Latent Subgroup Analysis of a Randomized Clinical Trial through a Semiparametric Accelerated Failure Time Mixture Model
This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time‐to‐event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and un...
Saved in:
Published in | Biometrics Vol. 69; no. 1; pp. 52 - 61 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishers
01.03.2013
Blackwell Publishing Ltd Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time‐to‐event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all‐or‐none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley–James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma. |
---|---|
AbstractList | Summary
This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time‐to‐event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all‐or‐none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley–James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma. Summary This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma. [PUBLICATION ABSTRACT] This paper studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma. This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma. This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma.This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma. |
Author | Li, G. Altstein, L. |
Author_xml | – sequence: 1 fullname: Altstein, L – sequence: 2 fullname: Li, G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23383608$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl1v0zAUhiM0xLrBTwAsccNNgr-T3CCVinVDLZNoxxA3lpM4rbskLnbCWn49zjrCxw2QiyTW-_j1OcfvSXDUmEYFAUAwQv55tYkQoyiEFMMIQ4QjiBKURLsHwWgQjoIRhJCHhKJPx8GJcxu_TBnEj4JjTEhCOExGwe1MtqppwaLLVtZ0WzBuZLV32gFTAgk-yKYwtf6mCjCpdKNzWYGl1f7drj2-WntmoWq9lVbWqrU6B-M8V5Wy3rYAZ1JXnVVgqWsF5nrX9ou5KVT1OHhYysqpJ_ff0-Dq7O1ych7OLqcXk_EszDmGSSgVzpHKmEw4zhhO0yxOSohLzgjKZZqmcezbILLgkHPFiSQQMw5jzmnM8gyT0-D1wXfbZbUqct-rlZXYWl1LuxdGavG70ui1WJmvgnCMEUbe4OW9gTVfOuVaUWvnO6xko0znBOJxwiilmP4dJZimLKZpX9aLP9CN6awf_R1F0hRyFHvq2a_FD1X_uD4PJAcgt8Y5q8oBQVD0SREb0QdC9IEQfVLEXVLE7udghq25bmWrTT8GXf2Hwa2u1P6fDxZvLi7n_a83eHow2LjW2MGAogT2t-n18KBr16rdoEt7I3hMYiau30_Fu_R8-vEzvxZzzz8_8KU0Qq6sduJq4Y9mECLq08TId2xQ-I4 |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1200_EDBK_200241 crossref_primary_10_1111_ddg_13707_g crossref_primary_10_1007_s10985_021_09527_3 crossref_primary_10_1111_ajd_12662 crossref_primary_10_3390_math9080836 crossref_primary_10_1080_10618600_2020_1763808 crossref_primary_10_1002_sim_8972 crossref_primary_10_1038_nrclinonc_2014_64 crossref_primary_10_1111_bjd_13675 crossref_primary_10_1002_sim_9229 crossref_primary_10_1097_CMR_0000000000000073 crossref_primary_10_3390_math11132855 crossref_primary_10_1016_j_ejso_2019_03_026 crossref_primary_10_1016_j_soc_2020_02_006 crossref_primary_10_1007_s11886_014_0531_2 crossref_primary_10_1177_09622802231154327 crossref_primary_10_1111_bjd_13676 crossref_primary_10_1245_s10434_014_3947_4 crossref_primary_10_1245_s10434_014_3967_0 crossref_primary_10_1111_ajd_12655 crossref_primary_10_3390_math10060862 crossref_primary_10_1080_03610926_2019_1710754 crossref_primary_10_1002_sim_7638 crossref_primary_10_3390_math10183375 crossref_primary_10_1002_14651858_CD010307_pub2 crossref_primary_10_1038_nrclinonc_2014_65_c3 crossref_primary_10_1056_NEJMoa1310460 crossref_primary_10_1038_nrclinonc_2014_65_c1 crossref_primary_10_1002_sim_7970 crossref_primary_10_1002_cjs_11198 crossref_primary_10_1080_00031305_2022_2096695 crossref_primary_10_35509_01239015_748 crossref_primary_10_1016_j_csda_2021_107188 crossref_primary_10_1111_ddg_13707 crossref_primary_10_1111_ajd_12839 |
Cites_doi | 10.1093/biostatistics/5.2.207 10.1198/016214507000001085 10.1002/(SICI)1097-0258(19970515)16:9<1017::AID-SIM508>3.0.CO;2-V 10.1214/aos/1176347502 10.1111/j.0006-341X.2004.00208.x 10.1198/106186005X63734 10.1007/b97377 10.2307/2971731 10.1198/016214502753479419 10.1093/biomet/68.2.381 10.1080/01621459.1996.10476962 10.1097/00000658-199910000-00001 10.1093/biomet/93.1.147 10.1037/1082-989X.3.2.147 10.1016/S0169-2607(00)00083-3 10.1002/sim.4780111409 10.1056/NEJMp068070 10.1056/NEJMoa060992 10.1056/NEJMsr077003 10.1093/biomet/86.2.365 10.1111/1541-0420.00012 10.1080/01621459.1996.10476902 10.1080/03610929108830654 10.1214/aos/1176348253 10.1007/BFb0098489 10.1093/biomet/ass004 10.1002/(SICI)1097-0258(19991130)18:22<3075::AID-SIM244>3.0.CO;2-6 10.1111/j.1467-9868.2007.00600.x 10.1007/BF01203169 10.1214/aos/1034276631 10.1214/aos/1176347504 10.1080/01621459.2000.10474306 10.1002/sim.4780100110 10.1093/biomet/66.3.429 10.1002/sim.4131 10.1111/j.1541-0420.2005.040313.x 10.1002/jso.20031 10.1080/01621459.2000.10473897 |
ContentType | Journal Article |
