Latent Subgroup Analysis of a Randomized Clinical Trial through a Semiparametric Accelerated Failure Time Mixture Model

This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time‐to‐event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and un...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 69; no. 1; pp. 52 - 61
Main Authors Altstein, L, Li, G
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishers 01.03.2013
Blackwell Publishing Ltd
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time‐to‐event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all‐or‐none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley–James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma.
AbstractList Summary This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time‐to‐event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all‐or‐none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley–James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma.
Summary This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma. [PUBLICATION ABSTRACT]
This paper studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma.
This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma.
This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma.This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma.
Author Li, G.
Altstein, L.
Author_xml – sequence: 1
  fullname: Altstein, L
– sequence: 2
  fullname: Li, G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23383608$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1v0zAUhiM0xLrBTwAsccNNgr-T3CCVinVDLZNoxxA3lpM4rbskLnbCWn49zjrCxw2QiyTW-_j1OcfvSXDUmEYFAUAwQv55tYkQoyiEFMMIQ4QjiBKURLsHwWgQjoIRhJCHhKJPx8GJcxu_TBnEj4JjTEhCOExGwe1MtqppwaLLVtZ0WzBuZLV32gFTAgk-yKYwtf6mCjCpdKNzWYGl1f7drj2-WntmoWq9lVbWqrU6B-M8V5Wy3rYAZ1JXnVVgqWsF5nrX9ou5KVT1OHhYysqpJ_ff0-Dq7O1ych7OLqcXk_EszDmGSSgVzpHKmEw4zhhO0yxOSohLzgjKZZqmcezbILLgkHPFiSQQMw5jzmnM8gyT0-D1wXfbZbUqct-rlZXYWl1LuxdGavG70ui1WJmvgnCMEUbe4OW9gTVfOuVaUWvnO6xko0znBOJxwiilmP4dJZimLKZpX9aLP9CN6awf_R1F0hRyFHvq2a_FD1X_uD4PJAcgt8Y5q8oBQVD0SREb0QdC9IEQfVLEXVLE7udghq25bmWrTT8GXf2Hwa2u1P6fDxZvLi7n_a83eHow2LjW2MGAogT2t-n18KBr16rdoEt7I3hMYiau30_Fu_R8-vEzvxZzzz8_8KU0Qq6sduJq4Y9mECLq08TId2xQ-I4
CODEN BIOMA5
CitedBy_id crossref_primary_10_1200_EDBK_200241
crossref_primary_10_1111_ddg_13707_g
crossref_primary_10_1007_s10985_021_09527_3
crossref_primary_10_1111_ajd_12662
crossref_primary_10_3390_math9080836
crossref_primary_10_1080_10618600_2020_1763808
crossref_primary_10_1002_sim_8972
crossref_primary_10_1038_nrclinonc_2014_64
crossref_primary_10_1111_bjd_13675
crossref_primary_10_1002_sim_9229
crossref_primary_10_1097_CMR_0000000000000073
crossref_primary_10_3390_math11132855
crossref_primary_10_1016_j_ejso_2019_03_026
crossref_primary_10_1016_j_soc_2020_02_006
crossref_primary_10_1007_s11886_014_0531_2
crossref_primary_10_1177_09622802231154327
crossref_primary_10_1111_bjd_13676
crossref_primary_10_1245_s10434_014_3947_4
crossref_primary_10_1245_s10434_014_3967_0
crossref_primary_10_1111_ajd_12655
crossref_primary_10_3390_math10060862
crossref_primary_10_1080_03610926_2019_1710754
crossref_primary_10_1002_sim_7638
crossref_primary_10_3390_math10183375
crossref_primary_10_1002_14651858_CD010307_pub2
crossref_primary_10_1038_nrclinonc_2014_65_c3
crossref_primary_10_1056_NEJMoa1310460
crossref_primary_10_1038_nrclinonc_2014_65_c1
crossref_primary_10_1002_sim_7970
crossref_primary_10_1002_cjs_11198
crossref_primary_10_1080_00031305_2022_2096695
crossref_primary_10_35509_01239015_748
crossref_primary_10_1016_j_csda_2021_107188
crossref_primary_10_1111_ddg_13707
crossref_primary_10_1111_ajd_12839
Cites_doi 10.1093/biostatistics/5.2.207
10.1198/016214507000001085
10.1002/(SICI)1097-0258(19970515)16:9<1017::AID-SIM508>3.0.CO;2-V
10.1214/aos/1176347502
10.1111/j.0006-341X.2004.00208.x
10.1198/106186005X63734
10.1007/b97377
10.2307/2971731
10.1198/016214502753479419
10.1093/biomet/68.2.381
10.1080/01621459.1996.10476962
10.1097/00000658-199910000-00001
10.1093/biomet/93.1.147
10.1037/1082-989X.3.2.147
10.1016/S0169-2607(00)00083-3
10.1002/sim.4780111409
10.1056/NEJMp068070
10.1056/NEJMoa060992
10.1056/NEJMsr077003
10.1093/biomet/86.2.365
10.1111/1541-0420.00012
10.1080/01621459.1996.10476902
10.1080/03610929108830654
10.1214/aos/1176348253
10.1007/BFb0098489
10.1093/biomet/ass004
10.1002/(SICI)1097-0258(19991130)18:22<3075::AID-SIM244>3.0.CO;2-6
10.1111/j.1467-9868.2007.00600.x
10.1007/BF01203169
10.1214/aos/1034276631
10.1214/aos/1176347504
10.1080/01621459.2000.10474306
10.1002/sim.4780100110
10.1093/biomet/66.3.429
10.1002/sim.4131
10.1111/j.1541-0420.2005.040313.x
10.1002/jso.20031
10.1080/01621459.2000.10473897
ContentType Journal Article
Copyright 2013 International Biometric Society
Copyright © 2013, The International Biometric Society
Copyright © 2013, The International Biometric Society.
Copyright_xml – notice: 2013 International Biometric Society
– notice: Copyright © 2013, The International Biometric Society
– notice: Copyright © 2013, The International Biometric Society.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
5PM
DOI 10.1111/j.1541-0420.2012.01818.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Computer Science Collection



MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 61
ExternalDocumentID PMC3622121
2936939031
23383608
10_1111_j_1541_0420_2012_01818_x
BIOM1818
41806066
ark_67375_WNG_J9HGVZ6W_M
US201500146205
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCCIH NIH HHS
  grantid: P01 AT003960
– fundername: NCI NIH HHS
  grantid: P30 CA016042
– fundername: NCI NIH HHS
  grantid: CA016042
– fundername: NCCIH NIH HHS
  grantid: P01AT003960
– fundername: National Cancer Institute : NCI
  grantid: P30 CA016042 || CA
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEQDE
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGTJU
AHMBA
AIAGR
AIHAF
AIURR
AIWBW
AJAOE
AJBDE
AJNCP
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
3V.
AAPXW
ADACV
AELPN
AEUQT
AFFTP
AFPWT
AIBGX
BSCLL
ESTFP
JSODD
VQA
WRC
AAMMB
AEFGJ
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
H13
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c6208-ae2c1eb5a862b5299b78f02f6531ca999776083ad6066e63a302560766475cb23
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Thu Aug 21 18:18:38 EDT 2025
Fri Jul 11 18:22:58 EDT 2025
Thu Jul 10 23:11:47 EDT 2025
Wed Aug 13 07:53:05 EDT 2025
Thu Apr 03 07:00:29 EDT 2025
Thu Apr 24 23:02:33 EDT 2025
Tue Jul 01 00:58:03 EDT 2025
Wed Jan 22 17:06:22 EST 2025
Sun Aug 31 12:00:44 EDT 2025
Wed Oct 30 09:49:59 EDT 2024
Thu Apr 03 09:38:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6208-ae2c1eb5a862b5299b78f02f6531ca999776083ad6066e63a302560766475cb23
Notes http://dx.doi.org/10.1111/j.1541-0420.2012.01818.x
ark:/67375/WNG-J9HGVZ6W-M
ArticleID:BIOM1818
istex:B035E72E4A477C1227C2EF573DA67145D043C674
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3622121
PMID 23383608
PQID 1323990617
PQPubID 35366
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3622121
proquest_miscellaneous_1678544424
proquest_miscellaneous_1324957492
proquest_journals_1323990617
pubmed_primary_23383608
crossref_primary_10_1111_j_1541_0420_2012_01818_x
crossref_citationtrail_10_1111_j_1541_0420_2012_01818_x
wiley_primary_10_1111_j_1541_0420_2012_01818_x_BIOM1818
jstor_primary_41806066
istex_primary_ark_67375_WNG_J9HGVZ6W_M
fao_agris_US201500146205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2013
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: March 2013
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate BIOM
PublicationYear 2013
Publisher Blackwell Publishers
Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishers
– name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Goetghebeur, E. and Molenberghs, G. (1996). Causal inference in a placebo-controlled clinical trial with binary outcome and ordered compliance. Journal of the American Statistical Association 91, 928-934.
Angrist, J., Imbens, G., and Rubin, D. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91, 444-455.
Müller, H. and Wang, J. L. (1990). Locally adaptive hazard smoothing. Probability Theory and Related Fields 85, 523-538.
Mealli, F., Imbens, G., Ferro, S., and Biggeri, A. (2004). Analyzing a randomized trial on breast self-examination with noncompliance and missing outcomes. Biostatistics 5, 207-222.
Little, R. and Yau, L. (1998). Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin's causal model. Psychological Methods 3, 147-159.
Elashoff, R., Li, G., and Zhou, Y. (2012). Nonparametric inference for assessing treatment efficacy in randomized clinical trials with a time-to-event outcome and all-or-none compliance. Biometrika 99, 393-404.
Zeng, D. and Lin, D. (2007). Efficient estimation for the accelerated failure time model. Journal of the American Statistical Association 102(480), 1387-1396.
Komarek, A., Lesaffre, E., and Hilton, J. (2005). Accelerated failure time model for arbitrarily censored data with smoothed error distribution. Journal of Computational and Graphical Statistics 14, 726-745.
Robins, J. and Tsiatis, A. (1991). Correcting for noncompliance in randomized trials using rank preserving structural failure time models. Communications in Statistics A 20, 2609-2631.
Ritov, Y. (1990). Estimation in a linear regression model with censored data. The Annals of Statistics 18, 303-328.
Abadie, A. (2002). Bootstrap tests for distributional treatment effects in instrumental variable models. Journal of the American Statistical Association 97, 284-292.
Tsiatis, A. (1990). Estimating regression parameters using linear rank tests for censored data. Annals of Statistics 18, 354-372.
O'Malley, A. and Normand, S. (2004). Likelihood methods for treatment noncompliance and subsequent nonresponse in randomized trials. Biometrics 61, 325-334.
Jin, Z., Lin, D., and Ying, Z. (2006). On least-squares regression with censored data. Biometrika 93, 147-161.
Wei, L. (1992). The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis. Statistics in Medicine 11, 1871-1879.
Lai, T. and Ying, Z. (1991). Large sample theory of a modified Buckley-James estimator for regression analysis with censored data. The Annals of Statistics 19, 1370-1402.
Sommer, A. and Zeger, S. (1991). On estimating efficacy from clinical trials. Statistics in Medicine 10, 45-52.
Klein, J. and Moeschberger, M. (2003). Survival Analysis: Techniques for Censored and Truncated Data, 2nd edition. New York: Springer-Verlag.
Cuzick, J., Edwards, R., and Segnan, N. (1997). Adjusting for non-compliance and contamination in randomized clinical trials. Statistics in Medicine 16, 1017-1029.
Cuzick, J., Sasieni, P., Myles, J., and Tyrer, J. (2007). Estimating the effect of treatment in a proportional hazards model in the presence of non-compliance and contamination. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69, 565-588.
Imbens, G. and Rubin, D. (1997a). Bayesian inference for causal effects in randomized experiments with noncompliance. Annals of Statistics 25, 305-327.
Altstein, L., Li, G., and Elashoff, R. (2011). A method to estimate treatment efficacy among latent subgroups of a randomized clinical trial. Statistics in Medicine 30, 709-717.
Stare, J., Harrell, F., and Heinzl, H. (2001). An S-plus program to fit linear regression models to censored data using the Buckley-James method. Computer Methods and Programs :in Biomedicine 64, 45-52.
Loeys, T. and Goetghebeur, E. (2003). A causal proportional hazards estimator for the effect of treatment actually received in a randomized trial with all-or-nothing compliance. Biometrics 59, 100-105.
Imbens, G. and Rubin, D. (1997b). Estimating outcome distributions for compliers in instrumental variables models. The Review of Economic Studies 64, 555-574.
Morton, D., Thompson, J., Cochran, A., Mozzillo, N., Elashoff, R., Essner, R., Nieweg, O., Roses, D., Hoekstra, H., Karakousis, C., Reintgen, D., Coventry, B., Glass, E., Wang, H.; and the Multi center Selective Lymphadenectomy Trial Group, (2006). Sentinel-node biopsy or nodal observation in melanoma. New England Journal of Medicine 355, 1307-1317.
Peng, Y., Little, R. A., and Raghunathan, T. (2004). An extended general location model for causal inferences from data subject to noncompliance and missing values. Biometrics 60, 598-607.
Lagakos, S. (2006). The challenge of subgroup analyses-reporting without distorting. The New England Journal of Medicine 354, 1667-1669.
Morton, D., Thompson, J., Essner, R., Elashoff, R., Stern, S., Nieweg, O., Roses, D., Karakousis, C., Mozzillo, N., Reingten, D., Wang, H., Glass, E., Cochran, A.; and the Multicenter Selective Lymphadenectomy Trial Group, (1999). Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: A multicenter trial. Annals of Surgery 230, 453-463.
Follmann, D. (2000). On the effect of treatment among would-be treatment compliers: An analysis of the multiple risk factor intervention trial. Journal of the American Statistical Association 95, 1101-1109.
Louis, T. (1981). Nonparametric analysis of an accelerated failure time model. Biometrika 68, 381-390.
Baker, S. (2000). Analyzing a randomized cancer prevention trial with a missing binary outcome, an auxiliary variable, and all-or-none compliance. Journal of the American Statistical Association 95, 43-50.
Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika 66, 429-436.
Frangakis, C. and Rubin, D. (1999). Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing out comes. Biometrika 86, 365-379.
Gipponi, M., Solari, N., Di Somma, F., Bertoglio, S., and Cafiero, F. (2004). New fields of application of the sentinel lymph node biopsy in the pathologic staging of solid neoplasms: Review of literature and surgical perspectives. Journal of Surgical Oncology 85, 171-179.
Hess, K., Serachitopol, D., and Brown, B. (1999). Hazard function estimators: A simulation study. Statistics in Medicine 18, 3075-3088.
Dempster, A., Laird, N., and Rubin, D. (1997). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 39, 1-38.
Wang, R., Lagakos, S., Ware, J., Hunter, D., and Drazen, J. (2007). Statistics in medicine-reporting of subgroup analyses in clinical trials. The New England Journal of Medicine 357, 2189-2194.
2006; 93
2004; 85
1991; 19
2004; 61
1997b; 64
2004; 60
2002; 97
1991; 10
1990; 18
2011; 30
2000; 95
1981; 68
2003; 59
2004; 5
1999; 86
2003
1996; 91
1992; 11
2012; 99
2006; 354
1979
2001; 64
2006; 355
1990; 85
2007; 357
1999; 18
1991; 20
2007; 102(480)
1997a; 25
1999; 230
1997; 39
1997; 16
1998; 3
1979; 66
2007; 69
2005; 14
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Dempster A. (e_1_2_9_9_1) 1997; 39
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
10544307 - Stat Med. 1999 Nov 30;18(22):3075-88
12762446 - Biometrics. 2003 Mar;59(1):100-5
10522715 - Ann Surg. 1999 Oct;230(4):453-63; discussion 463-5
15054026 - Biostatistics. 2004 Apr;5(2):207-22
23843664 - Biometrika. 2012 Jun;99(2):393-404
9160496 - Stat Med. 1997 May 15;16(9):1017-29
1480879 - Stat Med. 1992 Oct-Nov;11(14-15):1871-9
16011678 - Biometrics. 2005 Jun;61(2):325-34
11084232 - Comput Methods Programs Biomed. 2001 Jan;64(1):45-52
15339281 - Biometrics. 2004 Sep;60(3):598-607
2006355 - Stat Med. 1991 Jan;10(1):45-52
18032770 - N Engl J Med. 2007 Nov 22;357(21):2189-94
14991890 - J Surg Oncol. 2004 Mar;85(3):171-9
21394747 - Stat Med. 2011 Mar 30;30(7):709-17
17005948 - N Engl J Med. 2006 Sep 28;355(13):1307-17
16625007 - N Engl J Med. 2006 Apr 20;354(16):1667-9
References_xml – reference: Cuzick, J., Edwards, R., and Segnan, N. (1997). Adjusting for non-compliance and contamination in randomized clinical trials. Statistics in Medicine 16, 1017-1029.
– reference: Dempster, A., Laird, N., and Rubin, D. (1997). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 39, 1-38.
– reference: Morton, D., Thompson, J., Essner, R., Elashoff, R., Stern, S., Nieweg, O., Roses, D., Karakousis, C., Mozzillo, N., Reingten, D., Wang, H., Glass, E., Cochran, A.; and the Multicenter Selective Lymphadenectomy Trial Group, (1999). Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: A multicenter trial. Annals of Surgery 230, 453-463.
– reference: Zeng, D. and Lin, D. (2007). Efficient estimation for the accelerated failure time model. Journal of the American Statistical Association 102(480), 1387-1396.
– reference: Loeys, T. and Goetghebeur, E. (2003). A causal proportional hazards estimator for the effect of treatment actually received in a randomized trial with all-or-nothing compliance. Biometrics 59, 100-105.
– reference: Gipponi, M., Solari, N., Di Somma, F., Bertoglio, S., and Cafiero, F. (2004). New fields of application of the sentinel lymph node biopsy in the pathologic staging of solid neoplasms: Review of literature and surgical perspectives. Journal of Surgical Oncology 85, 171-179.
– reference: Lagakos, S. (2006). The challenge of subgroup analyses-reporting without distorting. The New England Journal of Medicine 354, 1667-1669.
– reference: Morton, D., Thompson, J., Cochran, A., Mozzillo, N., Elashoff, R., Essner, R., Nieweg, O., Roses, D., Hoekstra, H., Karakousis, C., Reintgen, D., Coventry, B., Glass, E., Wang, H.; and the Multi center Selective Lymphadenectomy Trial Group, (2006). Sentinel-node biopsy or nodal observation in melanoma. New England Journal of Medicine 355, 1307-1317.
– reference: Komarek, A., Lesaffre, E., and Hilton, J. (2005). Accelerated failure time model for arbitrarily censored data with smoothed error distribution. Journal of Computational and Graphical Statistics 14, 726-745.
– reference: Imbens, G. and Rubin, D. (1997a). Bayesian inference for causal effects in randomized experiments with noncompliance. Annals of Statistics 25, 305-327.
– reference: Lai, T. and Ying, Z. (1991). Large sample theory of a modified Buckley-James estimator for regression analysis with censored data. The Annals of Statistics 19, 1370-1402.
– reference: Mealli, F., Imbens, G., Ferro, S., and Biggeri, A. (2004). Analyzing a randomized trial on breast self-examination with noncompliance and missing outcomes. Biostatistics 5, 207-222.
– reference: Wang, R., Lagakos, S., Ware, J., Hunter, D., and Drazen, J. (2007). Statistics in medicine-reporting of subgroup analyses in clinical trials. The New England Journal of Medicine 357, 2189-2194.
– reference: Ritov, Y. (1990). Estimation in a linear regression model with censored data. The Annals of Statistics 18, 303-328.
– reference: Goetghebeur, E. and Molenberghs, G. (1996). Causal inference in a placebo-controlled clinical trial with binary outcome and ordered compliance. Journal of the American Statistical Association 91, 928-934.
– reference: Little, R. and Yau, L. (1998). Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin's causal model. Psychological Methods 3, 147-159.
– reference: Robins, J. and Tsiatis, A. (1991). Correcting for noncompliance in randomized trials using rank preserving structural failure time models. Communications in Statistics A 20, 2609-2631.
– reference: Sommer, A. and Zeger, S. (1991). On estimating efficacy from clinical trials. Statistics in Medicine 10, 45-52.
– reference: Angrist, J., Imbens, G., and Rubin, D. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91, 444-455.
– reference: Follmann, D. (2000). On the effect of treatment among would-be treatment compliers: An analysis of the multiple risk factor intervention trial. Journal of the American Statistical Association 95, 1101-1109.
– reference: Hess, K., Serachitopol, D., and Brown, B. (1999). Hazard function estimators: A simulation study. Statistics in Medicine 18, 3075-3088.
– reference: Abadie, A. (2002). Bootstrap tests for distributional treatment effects in instrumental variable models. Journal of the American Statistical Association 97, 284-292.
– reference: Peng, Y., Little, R. A., and Raghunathan, T. (2004). An extended general location model for causal inferences from data subject to noncompliance and missing values. Biometrics 60, 598-607.
– reference: Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika 66, 429-436.
– reference: Altstein, L., Li, G., and Elashoff, R. (2011). A method to estimate treatment efficacy among latent subgroups of a randomized clinical trial. Statistics in Medicine 30, 709-717.
– reference: Louis, T. (1981). Nonparametric analysis of an accelerated failure time model. Biometrika 68, 381-390.
– reference: Cuzick, J., Sasieni, P., Myles, J., and Tyrer, J. (2007). Estimating the effect of treatment in a proportional hazards model in the presence of non-compliance and contamination. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69, 565-588.
– reference: O'Malley, A. and Normand, S. (2004). Likelihood methods for treatment noncompliance and subsequent nonresponse in randomized trials. Biometrics 61, 325-334.
– reference: Elashoff, R., Li, G., and Zhou, Y. (2012). Nonparametric inference for assessing treatment efficacy in randomized clinical trials with a time-to-event outcome and all-or-none compliance. Biometrika 99, 393-404.
– reference: Tsiatis, A. (1990). Estimating regression parameters using linear rank tests for censored data. Annals of Statistics 18, 354-372.
– reference: Imbens, G. and Rubin, D. (1997b). Estimating outcome distributions for compliers in instrumental variables models. The Review of Economic Studies 64, 555-574.
– reference: Jin, Z., Lin, D., and Ying, Z. (2006). On least-squares regression with censored data. Biometrika 93, 147-161.
– reference: Frangakis, C. and Rubin, D. (1999). Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing out comes. Biometrika 86, 365-379.
– reference: Baker, S. (2000). Analyzing a randomized cancer prevention trial with a missing binary outcome, an auxiliary variable, and all-or-none compliance. Journal of the American Statistical Association 95, 43-50.
– reference: Wei, L. (1992). The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis. Statistics in Medicine 11, 1871-1879.
– reference: Müller, H. and Wang, J. L. (1990). Locally adaptive hazard smoothing. Probability Theory and Related Fields 85, 523-538.
– reference: Stare, J., Harrell, F., and Heinzl, H. (2001). An S-plus program to fit linear regression models to censored data using the Buckley-James method. Computer Methods and Programs :in Biomedicine 64, 45-52.
– reference: Klein, J. and Moeschberger, M. (2003). Survival Analysis: Techniques for Censored and Truncated Data, 2nd edition. New York: Springer-Verlag.
– volume: 99
  start-page: 393
  year: 2012
  end-page: 404
  article-title: Nonparametric inference for assessing treatment efficacy in randomized clinical trials with a time‐to‐event outcome and all‐or‐none compliance
  publication-title: Biometrika
– volume: 20
  start-page: 2609
  year: 1991
  end-page: 2631
  article-title: Correcting for noncompliance in randomized trials using rank preserving structural failure time models
  publication-title: Communications in Statistics A
– volume: 64
  start-page: 45
  year: 2001
  end-page: 52
  article-title: An S‐plus program to fit linear regression models to censored data using the Buckley‐James method
  publication-title: Computer Methods and Programs :in Biomedicine
– volume: 64
  start-page: 555
  year: 1997b
  end-page: 574
  article-title: Estimating outcome distributions for compliers in instrumental variables models
  publication-title: The Review of Economic Studies
– volume: 18
  start-page: 303
  year: 1990
  end-page: 328
  article-title: Estimation in a linear regression model with censored data
  publication-title: The Annals of Statistics
– volume: 93
  start-page: 147
  year: 2006
  end-page: 161
  article-title: On least‐squares regression with censored data
  publication-title: Biometrika
– year: 2003
– volume: 68
  start-page: 381
  year: 1981
  end-page: 390
  article-title: Nonparametric analysis of an accelerated failure time model
  publication-title: Biometrika
– volume: 91
  start-page: 444
  year: 1996
  end-page: 455
  article-title: Identification of causal effects using instrumental variables
  publication-title: Journal of the American Statistical Association
– start-page: 23
  year: 1979
  end-page: 68
– volume: 69
  start-page: 565
  year: 2007
  end-page: 588
  article-title: Estimating the effect of treatment in a proportional hazards model in the presence of non‐compliance and contamination
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 18
  start-page: 354
  year: 1990
  end-page: 372
  article-title: Estimating regression parameters using linear rank tests for censored data
  publication-title: Annals of Statistics
– volume: 95
  start-page: 1101
  year: 2000
  end-page: 1109
  article-title: On the effect of treatment among would‐be treatment compliers: An analysis of the multiple risk factor intervention trial
  publication-title: Journal of the American Statistical Association
– volume: 10
  start-page: 45
  year: 1991
  end-page: 52
  article-title: On estimating efficacy from clinical trials
  publication-title: Statistics in Medicine
– volume: 91
  start-page: 928
  year: 1996
  end-page: 934
  article-title: Causal inference in a placebo‐controlled clinical trial with binary outcome and ordered compliance
  publication-title: Journal of the American Statistical Association
– volume: 18
  start-page: 3075
  year: 1999
  end-page: 3088
  article-title: Hazard function estimators: A simulation study
  publication-title: Statistics in Medicine
– volume: 102(480)
  start-page: 1387
  year: 2007
  end-page: 1396
  article-title: Efficient estimation for the accelerated failure time model
  publication-title: Journal of the American Statistical Association
– volume: 86
  start-page: 365
  year: 1999
  end-page: 379
  article-title: Addressing complications of intention‐to‐treat analysis in the combined presence of all‐or‐none treatment‐noncompliance and subsequent missing out comes
  publication-title: Biometrika
– volume: 5
  start-page: 207
  year: 2004
  end-page: 222
  article-title: Analyzing a randomized trial on breast self‐examination with noncompliance and missing outcomes
  publication-title: Biostatistics
– volume: 66
  start-page: 429
  year: 1979
  end-page: 436
  article-title: Linear regression with censored data
  publication-title: Biometrika
– volume: 97
  start-page: 284
  year: 2002
  end-page: 292
  article-title: Bootstrap tests for distributional treatment effects in instrumental variable models
  publication-title: Journal of the American Statistical Association
– volume: 355
  start-page: 1307
  year: 2006
  end-page: 1317
  article-title: Sentinel‐node biopsy or nodal observation in melanoma
  publication-title: New England Journal of Medicine
– volume: 14
  start-page: 726
  year: 2005
  end-page: 745
  article-title: Accelerated failure time model for arbitrarily censored data with smoothed error distribution
  publication-title: Journal of Computational and Graphical Statistics
– volume: 354
  start-page: 1667
  year: 2006
  end-page: 1669
  article-title: The challenge of subgroup analyses‐reporting without distorting
  publication-title: The New England Journal of Medicine
– volume: 16
  start-page: 1017
  year: 1997
  end-page: 1029
  article-title: Adjusting for non‐compliance and contamination in randomized clinical trials
  publication-title: Statistics in Medicine
– volume: 59
  start-page: 100
  year: 2003
  end-page: 105
  article-title: A causal proportional hazards estimator for the effect of treatment actually received in a randomized trial with all‐or‐nothing compliance
  publication-title: Biometrics
– volume: 11
  start-page: 1871
  year: 1992
  end-page: 1879
  article-title: The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis
  publication-title: Statistics in Medicine
– volume: 25
  start-page: 305
  year: 1997a
  end-page: 327
  article-title: Bayesian inference for causal effects in randomized experiments with noncompliance
  publication-title: Annals of Statistics
– volume: 61
  start-page: 325
  year: 2004
  end-page: 334
  article-title: Likelihood methods for treatment noncompliance and subsequent nonresponse in randomized trials
  publication-title: Biometrics
– volume: 39
  start-page: 1
  year: 1997
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 85
  start-page: 171
  year: 2004
  end-page: 179
  article-title: New fields of application of the sentinel lymph node biopsy in the pathologic staging of solid neoplasms: Review of literature and surgical perspectives
  publication-title: Journal of Surgical Oncology
– volume: 85
  start-page: 523
  year: 1990
  end-page: 538
  article-title: Locally adaptive hazard smoothing
  publication-title: Probability Theory and Related Fields
– volume: 19
  start-page: 1370
  year: 1991
  end-page: 1402
  article-title: Large sample theory of a modified Buckley‐James estimator for regression analysis with censored data
  publication-title: The Annals of Statistics
– volume: 357
  start-page: 2189
  year: 2007
  end-page: 2194
  article-title: Statistics in medicine‐reporting of subgroup analyses in clinical trials
  publication-title: The New England Journal of Medicine
– volume: 30
  start-page: 709
  year: 2011
  end-page: 717
  article-title: A method to estimate treatment efficacy among latent subgroups of a randomized clinical trial
  publication-title: Statistics in Medicine
– volume: 3
  start-page: 147
  year: 1998
  end-page: 159
  article-title: Statistical techniques for analyzing data from prevention trials: Treatment of no‐shows using Rubin's causal model
  publication-title: Psychological Methods
– volume: 60
  start-page: 598
  year: 2004
  end-page: 607
  article-title: An extended general location model for causal inferences from data subject to noncompliance and missing values
  publication-title: Biometrics
– volume: 230
  start-page: 453
  year: 1999
  end-page: 463
  article-title: Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early‐stage melanoma: A multicenter trial
  publication-title: Annals of Surgery
– volume: 95
  start-page: 43
  year: 2000
  end-page: 50
  article-title: Analyzing a randomized cancer prevention trial with a missing binary outcome, an auxiliary variable, and all‐or‐none compliance
  publication-title: Journal of the American Statistical Association
– ident: e_1_2_9_27_1
  doi: 10.1093/biostatistics/5.2.207
– ident: e_1_2_9_40_1
  doi: 10.1198/016214507000001085
– ident: e_1_2_9_7_1
  doi: 10.1002/(SICI)1097-0258(19970515)16:9<1017::AID-SIM508>3.0.CO;2-V
– ident: e_1_2_9_33_1
  doi: 10.1214/aos/1176347502
– ident: e_1_2_9_32_1
  doi: 10.1111/j.0006-341X.2004.00208.x
– ident: e_1_2_9_21_1
  doi: 10.1198/106186005X63734
– ident: e_1_2_9_20_1
  doi: 10.1007/b97377
– ident: e_1_2_9_18_1
  doi: 10.2307/2971731
– ident: e_1_2_9_2_1
  doi: 10.1198/016214502753479419
– ident: e_1_2_9_26_1
  doi: 10.1093/biomet/68.2.381
– ident: e_1_2_9_15_1
  doi: 10.1080/01621459.1996.10476962
– ident: e_1_2_9_29_1
  doi: 10.1097/00000658-199910000-00001
– ident: e_1_2_9_19_1
  doi: 10.1093/biomet/93.1.147
– ident: e_1_2_9_24_1
  doi: 10.1037/1082-989X.3.2.147
– ident: e_1_2_9_36_1
  doi: 10.1016/S0169-2607(00)00083-3
– ident: e_1_2_9_39_1
  doi: 10.1002/sim.4780111409
– ident: e_1_2_9_22_1
  doi: 10.1056/NEJMp068070
– ident: e_1_2_9_28_1
  doi: 10.1056/NEJMoa060992
– ident: e_1_2_9_38_1
  doi: 10.1056/NEJMsr077003
– ident: e_1_2_9_12_1
  doi: 10.1093/biomet/86.2.365
– ident: e_1_2_9_25_1
  doi: 10.1111/1541-0420.00012
– ident: e_1_2_9_4_1
  doi: 10.1080/01621459.1996.10476902
– ident: e_1_2_9_34_1
  doi: 10.1080/03610929108830654
– ident: e_1_2_9_23_1
  doi: 10.1214/aos/1176348253
– ident: e_1_2_9_13_1
  doi: 10.1007/BFb0098489
– ident: e_1_2_9_10_1
  doi: 10.1093/biomet/ass004
– ident: e_1_2_9_16_1
  doi: 10.1002/(SICI)1097-0258(19991130)18:22<3075::AID-SIM244>3.0.CO;2-6
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1467-9868.2007.00600.x
– ident: e_1_2_9_30_1
  doi: 10.1007/BF01203169
– ident: e_1_2_9_17_1
  doi: 10.1214/aos/1034276631
– ident: e_1_2_9_37_1
  doi: 10.1214/aos/1176347504
– ident: e_1_2_9_11_1
  doi: 10.1080/01621459.2000.10474306
– ident: e_1_2_9_35_1
  doi: 10.1002/sim.4780100110
– ident: e_1_2_9_6_1
  doi: 10.1093/biomet/66.3.429
– ident: e_1_2_9_3_1
  doi: 10.1002/sim.4131
– ident: e_1_2_9_31_1
  doi: 10.1111/j.1541-0420.2005.040313.x
– volume: 39
  start-page: 1
  year: 1997
  ident: e_1_2_9_9_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– ident: e_1_2_9_14_1
  doi: 10.1002/jso.20031
– ident: e_1_2_9_5_1
  doi: 10.1080/01621459.2000.10473897
– reference: 17005948 - N Engl J Med. 2006 Sep 28;355(13):1307-17
– reference: 9160496 - Stat Med. 1997 May 15;16(9):1017-29
– reference: 15054026 - Biostatistics. 2004 Apr;5(2):207-22
– reference: 10522715 - Ann Surg. 1999 Oct;230(4):453-63; discussion 463-5
– reference: 16625007 - N Engl J Med. 2006 Apr 20;354(16):1667-9
– reference: 10544307 - Stat Med. 1999 Nov 30;18(22):3075-88
– reference: 23843664 - Biometrika. 2012 Jun;99(2):393-404
– reference: 21394747 - Stat Med. 2011 Mar 30;30(7):709-17
– reference: 1480879 - Stat Med. 1992 Oct-Nov;11(14-15):1871-9
– reference: 11084232 - Comput Methods Programs Biomed. 2001 Jan;64(1):45-52
– reference: 2006355 - Stat Med. 1991 Jan;10(1):45-52
– reference: 18032770 - N Engl J Med. 2007 Nov 22;357(21):2189-94
– reference: 15339281 - Biometrics. 2004 Sep;60(3):598-607
– reference: 14991890 - J Surg Oncol. 2004 Mar;85(3):171-9
– reference: 16011678 - Biometrics. 2005 Jun;61(2):325-34
– reference: 12762446 - Biometrics. 2003 Mar;59(1):100-5
SSID ssj0009502
Score 2.2302244
Snippet This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest...
Summary This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of...
Summary This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of...
This paper studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 52
SubjectTerms All-or-none noncompliance
biological treatment
BIOMETRIC METHODOLOGY
Biometrics
biometry
biopsy
Buckley-James estimator
Censored data
Censorship
Clinical trials
Competing risks
Computer Simulation
Data Interpretation, Statistical
Disease-Free Survival
EM algorithm
Estimation methods
Humans
Lymph node excision
Lymph Node Excision - standards
melanoma
Melanoma - surgery
Modeling
Models, Statistical
Nonproportional hazards model
Parametric models
Patient Compliance
patients
randomized clinical trials
Randomized Controlled Trials as Topic - methods
Simulation
Simulations
Skin cancer
Statistical estimation
Statistical models
Treatment efficacy
variance
Title Latent Subgroup Analysis of a Randomized Clinical Trial through a Semiparametric Accelerated Failure Time Mixture Model
URI https://api.istex.fr/ark:/67375/WNG-J9HGVZ6W-M/fulltext.pdf
https://www.jstor.org/stable/41806066
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2012.01818.x
https://www.ncbi.nlm.nih.gov/pubmed/23383608
https://www.proquest.com/docview/1323990617
https://www.proquest.com/docview/1324957492
https://www.proquest.com/docview/1678544424
https://pubmed.ncbi.nlm.nih.gov/PMC3622121
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CSUjjgUthW2AgIyHeUiWOc3sciK5MdEjbyipeLMdxoGqboLUVZb-ec5w0amFCE6JPlWJH7cm5fHY-fwfgdZaLGD-Ja7xEu1hvAxdBrHB9oVSq_Mwzxqp9nkb9oTgZhaOG_0RnYWp9iHbDjSLD5msKcJXNt4M8FLgUFtwjhhbvkvRU0iU8SdQtwkdnfEN_16uFw4nqJfzRNqnnxhttVaq7haoQv5LpV2vq4k2g9E9u5SbmtUWr9xAm679bc1Um3eUi6-rr35Qg_489HsGDBtuyo9oZH8MdU3bgXt3t8mcH7g9aidh5B3YJ5tYq0U_gx0eEvOWCYRqzx0zYWiuFVQVT7EyVeTUbX5ucNTqmU3ZBkcOaNkM45tzMxqRjPqMWYZodaY0FlXQwctZTYyLfMzruwgbjFb00YdQEbvoUhr33F-_6btMSwtUR9xJXGa59k4UKF2JZiKU0i5PC40WEqUQrBLtxHCGoVDmty0wUqMBiujiKRBzqjAd7sFNWpTkAliSFRnSSJjxN0GY6QxcJ8jRKUxEjcCociNePX-pGL53adkzlxroJLS7J4pIsLq3F5coBv535vdYMucWcA_Qwqb5iapfDc04bUaTrw73QgTfW7dp7qasJ0fHiUF6eHsuTtH_8-Ut0KQcO7Fm_bAcKP_HIEA4crh1VNilqLv2AjjUTgnXgVXsZkwu9MVKlqZZ2DC6gY5Hyv4xBuBMKIbhwYL_2_fYHcNoAwQeCttyKinYAiZtvXynH36zIOQIrRFU-zrROf2tDyrcfPg3o67N_nvkcdrltekJMw0PYWVwtzQuEnovspU0qvwAnSW3i
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BEaIceARKDQUWCXFzZK_Xr2N5pGlJgtQmNOKyWq83EDVxUJuI0F_PzNqxEqhQhcgpkmetZDyPb9az3wC8znIR4ydxjZdoF_Nt4CKIFa4vlEqVn3nGWLbPXtQeiKNhOKzGAdFZmJIfot5wI8-w8ZocnDakN708FFgLC-5RixZvEvdU0kRAeYsGfBOR_vtjvsbA65XU4dTsJfzhZlvPlXfayFU3R2qGCJaUv1w1L14FS__srlxHvTZtte7DZPWHy26Vs-ZinjX15W9ckP9JIw_gXgVv2X5pjw_hhikacLscePmzAXe7NUvsRQO2CemWRNGP4EcHUW8xZxjJ7EkTtqJLYbMRU-xYFflsOr40OauoTCesT87DqklDKHNipmOiMp_SlDDN9rXGnEpUGDlrqTH13zM68cK64yW9N2E0B27yGAatD_13bbeaCuHqiHuJqwzXvslChbVYFmI2zeJk5PFRhNFEK8S7cRwhrlQ5lWYmClRgYV0cRSIOdcaDHdgqZoXZBZYkI40AJU14mqDOdIY2EuRplKYiRuw0ciBePX-pK8p0mtwxkWulE2pcksYlaVxajculA3698ntJG3KNNbtoYlJ9xeguByec9qKI2od7oQNvrN3V91LnZ9SRF4fytHcgj9L2wecv0ansOrBjDbMWFH7ikSIc2FtZqqyi1IX0AzrZTCDWgVf1ZYwv9NJIFWa2sDJYQ8ci5X-RQcQTCiG4cOBJafz1D-C0B4IPBHW54Ra1APGbb14pxt8szzliKwRWPq60Vn9tRcq3h5-69PXpP698CXfa_W5Hdg57H5_BNrczUKjxcA-25ucL8xyR6Dx7YSPML_wGcf4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BEagceARKDQUWCXFzZG_Wr2OhpGlpAuqDRr2s1us1REmcqk1E6K9nZu1YCVSoQuQUybNWMp7HN-vZbwDeppmI8BO7xou1i_m25SKIFa4vlEqUn3rGWLbPXtg5Efv9oF_1P9FZmJIfot5wI8-w8Zoc_DzLV508EFgKC-5RhxZvEvVU3EQ8eUeEXkJjHHYO-RIBr1cyh1Ovl_D7q109195pJVXdztUEASzpfr7oXbwOlf7ZXLkMem3Waj-E4eL_ls0qw-Zsmjb11W9UkP9HIY_gQQVu2XZpjY_hlikacLccd_mzAfe7NUfsZQPWCeeWNNFP4McBYt5iyjCO2XMmbEGWwiY5U-xQFdlkPLgyGauITEfsmFyHVXOGUObIjAdEZD6mGWGabWuNGZWIMDLWVgPqvmd03oV1B3N6a8JoCtzoKZy0Px5_6LjVTAhXh9yLXWW49k0aKKzE0gBzaRrFucfzEGOJVoh2oyhEVKkyKsxM2FItC-qiMBRRoFPe2oC1YlKYTWBxnGuEJ0nMkxh1plM0kVaWhEkiIkROuQPR4vFLXRGm09yOkVwqnFDjkjQuSePSalzOHfDrleclacgN1myihUn1DWO7PDnitBNFxD7cCxx4Z82uvpe6GFI_XhTI096u3E86u1_PwlPZdWDD2mUtKPzYI0U4sLUwVFnFqEvpt-hcM0FYB97UlzG60CsjVZjJzMpgBR2JhP9FBvFOIITgwoFnpe3XP4DTDgg-ENTlilfUAsRuvnqlGHy3LOeIrBBW-bjSGv2NFSnf733u0tfn_7zyNdz7stOWB3u9Ty9gndsBKNR1uAVr04uZeYkwdJq-svHlFycmcK0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Subgroup+Analysis+of+a+Randomized+Clinical+Trial+through+a+Semiparametric+Accelerated+Failure+Time+Mixture+Model&rft.jtitle=Biometrics&rft.au=Altstein%2C+L&rft.au=Li%2C+G&rft.date=2013-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=69&rft.issue=1&rft.spage=52&rft_id=info:doi/10.1111%2Fj.1541-0420.2012.01818.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2936939031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon