_17977_fulltext
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-13
PublicationDateYYYYMMDD 2007-11-13
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-13
  day: 13
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2007
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
Beutler E (e_1_3_4_13_2) 1986
Streitwieser A (e_1_3_4_32_2) 1962
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
Koenitzer JR (e_1_3_4_10_2) 2007; 292
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_31_2
e_1_3_4_15_2
Cotton FA (e_1_3_4_6_2) 1988
e_1_3_4_16_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
16103371 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12248-52
16627692 - Am J Physiol Regul Integr Comp Physiol. 2006 Sep;291(3):R491-511
11254186 - J Chromatogr B Biomed Sci Appl. 2001 Mar 5;752(1):123-32
14698500 - J Ethnopharmacol. 2004 Jan;90(1):5-9
16484553 - J Nutr. 2006 Mar;136(3 Suppl):736S-740S
12502793 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):336-41
12537594 - Nutr J. 2002 Nov 19;1:4
17571177 - Org Biomol Chem. 2007 May 21;5(10):1505-18
14584588 - IUBMB Life. 2003 Jul;55(7):375-85
8955074 - J Biol Chem. 1996 Dec 20;271(51):32515-8
12706500 - Free Radic Biol Med. 2003 May 1;34(9):1200-11
11689441 - EMBO J. 2001 Nov 1;20(21):6008-16
14742141 - Xenobiotica. 2003 Dec;33(12):1185-99
14642384 - Free Radic Biol Med. 2003 Dec 1;35(11):1365-72
16484561 - J Nutr. 2006 Mar;136(3 Suppl):774S-776S
16878023 - Shock. 2006 Aug;26(2):154-61
12409322 - FASEB J. 2002 Nov;16(13):1792-8
11673117 - Environ Health Perspect. 2001 Sep;109(9):893-902
12657280 - Bioorg Med Chem Lett. 2003 Apr 7;13(7):1349-52
17237242 - Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1953-60
17164327 - Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19564-8
17991773 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):17907-8
11310974 - Acta Biochim Pol. 2000;47(3):751-62
12855721 - Microbiology. 2003 Jul;149(Pt 7):1699-710
11906464 - Clin Exp Pharmacol Physiol. 2002 Jan-Feb;29(1-2):84-91
9755482 - J Exp Zool. 1998 Oct 15;282(3):310-22
16484550 - J Nutr. 2006 Mar;136(3 Suppl):716S-725S
10631291 - Biochim Biophys Acta. 2000 Jan 15;1463(1):20-30
15539328 - J Nutr Biochem. 1999 Aug;10(8):490-7
15866526 - Anal Biochem. 2005 Jun 1;341(1):40-51
16291262 - Methods Enzymol. 2005;396:553-68
References_xml – ident: e_1_3_4_7_2
  doi: 10.1021/ed063p687
– ident: e_1_3_4_19_2
  doi: 10.1073/pnas.0609598103
– ident: e_1_3_4_16_2
  doi: 10.1080/15216540310001592843
– ident: e_1_3_4_12_2
  doi: 10.1016/j.ab.2005.03.024
– volume: 292
  start-page: H1953
  year: 2007
  ident: e_1_3_4_10_2
  publication-title: Am J Physiol
– ident: e_1_3_4_34_2
  doi: 10.1016/S0955-2863(99)00033-9
– ident: e_1_3_4_5_2
  doi: 10.1152/ajpregu.00614.2005
– ident: e_1_3_4_1_2
  doi: 10.1186/1475-2891-1-4
– ident: e_1_3_4_35_2
  doi: 10.18388/abp.2000_3993
– ident: e_1_3_4_3_2
  doi: 10.1021/jf00057a004
– ident: e_1_3_4_8_2
  doi: 10.1093/emboj/20.21.6008
– ident: e_1_3_4_36_2
  doi: 10.1016/S0076-6879(05)96047-3
– ident: e_1_3_4_23_2
  doi: 10.1074/jbc.271.51.32515