Copyright | 2013 International Biometric Society Copyright © 2013, The International Biometric Society Copyright © 2013, The International Biometric Society. |
Copyright_xml | – notice: 2013 International Biometric Society – notice: Copyright © 2013, The International Biometric Society – notice: Copyright © 2013, The International Biometric Society. |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 5PM |
DOI | 10.1111/j.1541-0420.2012.01818.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Computer Science Collection MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 61 |
ExternalDocumentID | PMC3622121 2936939031 23383608 10_1111_j_1541_0420_2012_01818_x BIOM1818 41806066 ark_67375_WNG_J9HGVZ6W_M US201500146205 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCCIH NIH HHS grantid: P01 AT003960 – fundername: NCI NIH HHS grantid: P30 CA016042 – fundername: NCI NIH HHS grantid: CA016042 – fundername: NCCIH NIH HHS grantid: P01AT003960 – fundername: National Cancer Institute : NCI grantid: P30 CA016042 || CA |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEOTA AEQDE AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGTJU AHMBA AIAGR AIHAF AIURR AIWBW AJAOE AJBDE AJNCP AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZT PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT 3V. AAPXW ADACV AELPN AEUQT AFFTP AFPWT AIBGX BSCLL ESTFP JSODD VQA WRC AAMMB AEFGJ AGORE AGQPQ AGXDD AIDQK AIDYY H13 AAYXX AHGBF AJBYB CITATION PHGZM CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c6208-ae2c1eb5a862b5299b78f02f6531ca999776083ad6066e63a302560766475cb23 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Thu Aug 21 18:18:38 EDT 2025 Fri Jul 11 18:22:58 EDT 2025 Thu Jul 10 23:11:47 EDT 2025 Wed Aug 13 07:53:05 EDT 2025 Thu Apr 03 07:00:29 EDT 2025 Thu Apr 24 23:02:33 EDT 2025 Tue Jul 01 00:58:03 EDT 2025 Wed Jan 22 17:06:22 EST 2025 Sun Aug 31 12:00:44 EDT 2025 Wed Oct 30 09:49:59 EDT 2024 Thu Apr 03 09:38:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013, The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6208-ae2c1eb5a862b5299b78f02f6531ca999776083ad6066e63a302560766475cb23 |
Notes | http://dx.doi.org/10.1111/j.1541-0420.2012.01818.x ark:/67375/WNG-J9HGVZ6W-M ArticleID:BIOM1818 istex:B035E72E4A477C1227C2EF573DA67145D043C674 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3622121 |
PMID | 23383608 |
PQID | 1323990617 |
PQPubID | 35366 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3622121 proquest_miscellaneous_1678544424 proquest_miscellaneous_1324957492 proquest_journals_1323990617 pubmed_primary_23383608 crossref_primary_10_1111_j_1541_0420_2012_01818_x crossref_citationtrail_10_1111_j_1541_0420_2012_01818_x wiley_primary_10_1111_j_1541_0420_2012_01818_x_BIOM1818 jstor_primary_41806066 istex_primary_ark_67375_WNG_J9HGVZ6W_M fao_agris_US201500146205 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2013 |
PublicationDateYYYYMMDD | 2013-03-01 |
PublicationDate_xml | – month: 03 year: 2013 text: March 2013 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | BIOM |
PublicationYear | 2013 |
Publisher | Blackwell Publishers Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishers – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Goetghebeur, E. and Molenberghs, G. (1996). Causal inference in a placebo-controlled clinical trial with binary outcome and ordered compliance. Journal of the American Statistical Association 91, 928-934. Angrist, J., Imbens, G., and Rubin, D. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91, 444-455. Müller, H. and Wang, J. L. (1990). Locally adaptive hazard smoothing. Probability Theory and Related Fields 85, 523-538. Mealli, F., Imbens, G., Ferro, S., and Biggeri, A. (2004). Analyzing a randomized trial on breast self-examination with noncompliance and missing outcomes. Biostatistics 5, 207-222. Little, R. and Yau, L. (1998). Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin's causal model. Psychological Methods 3, 147-159. Elashoff, R., Li, G., and Zhou, Y. (2012). Nonparametric inference for assessing treatment efficacy in randomized clinical trials with a time-to-event outcome and all-or-none compliance. Biometrika 99, 393-404. Zeng, D. and Lin, D. (2007). Efficient estimation for the accelerated failure time model. Journal of the American Statistical Association 102(480), 1387-1396. Komarek, A., Lesaffre, E., and Hilton, J. (2005). Accelerated failure time model for arbitrarily censored data with smoothed error distribution. Journal of Computational and Graphical Statistics 14, 726-745. Robins, J. and Tsiatis, A. (1991). Correcting for noncompliance in randomized trials using rank preserving structural failure time models. Communications in Statistics A 20, 2609-2631. Ritov, Y. (1990). Estimation in a linear regression model with censored data. The Annals of Statistics 18, 303-328. Abadie, A. (2002). Bootstrap tests for distributional treatment effects in instrumental variable models. Journal of the American Statistical Association 97, 284-292. Tsiatis, A. (1990). Estimating regression parameters using linear rank tests for censored data. Annals of Statistics 18, 354-372. O'Malley, A. and Normand, S. (2004). Likelihood methods for treatment noncompliance and subsequent nonresponse in randomized trials. Biometrics 61, 325-334. Jin, Z., Lin, D., and Ying, Z. (2006). On least-squares regression with censored data. Biometrika 93, 147-161. Wei, L. (1992). The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis. Statistics in Medicine 11, 1871-1879. Lai, T. and Ying, Z. (1991). Large sample theory of a modified Buckley-James estimator for regression analysis with censored data. The Annals of Statistics 19, 1370-1402. Sommer, A. and Zeger, S. (1991). On estimating efficacy from clinical trials. Statistics in Medicine 10, 45-52. Klein, J. and Moeschberger, M. (2003). Survival Analysis: Techniques for Censored and Truncated Data, 2nd edition. New York: Springer-Verlag. Cuzick, J., Edwards, R., and Segnan, N. (1997). Adjusting for non-compliance and contamination in randomized clinical trials. Statistics in Medicine 16, 1017-1029. Cuzick, J., Sasieni, P., Myles, J., and Tyrer, J. (2007). Estimating the effect of treatment in a proportional hazards model in the presence of non-compliance and contamination. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69, 565-588. Imbens, G. and Rubin, D. (1997a). Bayesian inference for causal effects in randomized experiments with noncompliance. Annals of Statistics 25, 305-327. Altstein, L., Li, G., and Elashoff, R. (2011). A method to estimate treatment efficacy among latent subgroups of a randomized clinical trial. Statistics in Medicine 30, 709-717. Stare, J., Harrell, F., and Heinzl, H. (2001). An S-plus program to fit linear regression models to censored data using the Buckley-James method. Computer Methods and Programs :in Biomedicine 64, 45-52. Loeys, T. and Goetghebeur, E. (2003). A causal proportional hazards estimator for the effect of treatment actually received in a randomized trial with all-or-nothing compliance. Biometrics 59, 100-105. Imbens, G. and Rubin, D. (1997b). Estimating outcome distributions for compliers in instrumental variables models. The Review of Economic Studies 64, 555-574. Morton, D., Thompson, J., Cochran, A., Mozzillo, N., Elashoff, R., Essner, R., Nieweg, O., Roses, D., Hoekstra, H., Karakousis, C., Reintgen, D., Coventry, B., Glass, E., Wang, H.; and the Multi center Selective Lymphadenectomy Trial Group, (2006). Sentinel-node biopsy or nodal observation in melanoma. New England Journal of Medicine 355, 1307-1317. Peng, Y., Little, R. A., and Raghunathan, T. (2004). An extended general location model for causal inferences from data subject to noncompliance and missing values. Biometrics 60, 598-607. Lagakos, S. (2006). The challenge of subgroup analyses-reporting without distorting. The New England Journal of Medicine 354, 1667-1669. Morton, D., Thompson, J., Essner, R., Elashoff, R., Stern, S., Nieweg, O., Roses, D., Karakousis, C., Mozzillo, N., Reingten, D., Wang, H., Glass, E., Cochran, A.; and the Multicenter Selective Lymphadenectomy Trial Group, (1999). Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: A multicenter trial. Annals of Surgery 230, 453-463. Follmann, D. (2000). On the effect of treatment among would-be treatment compliers: An analysis of the multiple risk factor intervention trial. Journal of the American Statistical Association 95, 1101-1109. Louis, T. (1981). Nonparametric analysis of an accelerated failure time model. Biometrika 68, 381-390. Baker, S. (2000). Analyzing a randomized cancer prevention trial with a missing binary outcome, an auxiliary variable, and all-or-none compliance. Journal of the American Statistical Association 95, 43-50. Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika 66, 429-436. Frangakis, C. and Rubin, D. (1999). Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing out comes. Biometrika 86, 365-379. Gipponi, M., Solari, N., Di Somma, F., Bertoglio, S., and Cafiero, F. (2004). New fields of application of the sentinel lymph node biopsy in the pathologic staging of solid neoplasms: Review of literature and surgical perspectives. Journal of Surgical Oncology 85, 171-179. Hess, K., Serachitopol, D., and Brown, B. (1999). Hazard function estimators: A simulation study. Statistics in Medicine 18, 3075-3088. Dempster, A., Laird, N., and Rubin, D. (1997). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 39, 1-38. Wang, R., Lagakos, S., Ware, J., Hunter, D., and Drazen, J. (2007). Statistics in medicine-reporting of subgroup analyses in clinical trials. The New England Journal of Medicine 357, 2189-2194. 2006; 93 2004; 85 1991; 19 2004; 61 1997b; 64 2004; 60 2002; 97 1991; 10 1990; 18 2011; 30 2000; 95 1981; 68 2003; 59 2004; 5 1999; 86 2003 1996; 91 1992; 11 2012; 99 2006; 354 1979 2001; 64 2006; 355 1990; 85 2007; 357 1999; 18 1991; 20 2007; 102(480) 1997a; 25 1999; 230 1997; 39 1997; 16 1998; 3 1979; 66 2007; 69 2005; 14 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Dempster A. (e_1_2_9_9_1) 1997; 39 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 10544307 - Stat Med. 1999 Nov 30;18(22):3075-88 12762446 - Biometrics. 2003 Mar;59(1):100-5 10522715 - Ann Surg. 1999 Oct;230(4):453-63; discussion 463-5 15054026 - Biostatistics. 2004 Apr;5(2):207-22 23843664 - Biometrika. 2012 Jun;99(2):393-404 9160496 - Stat Med. 1997 May 15;16(9):1017-29 1480879 - Stat Med. 1992 Oct-Nov;11(14-15):1871-9 16011678 - Biometrics. 2005 Jun;61(2):325-34 11084232 - Comput Methods Programs Biomed. 2001 Jan;64(1):45-52 15339281 - Biometrics. 2004 Sep;60(3):598-607 2006355 - Stat Med. 1991 Jan;10(1):45-52 18032770 - N Engl J Med. 2007 Nov 22;357(21):2189-94 14991890 - J Surg Oncol. 2004 Mar;85(3):171-9 21394747 - Stat Med. 2011 Mar 30;30(7):709-17 17005948 - N Engl J Med. 2006 Sep 28;355(13):1307-17 16625007 - N Engl J Med. 2006 Apr 20;354(16):1667-9 |
References_xml | – reference: Cuzick, J., Edwards, R., and Segnan, N. (1997). Adjusting for non-compliance and contamination in randomized clinical trials. Statistics in Medicine 16, 1017-1029. – reference: Dempster, A., Laird, N., and Rubin, D. (1997). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 39, 1-38. – reference: Morton, D., Thompson, J., Essner, R., Elashoff, R., Stern, S., Nieweg, O., Roses, D., Karakousis, C., Mozzillo, N., Reingten, D., Wang, H., Glass, E., Cochran, A.; and the Multicenter Selective Lymphadenectomy Trial Group, (1999). Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: A multicenter trial. Annals of Surgery 230, 453-463. – reference: Zeng, D. and Lin, D. (2007). Efficient estimation for the accelerated failure time model. Journal of the American Statistical Association 102(480), 1387-1396. – reference: Loeys, T. and Goetghebeur, E. (2003). A causal proportional hazards estimator for the effect of treatment actually received in a randomized trial with all-or-nothing compliance. Biometrics 59, 100-105. – reference: Gipponi, M., Solari, N., Di Somma, F., Bertoglio, S., and Cafiero, F. (2004). New fields of application of the sentinel lymph node biopsy in the pathologic staging of solid neoplasms: Review of literature and surgical perspectives. Journal of Surgical Oncology 85, 171-179. – reference: Lagakos, S. (2006). The challenge of subgroup analyses-reporting without distorting. The New England Journal of Medicine 354, 1667-1669. – reference: Morton, D., Thompson, J., Cochran, A., Mozzillo, N., Elashoff, R., Essner, R., Nieweg, O., Roses, D., Hoekstra, H., Karakousis, C., Reintgen, D., Coventry, B., Glass, E., Wang, H.; and the Multi center Selective Lymphadenectomy Trial Group, (2006). Sentinel-node biopsy or nodal observation in melanoma. New England Journal of Medicine 355, 1307-1317. – reference: Komarek, A., Lesaffre, E., and Hilton, J. (2005). Accelerated failure time model for arbitrarily censored data with smoothed error distribution. Journal of Computational and Graphical Statistics 14, 726-745. – reference: Imbens, G. and Rubin, D. (1997a). Bayesian inference for causal effects in randomized experiments with noncompliance. Annals of Statistics 25, 305-327. – reference: Lai, T. and Ying, Z. (1991). Large sample theory of a modified Buckley-James estimator for regression analysis with censored data. The Annals of Statistics 19, 1370-1402. – reference: Mealli, F., Imbens, G., Ferro, S., and Biggeri, A. (2004). Analyzing a randomized trial on breast self-examination with noncompliance and missing outcomes. Biostatistics 5, 207-222. – reference: Wang, R., Lagakos, S., Ware, J., Hunter, D., and Drazen, J. (2007). Statistics in medicine-reporting of subgroup analyses in clinical trials. The New England Journal of Medicine 357, 2189-2194. – reference: Ritov, Y. (1990). Estimation in a linear regression model with censored data. The Annals of Statistics 18, 303-328. – reference: Goetghebeur, E. and Molenberghs, G. (1996). Causal inference in a placebo-controlled clinical trial with binary outcome and ordered compliance. Journal of the American Statistical Association 91, 928-934. – reference: Little, R. and Yau, L. (1998). Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin's causal model. Psychological Methods 3, 147-159. – reference: Robins, J. and Tsiatis, A. (1991). Correcting for noncompliance in randomized trials using rank preserving structural failure time models. Communications in Statistics A 20, 2609-2631. – reference: Sommer, A. and Zeger, S. (1991). On estimating efficacy from clinical trials. Statistics in Medicine 10, 45-52. – reference: Angrist, J., Imbens, G., and Rubin, D. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91, 444-455. – reference: Follmann, D. (2000). On the effect of treatment among would-be treatment compliers: An analysis of the multiple risk factor intervention trial. Journal of the American Statistical Association 95, 1101-1109. – reference: Hess, K., Serachitopol, D., and Brown, B. (1999). Hazard function estimators: A simulation study. Statistics in Medicine 18, 3075-3088. – reference: Abadie, A. (2002). Bootstrap tests for distributional treatment effects in instrumental variable models. Journal of the American Statistical Association 97, 284-292. – reference: Peng, Y., Little, R. A., and Raghunathan, T. (2004). An extended general location model for causal inferences from data subject to noncompliance and missing values. Biometrics 60, 598-607. – reference: Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika 66, 429-436. – reference: Altstein, L., Li, G., and Elashoff, R. (2011). A method to estimate treatment efficacy among latent subgroups of a randomized clinical trial. Statistics in Medicine 30, 709-717. – reference: Louis, T. (1981). Nonparametric analysis of an accelerated failure time model. Biometrika 68, 381-390. – reference: Cuzick, J., Sasieni, P., Myles, J., and Tyrer, J. (2007). Estimating the effect of treatment in a proportional hazards model in the presence of non-compliance and contamination. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69, 565-588. – reference: O'Malley, A. and Normand, S. (2004). Likelihood methods for treatment noncompliance and subsequent nonresponse in randomized trials. Biometrics 61, 325-334. – reference: Elashoff, R., Li, G., and Zhou, Y. (2012). Nonparametric inference for assessing treatment efficacy in randomized clinical trials with a time-to-event outcome and all-or-none compliance. Biometrika 99, 393-404. – reference: Tsiatis, A. (1990). Estimating regression parameters using linear rank tests for censored data. Annals of Statistics 18, 354-372. – reference: Imbens, G. and Rubin, D. (1997b). Estimating outcome distributions for compliers in instrumental variables models. The Review of Economic Studies 64, 555-574. – reference: Jin, Z., Lin, D., and Ying, Z. (2006). On least-squares regression with censored data. Biometrika 93, 147-161. – reference: Frangakis, C. and Rubin, D. (1999). Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing out comes. Biometrika 86, 365-379. – reference: Baker, S. (2000). Analyzing a randomized cancer prevention trial with a missing binary outcome, an auxiliary variable, and all-or-none compliance. Journal of the American Statistical Association 95, 43-50. – reference: Wei, L. (1992). The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis. Statistics in Medicine 11, 1871-1879. – reference: Müller, H. and Wang, J. L. (1990). Locally adaptive hazard smoothing. Probability Theory and Related Fields 85, 523-538. – reference: Stare, J., Harrell, F., and Heinzl, H. (2001). An S-plus program to fit linear regression models to censored data using the Buckley-James method. Computer Methods and Programs :in Biomedicine 64, 45-52. – reference: Klein, J. and Moeschberger, M. (2003). Survival Analysis: Techniques for Censored and Truncated Data, 2nd edition. New York: Springer-Verlag. – volume: 99 start-page: 393 year: 2012 end-page: 404 article-title: Nonparametric inference for assessing treatment efficacy in randomized clinical trials with a time‐to‐event outcome and all‐or‐none compliance publication-title: Biometrika – volume: 20 start-page: 2609 year: 1991 end-page: 2631 article-title: Correcting for noncompliance in randomized trials using rank preserving structural failure time models publication-title: Communications in Statistics A – volume: 64 start-page: 45 year: 2001 end-page: 52 article-title: An S‐plus program to fit linear regression models to censored data using the Buckley‐James method publication-title: Computer Methods and Programs :in Biomedicine – volume: 64 start-page: 555 year: 1997b end-page: 574 article-title: Estimating outcome distributions for compliers in instrumental variables models publication-title: The Review of Economic Studies – volume: 18 start-page: 303 year: 1990 end-page: 328 article-title: Estimation in a linear regression model with censored data publication-title: The Annals of Statistics – volume: 