Fecal microbiomes of non-human primates in Western Uganda reveal species-specific communities largely resistant to habitat perturbation

Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate “microbiomes” remain controversial. This study examined a community of primates in Kibale National Park, Uganda, t...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of primatology Vol. 76; no. 4; pp. 347 - 354
Main Authors McCord, Aleia I., Chapman, Colin A., Weny, Geoffrey, Tumukunde, Alex, Hyeroba, David, Klotz, Kelly, Koblings, Avery S., Mbora, David N.M., Cregger, Melissa, White, Bryan A., Leigh, Steven R., Goldberg, Tony L.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate “microbiomes” remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture‐free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus (Procolobus rufomitratus), 100 individual black‐and‐white colobus (Colobus guereza), 111 individual red‐tailed guenons (Cercopithecus ascanius), 578 human volunteers, and 364 domestic animals, including cattle (Bos indicus and B. indicus × B. taurus crosses), goats (Caprus hircus), sheep (Ovis aries), and pigs (Sus scrofa). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black‐and‐white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra‐specific variation among microbiomes. However, intra‐specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this system, species‐specific processes such as gastrointestinal physiology strongly structure microbial communities, and that primate microbiomes are relatively resistant to perturbation, even across large geographic distances or in the face of habitat disturbance. Am. J. Primatol. 76:347–354, 2014. © 2013 Wiley Periodicals, Inc.
AbstractList Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate "microbiomes" remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture-free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus (Procolobus rufomitratus), 100 individual black-and-white colobus (Colobus guereza), 111 individual red-tailed guenons (Cercopithecus ascanius), 578 human volunteers, and 364 domestic animals, including cattle (Bos indicus and B. indicus × B. taurus crosses), goats (Caprus hircus), sheep (Ovis aries), and pigs (Sus scrofa). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black-and-white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra-specific variation among microbiomes. However, intra-specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this system, species-specific processes such as gastrointestinal physiology strongly structure microbial communities, and that primate microbiomes are relatively resistant to perturbation, even across large geographic distances or in the face of habitat disturbance.
Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate "microbiomes" remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture-free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus (Procolobus rufomitratus), 100 individual black-and-white colobus (Colobus guereza), 111 individual red-tailed guenons (Cercopithecus ascanius), 578 human volunteers, and 364 domestic animals, including cattle (Bos indicus and B. indicus×B. taurus crosses), goats (Caprus hircus), sheep (Ovis aries), and pigs (Sus scrofa). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black-and-white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra-specific variation among microbiomes. However, intra-specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this system, species-specific processes such as gastrointestinal physiology strongly structure microbial communities, and that primate microbiomes are relatively resistant to perturbation, even across large geographic distances or in the face of habitat disturbance. Am. J. Primatol. 76:347-354, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate 'microbiomes' remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture-free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus (Procolobus rufomitratus), 100 individual black-and-white colobus (Colobus guereza), 111 individual red-tailed guenons (Cercopithecus ascanius), 578 human volunteers, and 364 domestic animals, including cattle (Bos indicus and B. indicus B. taurus crosses), goats (Caprus hircus), sheep (Ovis aries), and pigs (Sus scrofa). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black-and-white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra-specific variation among microbiomes. However, intra-specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this system, species-specific processes such as gastrointestinal physiology strongly structure microbial communities, and that primate microbiomes are relatively resistant to perturbation, even across large geographic distances or in the face of habitat disturbance. Am. J. Primatol. 76:347-354, 2014. © 2013 Wiley Periodicals, Inc. Copyright John Wiley & Sons. Reproduced with permission. An electronic version of this article is available online at http://www.interscience.wiley.com
Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate “microbiomes” remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture‐free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus ( Procolobus rufomitratus ), 100 individual black‐and‐white colobus ( Colobus guereza ), 111 individual red‐tailed guenons ( Cercopithecus ascanius ), 578 human volunteers, and 364 domestic animals, including cattle ( Bos indicus and B. indicus  ×  B. taurus crosses), goats ( Caprus hircus ), sheep ( Ovis aries ), and pigs ( Sus scrofa ). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black‐and‐white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra‐specific variation among microbiomes. However, intra‐specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this system, species‐specific processes such as gastrointestinal physiology strongly structure microbial communities, and that primate microbiomes are relatively resistant to perturbation, even across large geographic distances or in the face of habitat disturbance. Am. J. Primatol. 76:347–354, 2014. © 2013 Wiley Periodicals, Inc.
Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate “microbiomes” remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture‐free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus (Procolobus rufomitratus), 100 individual black‐and‐white colobus (Colobus guereza), 111 individual red‐tailed guenons (Cercopithecus ascanius), 578 human volunteers, and 364 domestic animals, including cattle (Bos indicus and B. indicus × B. taurus crosses), goats (Caprus hircus), sheep (Ovis aries), and pigs (Sus scrofa). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black‐and‐white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra‐specific variation among microbiomes. However, intra‐specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this system, species‐specific processes such as gastrointestinal physiology strongly structure microbial communities, and that primate microbiomes are relatively resistant to perturbation, even across large geographic distances or in the face of habitat disturbance. Am. J. Primatol. 76:347–354, 2014. © 2013 Wiley Periodicals, Inc.
Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate “microbiomes” remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture-free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus ( Procolobus rufomitratus ), 100 individual black-and-white colobus ( Colobus guereza ), 111 individual red-tailed guenons ( Cercopithecus ascanius ), 578 human volunteers, and 364 domestic animals, including cattle ( Bos indicus and B. indicus × B. taurus crosses ), goats ( Caprus hircus ), sheep ( Ovis aries ), and pigs ( Sus scrofa ). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black-and-white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra-specific variation among microbiomes. However, intra-specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this system, species-specific processes such as gastrointestinal physiology strongly structure microbial communities, and that primate microbiomes are relatively resistant to perturbation, even across large geographic distances or in the face of habitat disturbance.
Author Koblings, Avery S.
Hyeroba, David
White, Bryan A.
McCord, Aleia I.
Chapman, Colin A.
Mbora, David N.M.
Goldberg, Tony L.
Tumukunde, Alex
Klotz, Kelly
Cregger, Melissa
Leigh, Steven R.
