Hydrogen sulfide mediates the vasoactivity of garlic
The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H₂S), an endogenous cardioprotective vascular cell sig...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 46; pp. 17977 - 17982 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.11.2007
National Acad Sciences |
Series | From the Cover |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H₂S), an endogenous cardioprotective vascular cell signaling molecule. This H₂S production, measured in real time by a novel polarographic H₂S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H₂S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the α carbon of the allyl substituent, thereby forming a hydropolysulfide (RSnH), a key intermediate during the formation of H₂S. Organic polysulfides (R-Sn-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RSnH and H₂S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H₂S. The vasoactivity of garlic compounds is synchronous with H₂S production, and their potency to mediate relaxation increases with H₂S yield, strongly supporting our hypothesis that H₂S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H₂S can be used to standardize garlic dietary supplements. |
---|---|
AbstractList | The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H 2 S), an endogenous cardioprotective vascular cell signaling molecule. This H 2 S production, measured in real time by a novel polarographic H 2 S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H 2 S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the α carbon of the allyl substituent, thereby forming a hydropolysulfide (RS n H), a key intermediate during the formation of H 2 S. Organic polysulfides (R-S n -R′; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RS n H and H 2 S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H 2 S. The vasoactivity of garlic compounds is synchronous with H 2 S production, and their potency to mediate relaxation increases with H 2 S yield, strongly supporting our hypothesis that H 2 S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H 2 S can be used to standardize garlic dietary supplements. Allium aorta polysulfides red blood cells vasorelaxation The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (...), an endogenous cardioprotective vascular cell signaling molecule. This ... production, measured in real time by a novel polarographic ... sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. ... production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the carbon of the allyl substituent, thereby forming a hydropolysulfide (...), a key intermediate during the formation of ... Organic polysulfides (R-S...-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding ... and ... Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate ... The vasoactivity of garlic compounds is synchronous with ... production, and their potency to mediate relaxation increases with ... yield, strongly supporting our hypothesis that ... mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce ... can be used to standardize garlic dietary supplements. (ProQuest: ... denotes formulae/symbols omitted.) The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H 2 S), an endogenous cardioprotective vascular cell signaling molecule. This H 2 S production, measured in real time by a novel polarographic H 2 S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H 2 S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the α carbon of the allyl substituent, thereby forming a hydropolysulfide (RS n H), a key intermediate during the formation of H 2 S. Organic polysulfides (R-S n -R′; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RS n H and H 2 S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H 2 S. The vasoactivity of garlic compounds is synchronous with H 2 S production, and their potency to mediate relaxation increases with H 2 S yield, strongly supporting our hypothesis that H 2 S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H 2 S can be used to standardize garlic dietary supplements. The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H(2)S), an endogenous cardioprotective vascular cell signaling molecule. This H(2)S production, measured in real time by a novel polarographic H(2)S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H(2)S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the alpha carbon of the allyl substituent, thereby forming a hydropolysulfide (RS(n)H), a key intermediate during the formation of H(2)S. Organic polysulfides (R-S(n)-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RS(n)H and H(2)S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H(2)S. The vasoactivity of garlic compounds is synchronous with H(2)S production, and their potency to mediate relaxation increases with H(2)S yield, strongly supporting our hypothesis that H(2)S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H(2)S can be used to standardize garlic dietary supplements. The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H(2)S), an endogenous cardioprotective vascular cell signaling molecule. This H(2)S production, measured in real time by a novel polarographic H(2)S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H(2)S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the alpha carbon of the allyl substituent, thereby forming a hydropolysulfide (RS(n)H), a key intermediate during the formation of H(2)S. Organic polysulfides (R-S(n)-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RS(n)H and H(2)S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H(2)S. The vasoactivity of garlic compounds is synchronous with H(2)S production, and their potency to mediate relaxation increases with H(2)S yield, strongly supporting our hypothesis that H(2)S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H(2)S can be used to standardize garlic dietary supplements.The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H(2)S), an endogenous cardioprotective vascular cell signaling molecule. This H(2)S production, measured in real time by a novel polarographic H(2)S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H(2)S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the alpha carbon of the allyl substituent, thereby forming a hydropolysulfide (RS(n)H), a key intermediate during the formation of H(2)S. Organic polysulfides (R-S(n)-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RS(n)H and H(2)S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H(2)S. The vasoactivity of garlic compounds is synchronous with H(2)S production, and their potency to mediate relaxation increases with H(2)S yield, strongly supporting our hypothesis that H(2)S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H(2)S can be used to standardize garlic dietary supplements. The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H₂S), an endogenous cardioprotective vascular cell signaling molecule. This H₂S production, measured in real time by a novel polarographic H₂S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H₂S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the α carbon of the allyl substituent, thereby forming a hydropolysulfide (RSnH), a key intermediate during the formation of H₂S. Organic polysulfides (R-Sn-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RSnH and H₂S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H₂S. The vasoactivity of garlic compounds is synchronous with H₂S production, and their potency to mediate relaxation increases with H₂S yield, strongly supporting our hypothesis that H₂S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H₂S can be used to standardize garlic dietary supplements. The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H₂S), an endogenous cardioprotective vascular cell signaling molecule. This H₂S production, measured in real time by a novel polarographic H₂S sensor, is supported by glucose-maintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H₂S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the α carbon of the allyl substituent, thereby forming a hydropolysulfide$({\rm RS}_{{\rm n}}{\rm H})$, a key intermediate during the formation of H₂S. Organic polysulfides (${\rm R}\text{-}{\rm S}_{{\rm n}}\text{-}{\rm R}^{\prime}$; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding${\rm RS}_{{\rm n}}{\rm H}$and H₂S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H₂S. The vasoactivity of garlic compounds is synchronous with H₂S production, and their potency to mediate relaxation increases with H₂S yield, strongly supporting our hypothesis that H₂S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H₂S can be used to standardize garlic dietary supplements. |
Author | Doeller, Jeannette E Benavides, Gloria A Isbell, T. Scott Kraus, David W Patel, Hetal D Mills, Robert W Squadrito, Giuseppe L Darley-Usmar, Victor M Patel, Rakesh P |
Author_xml | – sequence: 1 fullname: Benavides, Gloria A – sequence: 2 fullname: Squadrito, Giuseppe L – sequence: 3 fullname: Mills, Robert W – sequence: 4 fullname: Patel, Hetal D – sequence: 5 fullname: Isbell, T. Scott – sequence: 6 fullname: Patel, Rakesh P – sequence: 7 fullname: Darley-Usmar, Victor M – sequence: 8 fullname: Doeller, Jeannette E – sequence: 9 fullname: Kraus, David W |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17951430$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFMycg4lCJQ9rxRxz7UglVtEWq1APlbDmOs_UqGy-2s2L_exx224Ue2tMc3u_NvJk5QgeDHyxC7zGcYqjp2WrQ8RRqqGoMGNgrNMMgccmZhAM0AyB1KRhhh-goxgUAyErAG3SIa1lhRmGG2PWmDX5uhyKOfedaWyxt63SysUj3tljr6LVJbu3SpvBdMdehd-Ytet3pPtp3u3qM7i6_3V1clze3V98vvt6UhhNIJQUpOemMZtIQKlpKRCsa3lEuiOSgudbCMmuYER2WtjGNxaTRrDaYN5bQY3S-bbsam5zK2CEF3atVcEsdNsprp_5XBnev5n6tCOSlxdTgZNcg-F-jjUktXTS27_Vg_RgVFxVghumLIBOYCcA4g5-fgAs_hiEfIQ_FFLiQPEMf_839GPjh6hk42wIm-BiD7fYIqOmvavqr2v81O6onDuOSTs5Pi7v-Gd-XXZRJ2E9hivEpT12rbuz7ZH-nzBYvsBn5sEUWMfnwyJCKVUArmfVPW73TXul5cFH9_PH3MCBILYmkfwCu59Ig |
CitedBy_id | crossref_primary_10_1021_acssensors_6b00291 crossref_primary_10_1016_j_lfs_2016_08_030 crossref_primary_10_3390_cells10061477 crossref_primary_10_1016_j_biopha_2018_03_131 crossref_primary_10_1111_j_1525_1594_2011_01256_x crossref_primary_10_1016_j_niox_2012_03_004 crossref_primary_10_1016_j_nutres_2013_12_005 crossref_primary_10_1134_S1990747815040078 crossref_primary_10_15415_jptrm_2018_61004 crossref_primary_10_1016_j_abb_2016_09_018 crossref_primary_10_3390_antiox5040046 crossref_primary_10_1139_cjpp_2015_0316 crossref_primary_10_3390_targets2030012 crossref_primary_10_1038_s41598_017_11608_z crossref_primary_10_1021_tx500464t crossref_primary_10_1016_j_niox_2015_01_005 crossref_primary_10_3390_antiox10030429 crossref_primary_10_1111_j_1471_4159_2008_05502_x crossref_primary_10_1515_revac_2013_0008 crossref_primary_10_1016_j_ejphar_2008_07_029 crossref_primary_10_1016_j_pharmthera_2013_12_005 crossref_primary_10_1002_ptr_6923 crossref_primary_10_3390_antiox11112136 crossref_primary_10_1002_slct_202404855 crossref_primary_10_1016_j_foodchem_2015_06_072 crossref_primary_10_1016_j_cplett_2015_11_038 crossref_primary_10_1016_j_bbabio_2010_04_004 crossref_primary_10_1021_acsbiomaterials_2c00266 crossref_primary_10_1007_s11094_017_1576_5 crossref_primary_10_1016_j_maturitas_2010_06_001 crossref_primary_10_1016_j_bcp_2012_10_019 crossref_primary_10_1016_j_jff_2015_05_020 crossref_primary_10_1089_ars_2019_7824 crossref_primary_10_1039_c0md00203h crossref_primary_10_1089_jmf_2009_0258 crossref_primary_10_1016_j_bioorg_2019_102941 crossref_primary_10_1016_j_jff_2017_01_001 crossref_primary_10_1016_j_kim_2007_11_025 crossref_primary_10_1002_adtp_201800084 crossref_primary_10_1080_10402004_2020_1842573 crossref_primary_10_20960_nh_04471 crossref_primary_10_3390_antiox13020245 crossref_primary_10_3390_molecules23030699 crossref_primary_10_3945_jn_114_208066 crossref_primary_10_1002_chem_201804895 crossref_primary_10_2174_1568026623666230106144509 crossref_primary_10_1111_nure_12050 crossref_primary_10_1007_s11684_015_0427_6 crossref_primary_10_1016_j_cclet_2016_04_023 crossref_primary_10_1021_acsomega_1c02585 crossref_primary_10_1002_anie_202404139 crossref_primary_10_2174_1389557523666230427152234 crossref_primary_10_1042_BSR20150147 crossref_primary_10_1186_s12906_023_04038_0 crossref_primary_10_1152_ajpcell_00028_2016 crossref_primary_10_3389_fphar_2014_00119 crossref_primary_10_3390_ijms21124349 crossref_primary_10_1155_2020_8609364 crossref_primary_10_1002_anie_202219156 crossref_primary_10_3389_fendo_2018_00055 crossref_primary_10_1016_j_intimp_2016_04_015 crossref_primary_10_1089_ars_2019_7841 crossref_primary_10_3390_cells14060420 crossref_primary_10_1002_smll_202402673 crossref_primary_10_1097_SHK_0000000000000894 crossref_primary_10_3390_chemosensors8030049 crossref_primary_10_1016_j_bcp_2017_11_014 crossref_primary_10_1186_1471_2261_8_13 crossref_primary_10_3390_antiox6010014 crossref_primary_10_1039_C9CC02829C crossref_primary_10_3390_ijms241511886 crossref_primary_10_3390_biom11050682 crossref_primary_10_1016_j_tips_2018_03_009 crossref_primary_10_1111_bph_12961 crossref_primary_10_1016_j_jff_2017_01_024 crossref_primary_10_1007_s11101_019_09634_y crossref_primary_10_1039_C7CC01695F crossref_primary_10_1097_SHK_0b013e31817c07d0 crossref_primary_10_1002_jrs_4754 crossref_primary_10_1016_j_phrs_2016_09_032 crossref_primary_10_1016_j_niox_2022_07_001 crossref_primary_10_1016_j_phymed_2015_10_016 crossref_primary_10_1089_ars_2017_7224 crossref_primary_10_3390_ijms242216131 crossref_primary_10_1016_j_apsb_2020_10_019 crossref_primary_10_1038_s41598_024_81304_2 crossref_primary_10_1039_C6RA14100E crossref_primary_10_1002_ptr_8181 crossref_primary_10_1007_s00592_019_01366_x crossref_primary_10_3389_fphys_2020_587674 crossref_primary_10_3390_antiox12030650 crossref_primary_10_1089_ars_2009_2657 crossref_primary_10_3389_fnut_2018_00122 crossref_primary_10_3390_biom11121899 crossref_primary_10_1002_tox_21901 crossref_primary_10_1038_s41467_018_06373_0 crossref_primary_10_3389_fnut_2015_00001 crossref_primary_10_1002_ange_202302957 crossref_primary_10_1371_journal_pone_0015358 crossref_primary_10_3390_ijms232012202 crossref_primary_10_3390_molecules27113389 crossref_primary_10_1002_adma_202301099 crossref_primary_10_1016_j_cej_2024_152849 crossref_primary_10_3390_ma14216701 crossref_primary_10_1016_j_cca_2014_07_012 crossref_primary_10_1016_j_jconrel_2023_11_014 crossref_primary_10_1152_ajpheart_00723_2016 crossref_primary_10_1016_j_ab_2011_01_044 crossref_primary_10_2174_0929867330666230126100638 crossref_primary_10_3390_md21120641 crossref_primary_10_1021_jp508471v crossref_primary_10_3390_molecules24214006 crossref_primary_10_3390_biomedicines9091107 crossref_primary_10_1021_jacs_5b04196 crossref_primary_10_1186_s12976_015_0006_1 crossref_primary_10_1002_mabi_201500430 crossref_primary_10_2478_ausal_2018_0009 crossref_primary_10_3390_antiox11010048 crossref_primary_10_1002_ptr_8291 crossref_primary_10_1089_ars_2019_7864 crossref_primary_10_1517_14728222_2012_673591 crossref_primary_10_1038_s41467_018_04306_5 crossref_primary_10_1155_2021_8817288 crossref_primary_10_1039_D1FO03180E crossref_primary_10_1021_acs_orglett_8b02043 crossref_primary_10_1155_2019_8961837 crossref_primary_10_1039_C9CC05562B crossref_primary_10_1016_j_ejmech_2020_112665 crossref_primary_10_1016_j_ijom_2015_06_015 crossref_primary_10_1016_j_jocn_2014_01_006 crossref_primary_10_1073_pnas_0709010104 crossref_primary_10_1002_adtp_202200349 crossref_primary_10_1016_j_procbio_2022_11_009 crossref_primary_10_1111_bph_12869 crossref_primary_10_1142_S1793545810000836 crossref_primary_10_1080_17415990802195623 crossref_primary_10_1007_s12035_017_0617_0 crossref_primary_10_1016_j_redox_2012_11_006 crossref_primary_10_1016_j_postharvbio_2023_112394 crossref_primary_10_1007_s00018_022_04636_0 crossref_primary_10_1111_j_1476_5381_2009_00248_x crossref_primary_10_1021_acs_inorgchem_0c01194 crossref_primary_10_1021_acsami_7b12524 crossref_primary_10_1042_EBC20190049 crossref_primary_10_1016_j_ijcard_2015_05_111 crossref_primary_10_3389_fphar_2021_720703 crossref_primary_10_1126_scisignal_268re2 crossref_primary_10_1021_jf901301w crossref_primary_10_1007_s13659_020_00281_x crossref_primary_10_1016_j_jff_2016_08_062 crossref_primary_10_3390_cells12232684 crossref_primary_10_1002_ame2_12233 crossref_primary_10_1016_j_phrs_2020_104677 crossref_primary_10_1016_j_phrs_2021_105842 crossref_primary_10_1113_JP270963 crossref_primary_10_1021_ac3008863 crossref_primary_10_1089_ars_2009_2882 crossref_primary_10_3389_fphar_2022_919898 crossref_primary_10_1073_pnas_1119658109 crossref_primary_10_1016_j_phrs_2016_08_019 crossref_primary_10_1371_journal_pone_0064495 crossref_primary_10_1016_j_niox_2009_05_006 crossref_primary_10_1039_D5CC00252D crossref_primary_10_1089_ars_2019_7888 crossref_primary_10_1016_j_jinorgbio_2012_01_001 crossref_primary_10_1161_CIRCHEARTFAILURE_113_000299 crossref_primary_10_1002_ptr_7065 crossref_primary_10_3390_cells12040669 crossref_primary_10_1021_acs_analchem_2c02961 crossref_primary_10_1155_2016_8108549 crossref_primary_10_3390_antiox10071065 crossref_primary_10_1111_bph_14824 crossref_primary_10_1111_j_1399_3054_2008_01080_x crossref_primary_10_1021_acs_chemrestox_9b00494 crossref_primary_10_1039_D3FO03914E crossref_primary_10_1016_j_lfs_2016_03_057 crossref_primary_10_1089_ars_2023_0535 crossref_primary_10_1016_j_cellsig_2020_109870 crossref_primary_10_1080_13102818_2014_991565 crossref_primary_10_1021_acschemneuro_2c00789 crossref_primary_10_1042_BSR20221006 crossref_primary_10_1152_ajplung_00327_2014 crossref_primary_10_3390_ijms18081645 crossref_primary_10_1016_j_jchromb_2009_11_047 crossref_primary_10_1007_s11010_021_04213_2 crossref_primary_10_1016_j_arabjc_2023_105004 crossref_primary_10_1155_2015_186908 crossref_primary_10_3389_fimmu_2018_00499 crossref_primary_10_1155_2017_1406726 crossref_primary_10_1016_j_bcp_2017_09_010 crossref_primary_10_3390_biom12040581 crossref_primary_10_31665_JFB_2019_6186 crossref_primary_10_1111_j_1582_4934_2008_00446_x crossref_primary_10_1016_j_biopha_2016_01_009 crossref_primary_10_1152_physrev_00028_2021 crossref_primary_10_1186_2251_6581_13_50 crossref_primary_10_1111_pcmr_12312 crossref_primary_10_1080_17460441_2021_1850688 crossref_primary_10_1089_ars_2023_0404 crossref_primary_10_3390_nu7095371 crossref_primary_10_3389_fphar_2022_943967 crossref_primary_10_1096_fj_201901304R crossref_primary_10_1016_j_talanta_2014_10_034 crossref_primary_10_1007_s11468_013_9592_0 crossref_primary_10_1039_b907115f crossref_primary_10_1038_s41420_024_01868_w crossref_primary_10_1016_j_jphs_2018_07_009 crossref_primary_10_1002_anie_202302957 crossref_primary_10_1038_nrd_2015_1 crossref_primary_10_1016_j_niox_2021_08_004 crossref_primary_10_1093_ndt_gfr737 crossref_primary_10_3389_fendo_2022_937956 crossref_primary_10_1089_ars_2023_0531 crossref_primary_10_1021_acs_orglett_0c02992 crossref_primary_10_3390_cells11030325 crossref_primary_10_1039_C7CC05339H crossref_primary_10_3390_ijms19082368 crossref_primary_10_1186_1476_0711_11_8 crossref_primary_10_1002_biof_1061 crossref_primary_10_1016_j_bcp_2012_08_024 crossref_primary_10_1038_s41371_019_0257_0 crossref_primary_10_3390_biom10020323 crossref_primary_10_1253_circj_CJ_16_1097 crossref_primary_10_17827_aktd_1066415 crossref_primary_10_1007_s00210_017_1393_0 crossref_primary_10_3389_fphar_2017_00664 crossref_primary_10_1016_S1875_5364_20_30037_6 crossref_primary_10_1007_s00394_022_02895_y crossref_primary_10_1016_j_jconrel_2022_05_001 crossref_primary_10_3390_antiox10030486 crossref_primary_10_1016_j_apsb_2015_06_004 crossref_primary_10_53393_rial_2009_v68_32736 crossref_primary_10_1021_jf903322x crossref_primary_10_3390_molecules190812591 crossref_primary_10_1039_C6RA01242F crossref_primary_10_1002_ptr_8350 crossref_primary_10_1021_acs_chemrev_0c00663 crossref_primary_10_1039_D0BM01544J crossref_primary_10_1254_fpj_141_350 crossref_primary_10_1016_j_fct_2013_10_020 crossref_primary_10_1016_j_phymed_2016_11_016 crossref_primary_10_12688_f1000research_7987_1 crossref_primary_10_3390_molecules25184111 crossref_primary_10_3389_fnagi_2017_00324 crossref_primary_10_1021_acs_accounts_9b00315 crossref_primary_10_1021_am2007678 crossref_primary_10_1002_ange_202404139 crossref_primary_10_1021_ic900238v crossref_primary_10_1124_mol_118_113910 crossref_primary_10_1016_j_ajpath_2016_12_002 crossref_primary_10_1515_dmpt_2015_0035 crossref_primary_10_1002_ange_202219156 crossref_primary_10_1021_cr300163e crossref_primary_10_1161_CIRCULATIONAHA_107_753467 crossref_primary_10_1517_17460441_2016_1122590 crossref_primary_10_2174_1568026621666210622130002 crossref_primary_10_1002_cbic_201300552 crossref_primary_10_1021_ja1085723 crossref_primary_10_1016_j_cej_2025_160345 crossref_primary_10_1016_j_freeradbiomed_2009_09_018 crossref_primary_10_1016_j_ijpharm_2024_124143 crossref_primary_10_1016_j_polymer_2019_02_004 crossref_primary_10_4103_ijp_ijp_310_23 crossref_primary_10_3390_nu13072332 crossref_primary_10_1007_s00044_020_02687_1 crossref_primary_10_1007_s00210_024_03086_8 crossref_primary_10_1002_ange_201806854 crossref_primary_10_1038_ejcn_2012_178 crossref_primary_10_1016_j_freeradbiomed_2019_07_022 crossref_primary_10_1080_10408398_2010_537000 crossref_primary_10_1016_j_niox_2021_09_002 crossref_primary_10_1089_ars_2014_5933 crossref_primary_10_1016_j_bbagen_2019_03_012 crossref_primary_10_1039_C6CS00212A crossref_primary_10_3389_fphar_2021_651884 crossref_primary_10_3892_etm_2019_8375 crossref_primary_10_3892_etm_2019_8374 crossref_primary_10_1016_j_fct_2016_07_016 crossref_primary_10_1002_ptr_6278 crossref_primary_10_1002_med_21913 crossref_primary_10_1038_s42003_019_0431_5 crossref_primary_10_3892_etm_2019_8377 crossref_primary_10_1039_c3fo60479a crossref_primary_10_1186_s40066_018_0197_x crossref_primary_10_1113_expphysiol_2011_059725 crossref_primary_10_1016_j_niox_2024_11_006 crossref_primary_10_1016_j_niox_2024_11_008 crossref_primary_10_1074_jbc_M111_270884 crossref_primary_10_1016_j_cbpa_2012_07_014 crossref_primary_10_1254_fpj_136_335 crossref_primary_10_1016_j_cej_2022_139089 crossref_primary_10_1155_2019_5470470 crossref_primary_10_3390_antiox10020247 crossref_primary_10_1016_j_jff_2016_01_034 crossref_primary_10_1089_ars_2022_0077 crossref_primary_10_1111_bph_12811 crossref_primary_10_3390_ijtm2030032 crossref_primary_10_11002_kjfp_2022_29_2_254 crossref_primary_10_3389_fpubh_2019_00128 crossref_primary_10_1039_c2an16307a crossref_primary_10_1111_j_1476_5381_2010_01026_x crossref_primary_10_1152_ajplung_90240_2008 crossref_primary_10_1111_jfpp_15969 crossref_primary_10_3109_01902148_2011_641668 crossref_primary_10_1016_j_foodchem_2016_10_076 crossref_primary_10_1111_bph_12806 crossref_primary_10_1080_00387010_2017_1390767 crossref_primary_10_1111_j_1440_1681_2010_05371_x crossref_primary_10_1016_j_cbpa_2024_102511 crossref_primary_10_3389_fphar_2021_752244 crossref_primary_10_1002_ange_201511244 crossref_primary_10_1016_j_freeradbiomed_2018_12_025 crossref_primary_10_1002_anie_201608052 crossref_primary_10_1016_j_bcp_2018_01_017 crossref_primary_10_1016_j_ejmech_2017_10_068 crossref_primary_10_1111_bph_16170 crossref_primary_10_1002_cbf_1835 crossref_primary_10_1016_j_freeradbiomed_2021_01_010 crossref_primary_10_1016_j_neuint_2018_07_010 crossref_primary_10_3390_ijms25189831 crossref_primary_10_1021_acscentsci_6b00113 crossref_primary_10_3390_ijms21051638 crossref_primary_10_1016_j_fbio_2024_103838 crossref_primary_10_1063_1_5100733 crossref_primary_10_1016_j_colsurfb_2023_113313 crossref_primary_10_1021_acs_biomac_0c01347 crossref_primary_10_1002_med_21433 crossref_primary_10_1021_tx300066z crossref_primary_10_1097_HJH_0000000000002433 crossref_primary_10_1016_j_cellsig_2023_110628 crossref_primary_10_1096_fj_14_257113 crossref_primary_10_1016_j_niox_2017_01_002 crossref_primary_10_1007_s10068_017_0077_3 crossref_primary_10_1016_j_jff_2017_05_040 crossref_primary_10_1186_s12967_018_1753_7 crossref_primary_10_1097_MD_0000000000013065 crossref_primary_10_3390_biom14091145 crossref_primary_10_1016_j_taap_2011_09_026 crossref_primary_10_1016_j_bioadv_2023_213622 crossref_primary_10_1016_j_dyepig_2017_07_016 crossref_primary_10_7759_cureus_45369 crossref_primary_10_1021_acs_orglett_9b02117 crossref_primary_10_1016_j_bcp_2020_113819 crossref_primary_10_1016_j_biochi_2024_02_001 crossref_primary_10_1186_s10020_020_00216_9 crossref_primary_10_1002_med_20234 crossref_primary_10_1021_acs_joc_8b03262 crossref_primary_10_1016_j_placenta_2012_02_015 crossref_primary_10_1021_acs_jafc_0c02358 crossref_primary_10_1371_journal_pone_0241685 crossref_primary_10_1039_D2CS00553K crossref_primary_10_1021_acsbiomedchemau_3c00028 crossref_primary_10_1016_j_niox_2017_01_012 crossref_primary_10_1038_s41598_018_25154_9 crossref_primary_10_3923_ajbs_2024_156_168 crossref_primary_10_1016_j_cbi_2017_01_013 crossref_primary_10_1021_acs_jpcb_7b03683 crossref_primary_10_1042_CS20100462 crossref_primary_10_1016_j_biomaterials_2018_07_044 crossref_primary_10_3389_fcvm_2022_876639 crossref_primary_10_1016_j_tetlet_2021_152944 crossref_primary_10_3390_antiox11061036 crossref_primary_10_1002_ptr_7567 crossref_primary_10_1007_s00018_016_2406_8 crossref_primary_10_1002_anie_201803087 crossref_primary_10_1108_NFS_05_2019_0157 crossref_primary_10_1021_acs_joc_9b01873 crossref_primary_10_3390_cancers15010249 crossref_primary_10_1016_j_jinsphys_2010_07_009 crossref_primary_10_1021_jo5014838 crossref_primary_10_1371_journal_pone_0105772 crossref_primary_10_1271_kagakutoseibutsu_60_317 crossref_primary_10_1080_02713683_2021_1975764 crossref_primary_10_1556_APhysiol_99_2012_4_5 crossref_primary_10_1371_journal_pone_0023788 crossref_primary_10_1002_ptr_6586 crossref_primary_10_2174_0929867325666180912105036 crossref_primary_10_1016_j_inoche_2024_113688 crossref_primary_10_3390_ijms18091980 crossref_primary_10_1089_jmf_2021_0146 crossref_primary_10_1016_j_msec_2019_109954 crossref_primary_10_3945_jn_114_202192 crossref_primary_10_1002_slct_201600756 crossref_primary_10_1016_j_niox_2017_10_010 crossref_primary_10_1038_nrd2425 crossref_primary_10_3390_antiox13050543 crossref_primary_10_3390_ijms22136667 crossref_primary_10_1021_acsmacrolett_3c00558 crossref_primary_10_1021_acschembio_7b00279 crossref_primary_10_3390_nu11071581 crossref_primary_10_1089_ars_2021_0203 crossref_primary_10_3390_antiox12051095 crossref_primary_10_1039_C4CC01095G crossref_primary_10_1186_s12951_024_02961_z crossref_primary_10_1016_j_bcp_2022_115302 crossref_primary_10_3390_ijms232315107 crossref_primary_10_1016_j_bbamcr_2025_119909 crossref_primary_10_1016_j_niox_2017_08_004 crossref_primary_10_1021_acsomega_1c04196 crossref_primary_10_1089_ars_2010_3698 crossref_primary_10_1080_10942912_2021_1967386 crossref_primary_10_1021_cb400090d crossref_primary_10_1111_j_1476_5381_2010_01191_x crossref_primary_10_3390_antiox10060961 crossref_primary_10_1111_bph_15230 crossref_primary_10_18632_oncotarget_12609 crossref_primary_10_1016_j_phrs_2022_106519 crossref_primary_10_1080_14737175_2019_1668270 crossref_primary_10_1007_s40495_018_0153_2 crossref_primary_10_1111_j_1365_2125_2010_03636_x crossref_primary_10_1016_j_jece_2017_10_053 crossref_primary_10_1016_j_niox_2018_02_003 crossref_primary_10_1089_ars_2020_8206 crossref_primary_10_1111_j_1365_2982_2010_01571_x crossref_primary_10_1039_C4RA11870G crossref_primary_10_1124_pr_117_014050 crossref_primary_10_1104_pp_108_123273 crossref_primary_10_1039_D3AY01802D crossref_primary_10_1161_CIRCRESAHA_114_300505 crossref_primary_10_1016_j_jhazmat_2020_123698 crossref_primary_10_1039_C4CC00968A crossref_primary_10_1016_j_cca_2014_10_037 crossref_primary_10_1021_jf4030213 crossref_primary_10_1039_C5TB00354G crossref_primary_10_1074_jbc_M110_115261 crossref_primary_10_1089_ars_2021_0149 crossref_primary_10_1016_j_bmc_2012_02_028 crossref_primary_10_1159_000357232 crossref_primary_10_3389_fphar_2015_00323 crossref_primary_10_1007_s00726_017_2484_4 crossref_primary_10_1089_ars_2012_4612 crossref_primary_10_3934_agrfood_2019_2_386 crossref_primary_10_1089_ars_2020_8217 crossref_primary_10_1152_ajpheart_00044_2012 crossref_primary_10_1016_j_niox_2013_07_001 crossref_primary_10_1016_j_niox_2013_07_002 crossref_primary_10_3390_antiox10010049 crossref_primary_10_1007_s00604_021_04783_4 crossref_primary_10_1002_biuz_201010422 crossref_primary_10_1152_physrev_00017_2011 crossref_primary_10_1007_s00204_018_2208_x crossref_primary_10_1039_C8RA03658F crossref_primary_10_1124_jpet_116_235119 crossref_primary_10_1161_CIRCRESAHA_118_311134 crossref_primary_10_1074_jbc_M808026200 crossref_primary_10_1016_j_resp_2012_03_009 crossref_primary_10_1126_sciadv_abn1701 crossref_primary_10_1152_ajpregu_00061_2016 crossref_primary_10_3390_ijms22042194 crossref_primary_10_1016_j_bcp_2020_113931 crossref_primary_10_3390_ijms22010047 crossref_primary_10_1053_j_gastro_2009_04_012 crossref_primary_10_1002_ange_201803087 crossref_primary_10_3390_molecules20011731 crossref_primary_10_1016_j_ijcard_2014_01_068 crossref_primary_10_1039_C9TB02614B crossref_primary_10_1053_j_jrn_2010_05_004 crossref_primary_10_1021_acs_analchem_7b00069 crossref_primary_10_1093_ndt_gfp378 crossref_primary_10_1021_acsami_4c05588 crossref_primary_10_1089_ars_2010_3678 crossref_primary_10_1038_s41467_020_18029_z crossref_primary_10_1089_ars_2010_3677 crossref_primary_10_3390_nano11051354 crossref_primary_10_1039_c3mb70145j crossref_primary_10_1136_postgradmedj_2019_137267 crossref_primary_10_3390_antiox9070621 crossref_primary_10_1016_j_plaphy_2023_03_006 crossref_primary_10_1007_s12011_021_02592_7 crossref_primary_10_1089_ars_2011_4351 crossref_primary_10_2174_2665978601666200228092006 crossref_primary_10_1016_j_colsurfb_2024_114460 crossref_primary_10_1016_j_vph_2013_11_003 crossref_primary_10_1089_ars_2021_0088 crossref_primary_10_1093_ajh_hpu165 crossref_primary_10_1021_acs_orglett_5c00257 crossref_primary_10_3389_fphar_2021_613989 crossref_primary_10_1089_ars_2011_4359 crossref_primary_10_3390_nu14030435 crossref_primary_10_1002_anie_201511244 crossref_primary_10_1016_j_abb_2011_09_015 crossref_primary_10_1586_ecp_10_56 crossref_primary_10_1016_j_ab_2019_03_021 crossref_primary_10_1089_ars_2011_4349 crossref_primary_10_1021_ml400239a crossref_primary_10_3390_ijms23105648 crossref_primary_10_1515_corrrev_2022_0046 crossref_primary_10_1016_j_fct_2021_112760 crossref_primary_10_3233_JCB_230098 crossref_primary_10_1097_MD_0000000000033636 crossref_primary_10_1155_2013_125649 crossref_primary_10_1089_ars_2013_5324 crossref_primary_10_1089_ars_2009_2900 crossref_primary_10_1146_annurev_food_052720_010127 crossref_primary_10_1021_jacs_5b10675 crossref_primary_10_1039_C5AN02208H crossref_primary_10_1146_annurev_pharmtox_010510_100505 crossref_primary_10_1038_s41598_017_03941_0 crossref_primary_10_3897_rrpharmacology_8_80376 crossref_primary_10_1016_j_phrs_2023_106947 crossref_primary_10_1007_s00018_009_0250_9 crossref_primary_10_1016_j_pharep_2017_10_007 crossref_primary_10_1016_j_abb_2021_108920 crossref_primary_10_1111_ajt_14080 crossref_primary_10_1016_j_phanu_2023_100345 crossref_primary_10_1161_CIRCGENETICS_113_000381 crossref_primary_10_1016_j_jksus_2021_101772 crossref_primary_10_1586_ecp_10_122 crossref_primary_10_1021_acs_chemrev_7b00205 crossref_primary_10_1038_s41598_017_06879_5 crossref_primary_10_1155_2015_293271 crossref_primary_10_1016_j_bbabio_2020_148338 crossref_primary_10_1016_j_jare_2020_05_010 crossref_primary_10_1016_j_jff_2015_02_007 crossref_primary_10_1016_j_phrs_2024_107180 crossref_primary_10_1586_ecp_10_129 crossref_primary_10_1586_ecp_10_127 crossref_primary_10_3389_fcimb_2021_743454 crossref_primary_10_1016_j_cbi_2009_02_008 crossref_primary_10_1021_jf101606s crossref_primary_10_1074_jbc_R110_128363 crossref_primary_10_1089_ars_2020_8060 crossref_primary_10_1016_j_ijcard_2011_12_059 crossref_primary_10_1039_C8CP05503C crossref_primary_10_1021_jf500739n crossref_primary_10_1089_ars_2017_7083 crossref_primary_10_1021_jacs_7b09527 crossref_primary_10_1126_scisignal_2000464 crossref_primary_10_3390_nu16172895 crossref_primary_10_1586_ecp_10_131 crossref_primary_10_1016_j_semcancer_2020_11_020 crossref_primary_10_1002_mnfr_202300622 crossref_primary_10_1016_j_biomaterials_2025_123258 crossref_primary_10_1586_ecp_10_130 crossref_primary_10_3390_ijms141224055 crossref_primary_10_1002_asia_202400124 crossref_primary_10_1007_s10557_020_07000_1 crossref_primary_10_1038_s41514_020_0044_8 crossref_primary_10_1096_fj_12_226415 crossref_primary_10_3390_cimb46030154 crossref_primary_10_1152_japplphysiol_00672_2012 crossref_primary_10_1016_j_saa_2018_07_058 crossref_primary_10_1016_j_biopha_2023_114506 crossref_primary_10_1016_j_jss_2015_02_061 crossref_primary_10_1089_ars_2010_3517 crossref_primary_10_1016_j_jare_2020_05_015 crossref_primary_10_3390_ph17101408 crossref_primary_10_1016_j_cbi_2024_111226 crossref_primary_10_1016_j_niox_2016_04_002 crossref_primary_10_1039_C7CC03820H crossref_primary_10_1152_ajpgi_00249_2017 crossref_primary_10_1021_bc500150s crossref_primary_10_1039_C6NJ03355E crossref_primary_10_1016_j_niox_2014_02_006 crossref_primary_10_1152_japplphysiol_00365_2015 crossref_primary_10_1021_acs_joc_6b02517 crossref_primary_10_1016_j_ejmech_2017_06_012 crossref_primary_10_1039_C5PY01059D crossref_primary_10_1016_j_biopha_2022_113137 crossref_primary_10_18632_aging_101026 crossref_primary_10_1007_s00726_011_0834_1 crossref_primary_10_1021_bi901844d crossref_primary_10_3390_antiox10050633 crossref_primary_10_1016_j_pharmthera_2020_107687 crossref_primary_10_1152_physrev_00004_2012 crossref_primary_10_3390_biom13010027 crossref_primary_10_1002_jcp_29761 crossref_primary_10_1093_jxb_err145 crossref_primary_10_1021_jacs_4c05874 crossref_primary_10_1124_pharmrev_123_000928 crossref_primary_10_12720_jomb_5_1_24_27 crossref_primary_10_3390_ijms21041180 crossref_primary_10_3390_nu11020295 crossref_primary_10_1039_C9OB02273B crossref_primary_10_1111_jch_12473 crossref_primary_10_1016_j_clnu_2020_02_016 crossref_primary_10_1039_D4QO01844C crossref_primary_10_1089_ars_2020_8171 crossref_primary_10_1111_bph_14645 crossref_primary_10_3389_fphar_2017_00810 crossref_primary_10_1096_fj_14_266015 crossref_primary_10_1155_2018_4010395 crossref_primary_10_1093_molbev_msab030 crossref_primary_10_2174_1570161119999201103191242 crossref_primary_10_1016_j_ijcard_2012_09_080 crossref_primary_10_1152_ajpheart_00660_2015 crossref_primary_10_1002_ange_201608052 crossref_primary_10_1039_D3SC03194B crossref_primary_10_1089_ars_2017_7046 crossref_primary_10_1021_acs_jmedchem_7b00888 crossref_primary_10_1039_C9OB00854C crossref_primary_10_1152_ajpregu_00045_2011 crossref_primary_10_1021_jacs_2c04695 crossref_primary_10_1007_s00394_013_0595_6 crossref_primary_10_1111_j_1476_5381_2010_00704_x crossref_primary_10_1016_j_ejphar_2021_173916 crossref_primary_10_1002_asia_201402860 crossref_primary_10_1021_jacs_7b09795 crossref_primary_10_1089_ars_2011_4451 crossref_primary_10_1021_jacs_8b07268 crossref_primary_10_3390_ijms232415593 crossref_primary_10_1007_s00018_014_1598_z crossref_primary_10_1002_adhm_202101984 crossref_primary_10_1002_jcp_24039 crossref_primary_10_34172_jcvtr_2020_33 crossref_primary_10_1016_j_actbio_2015_09_010 crossref_primary_10_1021_acs_chemmater_1c01872 crossref_primary_10_3390_molecules191117697 crossref_primary_10_1080_22243682_2018_1493951 crossref_primary_10_1016_j_jare_2021_05_008 crossref_primary_10_1016_j_phrs_2020_105125 crossref_primary_10_1021_acs_orglett_7b00858 crossref_primary_10_1089_ars_2017_7058 crossref_primary_10_1007_s12265_010_9201_y crossref_primary_10_1021_acscatal_3c03663 crossref_primary_10_1021_acs_orglett_5b01962 crossref_primary_10_1002_bio_3831 crossref_primary_10_1016_j_pharmthera_2015_04_004 crossref_primary_10_1007_s40618_015_0313_8 crossref_primary_10_1039_C5SC04091D crossref_primary_10_1002_wnan_1934 crossref_primary_10_1161_HYPERTENSIONAHA_114_04281 crossref_primary_10_3390_metabo13060688 crossref_primary_10_1155_2015_725023 crossref_primary_10_3390_biom12020280 crossref_primary_10_1152_ajpgi_00169_2013 crossref_primary_10_1016_j_atherosclerosis_2009_10_004 crossref_primary_10_1155_2020_4105382 crossref_primary_10_1016_j_electacta_2016_04_111 crossref_primary_10_1002_anie_201806854 |
Cites_doi | 10.1021/ed063p687 10.1073/pnas.0609598103 10.1080/15216540310001592843 10.1016/j.ab.2005.03.024 10.1016/S0955-2863(99)00033-9 10.1152/ajpregu.00614.2005 10.1186/1475-2891-1-4 10.18388/abp.2000_3993 10.1021/jf00057a004 10.1093/emboj/20.21.6008 10.1016/S0076-6879(05)96047-3 10.1074/jbc.271.51.32515 10.1073/pnas.0505356102 10.1016/j.jep.2003.06.001 10.1016/S0891-5849(03)00144-8 10.1080/00498250310001636840 10.1093/jn/136.3.736S 10.1039/B703832A 10.1016/j.freeradbiomed.2003.08.013 10.1002/(SICI)1097-010X(19981015)282:3<310::AID-JEZ4>3.0.CO;2-P 10.1016/0021-9673(92)87034-6 10.1093/jn/136.3.716S 10.1099/mic.0.26212-0 10.1016/S0378-4347(00)00534-X 10.1046/j.1440-1681.2002.03596.x 10.1289/ehp.01109893 10.1096/fj.02-0211hyp 10.1016/S0960-894X(03)00103-3 10.1073/pnas.0234600100 10.1016/S0005-2736(99)00174-1 10.1093/jn/136.3.774S 10.1097/01.shk.0000225722.56681.64 |
ContentType | Journal Article |
Copyright | Copyright 2007 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Nov 13, 2007 2007 by The National Academy of Sciences of the USA 2007 |
Copyright_xml | – notice: Copyright 2007 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Nov 13, 2007 – notice: 2007 by The National Academy of Sciences of the USA 2007 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0705710104 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 17982 |
ExternalDocumentID | PMC2084282 1383829231 17951430 10_1073_pnas_0705710104 104_46_17977 25450359 US201300827929 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: T32 HL007918 – fundername: PHS HHS grantid: 08RGM073049A – fundername: NIGMS NIH HHS grantid: R21 GM073049 – fundername: NHLBI NIH HHS grantid: R01 HL058031 – fundername: NHLBI NIH HHS grantid: HL58031 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c620t-309962fca49c238d328d8b6f3682960a6aa8e4ec4c8f19ebcbe12ba47c16be23 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:17:19 EDT 2025 Fri Jul 11 09:26:39 EDT 2025 Thu Jul 10 18:03:47 EDT 2025 Mon Jun 30 08:36:28 EDT 2025 Thu Apr 03 07:00:01 EDT 2025 Tue Jul 01 02:38:47 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 Thu May 30 08:51:20 EDT 2019 Wed Nov 11 00:29:45 EST 2020 Thu May 29 08:42:42 EDT 2025 Wed Dec 27 19:04:56 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c620t-309962fca49c238d328d8b6f3682960a6aa8e4ec4c8f19ebcbe12ba47c16be23 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: G.A.B., G.L.S., V.M.D.-U., J.E.D., and D.W.K. designed research; G.A.B., R.W.M., H.D.P., T.S.I., and D.W.K. performed research; G.L.S., T.S.I., R.P.P., and D.W.K. contributed new reagents/analytic tools; G.A.B., G.L.S., J.E.D., and D.W.K. analyzed data; and G.A.B., G.L.S., T.S.I., R.P.P., V.M.D.-U., J.E.D., and D.W.K. wrote the paper. Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved September 12, 2007 |
OpenAccessLink | http://doi.org/10.1073/pnas.0705710104 |
PMID | 17951430 |
PQID | 201306896 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_68501413 crossref_primary_10_1073_pnas_0705710104 jstor_primary_25450359 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2084282 pnas_primary_104_46_17977 pubmed_primary_17951430 crossref_citationtrail_10_1073_pnas_0705710104 proquest_miscellaneous_48148011 proquest_journals_201306896 fao_agris_US201300827929 pnas_primary_104_46_17977_fulltext |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-11-13 |
PublicationDateYYYYMMDD | 2007-11-13 |
PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-13 day: 13 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2007 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 Beutler E (e_1_3_4_13_2) 1986 Streitwieser A (e_1_3_4_32_2) 1962 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 Koenitzer JR (e_1_3_4_10_2) 2007; 292 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_31_2 e_1_3_4_15_2 Cotton FA (e_1_3_4_6_2) 1988 e_1_3_4_16_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 16103371 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12248-52 16627692 - Am J Physiol Regul Integr Comp Physiol. 2006 Sep;291(3):R491-511 11254186 - J Chromatogr B Biomed Sci Appl. 2001 Mar 5;752(1):123-32 14698500 - J Ethnopharmacol. 2004 Jan;90(1):5-9 16484553 - J Nutr. 2006 Mar;136(3 Suppl):736S-740S 12502793 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):336-41 12537594 - Nutr J. 2002 Nov 19;1:4 17571177 - Org Biomol Chem. 2007 May 21;5(10):1505-18 14584588 - IUBMB Life. 2003 Jul;55(7):375-85 8955074 - J Biol Chem. 1996 Dec 20;271(51):32515-8 12706500 - Free Radic Biol Med. 2003 May 1;34(9):1200-11 11689441 - EMBO J. 2001 Nov 1;20(21):6008-16 14742141 - Xenobiotica. 2003 Dec;33(12):1185-99 14642384 - Free Radic Biol Med. 2003 Dec 1;35(11):1365-72 16484561 - J Nutr. 2006 Mar;136(3 Suppl):774S-776S 16878023 - Shock. 2006 Aug;26(2):154-61 12409322 - FASEB J. 2002 Nov;16(13):1792-8 11673117 - Environ Health Perspect. 2001 Sep;109(9):893-902 12657280 - Bioorg Med Chem Lett. 2003 Apr 7;13(7):1349-52 17237242 - Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1953-60 17164327 - Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19564-8 17991773 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):17907-8 11310974 - Acta Biochim Pol. 2000;47(3):751-62 12855721 - Microbiology. 2003 Jul;149(Pt 7):1699-710 11906464 - Clin Exp Pharmacol Physiol. 2002 Jan-Feb;29(1-2):84-91 9755482 - J Exp Zool. 1998 Oct 15;282(3):310-22 16484550 - J Nutr. 2006 Mar;136(3 Suppl):716S-725S 10631291 - Biochim Biophys Acta. 2000 Jan 15;1463(1):20-30 15539328 - J Nutr Biochem. 1999 Aug;10(8):490-7 15866526 - Anal Biochem. 2005 Jun 1;341(1):40-51 16291262 - Methods Enzymol. 2005;396:553-68 |
References_xml | – ident: e_1_3_4_7_2 doi: 10.1021/ed063p687 – ident: e_1_3_4_19_2 doi: 10.1073/pnas.0609598103 – ident: e_1_3_4_16_2 doi: 10.1080/15216540310001592843 – ident: e_1_3_4_12_2 doi: 10.1016/j.ab.2005.03.024 – volume: 292 start-page: H1953 year: 2007 ident: e_1_3_4_10_2 publication-title: Am J Physiol – ident: e_1_3_4_34_2 doi: 10.1016/S0955-2863(99)00033-9 – ident: e_1_3_4_5_2 doi: 10.1152/ajpregu.00614.2005 – ident: e_1_3_4_1_2 doi: 10.1186/1475-2891-1-4 – ident: e_1_3_4_35_2 doi: 10.18388/abp.2000_3993 – ident: e_1_3_4_3_2 doi: 10.1021/jf00057a004 – ident: e_1_3_4_8_2 doi: 10.1093/emboj/20.21.6008 – ident: e_1_3_4_36_2 doi: 10.1016/S0076-6879(05)96047-3 – ident: e_1_3_4_23_2 doi: 10.1074/jbc.271.51.32515 – ident: e_1_3_4_18_2 doi: 10.1073/pnas.0505356102 – ident: e_1_3_4_20_2 doi: 10.1016/j.jep.2003.06.001 – ident: e_1_3_4_26_2 doi: 10.1016/S0891-5849(03)00144-8 – ident: e_1_3_4_27_2 doi: 10.1080/00498250310001636840 – ident: e_1_3_4_33_2 doi: 10.1093/jn/136.3.736S – ident: e_1_3_4_31_2 doi: 10.1039/B703832A – ident: e_1_3_4_15_2 doi: 10.1016/j.freeradbiomed.2003.08.013 – ident: e_1_3_4_11_2 doi: 10.1002/(SICI)1097-010X(19981015)282:3<310::AID-JEZ4>3.0.CO;2-P – ident: e_1_3_4_28_2 doi: 10.1016/0021-9673(92)87034-6 – ident: e_1_3_4_2_2 doi: 10.1093/jn/136.3.716S – volume-title: Red Cell Metabolism year: 1986 ident: e_1_3_4_13_2 – ident: e_1_3_4_29_2 doi: 10.1099/mic.0.26212-0 – ident: e_1_3_4_14_2 doi: 10.1016/S0378-4347(00)00534-X – ident: e_1_3_4_21_2 doi: 10.1046/j.1440-1681.2002.03596.x – volume-title: Solvolytic Displacement Reactions year: 1962 ident: e_1_3_4_32_2 – volume-title: Advanced Inorganic Chemistry year: 1988 ident: e_1_3_4_6_2 – ident: e_1_3_4_25_2 doi: 10.1289/ehp.01109893 – ident: e_1_3_4_4_2 doi: 10.1096/fj.02-0211hyp – ident: e_1_3_4_30_2 doi: 10.1016/S0960-894X(03)00103-3 – ident: e_1_3_4_24_2 doi: 10.1073/pnas.0234600100 – ident: e_1_3_4_17_2 doi: 10.1016/S0005-2736(99)00174-1 – ident: e_1_3_4_22_2 doi: 10.1093/jn/136.3.774S – ident: e_1_3_4_9_2 doi: 10.1097/01.shk.0000225722.56681.64 – reference: 16627692 - Am J Physiol Regul Integr Comp Physiol. 2006 Sep;291(3):R491-511 – reference: 10631291 - Biochim Biophys Acta. 2000 Jan 15;1463(1):20-30 – reference: 17237242 - Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1953-60 – reference: 12502793 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):336-41 – reference: 17991773 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):17907-8 – reference: 9755482 - J Exp Zool. 1998 Oct 15;282(3):310-22 – reference: 16484550 - J Nutr. 2006 Mar;136(3 Suppl):716S-725S – reference: 12409322 - FASEB J. 2002 Nov;16(13):1792-8 – reference: 11310974 - Acta Biochim Pol. 2000;47(3):751-62 – reference: 14642384 - Free Radic Biol Med. 2003 Dec 1;35(11):1365-72 – reference: 11254186 - J Chromatogr B Biomed Sci Appl. 2001 Mar 5;752(1):123-32 – reference: 8955074 - J Biol Chem. 1996 Dec 20;271(51):32515-8 – reference: 12537594 - Nutr J. 2002 Nov 19;1:4 – reference: 12706500 - Free Radic Biol Med. 2003 May 1;34(9):1200-11 – reference: 12855721 - Microbiology. 2003 Jul;149(Pt 7):1699-710 – reference: 14742141 - Xenobiotica. 2003 Dec;33(12):1185-99 – reference: 17164327 - Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19564-8 – reference: 15539328 - J Nutr Biochem. 1999 Aug;10(8):490-7 – reference: 15866526 - Anal Biochem. 2005 Jun 1;341(1):40-51 – reference: 16484553 - J Nutr. 2006 Mar;136(3 Suppl):736S-740S – reference: 11689441 - EMBO J. 2001 Nov 1;20(21):6008-16 – reference: 16291262 - Methods Enzymol. 2005;396:553-68 – reference: 16878023 - Shock. 2006 Aug;26(2):154-61 – reference: 14698500 - J Ethnopharmacol. 2004 Jan;90(1):5-9 – reference: 11673117 - Environ Health Perspect. 2001 Sep;109(9):893-902 – reference: 16103371 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12248-52 – reference: 11906464 - Clin Exp Pharmacol Physiol. 2002 Jan-Feb;29(1-2):84-91 – reference: 12657280 - Bioorg Med Chem Lett. 2003 Apr 7;13(7):1349-52 – reference: 16484561 - J Nutr. 2006 Mar;136(3 Suppl):774S-776S – reference: 17571177 - Org Biomol Chem. 2007 May 21;5(10):1505-18 – reference: 14584588 - IUBMB Life. 2003 Jul;55(7):375-85 |
SSID | ssj0009580 |
Score | 2.4840803 |
Snippet | The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17977 |
SubjectTerms | Acetylcysteine - pharmacology Aorta Assembly lines Biological Sciences cardioprotective effect Cardiovascular disease Cardiovascular diseases cardiovascular system Chromatography, High Pressure Liquid Coronary vessels Disulfides Electrochemistry Erythrocytes Erythrocytes - drug effects Erythrocytes - metabolism food intake Garlic Garlic - chemistry Glutathione - blood Glutathione Disulfide - blood Humans Hydrogen Hydrogen sulfide Hydrogen Sulfide - blood Hydrogen Sulfide - pharmacology metabolism organic polysulfides organic sulfur compounds Polysulfides Respirometers Risk factors Sensors Sulfides Sulfur Thiols Vasodilation |
Title | Hydrogen sulfide mediates the vasoactivity of garlic |
URI | https://www.jstor.org/stable/25450359 http://www.pnas.org/content/104/46/17977.abstract https://www.ncbi.nlm.nih.gov/pubmed/17951430 https://www.proquest.com/docview/201306896 https://www.proquest.com/docview/48148011 https://www.proquest.com/docview/68501413 https://pubmed.ncbi.nlm.nih.gov/PMC2084282 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLe6ceGCGDAWxiNCHIailMRxHOdY8WiFoKpEB7tFjuOMSlVSmhYJrvzjfE7sJB2tBFyiNnbc1N_P38P-Hgi9CEQWZV4auCALUhfkLXY56O1uSHAkUhnlfh0k9nFKJ5fk_VV4NRj86nktbTfpUPzcG1fyP1SFe0BXFSX7D5RtB4Ub8BnoC1egMFz_isaTH9m6hFZY_st8kcn62EUpj7U6-ZlXpQpb-K69LsZ8vVyIvjY6a6VXZXwFpmZzcNSFmuj1XzmuM5v2ChfLQjnEN3xmrDz5uDMatls237Y8Wy_qKk3OeLGt5GolnQ9tuwpCrDrfbudL2zKDf9Ck2JYqUvPNcGdnIlIhek1gaT-x994X7rNkDGKSNIHULUtuShJr7JE-hwUGouu-SPO9qV70hywA5qUKGBe8GgJfC0GVMsPuJtgGEzlUiQyP0C0MtkZgtnzazM2siWPS72nyQ0XBqxtj76g2RzkvjY-rSpwLXfcZMTd9cXvKzfwuuqOtEnvUQOwEDWRxD52YabQvdHLyl_cRMZizNeZsgzkb4GP3MWeXud1g7gGav3s7fz1xdeUNV1DsbdwA7AaKc8FJLECnywLMMpbSPKAMg8nLKedMEimIYLkfyxRWtY9TTiLh01Ti4BQdF2Uhz5DN4jDP4zACy9cjkrOUwcxlHhMpPEyptNDQzFkidFZ6VRxlmdTeEVGQqJlLukm20EX7wKpJyHK46xkQIeHXIC6Ty09YHdKDxhuBRWCh05oy7RAGBBay6lG6oUlCaFKjzkLPD7YlufbVstC5IXKiWUWV1D9NWUwt9KxtBT6uDud4IcttlRDmq0xO_uEelCkfAD-w0MMGMt2LRLGyezwLRTtgajuoHPK7LcXia51LHnuAaYYfHZqPc3S7W9qP0fFmvZVPQA3fpE_rZfIb7nLYfA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Sulfide+Mediates+the+Vasoactivity+of+Garlic&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Benavides%2C+Gloria+A.&rft.au=Squadrito%2C+Giuseppe+L.&rft.au=Mills%2C+Robert+W.&rft.au=Patel%2C+Hetal+D.&rft.date=2007-11-13&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=104&rft.issue=46&rft.spage=17977&rft.epage=17982&rft_id=info:doi/10.1073%2Fpnas.0705710104&rft.externalDocID=25450359 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F46.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F46.cover.gif |