– ident: e_1_3_4_18_2
  doi: 10.1073/pnas.0505356102
– ident: e_1_3_4_20_2
  doi: 10.1016/j.jep.2003.06.001
– ident: e_1_3_4_26_2
  doi: 10.1016/S0891-5849(03)00144-8
– ident: e_1_3_4_27_2
  doi: 10.1080/00498250310001636840
– ident: e_1_3_4_33_2
  doi: 10.1093/jn/136.3.736S
– ident: e_1_3_4_31_2
  doi: 10.1039/B703832A
– ident: e_1_3_4_15_2
  doi: 10.1016/j.freeradbiomed.2003.08.013
– ident: e_1_3_4_11_2
  doi: 10.1002/(SICI)1097-010X(19981015)282:3<310::AID-JEZ4>3.0.CO;2-P
– ident: e_1_3_4_28_2
  doi: 10.1016/0021-9673(92)87034-6
– ident: e_1_3_4_2_2
  doi: 10.1093/jn/136.3.716S
– volume-title: Red Cell Metabolism
  year: 1986
  ident: e_1_3_4_13_2
– ident: e_1_3_4_29_2
  doi: 10.1099/mic.0.26212-0
– ident: e_1_3_4_14_2
  doi: 10.1016/S0378-4347(00)00534-X
– ident: e_1_3_4_21_2
  doi: 10.1046/j.1440-1681.2002.03596.x
– volume-title: Solvolytic Displacement Reactions
  year: 1962
  ident: e_1_3_4_32_2
– volume-title: Advanced Inorganic Chemistry
  year: 1988
  ident: e_1_3_4_6_2
– ident: e_1_3_4_25_2
  doi: 10.1289/ehp.01109893
– ident: e_1_3_4_4_2
  doi: 10.1096/fj.02-0211hyp
– ident: e_1_3_4_30_2
  doi: 10.1016/S0960-894X(03)00103-3
– ident: e_1_3_4_24_2
  doi: 10.1073/pnas.0234600100
– ident: e_1_3_4_17_2
  doi: 10.1016/S0005-2736(99)00174-1
– ident: e_1_3_4_22_2
  doi: 10.1093/jn/136.3.774S
– ident: e_1_3_4_9_2
  doi: 10.1097/01.shk.0000225722.56681.64
– reference: 16627692 - Am J Physiol Regul Integr Comp Physiol. 2006 Sep;291(3):R491-511
– reference: 10631291 - Biochim Biophys Acta. 2000 Jan 15;1463(1):20-30
– reference: 17237242 - Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1953-60
– reference: 12502793 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):336-41
– reference: 17991773 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):17907-8
– reference: 9755482 - J Exp Zool. 1998 Oct 15;282(3):310-22
– reference: 16484550 - J Nutr. 2006 Mar;136(3 Suppl):716S-725S
– reference: 12409322 - FASEB J. 2002 Nov;16(13):1792-8
– reference: 11310974 - Acta Biochim Pol. 2000;47(3):751-62
– reference: 14642384 - Free Radic Biol Med. 2003 Dec 1;35(11):1365-72
– reference: 11254186 - J Chromatogr B Biomed Sci Appl. 2001 Mar 5;752(1):123-32
– reference: 8955074 - J Biol Chem. 1996 Dec 20;271(51):32515-8
– reference: 12537594 - Nutr J. 2002 Nov 19;1:4
– reference: 12706500 - Free Radic Biol Med. 2003 May 1;34(9):1200-11
– reference: 12855721 - Microbiology. 2003 Jul;149(Pt 7):1699-710
– reference: 14742141 - Xenobiotica. 2003 Dec;33(12):1185-99
– reference: 17164327 - Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19564-8
– reference: 15539328 - J Nutr Biochem. 1999 Aug;10(8):490-7
– reference: 15866526 - Anal Biochem. 2005 Jun 1;341(1):40-51
– reference: 16484553 - J Nutr. 2006 Mar;136(3 Suppl):736S-740S
– reference: 11689441 - EMBO J. 2001 Nov 1;20(21):6008-16
– reference: 16291262 - Methods Enzymol. 2005;396:553-68
– reference: 16878023 - Shock. 2006 Aug;26(2):154-61
– reference: 14698500 - J Ethnopharmacol. 2004 Jan;90(1):5-9
– reference: 11673117 - Environ Health Perspect. 2001 Sep;109(9):893-902
– reference: 16103371 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12248-52
– reference: 11906464 - Clin Exp Pharmacol Physiol. 2002 Jan-Feb;29(1-2):84-91
– reference: 12657280 - Bioorg Med Chem Lett. 2003 Apr 7;13(7):1349-52
– reference: 16484561 - J Nutr. 2006 Mar;136(3 Suppl):774S-776S
– reference: 17571177 - Org Biomol Chem. 2007 May 21;5(10):1505-18
– reference: 14584588 - IUBMB Life. 2003 Jul;55(7):375-85
SSID ssj0009580
Score 2.4840803
Snippet The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17977
SubjectTerms Acetylcysteine - pharmacology
Aorta
Assembly lines
Biological Sciences
cardioprotective effect
Cardiovascular disease
Cardiovascular diseases
cardiovascular system
Chromatography, High Pressure Liquid
Coronary vessels
Disulfides
Electrochemistry
Erythrocytes
Erythrocytes - drug effects
Erythrocytes - metabolism
food intake
Garlic
Garlic - chemistry
Glutathione - blood
Glutathione Disulfide - blood
Humans
Hydrogen
Hydrogen sulfide
Hydrogen Sulfide - blood
Hydrogen Sulfide - pharmacology
metabolism
organic polysulfides
organic sulfur compounds
Polysulfides
Respirometers
Risk factors
Sensors
Sulfides
Sulfur
Thiols
Vasodilation
Title Hydrogen sulfide mediates the vasoactivity of garlic
URI https://www.jstor.org/stable/25450359
http://www.pnas.org/content/104/46/17977.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17951430
https://www.proquest.com/docview/201306896
https://www.proquest.com/docview/48148011
https://www.proquest.com/docview/68501413
https://pubmed.ncbi.nlm.nih.gov/PMC2084282
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLe6ceGCGDAWxiNCHIailMRxHOdY8WiFoKpEB7tFjuOMSlVSmhYJrvzjfE7sJB2tBFyiNnbc1N_P38P-Hgi9CEQWZV4auCALUhfkLXY56O1uSHAkUhnlfh0k9nFKJ5fk_VV4NRj86nktbTfpUPzcG1fyP1SFe0BXFSX7D5RtB4Ub8BnoC1egMFz_isaTH9m6hFZY_st8kcn62EUpj7U6-ZlXpQpb-K69LsZ8vVyIvjY6a6VXZXwFpmZzcNSFmuj1XzmuM5v2ChfLQjnEN3xmrDz5uDMatls237Y8Wy_qKk3OeLGt5GolnQ9tuwpCrDrfbudL2zKDf9Ck2JYqUvPNcGdnIlIhek1gaT-x994X7rNkDGKSNIHULUtuShJr7JE-hwUGouu-SPO9qV70hywA5qUKGBe8GgJfC0GVMsPuJtgGEzlUiQyP0C0MtkZgtnzazM2siWPS72nyQ0XBqxtj76g2RzkvjY-rSpwLXfcZMTd9cXvKzfwuuqOtEnvUQOwEDWRxD52YabQvdHLyl_cRMZizNeZsgzkb4GP3MWeXud1g7gGav3s7fz1xdeUNV1DsbdwA7AaKc8FJLECnywLMMpbSPKAMg8nLKedMEimIYLkfyxRWtY9TTiLh01Ti4BQdF2Uhz5DN4jDP4zACy9cjkrOUwcxlHhMpPEyptNDQzFkidFZ6VRxlmdTeEVGQqJlLukm20EX7wKpJyHK46xkQIeHXIC6Ty09YHdKDxhuBRWCh05oy7RAGBBay6lG6oUlCaFKjzkLPD7YlufbVstC5IXKiWUWV1D9NWUwt9KxtBT6uDud4IcttlRDmq0xO_uEelCkfAD-w0MMGMt2LRLGyezwLRTtgajuoHPK7LcXia51LHnuAaYYfHZqPc3S7W9qP0fFmvZVPQA3fpE_rZfIb7nLYfA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Sulfide+Mediates+the+Vasoactivity+of+Garlic&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Benavides%2C+Gloria+A.&rft.au=Squadrito%2C+Giuseppe+L.&rft.au=Mills%2C+Robert+W.&rft.au=Patel%2C+Hetal+D.&rft.date=2007-11-13&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=104&rft.issue=46&rft.spage=17977&rft.epage=17982&rft_id=info:doi/10.1073%2Fpnas.0705710104&rft.externalDocID=25450359
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F46.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F46.cover.gif