Weny, Geoffrey
AuthorAffiliation 1 Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin
6 Department of Anthropology, University of Colorado at Boulder, Boulder, Colorado
2 Department of Anthropology and School of Environment, McGill University, Montreal, Quebec, Canada
3 Makerere University, Kampala, Uganda
7 Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin
5 Institute for Genomic Biology, University of Illinois, Urbana, Illinois
4 Departments of Biology and Environmental Science, Whittier College, Whittier, California
AuthorAffiliation_xml – name: 5 Institute for Genomic Biology, University of Illinois, Urbana, Illinois
– name: 7 Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin
– name: 1 Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin
– name: 6 Department of Anthropology, University of Colorado at Boulder, Boulder, Colorado
– name: 2 Department of Anthropology and School of Environment, McGill University, Montreal, Quebec, Canada
– name: 3 Makerere University, Kampala, Uganda
– name: 4 Departments of Biology and Environmental Science, Whittier College, Whittier, California
Author_xml – sequence: 1
  givenname: Aleia I.
  surname: McCord
  fullname: McCord, Aleia I.
  organization: Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Wisconsin, Madison
– sequence: 2
  givenname: Colin A.
  surname: Chapman
  fullname: Chapman, Colin A.
  organization: Department of Anthropology and School of Environment, McGill University, Montreal, Quebec, Canada
– sequence: 3
  givenname: Geoffrey
  surname: Weny
  fullname: Weny, Geoffrey
  organization: Makerere University, Uganda, Kampala
– sequence: 4
  givenname: Alex
  surname: Tumukunde
  fullname: Tumukunde, Alex
  organization: Makerere University, Uganda, Kampala
– sequence: 5
  givenname: David
  surname: Hyeroba
  fullname: Hyeroba, David
  organization: Makerere University, Uganda, Kampala
– sequence: 6
  givenname: Kelly
  surname: Klotz
  fullname: Klotz, Kelly
  organization: Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Wisconsin, Madison
– sequence: 7
  givenname: Avery S.
  surname: Koblings
  fullname: Koblings, Avery S.
  organization: Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Wisconsin, Madison
– sequence: 8
  givenname: David N.M.
  surname: Mbora
  fullname: Mbora, David N.M.
  organization: Departments of Biology and Environmental Science, Whittier College, California, Whittier
– sequence: 9
  givenname: Melissa
  surname: Cregger
  fullname: Cregger, Melissa
  organization: Institute for Genomic Biology, University of Illinois, Illinois, Urbana
– sequence: 10
  givenname: Bryan A.
  surname: White
  fullname: White, Bryan A.
  organization: Institute for Genomic Biology, University of Illinois, Illinois, Urbana
– sequence: 11
  givenname: Steven R.
  surname: Leigh
  fullname: Leigh, Steven R.
  organization: Institute for Genomic Biology, University of Illinois, Urbana, Illinois
– sequence: 12
  givenname: Tony L.
  surname: Goldberg
  fullname: Goldberg, Tony L.
  email: tgoldberg@vetmed.wisc.edu
  organization: Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24285224$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAQgC1URLeFAy-ALHEph7S2Y8fJBalqaQGVHwmqcrOcZLLrJbGD7RT2CXhtvLvtCpCQOI00_uaT5-cA7VlnAaGnlBxTQtiJXo7HjLG8fIBmlFRlxnIu9tCMMCkyJgqxjw5CWBJCKS_EI7TPOCsFY3yGfl5Ao3s8mMa72rgBAnYdTv5sMQ3a4tGbQceUNRbfQIjgLb6ea9tq7OEWUmkYoTEQsk3sTIMbNwyTNTElca_9HPpVYoMJUduIo8MLXZuoIx7Bx8nXOhpnH6OHne4DPLmLh-j64tXns9fZ1YfLN2enV1lTMFJmFeimKwsuSla3Lct1J3lRUSFLKklD24prItq2k8BYzSV0Ha84ZSAFVDkVLD9EL7fecaoHaBuw0etebdr0K-W0UX--WLNQc3erOKkkJTQJju4E3n2b0kTUYEIDfa8tuCkoKqioSk5E-R8okbJilJKEPv8LXbrJ2zSJNVVwWYp8LXyxpdKyQvDQ7f5NiVpfgkqXoDaXkNhnvze6I-9Xn4CTLfDd9LD6t0mdvv14r8y2FWmV8GNXof1XVchcCnXz_lIV5Pwdp5_O1Zf8F7ak0HA
CODEN AJPTDU
CitedBy_id crossref_primary_10_1177_1099800418811639
crossref_primary_10_1099_mic_0_001226
crossref_primary_10_12688_f1000research_18992_1
crossref_primary_10_3390_microorganisms11061481
crossref_primary_10_1002_ajp_22970
crossref_primary_10_1371_journal_pone_0134116
crossref_primary_10_1007_s10592_019_01150_y
crossref_primary_10_1002_ajp_23023
crossref_primary_10_1371_journal_pone_0247475
crossref_primary_10_1093_gbe_evz099
crossref_primary_10_1016_j_anbehav_2019_03_009
crossref_primary_10_1038_srep14862
crossref_primary_10_1128_AEM_00527_20
crossref_primary_10_1146_annurev_anthro_102313_025928
crossref_primary_10_7717_peerj_4271
crossref_primary_10_1128_mSystems_00061_20
crossref_primary_10_1098_rspb_2019_0431
crossref_primary_10_1002_ajp_23555
crossref_primary_10_1111_mec_15747
crossref_primary_10_1038_s41396_018_0251_5
crossref_primary_10_3389_fendo_2023_1250865
crossref_primary_10_1016_j_marpolbul_2021_112522
crossref_primary_10_1186_s12864_023_09440_z
crossref_primary_10_1016_j_gendis_2017_06_001
crossref_primary_10_1002_ajp_22867
crossref_primary_10_3389_fmicb_2022_897923
crossref_primary_10_1002_ajp_23072
crossref_primary_10_1002_ajpa_22908
crossref_primary_10_1111_mec_14326
crossref_primary_10_1002_ajp_22555
crossref_primary_10_1002_ajp_22753
crossref_primary_10_1007_s10393_016_1194_9
crossref_primary_10_1038_s41598_018_33950_6
crossref_primary_10_1093_icb_icx046
crossref_primary_10_1186_s12864_023_09142_6
crossref_primary_10_1093_femsec_fix123
crossref_primary_10_3390_metabo12121193
crossref_primary_10_1038_s41598_018_32759_7
crossref_primary_10_1002_ece3_6910
crossref_primary_10_1002_ece3_5228
crossref_primary_10_1128_spectrum_01643_21
crossref_primary_10_1007_s10393_022_01589_5
crossref_primary_10_1038_s41396_018_0166_1
crossref_primary_10_1111_1749_4877_12726
crossref_primary_10_1186_s42523_021_00139_8
crossref_primary_10_7717_peerj_2630
crossref_primary_10_1098_rstb_2019_0598
crossref_primary_10_1002_ajp_23656
crossref_primary_10_1038_s41598_020_75847_3
crossref_primary_10_1002_ajp_22880
crossref_primary_10_1007_s00442_015_3507_z
crossref_primary_10_1007_s12275_020_9493_9
crossref_primary_10_3354_esr01042
crossref_primary_10_1002_ajp_22966
crossref_primary_10_4142_jvs_2019_20_e19
crossref_primary_10_1093_ilar_ilx025
crossref_primary_10_7717_peerj_6460
crossref_primary_10_1038_s41598_020_73827_1
crossref_primary_10_1111_cts_12528
crossref_primary_10_1128_AEM_00559_16
crossref_primary_10_1186_s12862_021_01945_z
crossref_primary_10_1007_s00284_020_02035_x
crossref_primary_10_1016_j_crmicr_2021_100048
crossref_primary_10_1007_s10329_024_01132_w
crossref_primary_10_1186_s13059_016_1086_x
Cites_doi 10.1111/j.1365-2028.2009.01120.x
10.1038/nature07540
10.1006/dbio.2001.0522
10.1038/nrmicro2540
10.1111/j.1462-2920.2008.01814.x
10.1371/journal.pntd.0001597
10.1111/j.1574-6941.2007.00375.x
10.1371/journal.pone.0030273
10.1111/j.1753-4887.2012.00493.x
10.1038/nature06245
10.1073/pnas.1000081107
10.1126/science.1177486
10.1126/science.1155725
10.1371/journal.pbio.1000546
10.1128/MMBR.00014-10
10.3201/eid1409.071196
10.1002/ajp.20351
10.1038/nri2515
10.1128/IAI.00006-09
10.1016/0169-4758(90)90223-Q
10.1111/j.1365-294X.2012.05568.x
10.1002/ajp.20809
10.1038/nbt1486
10.1053/j.gastro.2011.02.011
10.1038/nrmicro1978
10.1128/JCM.00285-08
10.1126/science.1110591
10.1128/AAC.01582-06
10.1126/science.1198719
10.1016/j.ecolmodel.2010.07.020
10.1111/j.1461-0248.2005.00828.x
10.1146/annurev.genet.41.110306.130119
10.1128/AEM.65.10.4630-4636.1999
10.3390/e13030570
10.1371/journal.pgen.1001342
10.1371/journal.pntd.0000683
10.1038/ismej.2011.129
10.1007/s10329-004-0093-9
10.1023/A:1005509119693
10.1371/journal.pone.0013963
10.1002/ajp.20826
10.1111/j.1744-7429.2011.00766.x
10.1645/GE-970R1.1
10.1073/pnas.1110474108
10.1038/nature06244
10.1073/pnas.1110994109
10.1111/j.1462-2920.2008.01816.x
10.1111/j.1474-919X.1995.tb08464.x
10.1126/science.1227412
10.1128/AEM.72.5.3788-3792.2006
10.1371/journal.ppat.0040020
10.1186/gb-2011-12-5-r50
10.1002/ajpa.20477
10.1038/ismej.2013.16
10.1038/nature09944
ContentType Journal Article
Copyright 2013 Wiley Periodicals, Inc.
2013 Wiley Periodicals, Inc. 2013
Copyright_xml – notice: 2013 Wiley Periodicals, Inc.
– notice: 2013 Wiley Periodicals, Inc. 2013
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7SN
7TK
8BJ
8FD
C1K
FQK
FR3
JBE
K9.
P64
RC3
7X8
5PM
DOI 10.1002/ajp.22238
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Neurosciences Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Environmental Sciences and Pollution Management
International Bibliography of the Social Sciences
Engineering Research Database
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Animal Behavior Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts
International Bibliography of the Social Sciences (IBSS)
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anthropology
Zoology
Psychology
EISSN 1098-2345
EndPage 354
ExternalDocumentID 3243728931
10_1002_ajp_22238
24285224
AJP22238
ark_67375_WNG_60DM41SD_X
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Uganda
GeographicLocations_xml – name: Uganda
GrantInformation_xml – fundername: National Science Foundation
  funderid: 0935347
– fundername: National Science Foundation IGERT Program
  funderid: DGE‐0549407
– fundername: National Science Foundation Graduate Research Fellowship Program
– fundername: NIH
  funderid: TW009237
– fundername: FIC NIH HHS
  grantid: TW009237
– fundername: NIAID NIH HHS
  grantid: R01 AI098420
– fundername: FIC NIH HHS
  grantid: R01 TW009237
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
36B
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DVXWH
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VQA
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
XG1
XV2
ZCG
ZZTAW
~02
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7SN
7TK
8BJ
8FD
C1K
FQK
FR3
JBE
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c6208-9eacf864582bdd23af74691578170c1d94a05ddf7e22b47eff49412e75e931523
IEDL.DBID DR2
ISSN 0275-2565
IngestDate Tue Sep 17 21:12:01 EDT 2024
Fri Aug 16 04:49:28 EDT 2024
Fri Aug 16 00:49:41 EDT 2024
Thu Oct 10 21:04:06 EDT 2024
Fri Aug 23 01:05:19 EDT 2024
Sat Sep 28 07:53:47 EDT 2024
Sat Aug 24 00:54:28 EDT 2024
Wed Oct 30 09:51:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Colobinae
Uganda
non-human primate
Cercopithecinae
forest fragmentation
microbiome
Language English
License 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6208-9eacf864582bdd23af74691578170c1d94a05ddf7e22b47eff49412e75e931523
Notes National Science Foundation IGERT Program - No. DGE-0549407
National Science Foundation Graduate Research Fellowship Program
istex:5F8C52182DCAECD136CC83C74682E7FAE2611C81
ark:/67375/WNG-60DM41SD-X
National Science Foundation - No. 0935347
ArticleID:AJP22238
NIH - No. TW009237
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://europepmc.org/articles/pmc4097101?pdf=render
PMID 24285224
PQID 1506478538
PQPubID 866340
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4097101
proquest_miscellaneous_1515984058
proquest_miscellaneous_1507792110
proquest_journals_1506478538
crossref_primary_10_1002_ajp_22238
pubmed_primary_24285224
wiley_primary_10_1002_ajp_22238_AJP22238
istex_primary_ark_67375_WNG_60DM41SD_X
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle American journal of primatology
PublicationTitleAlternate Am. J. Primatol
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Yeoman CJ, Chia N, Yildirim S, et al. 2011. Towards an evolutionary model of animal-associated microbiomes. Entropy 13:570-594.
Chaves KE, Arroyo-Rodrigues VA. 2012. Differences in diet between spider monkey groups living in forest fragments and continuous forest in Mexico. Biotropica 44:105-113.
Yildirim S, Yeoman CJ, Sipos M, et al. 2010. Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS ONE 5:e13963.
Jones SE, McMahon KD. 2009. Species-sorting may explain an apparent minimal effect of immigration on freshwater bacterial community dynamics. Environ Microbiol 11:905-913.
Chapman CA, Wasserman MD, Gillespie TR, et al. 2006. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? Am J Phys Anthropol 131:525-534.
McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL. 2012. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6:588-596.
Dethlefsen L, McFall-Ngai M, Relman DA. 2007. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811-818.
Ochman H, Worobey M, Kuo CH, et al. 2010. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 8:e1000546.
Dillon RJ, Vennard CT, Buckling A, Charnley AK. 2005. Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8:1291-1298.
Goldberg TL, Gillespie TR, Rwego IB, Estoff EL, Chapman CA. 2008. Forest fragmentation and bacterial transmission among nonhuman primates, humans, and livestock, Uganda. Emerg Infect Dis 14:1375.
Ursell LK, Metcalf JL, Parfrey LW, Knight R. 2012. Defining the human microbiome. Nutr Rev 70:S38-S44.
Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. 2012. Animal behavior and the microbiome. Science 338:198-199.
Salyer SJ, Gillespie TR, Rwego IB, Chapman CA, Goldberg TL. 2012. Epidemiology and molecular relationships of Cryptosporidium spp. in people, primates, and livestock from Western Uganda. PLoS Negl Trop Dis 6:e1597.
Robinson CJ, Bohannan BJM, Young VB. 2010. From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev 74:453.
Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MP, Silva A, O'Brien SJ, Pecon-Slattery J. 2011. A molecular phylogeny of living primates. PLoS Genet 7:e1001342.
Shendure J, Ji HL. 2008. Next-generation DNA sequencing. Nat Biotechnol 26:1135-1145.
Johnston AR, Gillespie TR, Rwego IB, et al. 2010. Molecular epidemiology of cross-species Giardia duodenalis transmission in Western Uganda. PLoS Negl Trop Dis 4:e683.
Xu B, Huang ZX, Wang XY, et al. 2010. Phylogenetic analysis of the fecal flora of the wild pygmy loris. Am J Primatol 72:699-706.
Koenig JE, Spor A, Scalfone N, et al. 2011. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci US A108:4578-4585.
Costello EK, Lauber CL, Hamady M, et al. 2009. Bacterial community variation in human body habitats across space and time. Science 326:1694-1697.
Amato KR, Yeoman CJ, Kent A, et al. 2013. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7:1344-1353.
Chapman CA, Pavelka MS. 2005. Group size in folivorous primates: ecological constraints and the possible influence of social factors. Primates 46:1-9.
Arumugam M, Raes J, Pelletier E, et al. 2011. Enterotypes of the human gut microbiome. Nature 473:174.
Fisher MM, Triplett EW. 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microb 65:4630-4636.
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 2008b. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776-788.
Muegge BD, Kuczynski J, Knights D, et al. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332:970-974.
Onderdonk DA, Chapman CA. 2000. Coping with forest fragmentation: the primates of Kibale National Park, Uganda. Int J Primatol 21:587-611.
Smith P, Siddharth J, Pearson R, et al. 2012. Host genetics and environmental factors regulate ecological succession of the mouse colon tissue-associated microbiota. PLoS ONE 7:e30273.
Caporaso JG, Lauber CL, Costello EK, et al. 2011. Moving pictures of the human microbiome. Genome Biol 12:R50.
Eckburg PB, Bik EM, Bernstein CN, urdom E, Dethlefesen L, Sargent M, Gill SR, Nelon KE, Relman DA. 2005. Diversity of the human intestinal microbial flora. Science 308:1635.
Turnbaugh PJ, Ley RE, Hamady M, et al. 2007. The human microbiome project. Nature 449:804-810.
Croswell A, Amir E, Teggatz P, Barman M, Salzman NH. 2009. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect Immun 77:2741-2753.
Spor A, Koren O, Ley R. 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279-290.
Owino AO, Oyugi JO. 2010. Assessment of forest patches' extents and land cover changes in the Tana River Primate National Reserve, 1994-2004. Afr J Ecol 48:546-550.
Weins JA. 1995. Habitat fragmentation: island v landscape perspectives on bird conservation. IBIS 137:S97-S104.
McKenna P, Hoffmann C, Minkah N, et al. 2008. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog 4:e20.
Kliks MM. 1990. Helminths as heirlooms and souvenirs-a review of New-World paleoparasitology. Parasitol Today 6:93-100.
Degnan PH, Pusey AE, Lonsdorf EV, et al. 2012. Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. Proc Natl Acad Sci USA 109:13034-13039.
McFall-Ngai MJ. 2002. Unseen forces: the influence of bacteria on animal development. Dev Biol 242:1-14.
Adams DA, Riggs MM, Donskey CJ. 2007. Effect of fluoroquinolone treatment on growth of and toxin production by epidemic and nonepidemic Clostridium difficile strains in the cecal contents of mice. Antimicrob Agents Chemother 51:2674-2678.
Rwego IB, Gillespie TR, Isabirye-Basuta G, Goldberg TL. 2008. High rates of Escherichia coli transmission between livestock and humans in rural Uganda. J Clin Microbiol 46:3187-3191.
Salzer JS, Rwego IB, Goldberg TL, Kuhlenschmidt MS, Gillespie TR. 2007. Giardia sp and Cryptosporidium sp infections in primates in fragmented and undisturbed forest in Western Uganda. J Parasitol 93:439-440.
Bonnell TR, Sengupta RR, Chapman CA, Goldberg TL. 2010. An agent-based model of red colobus resources and disease dynamics implicates key resource sites as hot spots of disease transmission. Ecol Model 221:2491-2500.
Ley RE, Hamady M, Lozupone C, et al. 2008a. Evolution of mammals and their gut microbes. Science 320:1647-1651.
Phillips CD, Phelan G, Dowd SE, et al. 2012. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol Ecol 21:2617-2627.
Koch H, Schmid-Hempel P. 2011. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA 108:19288-19292.
Uenishi G, Fujita S, Ohashi G, et al. 2007. Molecular analyses of the intestinal microbiota of chimpanzees in the wild and in captivity. Am J Primatol 69:367-376.
Szekely BA, Singh J, Marsh TL, et al. 2010. Fecal bacterial diversity of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale Mountains National Park, Western Tanzania. Am J Primatol 72:566-574.
Frey JC, Rothman JM, Pell AN, et al. 2006. Fecal bacterial diversity in a wild gorilla. Appl Environ Microb 72:3788-3792.
Banks JC, Cary SC, Hogg ID. 2009. The phylogeography of Adelie penguin faecal flora. Environ Microbiol 11:577-588.
Round JL, Mazmanian SK. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313.
Ramette A. 2007. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142-160.
Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165-190.
Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R. 2011. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140:1713-1719.
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. 2009. A core gut microbiome in obese and lean twins. Nature 457:480-484.
Groves CP. 2007. The taxonomic diversity of the Colobinae of Africa. J Anthropol Sci 85:7-34.
2006; 72
2010; 221
1995; 137
2006; 131
2011; 13
2011; 12
2008; 4
2013; 7
2011; 473
2009; 11
2012; 70
2001
2008; 26
2005; 308
2007; 62
2010; 5
2010; 4
2012; 338
2012; 21
2010; 74
2007; 69
2010; 72
2009; 326
2010; 8
2007; 449
2008a; 320
2012
2011
2000; 21
2008; 14
1999; 65
1994
2007; 93
2007; 51
2011; 332
2011; A108
2011; 7
2005; 46
2012; 109
2009; 457
2011; 9
2009; 77
2008b; 6
2011; 108
2010; 48
2002; 242
2005; 8
2009; 9
2008; 46
2007; 85
2008; 42
2012; 6
2011; 140
2012; 7
2012; 44
1990; 6
20805407 - Microbiol Mol Biol Rev. 2010 Sep;74(3):453-76
15463308 - Parasitol Today. 1990 Apr;6(4):93-100
19380465 - Infect Immun. 2009 Jul;77(7):2741-53
19040451 - Environ Microbiol. 2009 Apr;11(4):905-13
15831718 - Science. 2005 Jun 10;308(5728):1635-8
21624126 - Genome Biol. 2011;12(5):R50
22084077 - Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19288-92
19043404 - Nature. 2009 Jan 22;457(7228):480-4
23066064 - Science. 2012 Oct 12;338(6104):198-9
21436896 - PLoS Genet. 2011 Mar;7(3):e1001342
19343057 - Nat Rev Immunol. 2009 May;9(5):313-23
18685012 - J Clin Microbiol. 2008 Oct;46(10):3187-91
21103409 - PLoS Biol. 2010;8(11):e1000546
17943116 - Nature. 2007 Oct 18;449(7164):804-10
20485494 - PLoS Negl Trop Dis. 2010;4(5):e683
17539436 - J Parasitol. 2007 Apr;93(2):439-40
10508099 - Appl Environ Microbiol. 1999 Oct;65(10):4630-6
17562807 - Antimicrob Agents Chemother. 2007 Aug;51(8):2674-8
17177283 - Am J Primatol. 2007 Apr;69(4):367-76
21682646 - Annu Rev Microbiol. 2011;65:411-29
20668239 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4578-85
19892944 - Science. 2009 Dec 18;326(5960):1694-7
18794915 - Nat Rev Microbiol. 2008 Oct;6(10):776-88
22826227 - Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):13034-9
21508958 - Nature. 2011 May 12;473(7346):174-80
22272321 - PLoS One. 2012;7(1):e30273
22519571 - Mol Ecol. 2012 Jun;21(11):2617-27
17943117 - Nature. 2007 Oct 18;449(7164):811-8
21596990 - Science. 2011 May 20;332(6032):970-4
18248093 - PLoS Pathog. 2008 Feb 8;4(2):e20
18497261 - Science. 2008 Jun 20;320(5883):1647-51
16958077 - Am J Phys Anthropol. 2006 Dec;131(4):525-34
17892477 - FEMS Microbiol Ecol. 2007 Nov;62(2):142-60
22861806 - Nutr Rev. 2012 Aug;70 Suppl 1:S38-44
15197599 - Primates. 2005 Jan;46(1):1-9
18983256 - Annu Rev Genet. 2008;42:165-90
21955991 - ISME J. 2012 Mar;6(3):588-96
21103066 - PLoS One. 2010;5(11):e13963
19040454 - Environ Microbiol. 2009 Mar;11(3):577-88
16672537 - Appl Environ Microbiol. 2006 May;72(5):3788-92
21407244 - Nat Rev Microbiol. 2011 Apr;9(4):279-90
11795936 - Dev Biol. 2002 Feb 1;242(1):1-14
22506085 - PLoS Negl Trop Dis. 2012;6(4):e1597
21530737 - Gastroenterology. 2011 May;140(6):1713-9
23486247 - ISME J. 2013 Jul;7(7):1344-53
20146237 - Am J Primatol. 2010 Jun;72(7):566-74
18760003 - Emerg Infect Dis. 2008 Sep;14(9):1375-82
18846087 - Nat Biotechnol. 2008 Oct;26(10):1135-45
20333736 - Am J Primatol. 2010 Aug;72(8):699-706
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Chivers DJ. (e_1_2_6_12_1) 1994
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_31_1
Fisher MM (e_1_2_6_22_1) 1999; 65
e_1_2_6_50_1
Goldberg TL (e_1_2_6_24_1) 2008; 14
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
Groves CP. (e_1_2_6_26_1) 2007; 85
e_1_2_6_42_1
e_1_2_6_21_1
Chapman CA (e_1_2_6_10_1) 2012
Goldberg TL (e_1_2_6_25_1) 2012
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
Walter J (e_1_2_6_58_1) 2011
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 26
  start-page: 1135
  year: 2008
  end-page: 1145
  article-title: Next‐generation DNA sequencing
  publication-title: Nat Biotechnol
– volume: 77
  start-page: 2741
  year: 2009
  end-page: 2753
  article-title: Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric infection
  publication-title: Infect Immun
– volume: 338
  start-page: 198
  year: 2012
  end-page: 199
  article-title: Animal behavior and the microbiome
  publication-title: Science
– volume: 46
  start-page: 1
  year: 2005
  end-page: 9
  article-title: Group size in folivorous primates: ecological constraints and the possible influence of social factors
  publication-title: Primates
– volume: 131
  start-page: 525
  year: 2006
  end-page: 534
  article-title: Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments
  publication-title: Am J Phys Anthropol
– volume: 12
  start-page: R50
  year: 2011
  article-title: Moving pictures of the human microbiome
  publication-title: Genome Biol
– volume: 6
  start-page: e1597
  year: 2012
  article-title: Epidemiology and molecular relationships of spp. in people, primates, and livestock from Western Uganda
  publication-title: PLoS Negl Trop Dis
– volume: 7
  start-page: e30273
  year: 2012
  article-title: Host genetics and environmental factors regulate ecological succession of the mouse colon tissue‐associated microbiota
  publication-title: PLoS ONE
– volume: 109
  start-page: 13034
  year: 2012
  end-page: 13039
  article-title: Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: e13963
  year: 2010
  article-title: Characterization of the fecal microbiome from non‐human wild primates reveals species specific microbial communities
  publication-title: PLoS ONE
– volume: 137
  start-page: S97
  year: 1995
  end-page: S104
  article-title: Habitat fragmentation: island v landscape perspectives on bird conservation
  publication-title: IBIS
– start-page: 205
  year: 1994
  end-page: 228
– volume: 9
  start-page: 313
  year: 2009
  article-title: The gut microbiota shapes intestinal immune responses during health and disease
  publication-title: Nat Rev Immunol
– volume: 473
  start-page: 174
  year: 2011
  article-title: Enterotypes of the human gut microbiome
  publication-title: Nature
– volume: 221
  start-page: 2491
  year: 2010
  end-page: 2500
  article-title: An agent‐based model of red colobus resources and disease dynamics implicates key resource sites as hot spots of disease transmission
  publication-title: Ecol Model
– volume: 72
  start-page: 699
  year: 2010
  end-page: 706
  article-title: Phylogenetic analysis of the fecal flora of the wild pygmy loris
  publication-title: Am J Primatol
– volume: 51
  start-page: 2674
  year: 2007
  end-page: 2678
  article-title: Effect of fluoroquinolone treatment on growth of and toxin production by epidemic and nonepidemic difficile strains in the cecal contents of mice
  publication-title: Antimicrob Agents Chemother
– volume: 11
  start-page: 577
  year: 2009
  end-page: 588
  article-title: The phylogeography of Adelie penguin faecal flora
  publication-title: Environ Microbiol
– start-page: 91
  year: 2001
– volume: 6
  start-page: 588
  year: 2012
  end-page: 596
  article-title: Co‐habiting amphibian species harbor unique skin bacterial communities in wild populations
  publication-title: ISME J
– volume: 332
  start-page: 970
  year: 2011
  end-page: 974
  article-title: Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans
  publication-title: Science
– volume: 449
  start-page: 811
  year: 2007
  end-page: 818
  article-title: An ecological and evolutionary perspective on human‐microbe mutualism and disease
  publication-title: Nature
– volume: 11
  start-page: 905
  year: 2009
  end-page: 913
  article-title: Species‐sorting may explain an apparent minimal effect of immigration on freshwater bacterial community dynamics
  publication-title: Environ Microbiol
– volume: 44
  start-page: 105
  year: 2012
  end-page: 113
  article-title: Differences in diet between spider monkey groups living in forest fragments and continuous forest in Mexico
  publication-title: Biotropica
– volume: 14
  start-page: 1375
  year: 2008
  article-title: Forest fragmentation and bacterial transmission among nonhuman primates, humans, and livestock, Uganda
  publication-title: Emerg Infect Dis
– volume: 65
  start-page: 4630
  year: 1999
  end-page: 4636
  article-title: Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities
  publication-title: Appl Environ Microb
– volume: 242
  start-page: 1
  year: 2002
  end-page: 14
  article-title: Unseen forces: the influence of bacteria on animal development
  publication-title: Dev Biol
– volume: 457
  start-page: 480
  year: 2009
  end-page: 484
  article-title: A core gut microbiome in obese and lean twins
  publication-title: Nature
– volume: A108
  start-page: 4578
  year: 2011
  end-page: 4585
  article-title: Succession of microbial consortia in the developing infant gut microbiome
  publication-title: Proc Natl Acad Sci US
– volume: 326
  start-page: 1694
  year: 2009
  end-page: 1697
  article-title: Bacterial community variation in human body habitats across space and time
  publication-title: Science
– volume: 4
  start-page: e20
  year: 2008
  article-title: The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis
  publication-title: PLoS Pathog
– volume: 9
  start-page: 279
  year: 2011
  end-page: 290
  article-title: Unravelling the effects of the environment and host genotype on the gut microbiome
  publication-title: Nat Rev Microbiol
– volume: 48
  start-page: 546
  year: 2010
  end-page: 550
  article-title: Assessment of forest patches' extents and land cover changes in the Tana River Primate National Reserve, 1994–2004
  publication-title: Afr J Ecol
– volume: 93
  start-page: 439
  year: 2007
  end-page: 440
  article-title: sp and sp infections in primates in fragmented and undisturbed forest in Western Uganda
  publication-title: J Parasitol
– volume: 108
  start-page: 19288
  year: 2011
  end-page: 19292
  article-title: Socially transmitted gut microbiota protect bumble bees against an intestinal parasite
  publication-title: Proc Natl Acad Sci USA
– volume: 449
  start-page: 804
  year: 2007
  end-page: 810
  article-title: The human microbiome project
  publication-title: Nature
– volume: 72
  start-page: 566
  year: 2010
  end-page: 574
  article-title: Fecal bacterial diversity of human‐habituated wild chimpanzees ( ) at Mahale Mountains National Park, Western Tanzania
  publication-title: Am J Primatol
– volume: 85
  start-page: 7
  year: 2007
  end-page: 34
  article-title: The taxonomic diversity of the Colobinae of Africa
  publication-title: J Anthropol Sci
– start-page: 411
  year: 2011
  end-page: 429
– volume: 140
  start-page: 1713
  year: 2011
  end-page: 1719
  article-title: Development of the human gastrointestinal microbiota and insights from high‐throughput sequencing
  publication-title: Gastroenterology
– volume: 21
  start-page: 2617
  year: 2012
  end-page: 2627
  article-title: Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography
  publication-title: Mol Ecol
– volume: 70
  start-page: S38
  year: 2012
  end-page: S44
  article-title: Defining the human microbiome
  publication-title: Nutr Rev
– start-page: 452
  year: 2012
  end-page: 465
– volume: 8
  start-page: e1000546
  year: 2010
  article-title: Evolutionary relationships of wild hominids recapitulated by gut microbial communities
  publication-title: PLoS Biol
– volume: 7
  start-page: 1344
  year: 2013
  end-page: 1353
  article-title: Habitat degradation impacts black howler monkey ( ) gastrointestinal microbiomes
  publication-title: ISME J
– volume: 62
  start-page: 142
  year: 2007
  end-page: 160
  article-title: Multivariate analyses in microbial ecology
  publication-title: FEMS Microbiol Ecol
– volume: 7
  start-page: e1001342
  year: 2011
  article-title: A molecular phylogeny of living primates
  publication-title: PLoS Genet
– volume: 72
  start-page: 3788
  year: 2006
  end-page: 3792
  article-title: Fecal bacterial diversity in a wild gorilla
  publication-title: Appl Environ Microb
– year: 2012
– volume: 46
  start-page: 3187
  year: 2008
  end-page: 3191
  article-title: High rates of transmission between livestock and humans in rural Uganda
  publication-title: J Clin Microbiol
– volume: 320
  start-page: 1647
  year: 2008a
  end-page: 1651
  article-title: Evolution of mammals and their gut microbes
  publication-title: Science
– volume: 8
  start-page: 1291
  year: 2005
  end-page: 1298
  article-title: Diversity of locust gut bacteria protects against pathogen invasion
  publication-title: Ecol Lett
– volume: 4
  start-page: e683
  year: 2010
  article-title: Molecular epidemiology of cross‐species transmission in Western Uganda
  publication-title: PLoS Negl Trop Dis
– volume: 69
  start-page: 367
  year: 2007
  end-page: 376
  article-title: Molecular analyses of the intestinal microbiota of chimpanzees in the wild and in captivity
  publication-title: Am J Primatol
– volume: 74
  start-page: 453
  year: 2010
  article-title: From structure to function: the ecology of host‐associated microbial communities
  publication-title: Microbiol Mol Biol Rev
– volume: 42
  start-page: 165
  year: 2008
  end-page: 190
  article-title: Genomics and evolution of heritable bacterial symbionts
  publication-title: Annu Rev Genet
– volume: 308
  start-page: 1635
  year: 2005
  article-title: Diversity of the human intestinal microbial flora
  publication-title: Science
– volume: 13
  start-page: 570
  year: 2011
  end-page: 594
  article-title: Towards an evolutionary model of animal‐associated microbiomes
  publication-title: Entropy
– volume: 21
  start-page: 587
  year: 2000
  end-page: 611
  article-title: Coping with forest fragmentation: the primates of Kibale National Park, Uganda
  publication-title: Int J Primatol
– volume: 6
  start-page: 776
  year: 2008b
  end-page: 788
  article-title: Worlds within worlds: evolution of the vertebrate gut microbiota
  publication-title: Nat Rev Microbiol
– volume: 6
  start-page: 93
  year: 1990
  end-page: 100
  article-title: Helminths as heirlooms and souvenirs—a review of New‐World paleoparasitology
  publication-title: Parasitol Today
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1365-2028.2009.01120.x
– ident: e_1_2_6_55_1
  doi: 10.1038/nature07540
– ident: e_1_2_6_34_1
  doi: 10.1006/dbio.2001.0522
– ident: e_1_2_6_52_1
  doi: 10.1038/nrmicro2540
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1462-2920.2008.01814.x
– ident: e_1_2_6_48_1
  doi: 10.1371/journal.pntd.0001597
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1574-6941.2007.00375.x
– ident: e_1_2_6_51_1
  doi: 10.1371/journal.pone.0030273
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1753-4887.2012.00493.x
– ident: e_1_2_6_17_1
  doi: 10.1038/nature06245
– ident: e_1_2_6_31_1
  doi: 10.1073/pnas.1000081107
– volume-title: Primates in fragments
  year: 2012
  ident: e_1_2_6_10_1
  contributor:
    fullname: Chapman CA
– ident: e_1_2_6_14_1
  doi: 10.1126/science.1177486
– ident: e_1_2_6_32_1
  doi: 10.1126/science.1155725
– ident: e_1_2_6_39_1
  doi: 10.1371/journal.pbio.1000546
– ident: e_1_2_6_45_1
  doi: 10.1128/MMBR.00014-10
– volume: 14
  start-page: 1375
  year: 2008
  ident: e_1_2_6_24_1
  article-title: Forest fragmentation and bacterial transmission among nonhuman primates, humans, and livestock, Uganda
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1409.071196
  contributor:
    fullname: Goldberg TL
– ident: e_1_2_6_56_1
  doi: 10.1002/ajp.20351
– start-page: 452
  volume-title: New directions in conservation medicine: applied cases of ecological health
  year: 2012
  ident: e_1_2_6_25_1
  contributor:
    fullname: Goldberg TL
– start-page: 411
  volume-title: Annual review of microbiology
  year: 2011
  ident: e_1_2_6_58_1
  contributor:
    fullname: Walter J
– ident: e_1_2_6_46_1
  doi: 10.1038/nri2515
– ident: e_1_2_6_15_1
  doi: 10.1128/IAI.00006-09
– ident: e_1_2_6_29_1
  doi: 10.1016/0169-4758(90)90223-Q
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1365-294X.2012.05568.x
– ident: e_1_2_6_53_1
  doi: 10.1002/ajp.20809
– ident: e_1_2_6_50_1
  doi: 10.1038/nbt1486
– ident: e_1_2_6_19_1
  doi: 10.1053/j.gastro.2011.02.011
– ident: e_1_2_6_33_1
  doi: 10.1038/nrmicro1978
– ident: e_1_2_6_47_1
  doi: 10.1128/JCM.00285-08
– ident: e_1_2_6_20_1
  doi: 10.1126/science.1110591
– ident: e_1_2_6_2_1
  doi: 10.1128/AAC.01582-06
– ident: e_1_2_6_38_1
  doi: 10.1126/science.1198719
– ident: e_1_2_6_6_1
  doi: 10.1016/j.ecolmodel.2010.07.020
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1461-0248.2005.00828.x
– ident: e_1_2_6_37_1
  doi: 10.1146/annurev.genet.41.110306.130119
– volume: 65
  start-page: 4630
  year: 1999
  ident: e_1_2_6_22_1
  article-title: Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities
  publication-title: Appl Environ Microb
  doi: 10.1128/AEM.65.10.4630-4636.1999
  contributor:
    fullname: Fisher MM
– ident: e_1_2_6_61_1
  doi: 10.3390/e13030570
– ident: e_1_2_6_42_1
  doi: 10.1371/journal.pgen.1001342
– ident: e_1_2_6_27_1
  doi: 10.1371/journal.pntd.0000683
– ident: e_1_2_6_36_1
  doi: 10.1038/ismej.2011.129
– ident: e_1_2_6_8_1
  doi: 10.1007/s10329-004-0093-9
– start-page: 205
  volume-title: Colobine monkeys: Their ecology, behaviour and evolution
  year: 1994
  ident: e_1_2_6_12_1
  contributor:
    fullname: Chivers DJ.
– ident: e_1_2_6_40_1
  doi: 10.1023/A:1005509119693
– ident: e_1_2_6_62_1
  doi: 10.1371/journal.pone.0013963
– ident: e_1_2_6_60_1
  doi: 10.1002/ajp.20826
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1744-7429.2011.00766.x
– ident: e_1_2_6_49_1
  doi: 10.1645/GE-970R1.1
– volume: 85
  start-page: 7
  year: 2007
  ident: e_1_2_6_26_1
  article-title: The taxonomic diversity of the Colobinae of Africa
  publication-title: J Anthropol Sci
  contributor:
    fullname: Groves CP.
– ident: e_1_2_6_13_1
– ident: e_1_2_6_30_1
  doi: 10.1073/pnas.1110474108
– ident: e_1_2_6_54_1
  doi: 10.1038/nature06244
– ident: e_1_2_6_16_1
  doi: 10.1073/pnas.1110994109
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1462-2920.2008.01816.x
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1474-919X.1995.tb08464.x
– ident: e_1_2_6_21_1
  doi: 10.1126/science.1227412
– ident: e_1_2_6_23_1
  doi: 10.1128/AEM.72.5.3788-3792.2006
– ident: e_1_2_6_35_1
  doi: 10.1371/journal.ppat.0040020
– ident: e_1_2_6_7_1
  doi: 10.1186/gb-2011-12-5-r50
– ident: e_1_2_6_9_1
  doi: 10.1002/ajpa.20477
– ident: e_1_2_6_3_1
  doi: 10.1038/ismej.2013.16
– ident: e_1_2_6_4_1
  doi: 10.1038/nature09944
SSID ssj0011465
Score 2.3641648
Snippet Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 347
SubjectTerms Animals
Cattle - microbiology
Cercopithecinae
Cercopithecus - microbiology
Colobinae
Colobus - microbiology
DNA, Bacterial
Domestic animals
Ecosystem
Feces - microbiology
forest fragmentation
Forests
Goats - microbiology
Humans - microbiology
Kenya
Livestock
Microbial activity
microbiome
Microbiota - genetics
National parks
non-human primate
Old World monkeys
Phylogeny
Physiology
Primates
Sheep - microbiology
Swine - microbiology
Trees
Uganda
Title Fecal microbiomes of non-human primates in Western Uganda reveal species-specific communities largely resistant to habitat perturbation
URI https://api.istex.fr/ark:/67375/WNG-60DM41SD-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajp.22238
https://www.ncbi.nlm.nih.gov/pubmed/24285224
https://www.proquest.com/docview/1506478538
https://search.proquest.com/docview/1507792110
https://search.proquest.com/docview/1515984058
https://pubmed.ncbi.nlm.nih.gov/PMC4097101
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HiXAIp55f1VOiiPjSvTZNmhSfDtf1OPAQdblFhJC2ie59tMtuFzyffPfFv9G_xJl0t976hfiW0klo0pnMb9qZXwh56NIsMzZhoWORCjkXKjQ2KsOY5UIlpgRQ4rN8D9K9Id8fidEaebKshWn5IboPbmgZfr9GAzf5bOcHaag5mvTQuWGhb5xITOfqv-qoo7DY1qcvMilCcOtiySoUsZ2u54ovuoDL-vF3QPPXfMnzONY7osFl8m45hTb_5Lg3b_Je8ekndsf_nOMVsrkAqHS31airZM1WW-TSufMUzrbIRrdtwsXFt7VvXSNfBhbeOD0dt-ROp3ZGa0eruvr2-as_C5BOkNsCwC0dV_Sw5Wigw_f4MYMilRR0xspPCN6hh2-5cUGLtoYFmV_pCSaun5yB9AyBb9XQpqbINQ6YmU7sFBxo7nXtOhkOnr15uhcuDnsIixTVJAMP4FSKv_HysmSJcRIi9xg2lFhGRVxm3ESiLJ20jOVcWud4xmNmpbBZAiAkuUHWYUL2FqEqy03JmBLKxbxQMArPywLiXKEKGLEIyIPla9eTltNDt-zNTMOKa7_iAXnkFaKTMNNjTIKTQh8ePNdp1H_B49d9PQrI9lJj9ML-Zxp5G7kEKATj3O9ug-Xi7xhT2XruZaTMMAD_mwzATYjBBYxzs1XC7oEAXClAzzwgckU9OwFkDl-9U40_eAZxJDmDvTggj732_XkV9O7-S9-4_e-id8gGoMpFetM2WW-mc3sXkFuT3_Mm-h0hkENL
link.rule.ids 230,315,783,787,888,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amxATEpdxKwwwCCFe0iWOXTsSLxOllLFVCFatQkJWLg6UbUnVi8R44p0XfiO_hHOcNqzchHhzlWOrds7lO87xZ4AHeSuKYhtyL-e-9oSQ2outn3kBT6QO4wxBiavy7bW6fbEzkIMVeLw4C1PxQ9QbbmQZzl-TgdOG9NYP1tD4w6hJ0U2fgTU095DuL2i_qsmj6LitK2DkSnoY2OWCV8jnW3XXpWi0Rgv78XdQ89eKydNI1oWizkV4u5hEVYFy2JxNk2b66Sd-x_-d5SW4MMeobLtSqsuwYosNOH_qSoWTDVivPSf-OPumdK0r8KVj8aWz42HF73RsJ6zMWVEW3z5_ddcBshHRWyC-ZcOCHVQ0Daz_jvYzGLFJYWc6_In5O_ZwrXyYsrQ6xkLkr-yIatePTlB6Qti3mLJpyYhuHGEzG9kxxtDEqdtV6Hee7j_pevP7Hry0RZoSYRDIdYu-5CVZxsM4V5i8B-hTAuWnQRaJ2JdZlivLeSKUzXMRiYBbJW0UIg4Jr8EqTsjeAKajJM4411LngUg1jiKSLMVUV-oUR0wbcH_x3s2oovUwFYEzN7jixq14Ax46jagl4vEh1cEpaQ56z0zLb--J4HXbDBqwuVAZM3cBE0PUjUIhGsJx7tWP0Xjpi0xc2HLmZJSKKAf_mwwiTkzDJY5zvdLC-g8hvtIIoEUD1JJ-1gJEHr78pBi-dyTixHOG7rgBj5z6_XkVzPbOS9e4-e-id-Fcd39v1-w-7724BesIMufVTpuwOh3P7G0EctPkjrPX7xXLR2U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKK1CFxKO8AgUMQohLtoljx444VSxLKbCqgFVXCMnKw4albTbazUqUE3cu_EZ-CTPObujyEuLmyGMrtscz3yTjz4Tcs3GSpCZivmWB8jkXyk9NUPghy4SK0gJAicvy7cc7A747FMMV8nBxFqbhh2g_uOHOcPYaN3hV2K0fpKHph6qDzk2dIms8jgLM5-q-bLmj8LSty19kUvjg18WCVihgW23TJWe0hvP68XdI89eEyZNA1nmi3nnydjGGJgHloDOrs07-6Sd6x_8c5AVybo5Q6XajUhfJiik3yNkTFyocb5D11m7Cw-k3Y1e6RL70DCw5PRo17E5HZkrHlpbj8tvnr-4yQFohuQWgWzoq6X5D0kAH7_BrBkUuKWiMRz8heocWrmRHOc2bQyxI_UoPMXP98Bikp4h8y5rWY4pk4wCaaWUm4EEzp2yXyaD3-PWjHX9-24Ofx6gnCbgAq2L8j5cVBYtSKyF0D8GihDLIwyLhaSCKwkrDWMalsZYnPGRGCpNEgEKiK2QVBmSuEaqSLC0YU0LZkOcKeuFZkUOgK1QOPeYeubtYdl01pB66oW9mGmZcuxn3yH2nEK1EOjnALDgp9H7_iY6D7gsevurqoUc2Fxqj5wZgqpG4kUvAQtDPnbYati7-j0lLM545GSkTjMD_JgN4E4JwAf1cbZSwfSFAVwrgM_eIXFLPVgCpw5drytF7RyGOLGdgjD3ywGnfn2dBb-_uucL1fxe9Tc7sdXv6-dP-sxtkHRDmPNVpk6zWk5m5CSiuzm653fodGF5GFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fecal+microbiomes+of+non-human+primates+in+Western+Uganda+reveal+species-specific+communities+largely+resistant+to+habitat+perturbation&rft.jtitle=American+journal+of+primatology&rft.au=McCord%2C+Aleia+I.&rft.au=Chapman%2C+Colin+A.&rft.au=Weny%2C+Geoffrey&rft.au=Tumukunde%2C+Alex&rft.date=2014-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0275-2565&rft.eissn=1098-2345&rft.volume=76&rft.issue=4&rft.spage=347&rft.epage=354&rft_id=info:doi/10.1002%2Fajp.22238&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_60DM41SD_X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0275-2565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0275-2565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0275-2565&client=summon