Processing and classification of chemical data inspired by insect olfaction
The chemical sense of insects has evolved to encode and classify odorants. Thus, the neural circuits in their olfactory system are likely to implement an efficient method for coding, processing, and classifying chemical information. Here, we describe a computational method to process molecular repre...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 51; pp. 20285 - 20289 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
18.12.2007
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The chemical sense of insects has evolved to encode and classify odorants. Thus, the neural circuits in their olfactory system are likely to implement an efficient method for coding, processing, and classifying chemical information. Here, we describe a computational method to process molecular representations and classify molecules. The three-step approach mimics neurocomputational principles observed in olfactory systems. In the first step, the original stimulus space is sampled by "virtual receptors," which are chemotopically arranged by a self-organizing map. In the second step, the signals from the virtual receptors are decorrelated via correlation-based lateral inhibition. Finally, in the third step, olfactory scent perception is modeled by a machine learning classifier. We found that signal decorrelation during the second stage significantly increases the accuracy of odorant classification. Moreover, our results suggest that the proposed signal transform is capable of dimensionality reduction and is more robust against overdetermined representations than principal component scores. Our olfaction-inspired method was successfully applied to predicting bioactivities of pharmaceutically active compounds with high accuracy. It represents a way to efficiently connect chemical structure with biological activity space. |
---|---|
AbstractList | The chemical sense of insects has evolved to encode and classify odorants. Thus, the neural circuits in their olfactory system are likely to implement an efficient method for coding, processing, and classifying chemical information. Here, we describe a computational method to process molecular representations and classify molecules. The three-step approach mimics neurocomputational principles observed in olfactory systems. In the first step, the original stimulus space is sampled by “virtual receptors,” which are chemotopically arranged by a self-organizing map. In the second step, the signals from the virtual receptors are decorrelated via correlation-based lateral inhibition. Finally, in the third step, olfactory scent perception is modeled by a machine learning classifier. We found that signal decorrelation during the second stage significantly increases the accuracy of odorant classification. Moreover, our results suggest that the proposed signal transform is capable of dimensionality reduction and is more robust against overdetermined representations than principal component scores. Our olfaction-inspired method was successfully applied to predicting bioactivities of pharmaceutically active compounds with high accuracy. It represents a way to efficiently connect chemical structure with biological activity space. The chemical sense of insects has evolved to encode and classify odorants. Thus, the neural circuits in their olfactory system are likely to implement an efficient method for coding, processing, and classifying chemical information. Here, we describe a computational method to process molecular representations and classify molecules. The three-step approach mimics neurocomputational principles observed in olfactory systems. In the first step, the original stimulus space is sampled by "virtual receptors," which are chemotopically arranged by a self-organizing map. In the second step, the signals from the virtual receptors are decorrelated via correlation-based lateral inhibition. Finally, in the third step, olfactory scent perception is modeled by a machine learning classifier. We found that signal decorrelation during the second stage significantly increases the accuracy of odorant classification. Moreover, our results suggest that the proposed signal transform is capable of dimensionality reduction and is more robust against overdetermined representations than principal component scores. Our olfaction-inspired method was successfully applied to predicting bioactivities of pharmaceutically active compounds with high accuracy. It represents a way to efficiently connect chemical structure with biological activity space. [PUBLICATION ABSTRACT] The chemical sense of insects has evolved to encode and classify odorants. Thus, the neural circuits in their olfactory system are likely to implement an efficient method for coding, processing, and classifying chemical information. Here, we describe a computational method to process molecular representations and classify molecules. The three-step approach mimics neurocomputational principles observed in olfactory systems. In the first step, the original stimulus space is sampled by “virtual receptors,” which are chemotopically arranged by a self-organizing map. In the second step, the signals from the virtual receptors are decorrelated via correlation-based lateral inhibition. Finally, in the third step, olfactory scent perception is modeled by a machine learning classifier. We found that signal decorrelation during the second stage significantly increases the accuracy of odorant classification. Moreover, our results suggest that the proposed signal transform is capable of dimensionality reduction and is more robust against overdetermined representations than principal component scores. Our olfaction-inspired method was successfully applied to predicting bioactivities of pharmaceutically active compounds with high accuracy. It represents a way to efficiently connect chemical structure with biological activity space. bioinformatics chemical biology computational model decorrelation olfactory coding |
Author | Schneider, Gisbert Schmuker, Michael |
Author_xml | – sequence: 1 fullname: Schmuker, Michael – sequence: 2 fullname: Schneider, Gisbert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18077325$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFMycg6qESh7Tjr9i5IKEKStVKIEHPluPYW6-y9tZOEP33dbSrLnDpyR7NM69n5vUROggxWITeYjjDIOj5Juh8BgJ4IykG9gItMLS4blgLB2gBQEQtGWGH6CjnFQC0XMIrdIglCEEJX6DrHykam7MPy0qHvjKDLoHzRo8-hiq6ytzZdQmHqtejrnzIG59sX3UP892asYqD02amX6OXTg_Zvtmdx-j265dfF9_qm--XVxefb2rTEBhrQqSg3PDOGc07iXWnqbG6sb3AvXSMUWdl5whnjmLZUEcIsY0WlvSABcX0GH3a6m6mbm17Y8OY9KA2ya91elBRe_VvJvg7tYy_FcGcMUKLwOlOIMX7yeZRrX02dhh0sHHKqmlBtJQ1z4IEOMUCZAFP_gNXcUqhbKEwmJW-GyjQ-RYyKeacrHtqGYOa7VSznWpvZ6l4__eke37nXwE-7oC5ci_HFMflZSK5ctMwjPbPWNjqGbYg77bIKo8xPTHFCg5Szv182Oadjkovk8_q9mcZkELZQVt-HX0EgF3JLw |
CitedBy_id | crossref_primary_10_1002_minf_201600011 crossref_primary_10_1016_j_tips_2010_05_007 crossref_primary_10_1007_s11071_018_4673_4 crossref_primary_10_1371_journal_pone_0024300 crossref_primary_10_1103_PhysRevX_6_021023 crossref_primary_10_1002_ange_201103980 crossref_primary_10_1016_j_snb_2016_03_059 crossref_primary_10_1186_1471_2202_12_S1_P286 crossref_primary_10_1186_1471_2202_14_S1_O12 crossref_primary_10_1186_1471_2202_15_S1_P77 crossref_primary_10_1039_c0md00020e crossref_primary_10_1093_nar_gkn695 crossref_primary_10_1162_neco_2008_05_08_780 crossref_primary_10_1002_minf_201100147 crossref_primary_10_1002_anie_201409126 crossref_primary_10_1007_s10827_009_0183_1 crossref_primary_10_1371_journal_pcbi_1005551 crossref_primary_10_3389_fnins_2015_00491 crossref_primary_10_3389_fnins_2022_813555 crossref_primary_10_1073_pnas_1303053111 crossref_primary_10_1523_JNEUROSCI_4268_12_2013 crossref_primary_10_7554_eLife_74637 crossref_primary_10_1002_minf_201200141 crossref_primary_10_1021_ci8002649 crossref_primary_10_1186_1471_2202_12_S1_P233 crossref_primary_10_1021_acs_jpcc_0c01195 crossref_primary_10_1080_17460441_2017_1274727 crossref_primary_10_1002_anie_201103980 crossref_primary_10_1021_cn3000422 crossref_primary_10_1371_journal_pone_0064547 crossref_primary_10_1371_journal_pcbi_1011176 crossref_primary_10_1088_2634_4386_ac4a83 crossref_primary_10_1371_journal_pone_0141263 crossref_primary_10_3389_fnins_2021_667011 crossref_primary_10_1109_TBCAS_2022_3166530 crossref_primary_10_1002_minf_201100082 crossref_primary_10_1002_minf_200900009 crossref_primary_10_1007_s00422_019_00797_7 crossref_primary_10_1007_s00359_013_0821_y crossref_primary_10_1016_j_tibtech_2008_03_009 crossref_primary_10_1021_cn200027r crossref_primary_10_1016_j_cois_2018_09_006 crossref_primary_10_1162_neco_2009_03_08_733 crossref_primary_10_1109_JSEN_2009_2035670 crossref_primary_10_1016_j_jneumeth_2013_12_013 crossref_primary_10_4155_fmc_09_11 crossref_primary_10_1016_j_cois_2014_10_005 crossref_primary_10_1016_j_jmgm_2011_12_006 crossref_primary_10_1186_2044_7248_3_S1_P13 crossref_primary_10_1152_jn_00260_2013 crossref_primary_10_1186_1471_2202_14_S1_P290 crossref_primary_10_1186_2044_7248_3_S1_P7 crossref_primary_10_3390_s17112591 crossref_primary_10_1147_JRD_2017_2656063 crossref_primary_10_1002_ange_201409126 crossref_primary_10_1093_chemse_bjq123 crossref_primary_10_1093_chemse_bjr016 crossref_primary_10_1523_JNEUROSCI_2973_08_2008 crossref_primary_10_1021_ci100237q crossref_primary_10_1038_s41598_021_89969_9 crossref_primary_10_1007_s00359_013_0818_6 crossref_primary_10_1093_chemse_bjq042 |
Cites_doi | 10.1016/S0092-8674(02)00707-9 10.1038/35093026 10.1002/cne.20415 10.1038/81774 10.1038/79857 10.1162/089976604774201613 10.1152/jn.01285.2004 10.1152/physrev.00021.2005 10.1016/S0896-6273(00)80314-1 10.1146/annurev.neuro.20.1.595 10.1016/j.cub.2005.07.066 10.1126/science.286.5440.707 10.1016/S0896-6273(01)00289-6 10.1093/chemse/bji072 10.1126/science.293.5537.2051 10.1007/s00894-006-0140-0 10.1186/1471-2105-7-125 10.1523/JNEUROSCI.21-04-01351.2001 10.1038/nrn964 10.1074/jbc.M411508200 10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X 10.1016/0092-8674(91)90418-X 10.1016/S0092-8674(02)00700-6 10.1002/qsar.200330825 10.1093/cercor/bhk009 10.1002/anie.200503833 10.1016/j.cell.2006.06.035 10.1016/S0959-4388(03)00011-4 10.1016/S0896-6273(00)81093-4 10.1242/jeb.00143 10.1016/j.cell.2006.01.050 10.1186/1752-153X-1-11 10.1016/j.neuron.2005.01.025 10.1007/s00422-005-0019-7 10.1007/BF00337288 10.1007/PL00000877 10.1021/ci050221u 10.1006/geno.1999.5894 10.1016/j.conb.2004.01.014 10.1021/ci025569t 10.1016/S0092-8674(94)90562-2 10.1113/jphysiol.2003.058040 10.1038/35102506 10.1016/S0959-4388(02)00348-3 10.1016/j.cub.2005.07.034 10.1101/lm.5.1.1 10.1038/nbt1284 |
ContentType | Journal Article |
Copyright | Copyright 2007 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 18, 2007 2007 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2007 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 18, 2007 – notice: 2007 by The National Academy of Sciences of the USA |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.0705683104 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Architecture |
EISSN | 1091-6490 |
EndPage | 20289 |
ExternalDocumentID | 1402206131 10_1073_pnas_0705683104 18077325 104_51_20285 25450884 US201300839649 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c620t-228735c5bfca5b81aba3cea6ed71d8f443fe8bf254f31863f222e6a7e2d017313 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:21:53 EDT 2024 Fri Oct 25 02:55:21 EDT 2024 Fri Oct 25 03:57:20 EDT 2024 Thu Oct 10 17:01:12 EDT 2024 Fri Aug 23 01:51:09 EDT 2024 Sat Sep 28 07:51:06 EDT 2024 Thu May 30 08:49:34 EDT 2019 Wed Nov 11 00:29:46 EST 2020 Fri Feb 02 07:05:50 EST 2024 Wed Dec 27 19:16:59 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c620t-228735c5bfca5b81aba3cea6ed71d8f443fe8bf254f31863f222e6a7e2d017313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Institute for Biology–Neurobiology, Freie Universität Berlin, Königin-Luise-Strasse 28–30, 14195 Berlin, Germany. Edited by Richard Axel, Columbia University, New York, NY, and approved October 23, 2007 Author contributions: M.S. and G.S. designed research; M.S. performed research; M.S. and G.S. analyzed data; and M.S. and G.S. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/104/51/20285.full.pdf |
PMID | 18077325 |
PQID | 201401760 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_69079346 fao_agris_US201300839649 proquest_miscellaneous_20531708 pnas_primary_104_51_20285_fulltext proquest_journals_201401760 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2154423 pubmed_primary_18077325 pnas_primary_104_51_20285 crossref_primary_10_1073_pnas_0705683104 jstor_primary_25450884 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2007-12-18 |
PublicationDateYYYYMMDD | 2007-12-18 |
PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-18 day: 18 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2007 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 10069338 - Neuron. 1999 Feb;22(2):327-38 17024412 - J Mol Model. 2007 Jan;13(1):225-8 14724183 - J Physiol. 2004 Mar 16;555(Pt 3):743-56 9056726 - Annu Rev Neurosci. 1997;20:595-631 9182799 - Neuron. 1997 May;18(5):737-52 15673548 - J Neurophysiol. 2005 Jun;93(6):3410-7 10531047 - Science. 1999 Oct 22;286(5440):707-11 16320081 - Biol Cybern. 2005 Dec;93(6):436-46 11361087 - Cell Mol Life Sci. 2001 Apr;58(4):520-30 16529661 - BMC Bioinformatics. 2006;7:125 10458908 - Genomics. 1999 Aug 15;60(1):31-9 15228747 - Neural Comput. 2004 Aug;16(8):1601-40 10454369 - Learn Mem. 1998 May-Jun;5(1-2):1-10 12415296 - Nat Rev Neurosci. 2002 Nov;3(11):884-95 12139985 - Curr Opin Neurobiol. 2002 Aug;12(4):387-92 11017177 - Nat Neurosci. 2000 Oct;3(10):1035-43 11160406 - J Neurosci. 2001 Feb 15;21(4):1351-60 16601265 - Physiol Rev. 2006 Apr;86(2):409-33 15018935 - Curr Opin Neurobiol. 2004 Feb;14(1):31-6 8087849 - Cell. 1994 Sep 9;78(5):823-34 11700549 - Nature. 2001 Nov 8;414(6860):173-9 17287757 - Nat Biotechnol. 2007 Feb;25(2):197-206 16267161 - Chem Senses. 2005 Nov;30(9):801-13 16180909 - J Chem Inf Model. 2005 Sep-Oct;45(5):1324-36 17880742 - Chem Cent J. 2007 May 04;1:11 15678475 - J Comp Neurol. 2005 Mar 7;483(2):192-204 15748842 - Neuron. 2005 Mar 3;45(5):661-6 16498690 - Angew Chem Int Ed Engl. 2006 Mar 20;45(13):2066-9 16139208 - Curr Biol. 2005 Sep 6;15(17):1535-47 12653501 - J Chem Inf Comput Sci. 2003 Mar-Apr;43(2):391-405 12593988 - Curr Opin Neurobiol. 2003 Feb;13(1):103-10 11100145 - Nat Neurosci. 2000 Dec;3(12):1248-55 16139209 - Curr Biol. 2005 Sep 6;15(17):1548-53 16615896 - Cell. 2006 Apr 7;125(1):143-60 12007410 - Cell. 2002 Apr 19;109(2):243-55 11557990 - Nature. 2001 Sep 13;413(6852):211-8 12517989 - J Exp Biol. 2003 Feb;206(Pt 4):715-24 16699083 - Cereb Cortex. 2007 Mar;17(3):643-52 12007409 - Cell. 2002 Apr 19;109(2):229-41 11557883 - Science. 2001 Sep 14;293(5537):2051-5 11395013 - Neuron. 2001 May;30(2):537-52 16873069 - Cell. 2006 Jul 28;126(2):403-13 15598656 - J Biol Chem. 2005 Mar 25;280(12):11807-15 1840504 - Cell. 1991 Apr 5;65(1):175-87 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 (e_1_3_3_38_2) 2004 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 Witten IH (e_1_3_3_41_2) 2005 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 |
References_xml | – ident: e_1_3_3_36_2 doi: 10.1016/S0092-8674(02)00707-9 – ident: e_1_3_3_2_2 doi: 10.1038/35093026 – ident: e_1_3_3_27_2 doi: 10.1002/cne.20415 – ident: e_1_3_3_13_2 doi: 10.1038/81774 – ident: e_1_3_3_25_2 doi: 10.1038/79857 – volume-title: Flavors and Fragrances year: 2004 ident: e_1_3_3_38_2 – ident: e_1_3_3_46_2 doi: 10.1162/089976604774201613 – ident: e_1_3_3_32_2 doi: 10.1152/jn.01285.2004 – ident: e_1_3_3_19_2 doi: 10.1152/physrev.00021.2005 – ident: e_1_3_3_24_2 doi: 10.1016/S0896-6273(00)80314-1 – ident: e_1_3_3_1_2 doi: 10.1146/annurev.neuro.20.1.595 – ident: e_1_3_3_6_2 doi: 10.1016/j.cub.2005.07.066 – ident: e_1_3_3_10_2 doi: 10.1126/science.286.5440.707 – ident: e_1_3_3_14_2 doi: 10.1016/S0896-6273(01)00289-6 – ident: e_1_3_3_31_2 doi: 10.1093/chemse/bji072 – ident: e_1_3_3_43_2 doi: 10.1126/science.293.5537.2051 – ident: e_1_3_3_39_2 doi: 10.1007/s00894-006-0140-0 – ident: e_1_3_3_48_2 doi: 10.1186/1471-2105-7-125 – ident: e_1_3_3_26_2 doi: 10.1523/JNEUROSCI.21-04-01351.2001 – volume-title: Data Mining: Practical Machine Learning Tools and Techniques year: 2005 ident: e_1_3_3_41_2 contributor: fullname: Witten IH – ident: e_1_3_3_42_2 doi: 10.1038/nrn964 – ident: e_1_3_3_17_2 doi: 10.1074/jbc.M411508200 – ident: e_1_3_3_49_2 doi: 10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X – ident: e_1_3_3_9_2 doi: 10.1016/0092-8674(91)90418-X – ident: e_1_3_3_35_2 doi: 10.1016/S0092-8674(02)00700-6 – ident: e_1_3_3_44_2 doi: 10.1002/qsar.200330825 – ident: e_1_3_3_37_2 doi: 10.1093/cercor/bhk009 – ident: e_1_3_3_45_2 doi: 10.1002/anie.200503833 – ident: e_1_3_3_4_2 doi: 10.1016/j.cell.2006.06.035 – ident: e_1_3_3_23_2 doi: 10.1016/S0959-4388(03)00011-4 – ident: e_1_3_3_12_2 doi: 10.1016/S0896-6273(00)81093-4 – ident: e_1_3_3_15_2 doi: 10.1242/jeb.00143 – ident: e_1_3_3_18_2 doi: 10.1016/j.cell.2006.01.050 – ident: e_1_3_3_20_2 doi: 10.1186/1752-153X-1-11 – ident: e_1_3_3_8_2 doi: 10.1016/j.neuron.2005.01.025 – ident: e_1_3_3_47_2 doi: 10.1007/s00422-005-0019-7 – ident: e_1_3_3_40_2 doi: 10.1007/BF00337288 – ident: e_1_3_3_21_2 doi: 10.1007/PL00000877 – ident: e_1_3_3_29_2 doi: 10.1021/ci050221u – ident: e_1_3_3_11_2 doi: 10.1006/geno.1999.5894 – ident: e_1_3_3_7_2 doi: 10.1016/j.conb.2004.01.014 – ident: e_1_3_3_28_2 doi: 10.1021/ci025569t – ident: e_1_3_3_3_2 doi: 10.1016/S0092-8674(94)90562-2 – ident: e_1_3_3_16_2 doi: 10.1113/jphysiol.2003.058040 – ident: e_1_3_3_34_2 doi: 10.1038/35102506 – ident: e_1_3_3_22_2 doi: 10.1016/S0959-4388(02)00348-3 – ident: e_1_3_3_5_2 doi: 10.1016/j.cub.2005.07.034 – ident: e_1_3_3_33_2 doi: 10.1101/lm.5.1.1 – ident: e_1_3_3_30_2 doi: 10.1038/nbt1284 |
SSID | ssj0009580 |
Score | 2.2091444 |
Snippet | The chemical sense of insects has evolved to encode and classify odorants. Thus, the neural circuits in their olfactory system are likely to implement an... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20285 |
SubjectTerms | Animals Antennal lobe Architecture Biochemistry Bioinformatics Biological Sciences Computer Simulation Dimensionality Insecta - physiology Insects Ligands Machine learning Mathematical vectors Molecules Neural Networks (Computer) Neurons Odors Olfactory Receptor Neurons Pharmaceutical Preparations - chemistry Principal components analysis Receptors Sensory perception Smell Statistical median Structure-Activity Relationship |
Title | Processing and classification of chemical data inspired by insect olfaction |
URI | https://www.jstor.org/stable/25450884 http://www.pnas.org/content/104/51/20285.abstract https://www.ncbi.nlm.nih.gov/pubmed/18077325 https://www.proquest.com/docview/201401760 https://search.proquest.com/docview/20531708 https://search.proquest.com/docview/69079346 https://pubmed.ncbi.nlm.nih.gov/PMC2154423 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6PXFBFCgNfWAhDuWQ3cTvHFFFVaiKkGCl3izbsWGlNlmx2wP_nrHj7LaIXrhEkfyIZc94volnPiP0rnK2CSaw0gjSlGCvQ6m4EqWHp5eAR4YMuasv4mLOPl_z6x3Ex1yYFLTv7GLa3dxOu8XPFFu5vHWzMU5s9vXqjEQKGUJnEzQBAR1d9A3TrhryTghsv4ywkc9H0tmyM6spyDgX8XqtdCWPqqSk8Z7se1ZpEkw_hidGzlNo9S_8-XcY5T27dP4MPc2AEn8YBr6Hdnz3HO1llV3h08wr_f4FusxJAWCssOla7CJwjpFCaXFwH7DL7AE4xo3iRRdP4X2L7e_4Djsj7m9yIsRLND__-P3sosx3KZROkGpdEvCMKHfcBme4VbWxhjpvhG9l3arAGA1e2QDuYgAtFzQAbvDCSE9a0Fla03202_WdP0DYgpkPjfeBt4r5lqjWOuat8JJ6JiUv0Ok4l3o5UGbodNQtqY5zqbcrUKADmGttfsCGpuffSDxGBUzYCNYUaD8twKYLGFoEk9CmSL1su2aa15oAUIJPv320TIccTVOgw3EtdVbYFVSJnqYUVYHebEpB0-Lxiel8fxerwH4lK_V4jfinoaFMFOjVIBnbgWQ5K5B8IDObCpHl-2EJCH9i-87C_vq_Wx6iJ-mHdE3KWh2h3fWvO38MSGptT8CH-HR5kvTnD5c4GoM |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB215QAXRIHStEAtxKEcspvYju0cUUW10G6FRFfqzbITG1ZqkxW7PfTvGSfObovohUsUyWPHsmc8z_HMM8DHrLKlN56nRtAyRX_tU1UokTp8Ool4pM-Qm16IyYx_uyqutqAYcmG6oP3KzkfN9c2omf_qYisXN9V4iBMbf5-e0EAhQ9l4G56gvWZ82KSvuXZVn3lCcQHmlA-MPpKNF41ZjlDLCxEu2Oou5VGZlCzclH3PL2170w4BioH1FGv9C4H-HUh5zzOdvoDnEVKSz33Xd2HLNS9hNxrtkhxHZulPr-AspgWguyKmqUkVoHOIFeqmh7SeVJE_gITIUTJvwjm8q4m9C--4NpL2OqZCvIbZ6ZfLk0kab1NIK0GzVUpxb8SKqrC-MoVVubGGVc4IV8u8Vp5z5p2yHjeMHu1cMI_IwQkjHa3RalnO9mCnaRu3D8Sio_elc76oFXc1VbWtuLPCSea4lEUCx8NY6kVPmqG7w27JdBhLvZmBBPZxrLX5iUuanv2g4SAVUWEpeJnAXjcB6yawawFOYp2ka2XTNNdFrilCJfz0h0fLtI_xNAkcDnOpo8kuUSTsNaXIEjhal6KthQMU07j2NojgiiUz9bhE-NdQMi4SeNNrxqYjUc8SkA90Zi0QeL4flqD6d3zfUd0P_rvmETydXE7P9fnXi7NDeNb9ns5pmqu3sLP6feveIa5a2fedFf0B8L8c4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BbxQhFCa2JsaLsWrtWLXEeKiH2Z0BBpijqW6qtU0T3aQ3AgzUTdqZjbs99N_3wTC7W2MvXiaT8GAIvMf7GB7fQ-hjYU3ttWe55qTOwV_7XFaS5w6eTgAe6W_InZ7x4yn7flFdbKT6ikH71sxG7dX1qJ39jrGV82s7HuLExuenRyRQyBA6njd-vIUeg80WfNior_h2ZX_7hMAizAgbWH0E1Gr1YgSaXvGQZCsm5pGFEDRky97wTVted0OQYmA-hVr_QqF_B1NueKfJc_QswUr8ue_-Dnrk2hdoJxnuAh8mdulPL9FJuhoALgvrtsE2wOcQLxSnCHce28QhgEP0KJ614SzeNdjchndYH3F3la5DvELTyddfR8d5yqiQW06KZU5gf0QrWxlvdWVkqY2m1mnuGlE20jNGvZPGw6bRg61z6gE9OK6FIw1YLi3pLtpuu9btIWzA2fvaOV81krmGyMZY5gx3gjomRJWhw2Es1bwnzlDxwFtQFcZSrWcgQ3sw1kpfwrKmpj9JOEwFZFhzVmdoN07AqgnoWoCUUCeLraybZqoqFQG4BJ_-8GCZ8immJkP7w1yqZLYLEAn7TcGLDB2sSsHewiGKbl13E0Rg1RKFfFgi_G-oKeMZet1rxrojSc8yJO7pzEogcH3fLwETiJzfSeXf_HfNA_Tk_MtE_fh2drKPnsY_1CXJS_kWbS__3Lh3AK2W5n00ojsQTB3z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Processing+and+Classification+of+Chemical+Data+Inspired+by+Insect+Olfaction&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Schmuker%2C+Michael&rft.au=Schneider%2C+Gisbert&rft.date=2007-12-18&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=104&rft.issue=51&rft.spage=20285&rft.epage=20289&rft_id=info:doi/10.1073%2Fpnas.0705683104&rft.externalDocID=25450884 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F51.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F51.cover.gif |