93 start-page: 147 year: 2006 end-page: 161 article-title: On least‐squares regression with censored data publication-title: Biometrika – year: 2003 – volume: 68 start-page: 381 year: 1981 end-page: 390 article-title: Nonparametric analysis of an accelerated failure time model publication-title: Biometrika – volume: 91 start-page: 444 year: 1996 end-page: 455 article-title: Identification of causal effects using instrumental variables publication-title: Journal of the American Statistical Association – start-page: 23 year: 1979 end-page: 68 – volume: 69 start-page: 565 year: 2007 end-page: 588 article-title: Estimating the effect of treatment in a proportional hazards model in the presence of non‐compliance and contamination publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 18 start-page: 354 year: 1990 end-page: 372 article-title: Estimating regression parameters using linear rank tests for censored data publication-title: Annals of Statistics – volume: 95 start-page: 1101 year: 2000 end-page: 1109 article-title: On the effect of treatment among would‐be treatment compliers: An analysis of the multiple risk factor intervention trial publication-title: Journal of the American Statistical Association – volume: 10 start-page: 45 year: 1991 end-page: 52 article-title: On estimating efficacy from clinical trials publication-title: Statistics in Medicine – volume: 91 start-page: 928 year: 1996 end-page: 934 article-title: Causal inference in a placebo‐controlled clinical trial with binary outcome and ordered compliance publication-title: Journal of the American Statistical Association – volume: 18 start-page: 3075 year: 1999 end-page: 3088 article-title: Hazard function estimators: A simulation study publication-title: Statistics in Medicine – volume: 102(480) start-page: 1387 year: 2007 end-page: 1396 article-title: Efficient estimation for the accelerated failure time model publication-title: Journal of the American Statistical Association – volume: 86 start-page: 365 year: 1999 end-page: 379 article-title: Addressing complications of intention‐to‐treat analysis in the combined presence of all‐or‐none treatment‐noncompliance and subsequent missing out comes publication-title: Biometrika – volume: 5 start-page: 207 year: 2004 end-page: 222 article-title: Analyzing a randomized trial on breast self‐examination with noncompliance and missing outcomes publication-title: Biostatistics – volume: 66 start-page: 429 year: 1979 end-page: 436 article-title: Linear regression with censored data publication-title: Biometrika – volume: 97 start-page: 284 year: 2002 end-page: 292 article-title: Bootstrap tests for distributional treatment effects in instrumental variable models publication-title: Journal of the American Statistical Association – volume: 355 start-page: 1307 year: 2006 end-page: 1317 article-title: Sentinel‐node biopsy or nodal observation in melanoma publication-title: New England Journal of Medicine – volume: 14 start-page: 726 year: 2005 end-page: 745 article-title: Accelerated failure time model for arbitrarily censored data with smoothed error distribution publication-title: Journal of Computational and Graphical Statistics – volume: 354 start-page: 1667 year: 2006 end-page: 1669 article-title: The challenge of subgroup analyses‐reporting without distorting publication-title: The New England Journal of Medicine – volume: 16 start-page: 1017 year: 1997 end-page: 1029 article-title: Adjusting for non‐compliance and contamination in randomized clinical trials publication-title: Statistics in Medicine – volume: 59 start-page: 100 year: 2003 end-page: 105 article-title: A causal proportional hazards estimator for the effect of treatment actually received in a randomized trial with all‐or‐nothing compliance publication-title: Biometrics – volume: 11 start-page: 1871 year: 1992 end-page: 1879 article-title: The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis publication-title: Statistics in Medicine – volume: 25 start-page: 305 year: 1997a end-page: 327 article-title: Bayesian inference for causal effects in randomized experiments with noncompliance publication-title: Annals of Statistics – volume: 61 start-page: 325 year: 2004 end-page: 334 article-title: Likelihood methods for treatment noncompliance and subsequent nonresponse in randomized trials publication-title: Biometrics – volume: 39 start-page: 1 year: 1997 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 85 start-page: 171 year: 2004 end-page: 179 article-title: New fields of application of the sentinel lymph node biopsy in the pathologic staging of solid neoplasms: Review of literature and surgical perspectives publication-title: Journal of Surgical Oncology – volume: 85 start-page: 523 year: 1990 end-page: 538 article-title: Locally adaptive hazard smoothing publication-title: Probability Theory and Related Fields – volume: 19 start-page: 1370 year: 1991 end-page: 1402 article-title: Large sample theory of a modified Buckley‐James estimator for regression analysis with censored data publication-title: The Annals of Statistics – volume: 357 start-page: 2189 year: 2007 end-page: 2194 article-title: Statistics in medicine‐reporting of subgroup analyses in clinical trials publication-title: The New England Journal of Medicine – volume: 30 start-page: 709 year: 2011 end-page: 717 article-title: A method to estimate treatment efficacy among latent subgroups of a randomized clinical trial publication-title: Statistics in Medicine – volume: 3 start-page: 147 year: 1998 end-page: 159 article-title: Statistical techniques for analyzing data from prevention trials: Treatment of no‐shows using Rubin's causal model publication-title: Psychological Methods – volume: 60 start-page: 598 year: 2004 end-page: 607 article-title: An extended general location model for causal inferences from data subject to noncompliance and missing values publication-title: Biometrics – volume: 230 start-page: 453 year: 1999 end-page: 463 article-title: Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early‐stage melanoma: A multicenter trial publication-title: Annals of Surgery – volume: 95 start-page: 43 year: 2000 end-page: 50 article-title: Analyzing a randomized cancer prevention trial with a missing binary outcome, an auxiliary variable, and all‐or‐none compliance publication-title: Journal of the American Statistical Association – ident: e_1_2_9_27_1 doi: 10.1093/biostatistics/5.2.207 – ident: e_1_2_9_40_1 doi: 10.1198/016214507000001085 – ident: e_1_2_9_7_1 doi: 10.1002/(SICI)1097-0258(19970515)16:9<1017::AID-SIM508>3.0.CO;2-V – ident: e_1_2_9_33_1 doi: 10.1214/aos/1176347502 – ident: e_1_2_9_32_1 doi: 10.1111/j.0006-341X.2004.00208.x – ident: e_1_2_9_21_1 doi: 10.1198/106186005X63734 – ident: e_1_2_9_20_1 doi: 10.1007/b97377 – ident: e_1_2_9_18_1 doi: 10.2307/2971731 – ident: e_1_2_9_2_1 doi: 10.1198/016214502753479419 – ident: e_1_2_9_26_1 doi: 10.1093/biomet/68.2.381 – ident: e_1_2_9_15_1 doi: 10.1080/01621459.1996.10476962 – ident: e_1_2_9_29_1 doi: 10.1097/00000658-199910000-00001 – ident: e_1_2_9_19_1 doi: 10.1093/biomet/93.1.147 – ident: e_1_2_9_24_1 doi: 10.1037/1082-989X.3.2.147 – ident: e_1_2_9_36_1 doi: 10.1016/S0169-2607(00)00083-3 – ident: e_1_2_9_39_1 doi: 10.1002/sim.4780111409 – ident: e_1_2_9_22_1 doi: 10.1056/NEJMp068070 – ident: e_1_2_9_28_1 doi: 10.1056/NEJMoa060992 – ident: e_1_2_9_38_1 doi: 10.1056/NEJMsr077003 – ident: e_1_2_9_12_1 doi: 10.1093/biomet/86.2.365 – ident: e_1_2_9_25_1 doi: 10.1111/1541-0420.00012 – ident: e_1_2_9_4_1 doi: 10.1080/01621459.1996.10476902 – ident: e_1_2_9_34_1 doi: 10.1080/03610929108830654 – ident: e_1_2_9_23_1 doi: 10.1214/aos/1176348253 – ident: e_1_2_9_13_1 doi: 10.1007/BFb0098489 – ident: e_1_2_9_10_1 doi: 10.1093/biomet/ass004 – ident: e_1_2_9_16_1 doi: 10.1002/(SICI)1097-0258(19991130)18:22<3075::AID-SIM244>3.0.CO;2-6 – ident: e_1_2_9_8_1 doi: 10.1111/j.1467-9868.2007.00600.x – ident: e_1_2_9_30_1 doi: 10.1007/BF01203169 – ident: e_1_2_9_17_1 doi: 10.1214/aos/1034276631 – ident: e_1_2_9_37_1 doi: 10.1214/aos/1176347504 – ident: e_1_2_9_11_1 doi: 10.1080/01621459.2000.10474306 – ident: e_1_2_9_35_1 doi: 10.1002/sim.4780100110 – ident: e_1_2_9_6_1 doi: 10.1093/biomet/66.3.429 – ident: e_1_2_9_3_1 doi: 10.1002/sim.4131 – ident: e_1_2_9_31_1 doi: 10.1111/j.1541-0420.2005.040313.x – volume: 39 start-page: 1 year: 1997 ident: e_1_2_9_9_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – ident: e_1_2_9_14_1 doi: 10.1002/jso.20031 – ident: e_1_2_9_5_1 doi: 10.1080/01621459.2000.10473897 – reference: 17005948 - N Engl J Med. 2006 Sep 28;355(13):1307-17 – reference: 9160496 - Stat Med. 1997 May 15;16(9):1017-29 – reference: 15054026 - Biostatistics. 2004 Apr;5(2):207-22 – reference: 10522715 - Ann Surg. 1999 Oct;230(4):453-63; discussion 463-5 – reference: 16625007 - N Engl J Med. 2006 Apr 20;354(16):1667-9 – reference: 10544307 - Stat Med. 1999 Nov 30;18(22):3075-88 – reference: 23843664 - Biometrika. 2012 Jun;99(2):393-404 – reference: 21394747 - Stat Med. 2011 Mar 30;30(7):709-17 – reference: 1480879 - Stat Med. 1992 Oct-Nov;11(14-15):1871-9 – reference: 11084232 - Comput Methods Programs Biomed. 2001 Jan;64(1):45-52 – reference: 2006355 - Stat Med. 1991 Jan;10(1):45-52 – reference: 18032770 - N Engl J Med. 2007 Nov 22;357(21):2189-94 – reference: 15339281 - Biometrics. 2004 Sep;60(3):598-607 – reference: 14991890 - J Surg Oncol. 2004 Mar;85(3):171-9 – reference: 16011678 - Biometrics. 2005 Jun;61(2):325-34 – reference: 12762446 - Biometrics. 2003 Mar;59(1):100-5 |
SSID | ssj0009502 |
Score | 2.2302244 |
Snippet | This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest... Summary This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of... Summary This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of... This paper studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 52 |
SubjectTerms | All-or-none noncompliance biological treatment BIOMETRIC METHODOLOGY Biometrics biometry biopsy Buckley-James estimator Censored data Censorship Clinical trials Competing risks Computer Simulation Data Interpretation, Statistical Disease-Free Survival EM algorithm Estimation methods Humans Lymph node excision Lymph Node Excision - standards melanoma Melanoma - surgery Modeling Models, Statistical Nonproportional hazards model Parametric models Patient Compliance patients randomized clinical trials Randomized Controlled Trials as Topic - methods Simulation Simulations Skin cancer Statistical estimation Statistical models Treatment efficacy variance |
Title | Latent Subgroup Analysis of a Randomized Clinical Trial through a Semiparametric Accelerated Failure Time Mixture Model |
URI | https://api.istex.fr/ark:/67375/WNG-J9HGVZ6W-M/fulltext.pdf https://www.jstor.org/stable/41806066 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2012.01818.x https://www.ncbi.nlm.nih.gov/pubmed/23383608 https://www.proquest.com/docview/1323990617 https://www.proquest.com/docview/1324957492 https://www.proquest.com/docview/1678544424 https://pubmed.ncbi.nlm.nih.gov/PMC3622121 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CSUjjgUthW2AgIyHeUiWOc3sciK5MdEjbyipeLMdxoGqboLUVZb-ec5w0amFCE6JPlWJH7cm5fHY-fwfgdZaLGD-Ja7xEu1hvAxdBrHB9oVSq_Mwzxqp9nkb9oTgZhaOG_0RnYWp9iHbDjSLD5msKcJXNt4M8FLgUFtwjhhbvkvRU0iU8SdQtwkdnfEN_16uFw4nqJfzRNqnnxhttVaq7haoQv5LpV2vq4k2g9E9u5SbmtUWr9xAm679bc1Um3eUi6-rr35Qg_489HsGDBtuyo9oZH8MdU3bgXt3t8mcH7g9aidh5B3YJ5tYq0U_gx0eEvOWCYRqzx0zYWiuFVQVT7EyVeTUbX5ucNTqmU3ZBkcOaNkM45tzMxqRjPqMWYZodaY0FlXQwctZTYyLfMzruwgbjFb00YdQEbvoUhr33F-_6btMSwtUR9xJXGa59k4UKF2JZiKU0i5PC40WEqUQrBLtxHCGoVDmty0wUqMBiujiKRBzqjAd7sFNWpTkAliSFRnSSJjxN0GY6QxcJ8jRKUxEjcCociNePX-pGL53adkzlxroJLS7J4pIsLq3F5coBv535vdYMucWcA_Qwqb5iapfDc04bUaTrw73QgTfW7dp7qasJ0fHiUF6eHsuTtH_8-Ut0KQcO7Fm_bAcKP_HIEA4crh1VNilqLv2AjjUTgnXgVXsZkwu9MVKlqZZ2DC6gY5Hyv4xBuBMKIbhwYL_2_fYHcNoAwQeCttyKinYAiZtvXynH36zIOQIrRFU-zrROf2tDyrcfPg3o67N_nvkcdrltekJMw0PYWVwtzQuEnovspU0qvwAnSW3i |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BEaIceARKDQUWCXFzZK_Xr2N5pGlJgtQmNOKyWq83EDVxUJuI0F_PzNqxEqhQhcgpkmetZDyPb9az3wC8znIR4ydxjZdoF_Nt4CKIFa4vlEqVn3nGWLbPXtQeiKNhOKzGAdFZmJIfot5wI8-w8ZocnDakN708FFgLC-5RixZvEvdU0kRAeYsGfBOR_vtjvsbA65XU4dTsJfzhZlvPlXfayFU3R2qGCJaUv1w1L14FS__srlxHvTZtte7DZPWHy26Vs-ZinjX15W9ckP9JIw_gXgVv2X5pjw_hhikacLscePmzAXe7NUvsRQO2CemWRNGP4EcHUW8xZxjJ7EkTtqJLYbMRU-xYFflsOr40OauoTCesT87DqklDKHNipmOiMp_SlDDN9rXGnEpUGDlrqTH13zM68cK64yW9N2E0B27yGAatD_13bbeaCuHqiHuJqwzXvslChbVYFmI2zeJk5PFRhNFEK8S7cRwhrlQ5lWYmClRgYV0cRSIOdcaDHdgqZoXZBZYkI40AJU14mqDOdIY2EuRplKYiRuw0ciBePX-pK8p0mtwxkWulE2pcksYlaVxajculA3698ntJG3KNNbtoYlJ9xeguByec9qKI2od7oQNvrN3V91LnZ9SRF4fytHcgj9L2wecv0ansOrBjDbMWFH7ikSIc2FtZqqyi1IX0AzrZTCDWgVf1ZYwv9NJIFWa2sDJYQ8ci5X-RQcQTCiG4cOBJafz1D-C0B4IPBHW54Ra1APGbb14pxt8szzliKwRWPq60Vn9tRcq3h5-69PXpP698CXfa_W5Hdg57H5_BNrczUKjxcA-25ucL8xyR6Dx7YSPML_wGcf4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BEagceARKDQUWCXFzZG_Wr2OhpGlpAuqDRr2s1us1REmcqk1E6K9nZu1YCVSoQuQUybNWMp7HN-vZbwDeppmI8BO7xou1i_m25SKIFa4vlEqUn3rGWLbPXtg5Efv9oF_1P9FZmJIfot5wI8-w8Zoc_DzLV508EFgKC-5RhxZvEvVU3EQ8eUeEXkJjHHYO-RIBr1cyh1Ovl_D7q109195pJVXdztUEASzpfr7oXbwOlf7ZXLkMem3Waj-E4eL_ls0qw-Zsmjb11W9UkP9HIY_gQQVu2XZpjY_hlikacLccd_mzAfe7NUfsZQPWCeeWNNFP4McBYt5iyjCO2XMmbEGWwiY5U-xQFdlkPLgyGauITEfsmFyHVXOGUObIjAdEZD6mGWGabWuNGZWIMDLWVgPqvmd03oV1B3N6a8JoCtzoKZy0Px5_6LjVTAhXh9yLXWW49k0aKKzE0gBzaRrFucfzEGOJVoh2oyhEVKkyKsxM2FItC-qiMBRRoFPe2oC1YlKYTWBxnGuEJ0nMkxh1plM0kVaWhEkiIkROuQPR4vFLXRGm09yOkVwqnFDjkjQuSePSalzOHfDrleclacgN1myihUn1DWO7PDnitBNFxD7cCxx4Z82uvpe6GFI_XhTI096u3E86u1_PwlPZdWDD2mUtKPzYI0U4sLUwVFnFqEvpt-hcM0FYB97UlzG60CsjVZjJzMpgBR2JhP9FBvFOIITgwoFnpe3XP4DTDgg-ENTlilfUAsRuvnqlGHy3LOeIrBBW-bjSGv2NFSnf733u0tfn_7zyNdz7stOWB3u9Ty9gndsBKNR1uAVr04uZeYkwdJq-svHlFycmcK0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Subgroup+Analysis+of+a+Randomized+Clinical+Trial+through+a+Semiparametric+Accelerated+Failure+Time+Mixture+Model&rft.jtitle=Biometrics&rft.au=Altstein%2C+L&rft.au=Li%2C+G&rft.date=2013-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=69&rft.issue=1&rft.spage=52&rft_id=info:doi/10.1111%2Fj.1541-0420.2012.01818.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2936939031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |