Recommendation for the minimum number of steps to analyze when performing the uncontrolled manifold analysis on walking data
The uncontrolled manifold (UCM) analysis quantifies the extent to which co-variation among a set of variables facilitates consistent performance by partitioning variance in those variables into two components then calculating their normalized difference (i.e., the synergy index). Although UCM-derive...
Saved in:
Published in | Journal of biomechanics Vol. 85; pp. 218 - 223 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
06.03.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The uncontrolled manifold (UCM) analysis quantifies the extent to which co-variation among a set of variables facilitates consistent performance by partitioning variance in those variables into two components then calculating their normalized difference (i.e., the synergy index). Although UCM-derived measures are thought to depend on the number of data points analyzed, the minimum number needed to reasonably approximate true values of these measures is unknown. For each of two performance variables related to mechanical stability of gait, we evaluated changes in UCM-derived measures when increasing the number of analyzed points, here steps. Fourteen older adults walked on a treadmill while motion capture tracked movement. For each subject, n steps (where n = 2–99) were randomly sampled from the first 100, then used to calculate UCM-derived variables. For each subject, variables were expressed as a percent of the subject-specific value with n = 100 and averaged across 50 simulations. For each n, 95% confidence intervals (CIs) were calculated from group data. The minimum number of steps to “reasonably approximate” a variables was defined as the value of n for which the lower CI was >90% of the value with n = 100. Regardless of performance variable, reasonable approximations of the synergy index were attained with n = 16 steps, whereas n = 50 steps were needed for each of the variance components However, the differences between using 16 steps and 50 steps were small. Collecting 15–20 steps is recommended for a reasonable approximation of the synergy indices considered herein, particularly when data collection is constrained to a limited number of steps. |
---|---|
AbstractList | The uncontrolled manifold (UCM) analysis quantifies the extent to which co-variation among a set of variables facilitates consistent performance by partitioning variance in those variables into two components then calculating their normalized difference (i.e., the synergy index). Although UCM-derived measures are thought to depend on the number of data points analyzed, the minimum number needed to reasonably approximate true values of these measures is unknown. For each of two performance variables related to mechanical stability of gait, we evaluated changes in UCM-derived measures when increasing the number of analyzed points, here steps. Fourteen older adults walked on a treadmill while motion capture tracked movement. For each subject, n steps (where n = 2–99) were randomly sampled from the first 100, then used to calculate UCM-derived variables. For each subject, variables were expressed as a percent of the subject-specific value with n = 100 and averaged across 50 simulations. For each n, 95% confidence intervals (CIs) were calculated from group data. The minimum number of steps to “reasonably approximate” a variables was defined as the value of n for which the lower CI was >90% of the value with n = 100. Regardless of performance variable, reasonable approximations of the synergy index were attained with n = 16 steps, whereas n = 50 steps were needed for each of the variance components However, the differences between using 16 steps and 50 steps were small. Collecting 15–20 steps is recommended for a reasonable approximation of the synergy indices considered herein, particularly when data collection is constrained to a limited number of steps. The uncontrolled manifold (UCM) analysis quantifies the extent to which co-variation among a set of variables facilitates consistent performance by partitioning variance in those variables into two components then calculating their normalized difference (i.e., the synergy index). Although UCM-derived measures are thought to depend on the number of data points analyzed, the minimum number needed to reasonably approximate true values of these measures is unknown. For each of two performance variables related to mechanical stability of gait, we evaluated changes in UCM-derived measures when increasing the number of analyzed points, here steps. Fourteen older adults walked on a treadmill while motion capture tracked movement. For each subject, n steps (where n = 2-99) were randomly sampled from the first 100, then used to calculate UCM-derived variables. For each subject, variables were expressed as a percent of the subject-specific value with n = 100 and averaged across 50 simulations. For each n, 95% confidence intervals (CIs) were calculated from group data. The minimum number of steps to "reasonably approximate" a variables was defined as the value of n for which the lower CI was >90% of the value with n = 100. Regardless of performance variable, reasonable approximations of the synergy index were attained with n = 16 steps, whereas n = 50 steps were needed for each of the variance components However, the differences between using 16 steps and 50 steps were small. Collecting 15-20 steps is recommended for a reasonable approximation of the synergy indices considered herein, particularly when data collection is constrained to a limited number of steps.The uncontrolled manifold (UCM) analysis quantifies the extent to which co-variation among a set of variables facilitates consistent performance by partitioning variance in those variables into two components then calculating their normalized difference (i.e., the synergy index). Although UCM-derived measures are thought to depend on the number of data points analyzed, the minimum number needed to reasonably approximate true values of these measures is unknown. For each of two performance variables related to mechanical stability of gait, we evaluated changes in UCM-derived measures when increasing the number of analyzed points, here steps. Fourteen older adults walked on a treadmill while motion capture tracked movement. For each subject, n steps (where n = 2-99) were randomly sampled from the first 100, then used to calculate UCM-derived variables. For each subject, variables were expressed as a percent of the subject-specific value with n = 100 and averaged across 50 simulations. For each n, 95% confidence intervals (CIs) were calculated from group data. The minimum number of steps to "reasonably approximate" a variables was defined as the value of n for which the lower CI was >90% of the value with n = 100. Regardless of performance variable, reasonable approximations of the synergy index were attained with n = 16 steps, whereas n = 50 steps were needed for each of the variance components However, the differences between using 16 steps and 50 steps were small. Collecting 15-20 steps is recommended for a reasonable approximation of the synergy indices considered herein, particularly when data collection is constrained to a limited number of steps. The uncontrolled manifold (UCM) analysis quantifies the extent to which co-variation among a set of variables facilitates consistent performance, by partitioning variance in those variables into two components then calculating their normalized difference (i.e., the synergy index). Although UCM-derived measures are thought to depend on the number of data points analyzed, the minimum number needed to reasonably approximate true values of these measures is unknown. For each of two performance variables related to mechanical stability of gait, we evaluated changes in UCM-derived measures when increasing the number of analyzed points, here steps. Fourteen older adults walked on a treadmill while motion capture tracked movement. For each subject, n steps (where n =2-99) were randomly sampled from the first 100, then used to calculate UCM-derived variables. For each subject, variables were expressed as a percent of the subject-specific value with n =100 and averaged across 50 simulations. For each n , 95% confidence intervals (CIs) were calculated from group data. The minimum number of steps to “reasonably approximate” a variables was defined as the value of n for which the lower CI was >90% of the value with n =100. Regardless of performance variable, reasonable approximations of the synergy index were attained with n =16 steps, whereas n = steps were needed for each of the variance components However, the differences between using 16 steps and 50 steps were small. Collecting 15-20 steps is recommended for a reasonable approximation of the synergy indices considered herein, particularly when data collection is constrained to a limited number of steps. |
Author | Rosenblatt, Noah J. Hurt, Christopher P. |
AuthorAffiliation | 1 Rosalind Franklin University of Medicine and Science, Center for Lower Extremity Ambulatory Research (CLEAR) at the Dr. William M. Scholl, College of Podiatric Medicine, 3333 Greenbay Road, North Chicago, IL 60064 2 University of Alabama at Birmingham, Department of Physical Therapy |
AuthorAffiliation_xml | – name: 2 University of Alabama at Birmingham, Department of Physical Therapy – name: 1 Rosalind Franklin University of Medicine and Science, Center for Lower Extremity Ambulatory Research (CLEAR) at the Dr. William M. Scholl, College of Podiatric Medicine, 3333 Greenbay Road, North Chicago, IL 60064 |
Author_xml | – sequence: 1 givenname: Noah J. surname: Rosenblatt fullname: Rosenblatt, Noah J. email: noah.rosenblatt@rosalindfrankin.edu organization: Rosalind Franklin University of Medicine and Science, Center for Lower Extremity Ambulatory Research (CLEAR) at the Dr. William M. Scholl College of Podiatric Medicine, 3333 Greenbay Road, North Chicago, IL 60064, United States – sequence: 2 givenname: Christopher P. orcidid: 0000-0001-8861-9876 surname: Hurt fullname: Hurt, Christopher P. organization: University of Alabama at Birmingham, Department of Physical Therapy, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30718066$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEYhYNU7Lb6F0rAG29mm8xHZgJSLEWtUBBEr0M2edPNmo81mWlZ8ceb7XZF96ZCIBd5znkPec8JOgoxAEJnlMwpoex8NV8tbPSglvOaUD4ntJzhGZrRoW-quhnIEZoRUtOK15wco5OcV4SQvu35C3TckJ4OhLEZ-vUFVPQegpajjQGbmPC4BOxtsH7yOEx-AQlHg_MI64zHiGWQbvMT8P0SAl5DKpJC3z7IpqBiGFN0DjT2MlgTnd4pss24DLiX7vuWLvPkS_TcSJfh1eN9ir59eP_16rq6-fzx09XlTaVYTcaqbhvDB6i1JB10NeFMNYZpaTragO6ALNQA2nSdXsheGaKh5UPTc2Z6qZTqmlN0sfNdTwsPWkGJKJ1YJ-tl2ogorfj3JdiluI13gnHSMdoWgzePBin-mCCPwtuswDkZIE5Z1LTnXcNYSwv6-gBdxSmVD9hSQ9tS3rd1oc7-TvQnyn4xBXi7A1SKOScwQtnxYUUloHWCErHtgViJfQ_EtgeC0HKGImcH8v2EJ4XvdkIo-7izkERWFoICbROoUehon7a4OLBQrrRJlcXD5n8MfgMZHupb |
CitedBy_id | crossref_primary_10_1007_s00221_020_05822_x crossref_primary_10_3390_app11209663 crossref_primary_10_4103_abr_abr_289_21 crossref_primary_10_1016_j_clinbiomech_2023_105990 crossref_primary_10_2478_hukin_2021_0005 crossref_primary_10_1186_s12877_021_02192_z crossref_primary_10_1016_j_jbiomech_2024_112195 crossref_primary_10_3389_fspor_2024_1382194 crossref_primary_10_3390_biology11060942 crossref_primary_10_1016_j_gaitpost_2024_04_025 crossref_primary_10_1016_j_jbiomech_2020_109837 crossref_primary_10_1080_14763141_2021_1960419 crossref_primary_10_1123_mc_2022_0045 crossref_primary_10_1007_s00221_020_05965_x crossref_primary_10_1016_j_jbiomech_2022_111353 crossref_primary_10_1371_journal_pone_0284278 crossref_primary_10_1016_j_jbiomech_2022_111203 crossref_primary_10_1016_j_jbiomech_2021_110311 crossref_primary_10_1177_1545968320969936 crossref_primary_10_1016_j_gaitpost_2021_01_002 crossref_primary_10_1016_j_jbiomech_2023_111702 |
Cites_doi | 10.1007/s00221-012-3000-4 10.1016/S0021-9290(00)00101-9 10.1007/s00221-009-1904-4 10.1016/j.gaitpost.2010.01.002 10.1007/s00221-013-3748-1 10.1016/j.gaitpost.2015.12.035 10.1152/japplphysiol.00966.2006 10.1016/j.jbiomech.2014.11.024 10.1016/j.gaitpost.2010.02.001 10.1016/j.humov.2011.07.017 10.3390/medicina46060054 10.1152/jn.00043.2012 10.1007/s00221-010-2424-y 10.1152/japplphysiol.00045.2004 10.1016/j.gaitpost.2013.04.023 10.1007/s002210050738 10.1007/s00221-002-1189-3 10.1682/JRRD.2014.01.0031 10.1016/j.jbiomech.2003.06.002 10.1016/j.humov.2018.09.008 10.1016/j.neuro.2016.06.016 10.1007/s11357-012-9422-x 10.1152/japplphysiol.00430.2010 10.1016/j.gaitpost.2012.03.004 10.1123/mcj.11.3.276 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Mar 6, 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Mar 6, 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1016/j.jbiomech.2019.01.018 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 223 |
ExternalDocumentID | PMC6905614 30718066 10_1016_j_jbiomech_2019_01_018 S0021929019300533 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R03 AR066326 – fundername: NINDS NIH HHS grantid: L30 NS113365 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. AIGII ALIPV APXCP ASPBG AVWKF AZFZN CITATION EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c620t-243f98e2da05e52096c3f6daf513ed5e0bc8edf55dba7cf0de4983796f7accc53 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Thu Aug 21 18:20:50 EDT 2025 Fri Jul 11 11:31:29 EDT 2025 Wed Aug 13 03:44:29 EDT 2025 Thu Apr 03 07:04:45 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Tue Jul 01 00:44:13 EDT 2025 Fri Feb 23 02:20:31 EST 2024 Tue Aug 26 17:10:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Foot trajectory Synergy index Stability Mediolateral Gait Center of mass Older adults UCM |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c620t-243f98e2da05e52096c3f6daf513ed5e0bc8edf55dba7cf0de4983796f7accc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8861-9876 |
PMID | 30718066 |
PQID | 2184419742 |
PQPubID | 1226346 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6905614 proquest_miscellaneous_2179536641 proquest_journals_2184419742 pubmed_primary_30718066 crossref_citationtrail_10_1016_j_jbiomech_2019_01_018 crossref_primary_10_1016_j_jbiomech_2019_01_018 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2019_01_018 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2019_01_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-06 |
PublicationDateYYYYMMDD | 2019-03-06 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Robert, Bennett, Russell, Zirker, Abel (b0115) 2009; 197 Qu (b0110) 2012; 36 Rosenblatt, Hurt, Latash, Grabiner (b0135) 2014; 232 Donelan, Shipman, Kram, Kuo (b0020) 2004; 37 Olafsdottir, Zhang, Zatsiorsky, Latash (b0095) 2007; 102 Rosenblatt, Bauer, Rotter, Grabiner (b0125) 2014; 51 Park, Wu, Lewis, Huang, Latash (b0105) 2012; 108 Scholz, Schoner (b0140) 1999; 126 Latash, Levin, Scholz, Schoner (b0080) 2010; 46 Papi, Rowe, Pomeroy (b0100) 2015; 48 Rosenblatt, Latash, Hurt, Grabiner (b0120) 2015 Krishnan, Rosenblatt, Latash, Grabiner (b0060) 2013 Latash, Scholz, Schoner (b0085) 2007; 11 Kapur, Zatsiorsky, Latash (b0055) 2010; 109 Winter (b0155) 2005 Latash (b0070) 2012; 217 Hsu, Chou, Woollacott (b0040) 2013; 35 Hsu, Scholz (b0045) 2012; 31 Bauby, Kuo (b0005) 2000; 33 Efron, Tibshirani (b0030) 1986 Black, Smith, Wu, Ulrich (b0015) 2007; 183 Eckardt, Rosenblatt (b0025) 2018; 62 Verrel, Lovden, Lindenberger (b0150) 2010; 207 Rosenblatt, Grabiner (b0130) 2010; 31 Lewis, Lee, Jo, Du, Park, Flynn, Kong, Latash, Huang (b0090) 2016; 56 Latash (b0065) 2018; 20 Hurt, Rosenblatt, Crenshaw, Grabiner (b0050) 2010; 31 Falaki, Huang, Lewis, Latash (b0035) 2016; 44 Shim, Lay, Zatsiorsky, Latash (b0145) 2004; 97 Latash, Kang, Patterson (b0075) 2002; 146 Bernstein (b0010) 1967 Efron (10.1016/j.jbiomech.2019.01.018_b0030) 1986 Hurt (10.1016/j.jbiomech.2019.01.018_b0050) 2010; 31 Latash (10.1016/j.jbiomech.2019.01.018_b0085) 2007; 11 Bauby (10.1016/j.jbiomech.2019.01.018_b0005) 2000; 33 Falaki (10.1016/j.jbiomech.2019.01.018_b0035) 2016; 44 Donelan (10.1016/j.jbiomech.2019.01.018_b0020) 2004; 37 Krishnan (10.1016/j.jbiomech.2019.01.018_b0060) 2013 Hsu (10.1016/j.jbiomech.2019.01.018_b0045) 2012; 31 Verrel (10.1016/j.jbiomech.2019.01.018_b0150) 2010; 207 Rosenblatt (10.1016/j.jbiomech.2019.01.018_b0135) 2014; 232 Winter (10.1016/j.jbiomech.2019.01.018_b0155) 2005 Scholz (10.1016/j.jbiomech.2019.01.018_b0140) 1999; 126 Eckardt (10.1016/j.jbiomech.2019.01.018_b0025) 2018; 62 Shim (10.1016/j.jbiomech.2019.01.018_b0145) 2004; 97 Rosenblatt (10.1016/j.jbiomech.2019.01.018_b0130) 2010; 31 Qu (10.1016/j.jbiomech.2019.01.018_b0110) 2012; 36 Latash (10.1016/j.jbiomech.2019.01.018_b0065) 2018; 20 Kapur (10.1016/j.jbiomech.2019.01.018_b0055) 2010; 109 Black (10.1016/j.jbiomech.2019.01.018_b0015) 2007; 183 Latash (10.1016/j.jbiomech.2019.01.018_b0080) 2010; 46 Latash (10.1016/j.jbiomech.2019.01.018_b0075) 2002; 146 Robert (10.1016/j.jbiomech.2019.01.018_b0115) 2009; 197 Papi (10.1016/j.jbiomech.2019.01.018_b0100) 2015; 48 Latash (10.1016/j.jbiomech.2019.01.018_b0070) 2012; 217 Park (10.1016/j.jbiomech.2019.01.018_b0105) 2012; 108 Rosenblatt (10.1016/j.jbiomech.2019.01.018_b0125) 2014; 51 Hsu (10.1016/j.jbiomech.2019.01.018_b0040) 2013; 35 Rosenblatt (10.1016/j.jbiomech.2019.01.018_b0120) 2015 Lewis (10.1016/j.jbiomech.2019.01.018_b0090) 2016; 56 Olafsdottir (10.1016/j.jbiomech.2019.01.018_b0095) 2007; 102 Bernstein (10.1016/j.jbiomech.2019.01.018_b0010) 1967 |
References_xml | – volume: 33 start-page: 1433 year: 2000 end-page: 1440 ident: b0005 article-title: Active control of lateral balance in human walking publication-title: J. Biomech. – volume: 51 start-page: 1229 year: 2014 end-page: 1242 ident: b0125 article-title: Active dorsiflexing prostheses may reduce trip-related fall risk in people with transtibial amputation publication-title: J. Rehabilit. Res. Develop. – volume: 36 start-page: 325 year: 2012 end-page: 329 ident: b0110 article-title: Uncontrolled manifold analysis of gait variability: effects of load carriage and fatigue publication-title: Gait Posture – volume: 56 start-page: 76 year: 2016 end-page: 85 ident: b0090 article-title: Synergy as a new and sensitive marker of basal ganglia dysfunction: a study of asymptomatic welders publication-title: Neurotoxicology – volume: 197 start-page: 185 year: 2009 end-page: 197 ident: b0115 article-title: Angular momentum synergies during walking publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cereb. – year: 1967 ident: b0010 article-title: The Co-Ordination And Regulation Of Movements – volume: 62 start-page: 67 year: 2018 end-page: 80 ident: b0025 article-title: Healthy aging does not impair lower extremity motor flexibility while walking across an uneven surface publication-title: Hum. Mov. Sci. – volume: 37 start-page: 827 year: 2004 end-page: 835 ident: b0020 article-title: Mechanical and metabolic requirements for active lateral stabilization in human walking publication-title: J. Biomech. – year: 2013 ident: b0060 article-title: The effects of age on stabilization of the mediolateral trajectory of the swing foot publication-title: Gait Posture – volume: 48 start-page: 324 year: 2015 end-page: 331 ident: b0100 article-title: Analysis of gait within the uncontrolled manifold hypothesis: stabilisation of the centre of mass during gait publication-title: J. Biomech. – volume: 108 start-page: 915 year: 2012 end-page: 924 ident: b0105 article-title: Changes in multifinger interaction and coordination in Parkinson’s disease publication-title: J. Neurophysiol. – volume: 146 start-page: 345 year: 2002 end-page: 355 ident: b0075 article-title: Finger coordination in persons with down syndrome: atypical patterns of coordination and the effects of practice publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cereb. – volume: 126 start-page: 289 year: 1999 end-page: 306 ident: b0140 article-title: The uncontrolled manifold concept: identifying control variables for a functional task publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cereb. – volume: 35 start-page: 1299 year: 2013 end-page: 1309 ident: b0040 article-title: Age-related changes in joint coordination during balance recovery publication-title: Age – volume: 109 start-page: 1827 year: 2010 end-page: 1841 ident: b0055 article-title: Age-related changes in the control of finger force vectors publication-title: J. Appl. Physiol. – start-page: 54 year: 1986 end-page: 75 ident: b0030 article-title: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy publication-title: Statist. Sci. – year: 2005 ident: b0155 article-title: Biomechanics And Motor Control Of Human Movement – volume: 102 start-page: 1490 year: 2007 end-page: 1501 ident: b0095 article-title: Age-related changes in multifinger synergies in accurate moment of force production tasks publication-title: J. Appl. Physiol. – volume: 207 start-page: 13 year: 2010 end-page: 26 ident: b0150 article-title: Motor-equivalent covariation stabilizes step parameters and center of mass position during treadmill walking publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cereb. – volume: 11 start-page: 276 year: 2007 end-page: 308 ident: b0085 article-title: Toward a new theory of motor synergies publication-title: Mot. Cont. – volume: 46 start-page: 382 year: 2010 end-page: 392 ident: b0080 article-title: Motor control theories and their applications publication-title: Medicina (Kaunas, Lithuania) – volume: 217 start-page: 1 year: 2012 end-page: 5 ident: b0070 article-title: The bliss (not the problem) of motor abundance (not redundancy) publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cereb. – volume: 20 start-page: 1 year: 2018 end-page: 9 ident: b0065 article-title: Abundant degrees of freedom are not a problem publication-title: Kinesiol. Rev. – volume: 31 start-page: 844 year: 2012 end-page: 862 ident: b0045 article-title: Motor abundance supports multitasking while standing publication-title: Hum. Mov. Sci. – volume: 44 start-page: 209 year: 2016 end-page: 215 ident: b0035 article-title: Impaired synergic control of posture in Parkinson’s patients without postural instability publication-title: Gait Posture – volume: 31 start-page: 380 year: 2010 end-page: 384 ident: b0130 article-title: Measures of frontal plane stability during treadmill and overground walking publication-title: Gait Posture – volume: 97 start-page: 213 year: 2004 end-page: 224 ident: b0145 article-title: Age-related changes in finger coordination in static prehension tasks publication-title: J. Appl. Physiol. – volume: 31 start-page: 461 year: 2010 end-page: 464 ident: b0050 article-title: Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults publication-title: Gait Posture – year: 2015 ident: b0120 article-title: Challenging Gait Leads To Stronger Lower-Limb Kinematic Synergies: The Effects Of Walking Within A More Narrow – volume: 183 start-page: 511 year: 2007 end-page: 521 ident: b0015 article-title: Uncontrolled manifold analysis of segmental angle variability during walking: preadolescents with and without down syndrome publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cerebrale – volume: 232 start-page: 403 year: 2014 end-page: 413 ident: b0135 article-title: An apparent contradiction: increasing variability to achieve greater precision? publication-title: Exp. Brain Res. – year: 1967 ident: 10.1016/j.jbiomech.2019.01.018_b0010 – volume: 217 start-page: 1 year: 2012 ident: 10.1016/j.jbiomech.2019.01.018_b0070 article-title: The bliss (not the problem) of motor abundance (not redundancy) publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cereb. doi: 10.1007/s00221-012-3000-4 – volume: 33 start-page: 1433 year: 2000 ident: 10.1016/j.jbiomech.2019.01.018_b0005 article-title: Active control of lateral balance in human walking publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00101-9 – volume: 197 start-page: 185 year: 2009 ident: 10.1016/j.jbiomech.2019.01.018_b0115 article-title: Angular momentum synergies during walking publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cereb. doi: 10.1007/s00221-009-1904-4 – volume: 31 start-page: 380 year: 2010 ident: 10.1016/j.jbiomech.2019.01.018_b0130 article-title: Measures of frontal plane stability during treadmill and overground walking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.01.002 – volume: 232 start-page: 403 year: 2014 ident: 10.1016/j.jbiomech.2019.01.018_b0135 article-title: An apparent contradiction: increasing variability to achieve greater precision? publication-title: Exp. Brain Res. doi: 10.1007/s00221-013-3748-1 – volume: 183 start-page: 511 year: 2007 ident: 10.1016/j.jbiomech.2019.01.018_b0015 article-title: Uncontrolled manifold analysis of segmental angle variability during walking: preadolescents with and without down syndrome publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cerebrale – volume: 20 start-page: 1 year: 2018 ident: 10.1016/j.jbiomech.2019.01.018_b0065 article-title: Abundant degrees of freedom are not a problem publication-title: Kinesiol. Rev. – volume: 44 start-page: 209 year: 2016 ident: 10.1016/j.jbiomech.2019.01.018_b0035 article-title: Impaired synergic control of posture in Parkinson’s patients without postural instability publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.12.035 – volume: 102 start-page: 1490 year: 2007 ident: 10.1016/j.jbiomech.2019.01.018_b0095 article-title: Age-related changes in multifinger synergies in accurate moment of force production tasks publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00966.2006 – volume: 48 start-page: 324 year: 2015 ident: 10.1016/j.jbiomech.2019.01.018_b0100 article-title: Analysis of gait within the uncontrolled manifold hypothesis: stabilisation of the centre of mass during gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.11.024 – volume: 31 start-page: 461 year: 2010 ident: 10.1016/j.jbiomech.2019.01.018_b0050 article-title: Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.02.001 – volume: 31 start-page: 844 year: 2012 ident: 10.1016/j.jbiomech.2019.01.018_b0045 article-title: Motor abundance supports multitasking while standing publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2011.07.017 – volume: 46 start-page: 382 year: 2010 ident: 10.1016/j.jbiomech.2019.01.018_b0080 article-title: Motor control theories and their applications publication-title: Medicina (Kaunas, Lithuania) doi: 10.3390/medicina46060054 – volume: 108 start-page: 915 year: 2012 ident: 10.1016/j.jbiomech.2019.01.018_b0105 article-title: Changes in multifinger interaction and coordination in Parkinson’s disease publication-title: J. Neurophysiol. doi: 10.1152/jn.00043.2012 – volume: 207 start-page: 13 year: 2010 ident: 10.1016/j.jbiomech.2019.01.018_b0150 article-title: Motor-equivalent covariation stabilizes step parameters and center of mass position during treadmill walking publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cereb. doi: 10.1007/s00221-010-2424-y – volume: 97 start-page: 213 year: 2004 ident: 10.1016/j.jbiomech.2019.01.018_b0145 article-title: Age-related changes in finger coordination in static prehension tasks publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00045.2004 – year: 2013 ident: 10.1016/j.jbiomech.2019.01.018_b0060 article-title: The effects of age on stabilization of the mediolateral trajectory of the swing foot publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.04.023 – volume: 126 start-page: 289 year: 1999 ident: 10.1016/j.jbiomech.2019.01.018_b0140 article-title: The uncontrolled manifold concept: identifying control variables for a functional task publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cereb. doi: 10.1007/s002210050738 – volume: 146 start-page: 345 year: 2002 ident: 10.1016/j.jbiomech.2019.01.018_b0075 article-title: Finger coordination in persons with down syndrome: atypical patterns of coordination and the effects of practice publication-title: Exp. Brain Res. Exp. Hirnforschung. Exp. Cereb. doi: 10.1007/s00221-002-1189-3 – volume: 51 start-page: 1229 year: 2014 ident: 10.1016/j.jbiomech.2019.01.018_b0125 article-title: Active dorsiflexing prostheses may reduce trip-related fall risk in people with transtibial amputation publication-title: J. Rehabilit. Res. Develop. doi: 10.1682/JRRD.2014.01.0031 – volume: 37 start-page: 827 year: 2004 ident: 10.1016/j.jbiomech.2019.01.018_b0020 article-title: Mechanical and metabolic requirements for active lateral stabilization in human walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2003.06.002 – volume: 62 start-page: 67 year: 2018 ident: 10.1016/j.jbiomech.2019.01.018_b0025 article-title: Healthy aging does not impair lower extremity motor flexibility while walking across an uneven surface publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2018.09.008 – start-page: 54 year: 1986 ident: 10.1016/j.jbiomech.2019.01.018_b0030 article-title: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy publication-title: Statist. Sci. – volume: 56 start-page: 76 year: 2016 ident: 10.1016/j.jbiomech.2019.01.018_b0090 article-title: Synergy as a new and sensitive marker of basal ganglia dysfunction: a study of asymptomatic welders publication-title: Neurotoxicology doi: 10.1016/j.neuro.2016.06.016 – year: 2015 ident: 10.1016/j.jbiomech.2019.01.018_b0120 – year: 2005 ident: 10.1016/j.jbiomech.2019.01.018_b0155 – volume: 35 start-page: 1299 year: 2013 ident: 10.1016/j.jbiomech.2019.01.018_b0040 article-title: Age-related changes in joint coordination during balance recovery publication-title: Age doi: 10.1007/s11357-012-9422-x – volume: 109 start-page: 1827 year: 2010 ident: 10.1016/j.jbiomech.2019.01.018_b0055 article-title: Age-related changes in the control of finger force vectors publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00430.2010 – volume: 36 start-page: 325 year: 2012 ident: 10.1016/j.jbiomech.2019.01.018_b0110 article-title: Uncontrolled manifold analysis of gait variability: effects of load carriage and fatigue publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.03.004 – volume: 11 start-page: 276 year: 2007 ident: 10.1016/j.jbiomech.2019.01.018_b0085 article-title: Toward a new theory of motor synergies publication-title: Mot. Cont. doi: 10.1123/mcj.11.3.276 |
SSID | ssj0007479 |
Score | 2.405691 |
Snippet | The uncontrolled manifold (UCM) analysis quantifies the extent to which co-variation among a set of variables facilitates consistent performance by... The uncontrolled manifold (UCM) analysis quantifies the extent to which co-variation among a set of variables facilitates consistent performance, by... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 218 |
SubjectTerms | Adults Aged Biomechanical Phenomena Center of mass Confidence intervals Data acquisition Data analysis Data points Data processing Exercise Test - methods Female Fitness equipment Foot trajectory Gait Humans Male Manifolds Mediolateral Motion capture Movement Older adults Older people Stability Stability analysis Synergy index UCM Variables Variance Walking |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF-0guiD6FXraZUVxLfYfOxusk9SxFKE-mTh3pbNftAel-Q0dxTFP96ZzSZeVayQt2Tussxk9jc7M78h5LUrCiurOktcWdiEydQnVV6LpMy1tJUxdW6wwfnskzg9Zx8XfBEP3PpYVjn6xOCobWfwjPwIQxGWAfrN362_JDg1CrOrcYTGbXIHqcvQqsvFFHAhN3ws8cgSgAHpTofw8u0y9LeHhEQmA3UnDv74--b0J_j8vYZyZ1M6eUgeRDRJjwf1PyK3XDsj-8ctRNLNN_qGhvrOcHA-I_d3qAdn5O5ZTKrvkx8YgjaNi-OVKMBYCrCQIutIs23oMDSEdp6CRax7uumoRiqT745eXbiWrofeA_jZIAYb5VD-vnKWIruG71Z2kOgvewp_cKVXeEBPsTr1MTk_-fD5_WkShzIkRuTpJslZ4WXlcqtT7rCGRpjCC6s9zwpnuUtrUznrObe1Lo1PrWMSgmApfKmNMbx4QvbarnVPCWUp8zLVYEXcMm1YxbT0AIlE5THO8nPCR20oExnLcXDGSo2laUs1alGhFlWawVXNydEktx44O26UKEdlq7EjFXyogm3lRkk5SUbMMmCR_5I9HO1KRc_Rq192PievptvwzWMiR7eu2-IzJWbdBcvm5GAww2mh4LOzCnAkLOmagU4PIJ_49Tvt5UXgFRcy8MI--_drPSf3cA2hDk8ckr3N1617AcBsU78MX99P9Es8sQ priority: 102 providerName: ProQuest |
Title | Recommendation for the minimum number of steps to analyze when performing the uncontrolled manifold analysis on walking data |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929019300533 https://dx.doi.org/10.1016/j.jbiomech.2019.01.018 https://www.ncbi.nlm.nih.gov/pubmed/30718066 https://www.proquest.com/docview/2184419742 https://www.proquest.com/docview/2179536641 https://pubmed.ncbi.nlm.nih.gov/PMC6905614 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF-OE0QfRHt-VM9jBfEt13xsNtnHetxRlSsiHvQtbPaDa2mSYlsORfzbndlsYqvCCUJpabKTZruzszOZ3_yWkNcmSbTIyygwWaIDJkIb5HHJgyyWQudKlbHCAufLKZ9csfezdHZAzrpaGIRVetvf2nRnrf2Rkf83R6v5HGt8YbZhGlAkrqIUK9hZhlp--uMXzAPcZQ_ziAJsvVMlvDhduBp3l5SIhKPvxM0__r5A_emA_o6j3FmYLh6SB96jpOP2ph-RA1MPyNG4hmi6-krfUIfxdA_PB-T-Dv3ggNy99In1I_Idw9CqMn6LJQquLAXXkCLzSLWtaLtxCG0sBa1YremmoRLpTL4ZenNtarpq6w_gsk4MFssWAr80miLDhm2WupVYz9cUfuBGLvEhPUWE6mNydXH--WwS-I0ZAsXjcBPELLEiN7GWYWoQR8NVYrmWNo0So1MTlio32qapLmWmbKgNExAIC24zqZRKkyfksG5q84xQFjIrQgmalGomFcuZFBbcIp5bjLXskKTdaBTKs5bj5hnLooOnLYpuFAscxSKM4JUPyaiXW7W8HbdKZN1gF11VKtjRApaWWyVFL7mnu_8ke9zpVeGtx7rAsJtFEOnFQ_KqPw3zHpM5sjbNFttkmHnnLBqSp60a9h0Fux3l4EtCl_YUtG-AnOL7Z-r5teMW58Jxwz7_jy69IPfwmwPq8WNyuPmyNS_Bc9uUJ25qwns2y07InfG7D5MpfL49n3789BNGs0sr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VReJxQJBCCRRYJOBmurbXjz0gVAFVSpueWik3s96H2ii2A04UFfGb-I3MrB-kgCiXSrnZk2Q145lvPDPfEPLShKEWae57Jgm1xwWzXhrksZcEUuhUqTxQOOA8Po5Hp_zTJJpskB_dLAy2VXY-0TlqXSl8R76LqQj3Af0G7-ZfPNwahdXVboVGYxaH5mIFKVv99uAD6PdVEOx_PHk_8tqtAp6KA7bwAh5akZpASxYZbAKJVWhjLW3kh0ZHhuUqNdpGkc5loizThgvI4kRsE6mUwi0R4PJvQOBlmOwlkz7BQy76tqXE9wB2sLWJ5OmbqZundwUQXziqUFw08vdg-CfY_b1ncy0I7t8jd1v0Svcac7tPNkw5IFt7JWTuxQV9TV0_qXtRPyB31qgOB-TmuC3ib5HvmPIWhWnXOVGAzRRgKEWWk2JZ0GZJCa0sBQuc13RRUYnUKd8MXZ2Zks6bWQf4WicGgblpt58ZTZHNw1Yz3UjU5zWFH1jJGRYEKHbDPiCn16Kuh2SzrErziFDOuBVMgtVGmkvFUy6FBQgWpxbzOjskUaeNTLUM6bioY5Z1rXDTrNNihlrMmA-fdEh2e7l5wxFypUTSKTvrJmDBZ2cQxq6UFL1ki5Ea7PNfsjudXWWtp6qzX8_VkLzoL4OPwcKRLE21xHsSrPLH3B-S7cYM-4NCjPBTwK1wpEsG2t-A_OWXr5TnZ47HPBaOh_bxv__Wc3JrdDI-yo4Ojg-fkNt4HtcDGO-QzcXXpXkKoHCRP3NPIiWfr_vR_wlq1Huo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxNBDLaqVKrggCDlEVpgkIDbkn3MPuaAUKGNWkqjClGpt2V2HmqjZDc0iaIifhm_DntfpIAol0q57TrJyh7789r-DPDCBIEWSeY5Jg60w4VrncTPIif2pdCJUpmvaMD5aBjtn_APp-HpGvxoZmGorbLxiaWj1oWid-R9SkW4h-jX79u6LeJ4d_B2-tWhDVJUaW3WaVQmcmgul5i-zd4c7KKuX_r-YO_z-32n3jDgqMh3547PAysS42vphoYaQiIV2EhLG3qB0aFxM5UYbcNQZzJW1tWGC8zoRGRjqZSijRHo_tdjyoo6sP5ub3j8qY0DCNTrBhPPQRDirswnj16Pyun6shziiZI4lNaO_D00_gl9f-_gXAmJg7twp8aybKcyvnuwZvIubO7kmMdPLtkrVnaXlq_tu3B7hfiwCxtHdUl_E75TAjyZmHq5E0MQzRCUMuI8mSwmrFpZwgrL0B6nMzYvmCQilW-GLc9MzqbV5AN-bSmGYbpqvh8bzYjbwxZjXUnMzmcMf2Apx1QeYNQbex9ObkRhD6CTF7l5BIy73ApXog2HmkvFEy6FRUAWJZayPNuDsNFGqmq-dFrbMU6bxrhR2mgxJS2mroefpAf9Vm5aMYZcKxE3yk6beVj04CkGtWslRStZI6YKCf2X7HZjV2ntt2bpr1PWg-ftZfQ4VEaSuSkWdE9MNf-Iez14WJlh-6AYMbwEUSw-0hUDbW8gNvOrV_Lzs5LVPBIlK-3jf_-tZ7CBxz79eDA83IJb9DhlQ2C0DZ35xcI8QYQ4z57WR5HBl5s-_T8BOMuBQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recommendation+for+the+minimum+number+of+steps+to+analyze+when+performing+the+uncontrolled+manifold+analysis+on+walking+data&rft.jtitle=Journal+of+biomechanics&rft.au=Rosenblatt%2C+Noah+J.&rft.au=Hurt%2C+Christopher+P.&rft.date=2019-03-06&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=85&rft.spage=218&rft.epage=223&rft_id=info:doi/10.1016%2Fj.jbiomech.2019.01.018&rft.externalDocID=S0021929019300533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |