mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland
• Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil struc...
Saved in:
Published in | The New phytologist Vol. 172; no. 4; pp. 739 - 752 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.12.2006
Blackwell Science Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. • We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. • AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. • This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make-up of the plant community. |
---|---|
AbstractList | Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make-up of the plant community. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make-up of the plant community.Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make-up of the plant community. Summary • Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. • We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. • AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. • This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make‐up of the plant community. • Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. • We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. • AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. • This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make‐up of the plant community. |
Author | Sanders, Ian R Streitwolf-Engel, Ruth Ineichen, Kurt Heijden, Marcel G.A. van der Neudecker, Angelica Riedl, Ralph Siegrist, Sabine Wiemken, Andres Boller, Thomas |
Author_xml | – sequence: 1 fullname: Heijden, Marcel G.A. van der – sequence: 2 fullname: Streitwolf-Engel, Ruth – sequence: 3 fullname: Riedl, Ralph – sequence: 4 fullname: Siegrist, Sabine – sequence: 5 fullname: Neudecker, Angelica – sequence: 6 fullname: Ineichen, Kurt – sequence: 7 fullname: Boller, Thomas – sequence: 8 fullname: Wiemken, Andres – sequence: 9 fullname: Sanders, Ian R |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18256285$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17096799$$D View this record in MEDLINE/PubMed |
BookMark | eNqNklGP1CAQx4k54-2dfgOjfdEnuw600PKgibmoZ3JRE73EN0KBnmy6sAdUd_300uu6Jr6svECG3__PMDNn6MR5ZxAqMCxxXi9XS1wzXra4apYEgC0Bt4wst_fQ4nBxghYApC1Zzb6dorMYVwDAKSMP0ClugLOG8wUa1jvlQ_huf8mhUN6lYLsxWe-K5IvNIF0qNsHrUSX7w6bdi33MjRm8w6TTRfR2KGIKmRqDKawrzHZjgl0bl7LtTZAxZpl-iO73cojm0X4_R9fv3n69uCyvPr3_cPHmqlSMACk70MDB9GBaKkFp2ilFasI73BlCdN91jEJHas5rLbUC2SilAfc5yCmpTHWOns--OfXb0cQk1jYqM-QcjB-jYLk-DHh1FKwbAk1D-VEQc0prChP4ZA-O3dposclVkGEn_lQ8A8_2gIxKDn2QTtn4l2tJblFLM_d65lTwMQbTC2WTnEqegrSDwCCmURArMXVcTB0X0yiIu1EQ22zQ_mNweOO49NUs_WkHs_tvnfj4-XI6Zf3jWb-KyYeDvsYVJnj62tP5updeyJuQv3_9hQCuILsTRqvqN6uQ4B8 |
CODEN | NEPHAV |
CitedBy_id | crossref_primary_10_1016_j_pedobi_2010_11_001 crossref_primary_10_3390_app7070692 crossref_primary_10_1007_s13199_012_0186_y crossref_primary_10_1094_PBIOMES_09_23_0095_R crossref_primary_10_1111_1462_2920_14882 crossref_primary_10_1007_s11258_019_00953_w crossref_primary_10_1111_mec_13178 crossref_primary_10_1007_s11104_015_2568_4 crossref_primary_10_1016_j_geoderma_2016_01_039 crossref_primary_10_3390_microorganisms10122399 crossref_primary_10_1007_s40333_014_0046_0 crossref_primary_10_1016_j_sjbs_2020_11_018 crossref_primary_10_1016_j_scienta_2016_04_023 crossref_primary_10_1038_s41598_019_44665_7 crossref_primary_10_1111_j_1469_8137_2007_02041_x crossref_primary_10_1007_s11104_011_1116_0 crossref_primary_10_37871_jbres1215 crossref_primary_10_1007_s00203_019_01653_9 crossref_primary_10_1111_j_1574_6941_2009_00720_x crossref_primary_10_1016_j_geoderma_2022_116117 crossref_primary_10_2903_j_efsa_2017_4690 crossref_primary_10_1007_s11104_021_05073_x crossref_primary_10_1016_j_plantsci_2014_01_009 crossref_primary_10_3389_fpls_2018_00607 crossref_primary_10_1007_s10021_020_00575_8 crossref_primary_10_3389_fpls_2015_00344 crossref_primary_10_1007_s11104_011_0727_9 crossref_primary_10_1016_j_ecoleng_2015_03_007 crossref_primary_10_1002_jpln_201300548 crossref_primary_10_1016_j_funeco_2008_11_001 crossref_primary_10_3390_d12090324 crossref_primary_10_1007_s11104_012_1256_x crossref_primary_10_3389_fmicb_2018_02327 crossref_primary_10_1111_nph_15158 crossref_primary_10_3389_fmicb_2019_01106 crossref_primary_10_1016_j_jaridenv_2013_05_019 crossref_primary_10_1111_1365_2745_12249 crossref_primary_10_1111_j_1365_2486_2008_01691_x crossref_primary_10_1890_10_1915_1 crossref_primary_10_1007_s11104_013_1647_7 crossref_primary_10_1016_j_soilbio_2010_01_006 crossref_primary_10_3923_jps_2007_518_529 crossref_primary_10_1007_s11104_023_06074_8 crossref_primary_10_1111_j_1365_2486_2009_02058_x crossref_primary_10_1016_j_apsoil_2015_05_012 crossref_primary_10_1016_j_rhisph_2023_100728 crossref_primary_10_1016_j_scitotenv_2021_150122 crossref_primary_10_1016_j_scienta_2015_02_033 crossref_primary_10_1007_s12155_019_10072_z crossref_primary_10_1080_01904167_2016_1263317 crossref_primary_10_1016_j_scienta_2015_09_021 crossref_primary_10_1111_j_1744_7348_2008_00286_x crossref_primary_10_1016_j_tplants_2015_03_004 crossref_primary_10_1111_jvs_12640 crossref_primary_10_1016_j_foreco_2020_118367 crossref_primary_10_1016_j_apsoil_2011_10_001 crossref_primary_10_1016_j_apsoil_2021_104325 crossref_primary_10_1111_pce_13442 crossref_primary_10_1080_01904167_2020_1766075 crossref_primary_10_1007_s40626_021_00208_y crossref_primary_10_1016_j_funeco_2023_101225 crossref_primary_10_1093_jpe_rtac045 crossref_primary_10_1104_pp_107_111898 crossref_primary_10_1002_ppp3_10600 crossref_primary_10_1007_s00442_014_3089_1 crossref_primary_10_1111_nph_20048 crossref_primary_10_1038_s41564_023_01520_w crossref_primary_10_1111_nph_15010 crossref_primary_10_1016_j_flora_2021_151845 crossref_primary_10_1007_s11104_007_9290_9 crossref_primary_10_1007_s10021_021_00689_7 crossref_primary_10_5424_sjar_20110904_307_10 crossref_primary_10_3389_fevo_2023_1224849 crossref_primary_10_1007_s00344_017_9712_8 crossref_primary_10_1016_j_agee_2017_08_010 crossref_primary_10_1016_j_jia_2023_09_011 crossref_primary_10_1007_s00374_011_0576_y crossref_primary_10_1016_j_apsoil_2011_02_005 crossref_primary_10_1016_j_plaphy_2014_06_002 crossref_primary_10_1007_s11104_013_1625_0 crossref_primary_10_1016_j_soilbio_2010_09_029 crossref_primary_10_1016_j_soilbio_2009_08_016 crossref_primary_10_1007_s13199_011_0141_3 crossref_primary_10_1590_0103_8478cr20180361 crossref_primary_10_3390_ijms17060930 crossref_primary_10_1111_nph_12372 crossref_primary_10_1186_s40168_018_0434_3 crossref_primary_10_1016_j_rhisph_2019_100178 crossref_primary_10_1016_j_soilbio_2013_12_019 crossref_primary_10_1128_AEM_00262_07 crossref_primary_10_1038_s41467_021_24714_4 crossref_primary_10_1111_jvs_12944 crossref_primary_10_1002_ldr_3491 crossref_primary_10_1002_ldr_3372 crossref_primary_10_1002_ecs2_2999 crossref_primary_10_1007_s11258_008_9427_9 crossref_primary_10_1007_s11104_008_9753_7 crossref_primary_10_1007_s11104_024_06927_w crossref_primary_10_1016_j_rhisph_2022_100510 crossref_primary_10_1093_femsec_fiv078 crossref_primary_10_1007_s11104_022_05534_x crossref_primary_10_1111_nph_19792 crossref_primary_10_1007_s00572_012_0465_8 crossref_primary_10_1016_j_soilbio_2014_10_016 crossref_primary_10_1139_cjfr_2023_0288 crossref_primary_10_3390_plants11172187 crossref_primary_10_1111_pce_12102 crossref_primary_10_1016_j_soilbio_2021_108465 crossref_primary_10_1038_ismej_2013_224 crossref_primary_10_3390_agronomy9010033 crossref_primary_10_1093_jpe_rtp015 crossref_primary_10_1007_s00572_016_0739_7 crossref_primary_10_3852_08_176 crossref_primary_10_1007_s00572_019_00926_x crossref_primary_10_1007_s11356_016_6941_5 crossref_primary_10_1007_s11104_022_05380_x crossref_primary_10_1016_j_apsoil_2016_02_006 crossref_primary_10_3390_jof9090870 crossref_primary_10_1007_s11104_014_2060_6 crossref_primary_10_1007_s00248_019_01475_8 crossref_primary_10_1111_lam_12084 crossref_primary_10_1093_femsec_fiad080 crossref_primary_10_1155_2014_562797 crossref_primary_10_3390_plants11202795 crossref_primary_10_1071_FP07061 crossref_primary_10_1111_nph_13206 crossref_primary_10_1002_eap_2047 crossref_primary_10_3390_plants12051048 crossref_primary_10_1016_j_baae_2021_01_005 crossref_primary_10_1002_jsfa_6565 crossref_primary_10_1016_j_soilbio_2019_03_025 crossref_primary_10_3923_ajcs_2015_233_243 crossref_primary_10_1016_j_ecolind_2021_107792 crossref_primary_10_1016_j_apsoil_2014_10_017 crossref_primary_10_1007_s00442_014_3091_7 crossref_primary_10_1007_s11104_011_0828_5 crossref_primary_10_1007_s11104_020_04746_3 crossref_primary_10_1111_ele_13947 crossref_primary_10_3389_fpls_2023_1084218 crossref_primary_10_1016_j_scitotenv_2016_07_185 crossref_primary_10_1016_j_soilbio_2015_11_019 crossref_primary_10_1016_j_jtemb_2020_126594 crossref_primary_10_1016_S1002_0160_11_60193_8 crossref_primary_10_1007_s11284_016_1356_9 crossref_primary_10_1155_2014_531824 crossref_primary_10_1080_13416979_2022_2108657 crossref_primary_10_5338_KJEA_2010_29_4_408 crossref_primary_10_1016_j_apsoil_2022_104795 crossref_primary_10_1002_ecy_3727 crossref_primary_10_1016_j_still_2012_01_001 crossref_primary_10_3390_microorganisms9010081 crossref_primary_10_1007_s00572_014_0609_0 crossref_primary_10_3389_fevo_2022_833389 crossref_primary_10_7717_peerj_17138 crossref_primary_10_1111_j_1469_8137_2009_03058_x crossref_primary_10_1111_1365_2745_12773 crossref_primary_10_3390_f14122402 crossref_primary_10_1007_s00572_009_0237_2 crossref_primary_10_1007_s00248_020_01557_y crossref_primary_10_1007_s11104_019_04137_3 crossref_primary_10_1038_s41396_019_0350_y crossref_primary_10_1186_s12870_022_03795_3 crossref_primary_10_1098_rspb_2011_1550 crossref_primary_10_1016_j_rhisph_2021_100414 crossref_primary_10_1093_plcell_koac225 crossref_primary_10_1080_17429140902947010 crossref_primary_10_1016_j_funeco_2018_02_002 crossref_primary_10_1002_jsfa_8606 crossref_primary_10_1038_s41598_019_45702_1 crossref_primary_10_1007_s00442_011_2037_6 crossref_primary_10_1016_j_soilbio_2015_09_021 crossref_primary_10_1094_PHYTOFR_09_23_0119_R crossref_primary_10_1016_j_scitotenv_2019_135744 crossref_primary_10_3390_jof11020117 crossref_primary_10_1016_j_apsoil_2016_09_018 crossref_primary_10_2111_REM_D_11_00016_1 crossref_primary_10_1007_s40333_016_0027_6 crossref_primary_10_1016_j_pedobi_2013_07_003 crossref_primary_10_1093_femsec_fiy092 crossref_primary_10_1016_j_jaridenv_2011_06_001 crossref_primary_10_1007_s11104_016_3054_3 crossref_primary_10_1016_j_rsci_2018_02_006 crossref_primary_10_1111_een_12022 crossref_primary_10_1007_s00572_015_0627_6 crossref_primary_10_1111_1365_2745_13521 crossref_primary_10_1002_ecy_2850 crossref_primary_10_1016_j_scienta_2009_06_025 crossref_primary_10_1111_j_1461_0248_2007_01139_x crossref_primary_10_1007_s00425_012_1677_z crossref_primary_10_1111_nph_15786 crossref_primary_10_5897_AJPS2016_1498 crossref_primary_10_1007_s00442_022_05253_1 crossref_primary_10_1016_j_apsoil_2020_103591 crossref_primary_10_1016_j_jenvman_2023_119509 crossref_primary_10_1016_j_apsoil_2014_05_007 crossref_primary_10_1111_1365_2664_12939 crossref_primary_10_18619_2072_9146_2018_3_93_98 crossref_primary_10_1016_j_apsoil_2017_12_025 crossref_primary_10_1111_j_1469_8137_2009_03040_x crossref_primary_10_1007_s11104_024_06861_x crossref_primary_10_51758_AGJSR_01_2014_0005 crossref_primary_10_1016_j_apsoil_2016_10_015 crossref_primary_10_1007_s11104_009_0202_z crossref_primary_10_18006_2017_5_2__235_241 crossref_primary_10_1016_j_still_2015_07_009 crossref_primary_10_1016_j_geoderma_2019_01_036 crossref_primary_10_1016_j_funeco_2019_100902 crossref_primary_10_1007_s11104_016_2850_0 crossref_primary_10_1111_j_1365_2745_2007_01244_x crossref_primary_10_1016_j_pedobi_2013_03_006 crossref_primary_10_1007_s00572_023_01126_4 crossref_primary_10_1016_j_scitotenv_2020_136976 crossref_primary_10_1002_jpln_200900204 crossref_primary_10_1016_j_baae_2018_07_002 crossref_primary_10_3389_fpls_2017_01809 crossref_primary_10_1007_s00253_015_6487_3 crossref_primary_10_1016_j_scitotenv_2018_06_379 crossref_primary_10_1007_s00442_012_2363_3 crossref_primary_10_1016_j_funeco_2019_07_010 crossref_primary_10_3390_horticulturae7100395 crossref_primary_10_4236_ojss_2021_114012 crossref_primary_10_1016_j_soilbio_2011_10_008 crossref_primary_10_1016_j_soilbio_2020_107922 crossref_primary_10_1007_s11104_012_1321_5 crossref_primary_10_1016_j_ejsobi_2020_103272 crossref_primary_10_1146_annurev_ento_54_110807_090614 crossref_primary_10_1016_j_indcrop_2018_02_087 crossref_primary_10_1007_s11104_020_04440_4 crossref_primary_10_1016_j_ecoleng_2023_106895 crossref_primary_10_1007_s11104_020_04825_5 crossref_primary_10_1007_s00572_010_0344_0 crossref_primary_10_3389_fpls_2020_00760 crossref_primary_10_1007_s13593_018_0545_z crossref_primary_10_1111_jvs_13082 crossref_primary_10_1111_j_1365_3040_2009_01983_x crossref_primary_10_1080_17429145_2022_2120212 crossref_primary_10_1016_j_soilbio_2016_04_024 crossref_primary_10_1016_j_funeco_2022_101211 crossref_primary_10_1186_s12862_021_01928_0 crossref_primary_10_1111_nph_15119 crossref_primary_10_1093_femsec_fiz020 crossref_primary_10_1016_j_myc_2012_12_005 crossref_primary_10_1016_j_rhisph_2021_100405 crossref_primary_10_1016_j_soilbio_2024_109605 crossref_primary_10_17221_676_2011_PSE crossref_primary_10_3389_fpls_2017_00931 crossref_primary_10_1088_1755_1315_1045_1_012087 crossref_primary_10_3390_rs15215212 crossref_primary_10_1016_j_soilbio_2015_07_007 crossref_primary_10_1016_j_mimet_2012_04_010 crossref_primary_10_1093_pcp_pcy094 crossref_primary_10_1016_j_rhisph_2023_100775 crossref_primary_10_1111_j_1461_0248_2011_01666_x crossref_primary_10_3390_microorganisms12071281 crossref_primary_10_1371_journal_pone_0027825 crossref_primary_10_1080_00103624_2013_848284 crossref_primary_10_1016_j_soilbio_2011_09_011 crossref_primary_10_1071_FP18327 crossref_primary_10_1080_07352689_2011_605741 crossref_primary_10_5423_PPJ_SI_07_2012_0111 crossref_primary_10_1016_S1002_0160_14_60086_2 crossref_primary_10_1093_jpe_rtw066 crossref_primary_10_1007_s42729_023_01372_7 crossref_primary_10_1088_1755_1315_743_1_012029 crossref_primary_10_1038_srep24749 crossref_primary_10_1016_j_soilbio_2010_08_027 crossref_primary_10_4236_oje_2014_46028 crossref_primary_10_1038_ismej_2015_116 crossref_primary_10_1016_j_apsoil_2021_104012 crossref_primary_10_3923_ijss_2016_108_122 crossref_primary_10_3389_fmicb_2023_1196101 crossref_primary_10_3923_pjbs_2015_1_10 crossref_primary_10_1016_j_scienta_2012_09_018 crossref_primary_10_3390_agriculture12101598 crossref_primary_10_1007_s11104_014_2162_1 crossref_primary_10_1007_s00572_021_01031_8 crossref_primary_10_1111_oik_02351 |
Cites_doi | 10.1007/BF00377271 10.1046/j.1469-8137.2000.00615.x 10.1038/23936 10.2307/2261676 10.1111/j.1365-2745.2005.01000.x 10.1126/science.267.5201.1117 10.1126/science.1064088 10.1023/A:1026500810385 10.1111/j.1469-8137.2004.01236.x 10.1038/415068a 10.1016/0167-8809(90)90268-I 10.2307/2960650 10.1046/j.1461-0248.2000.00131.x 10.1111/j.1469-8137.2006.01750.x 10.1023/A:1004301423150 10.1093/acprof:oso/9780198525035.001.0001 10.1111/j.1365-2389.1994.tb00531.x 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2 10.1038/35095041 10.1017/S0953756299001240 10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2 10.1007/978-94-017-0776-3_1 10.1111/j.1469-8137.2004.01169.x 10.1007/s00442-002-1022-5 10.1046/j.1469-8137.2003.00688.x 10.1111/j.1469-8137.1992.tb01077.x 10.1111/j.1574-6941.2006.00086.x 10.1139/b04-110 10.1038/379718a0 10.1038/nature01054 10.1641/0006-3568(2001)051[0923:AMFMDT]2.0.CO;2 10.1046/j.1365-294X.2003.01967.x 10.1126/science.289.5486.1920 10.1111/j.1365-2745.2005.01043.x 10.2307/2404783 10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2 10.1890/02-0413 10.1890/02-0298 10.1111/j.1469-8137.1991.tb00001.x 10.1046/j.1365-294X.2002.01647.x 10.1016/S0007-1536(70)80110-3 10.1007/s00442-004-1790-1 10.2307/2402144 10.1111/j.1469-8137.1990.tb00925.x 10.1126/science.1071148 10.1111/j.1461-0248.2004.00577.x 10.1023/A:1004271525014 10.1371/journal.pbio.0040140 10.1002/9781444313765 10.1111/j.1469-8137.2004.01039.x 10.1111/j.1469-8137.1994.tb07536.x 10.1046/j.1469-8137.2002.00364.x 10.1111/j.1365-2486.1996.tb00089.x 10.1111/j.1469-8137.2005.01536.x 10.1007/978-3-540-38364-2_10 10.1111/j.1469-8137.1989.tb04215.x 10.1016/0016-7061(93)90123-3 10.1890/0012-9658(1997)078[1312:BFAHTI]2.0.CO;2 10.1111/j.1469-8137.2005.01455.x 10.1007/BF01972080 10.1111/j.1469-8137.1990.tb00476.x 10.1016/S0167-8809(98)00113-3 10.1038/328420a0 10.2136/sssaj1965.03615995002900060025x 10.1034/j.1600-0706.2003.12006.x 10.1126/science.1084269 10.1073/pnas.0306441101 10.1038/nature01548 |
ContentType | Journal Article |
Copyright | Copyright 2006 New Phytologist 2007 INIST-CNRS |
Copyright_xml | – notice: Copyright 2006 New Phytologist – notice: 2007 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN C1K M7N 7S9 L.6 7X8 |
DOI | 10.1111/j.1469-8137.2006.01862.x |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Environmental Sciences and Pollution Management Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Ecology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 752 |
ExternalDocumentID | 17096799 18256285 10_1111_j_1469_8137_2006_01862_x NPH1862 4131215 US201301112653 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AASVR AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABHUG ABLJU ABPLY ABPTK ABPVW ABTLG ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFMIJ AFPWT AFVGU AFZJQ AGJLS AGUYK AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DWIUU E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HZI HZ~ IHE IPNFZ IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LW7 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT 79B AAHBH AAHQN AAMMB AAMNL AAYCA ABSQW ABVKB ABXSQ ACHIC AEFGJ AEYWJ AFWVQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM HGLYW IPSME OIG ABGDZ ADXHL AGHNM AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM PKN 7SN C1K M7N 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c6202-b0d090ef0e85a0cd5bcc2429b1be22dfbb650b24994dadc0a7ccd01f50b9523e3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X |
IngestDate | Fri Jul 11 05:35:25 EDT 2025 Fri Jul 11 18:32:50 EDT 2025 Thu Jul 10 18:05:43 EDT 2025 Wed Feb 19 01:46:40 EST 2025 Mon Jul 21 09:14:48 EDT 2025 Tue Jul 01 03:08:52 EDT 2025 Thu Apr 24 23:00:33 EDT 2025 Wed Aug 20 07:26:37 EDT 2025 Thu Jul 03 22:56:15 EDT 2025 Wed Dec 27 19:18:49 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Symbiosis Grassland Stability Nutrition Interspecific association aggregate stability Experimental study Mutualism Glomus temporal variability Soils Plant Sustainable agriculture Mycorrhiza Microorganism microbial diversity Interspecific relation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6202-b0d090ef0e85a0cd5bcc2429b1be22dfbb650b24994dadc0a7ccd01f50b9523e3 |
Notes | http://dx.doi.org/10.1111/j.1469-8137.2006.01862.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1469-8137.2006.01862.x |
PMID | 17096799 |
PQID | 19554509 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_68136093 proquest_miscellaneous_47207759 proquest_miscellaneous_19554509 pubmed_primary_17096799 pascalfrancis_primary_18256285 crossref_citationtrail_10_1111_j_1469_8137_2006_01862_x crossref_primary_10_1111_j_1469_8137_2006_01862_x wiley_primary_10_1111_j_1469_8137_2006_01862_x_NPH1862 jstor_primary_4131215 fao_agris_US201301112653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2006 |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: December 2006 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2006 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Science Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Science – name: Blackwell Publishing Ltd – name: Blackwell |
References | 2004; 164 1992; 120 2002; 154 2000; 3 1997; 85 2004; 7 2004; 162 2002; 11 1989; 111 1988; 77 2006; 171 1991; 117 1999; 80 2003; 157 1996; 33 2003; 12 1971; 8 2001; 294 1991; 47 2005; 143 2000; 289 2000 1997; 188 1998; 202 1996; 379 2003; 84 1996; 2 1965; 29 2001; 51 2001; 413 1988 2004; 101 2004; 82 2006; 56 2002; 296 1993; 81 2002; 133 1987; 328 1994; 45 1998a; 396 2002; 415 1970; 55 1997 1996 2005 2002; 419 2006; 4 2002 2002; 417 1991 1998; 69 1993; 56 1990; 115 1994; 126 2000; 146 2005; 165 2000; 104 2006; 87 2005; 167 1990; 29 2000; 226 2005; 168 1998b; 79 1980; 11 1997; 78 1995; 267 2003; 422 2003; 300 2003; 100 e_1_2_7_5_1 Oldeman LR (e_1_2_7_54_1) 1991 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 Hart M (e_1_2_7_15_1) 2002 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 Jakobsen I (e_1_2_7_28_1) 2002 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Wardle DA (e_1_2_7_75_1) 2002 Smith SE (e_1_2_7_66_1) 1997 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 Law R (e_1_2_7_41_1) 1988 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Read DJ (e_1_2_7_59_1) 2002 |
References_xml | – volume: 167 start-page: 869 year: 2005 end-page: 880 article-title: Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old‐field perennials under low nitrogen supply in glasshouse culture publication-title: New Phytologist – volume: 133 start-page: 54 year: 2002 end-page: 61 article-title: Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra‐specific competition and size distribution publication-title: Oecologia – year: 2005 – volume: 79 start-page: 2082 year: 1998b end-page: 2091 article-title: Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure publication-title: Ecology – volume: 146 start-page: 155 year: 2000 end-page: 161 article-title: Transport of N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 188 start-page: 199 year: 1997 end-page: 209 article-title: Mycorrhizal fungi influence plant and soil functions and interactions publication-title: Plant and Soil – volume: 117 start-page: 365 year: 1991 end-page: 386 article-title: Nutrient supply, nutrient demand and plant response to mycorrhizal infection publication-title: New Phytologist – volume: 154 start-page: 209 year: 2002 end-page: 218 article-title: Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland publication-title: New Phytologist – volume: 104 start-page: 81 year: 2000 end-page: 86 article-title: Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi publication-title: Mycological Research – volume: 7 start-page: 293 year: 2004 end-page: 303 article-title: Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland publication-title: Ecology Letters – start-page: 315 year: 1988 end-page: 341 – volume: 4 start-page: 727 year: 2006 end-page: 731 article-title: Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms publication-title: PLOS Biology – volume: 419 start-page: 389 year: 2002 end-page: 392 article-title: Epiparasitic plants specialized on arbuscular mycorrhizal fungi publication-title: Nature – volume: 162 start-page: 511 year: 2004 end-page: 524 article-title: Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake publication-title: New Phytologist – volume: 11 start-page: 233 year: 1980 end-page: 260 article-title: The mineral nutrition of wild plants publication-title: Annual Review of Ecology and Systematics – volume: 29 start-page: 677 year: 1965 end-page: 678 article-title: Test of an ascorbic acid method for determining phosphorus water and NaHCO extracts from soil publication-title: Soil Science Society Proceedings – volume: 422 start-page: 711 year: 2003 end-page: 713 article-title: Soil invertebrate fauna enhances grassland succession and diversity publication-title: Nature – volume: 115 start-page: 85 year: 1990 end-page: 91 article-title: A test of mycorrhizal benefit in an early successional plant community publication-title: New Phytologist – volume: 267 start-page: 1117 year: 1995 end-page: 1123 article-title: Environmental and economic costs of soil erosion and conservation benefits publication-title: Science – volume: 379 start-page: 718 year: 1996 end-page: 720 article-title: Productivity and sustainability influenced by biodiversity in grassland ecosystems publication-title: Nature – volume: 413 start-page: 297 year: 2001 end-page: 299 article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material publication-title: Nature – start-page: 75 year: 2002 end-page: 92 – volume: 294 start-page: 804 year: 2001 end-page: 808 article-title: Ecology–biodiversity and ecosystem functioning: current knowledge and future challenges publication-title: Science – volume: 328 start-page: 420 year: 1987 end-page: 422 article-title: Floristic diversity in a model system using experimental microcosms publication-title: Nature – volume: 51 start-page: 923 year: 2001 end-page: 931 article-title: Arbuscular mycorrhizal fungi: More diverse than meets the eye, and the ecological tale of why publication-title: Bioscience – volume: 415 start-page: 68 year: 2002 end-page: 71 article-title: Resource‐based niches provide a basis for plant species diversity and dominance in arctic tundra publication-title: Nature – volume: 55 start-page: 158 year: 1970 end-page: 161 article-title: Improved procedure for clearing roots and staining parasitic and vesicular–arbuscular fungi for rapid assessment of infection publication-title: Transactions of the British Mycological Society – year: 1997 – volume: 56 start-page: 178 year: 2006 end-page: 187 article-title: Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland publication-title: FEMS Microbiology Ecology – start-page: 243 year: 2002 end-page: 265 – volume: 56 start-page: 377 year: 1993 end-page: 400 article-title: The role of biology in the formation, stabilization and degradation of soil structure publication-title: Geoderma – volume: 101 start-page: 2369 year: 2004 end-page: 2374 article-title: High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi publication-title: Proceedings of the National Academy of Sciences, USA – volume: 168 start-page: 687 year: 2005 end-page: 696 article-title: The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis publication-title: New Phytologist – volume: 296 start-page: 1694 year: 2002 end-page: 1697 article-title: Soil fertility and biodiversity in organic farming publication-title: Science – volume: 157 start-page: 569 year: 2003 end-page: 578 article-title: Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co‐occurring plants publication-title: New Phytologist – start-page: 225 year: 2002 end-page: 242 – volume: 3 start-page: 137 year: 2000 end-page: 141 article-title: The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity publication-title: Ecology Letters – volume: 80 start-page: 1187 year: 1999 end-page: 1195 article-title: Mycorrhizae influence plant community structure and diversity in tall grass prairie publication-title: Ecology – volume: 84 start-page: 2281 year: 2003 end-page: 2291 article-title: Grassroots ecology: plant–microbe interactions as drivers of plant community structure and dynamics publication-title: Ecology – volume: 85 start-page: 181 year: 1997 end-page: 191 article-title: Clonal growth traits of two species are determined by co‐occurring arbuscular mycorrhizal fungi from a calcareous grassland publication-title: Journal of Ecology – volume: 143 start-page: 232 year: 2005 end-page: 240 article-title: Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms publication-title: Oecologia – volume: 45 start-page: 459 year: 1994 end-page: 468 article-title: The contribution from hyphae, roots and organic carbon constituents to the aggregation of a sandy loam under long‐term clover‐based and grass pastures publication-title: European Journal of Soil Science – volume: 289 start-page: 1920 year: 2000 end-page: 1921 article-title: Glomalean fungi from the Ordovician publication-title: Science – volume: 81 start-page: 787 year: 1993 end-page: 795 article-title: Mycorrhizal influence on intraspecific and interspecific neighbor interactions among co‐occurring prairie grasses publication-title: Journal of Ecology – volume: 84 start-page: 2292 year: 2003 end-page: 2301 article-title: Variation in plant response to native and exotic arbuscular mycorrhizal fungi publication-title: Ecology – year: 1996 – volume: 11 start-page: 2669 year: 2002 end-page: 2678 article-title: Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest publication-title: Molecular Ecology – volume: 202 start-page: 89 year: 1998 end-page: 96 article-title: Soil aggregation status and rhizobacteria in the mycorrhizosphere publication-title: Plant and Soil – volume: 29 start-page: 257 year: 1990 end-page: 265 article-title: The role and ecological significance of vesicular‐arbuscular mycorrhizas in temperate ecosystems publication-title: Agriculture, Ecosystems and Environment – volume: 87 start-page: 1627 year: 2006 end-page: 1636 article-title: Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation publication-title: Ecology – volume: 69 start-page: 253 year: 1998 end-page: 264 article-title: Does organic agriculture reduce soil erodibility? The results of a long‐term field study on loess in Switzerland publication-title: Agriculture, Ecosystems and Environment – start-page: 3 year: 2002 end-page: 29 – volume: 165 start-page: 261 year: 2005 end-page: 271 article-title: Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups publication-title: New Phytologist – volume: 77 start-page: 537 year: 1988 end-page: 543 article-title: Role of mycorrhizal infection in the growth and reproduction of wild vs cultivated plants. 1. wild vs cultivated oats publication-title: Oecologia – volume: 12 start-page: 3085 year: 2003 end-page: 3095 article-title: Co‐existing grass species have distinctive arbuscular mycorrhizal communities publication-title: Molecular Ecology – volume: 8 start-page: 265 year: 1971 end-page: 267 article-title: Measurement of length in random arrangement of lines publication-title: Journal of Applied Ecology – volume: 126 start-page: 119 year: 1994 end-page: 122 article-title: Improved nitrogen uptake and transport from N‐labeled nitrate by external hyphae of arbuscular mycorrhizal under water stressed conditions publication-title: New Phytologist – volume: 82 start-page: 1089 year: 2004 end-page: 1109 article-title: Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? publication-title: Canadian Journal of Botany – volume: 47 start-page: 376 year: 1991 end-page: 391 article-title: Mycorrhizas in ecosystems publication-title: Experientia – volume: 115 start-page: 495 year: 1990 end-page: 501 article-title: A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 120 start-page: 371 year: 1992 end-page: 380 article-title: External hyphae of vesicular–arbuscular mycorrhizal fungi associated with L. I: Spread of hyphae and phosphorus inflow into roots publication-title: New Phytologist – volume: 171 start-page: 41 year: 2006 end-page: 53 article-title: Mycorrhizas and soil structure publication-title: New Phytologist – volume: 2 start-page: 389 year: 1996 end-page: 397 article-title: Effects of elevated CO on model calcareous grasslands: community, species, and genotype level responses publication-title: Global Change Biology – year: 2002 – volume: 300 start-page: 1138 year: 2003 end-page: 1140 article-title: Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C publication-title: Science – volume: 396 start-page: 72 year: 1998a end-page: 75 article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity publication-title: Nature – volume: 33 start-page: 1441 year: 1996 end-page: 1450 article-title: The vegetation N : P ratio: a new tool to detect the nature of nutrient limitation publication-title: Journal of Applied Ecology – volume: 78 start-page: 1312 year: 1997 end-page: 1320 article-title: Blocking factors and hypothesis tests in ecology: is your statistics text wrong? publication-title: Ecology – volume: 111 start-page: 35 year: 1989 end-page: 44 article-title: Appropriate controls for vesicular–arbuscular mycorrhizal research publication-title: New Phytologist – volume: 164 start-page: 357 year: 2004 end-page: 364 article-title: High functional diversity within species of arbuscular mycorrhizal fungi publication-title: New Phytologist – year: 1991 – start-page: 3 year: 2000 end-page: 18 – volume: 226 start-page: 275 year: 2000 end-page: 285 article-title: Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi publication-title: Plant and Soil – volume: 417 start-page: 67 year: 2002 end-page: 70 article-title: Feedback with soil biota contributes to plant rarity and invasiveness in communities publication-title: Nature – volume: 100 start-page: 362 year: 2003 end-page: 372 article-title: Mycorrhizal species identity affects plant community structure and invasion: a microcosm study publication-title: Oikos – ident: e_1_2_7_40_1 doi: 10.1007/BF00377271 – ident: e_1_2_7_44_1 doi: 10.1046/j.1469-8137.2000.00615.x – start-page: 225 volume-title: Mycorrhizal ecology. year: 2002 ident: e_1_2_7_15_1 – ident: e_1_2_7_21_1 doi: 10.1038/23936 – ident: e_1_2_7_17_1 doi: 10.2307/2261676 – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-2745.2005.01000.x – ident: e_1_2_7_56_1 doi: 10.1126/science.267.5201.1117 – ident: e_1_2_7_43_1 doi: 10.1126/science.1064088 – ident: e_1_2_7_18_1 doi: 10.1023/A:1026500810385 – ident: e_1_2_7_57_1 doi: 10.1111/j.1469-8137.2004.01236.x – ident: e_1_2_7_48_1 doi: 10.1038/415068a – ident: e_1_2_7_12_1 doi: 10.1016/0167-8809(90)90268-I – ident: e_1_2_7_71_1 doi: 10.2307/2960650 – ident: e_1_2_7_35_1 doi: 10.1046/j.1461-0248.2000.00131.x – ident: e_1_2_7_63_1 doi: 10.1111/j.1469-8137.2006.01750.x – ident: e_1_2_7_2_1 doi: 10.1023/A:1004301423150 – ident: e_1_2_7_3_1 doi: 10.1093/acprof:oso/9780198525035.001.0001 – ident: e_1_2_7_10_1 doi: 10.1111/j.1365-2389.1994.tb00531.x – ident: e_1_2_7_32_1 doi: 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2 – ident: e_1_2_7_25_1 doi: 10.1038/35095041 – ident: e_1_2_7_30_1 doi: 10.1017/S0953756299001240 – ident: e_1_2_7_16_1 doi: 10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2 – volume-title: Mycorrhizal symbiosis year: 1997 ident: e_1_2_7_66_1 – ident: e_1_2_7_49_1 doi: 10.1007/978-94-017-0776-3_1 – ident: e_1_2_7_50_1 doi: 10.1111/j.1469-8137.2004.01169.x – ident: e_1_2_7_11_1 doi: 10.1007/s00442-002-1022-5 – ident: e_1_2_7_23_1 doi: 10.1046/j.1469-8137.2003.00688.x – ident: e_1_2_7_27_1 doi: 10.1111/j.1469-8137.1992.tb01077.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1574-6941.2006.00086.x – start-page: 315 volume-title: Plant population ecology. year: 1988 ident: e_1_2_7_41_1 – ident: e_1_2_7_31_1 doi: 10.1139/b04-110 – ident: e_1_2_7_72_1 doi: 10.1038/379718a0 – volume-title: Communities and ecosystems: linking the aboveground and belowground components year: 2002 ident: e_1_2_7_75_1 – ident: e_1_2_7_6_1 doi: 10.1038/nature01054 – ident: e_1_2_7_5_1 doi: 10.1641/0006-3568(2001)051[0923:AMFMDT]2.0.CO;2 – start-page: 75 volume-title: Mycorrhizal ecology. year: 2002 ident: e_1_2_7_28_1 – ident: e_1_2_7_74_1 doi: 10.1046/j.1365-294X.2003.01967.x – ident: e_1_2_7_60_1 doi: 10.1126/science.289.5486.1920 – ident: e_1_2_7_8_1 doi: 10.1111/j.1365-2745.2005.01043.x – ident: e_1_2_7_37_1 doi: 10.2307/2404783 – ident: e_1_2_7_22_1 doi: 10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2 – ident: e_1_2_7_34_1 doi: 10.1890/02-0413 – ident: e_1_2_7_61_1 doi: 10.1890/02-0298 – ident: e_1_2_7_38_1 doi: 10.1111/j.1469-8137.1991.tb00001.x – ident: e_1_2_7_26_1 doi: 10.1046/j.1365-294X.2002.01647.x – ident: e_1_2_7_55_1 doi: 10.1016/S0007-1536(70)80110-3 – ident: e_1_2_7_7_1 doi: 10.1007/s00442-004-1790-1 – ident: e_1_2_7_46_1 doi: 10.2307/2402144 – ident: e_1_2_7_13_1 doi: 10.1111/j.1469-8137.1990.tb00925.x – ident: e_1_2_7_45_1 doi: 10.1126/science.1071148 – ident: e_1_2_7_20_1 doi: 10.1111/j.1461-0248.2004.00577.x – ident: e_1_2_7_64_1 doi: 10.1023/A:1004271525014 – ident: e_1_2_7_70_1 doi: 10.1371/journal.pbio.0040140 – ident: e_1_2_7_4_1 doi: 10.1002/9781444313765 – ident: e_1_2_7_67_1 doi: 10.1111/j.1469-8137.2004.01039.x – ident: e_1_2_7_73_1 doi: 10.1111/j.1469-8137.1994.tb07536.x – ident: e_1_2_7_52_1 doi: 10.1046/j.1469-8137.2002.00364.x – volume-title: Global Assessment of Soil Degradation – GLASOD. World map of the status of human‐induced soil degradation year: 1991 ident: e_1_2_7_54_1 – ident: e_1_2_7_42_1 doi: 10.1111/j.1365-2486.1996.tb00089.x – ident: e_1_2_7_29_1 doi: 10.1111/j.1469-8137.2005.01536.x – ident: e_1_2_7_19_1 doi: 10.1007/978-3-540-38364-2_10 – ident: e_1_2_7_39_1 doi: 10.1111/j.1469-8137.1989.tb04215.x – ident: e_1_2_7_53_1 doi: 10.1016/0016-7061(93)90123-3 – ident: e_1_2_7_51_1 doi: 10.1890/0012-9658(1997)078[1312:BFAHTI]2.0.CO;2 – ident: e_1_2_7_62_1 doi: 10.1111/j.1469-8137.2005.01455.x – ident: e_1_2_7_58_1 doi: 10.1007/BF01972080 – ident: e_1_2_7_47_1 doi: 10.1111/j.1469-8137.1990.tb00476.x – ident: e_1_2_7_65_1 doi: 10.1016/S0167-8809(98)00113-3 – ident: e_1_2_7_14_1 doi: 10.1038/328420a0 – start-page: 3 volume-title: Mycorrhizal ecology. year: 2002 ident: e_1_2_7_59_1 – ident: e_1_2_7_76_1 doi: 10.2136/sssaj1965.03615995002900060025x – ident: e_1_2_7_69_1 doi: 10.1034/j.1600-0706.2003.12006.x – ident: e_1_2_7_68_1 doi: 10.1126/science.1084269 – ident: e_1_2_7_36_1 doi: 10.1073/pnas.0306441101 – ident: e_1_2_7_9_1 doi: 10.1038/nature01548 |
SSID | ssj0009562 |
Score | 2.3937056 |
Snippet | • Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about... Summary • Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is... Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about... |
SourceID | proquest pubmed pascalfrancis crossref wiley jstor fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 739 |
SubjectTerms | Acid soils aggregate stability Agronomy. Soil science and plant productions Biological and medical sciences Biomass Economic plant physiology Ecosystem ecosystems Fundamental and applied biological sciences. Psychology Glomus Grassland soils grasslands microbial diversity Microcosms mutualism Mycorrhizae - physiology Mycorrhizal fungi nitrogen Nitrogen - metabolism Parasitism and symbiosis phosphorus Phosphorus - metabolism Plant communities plant growth plant nutrition Plant physiology and development Plant roots Plant Roots - metabolism Plant Roots - microbiology Plant Roots - physiology Plants Poaceae - metabolism Poaceae - microbiology Poaceae - physiology Seasons Soil Soil aggregation Soil ecology Soil Microbiology soil structure species diversity sustainable agriculture Symbiosis Symbiosis (nodules, symbiotic nitrogen fixation, mycorrhiza...) Symbiosis - physiology Taxa temporal variability Time Factors total nitrogen vesicular arbuscular mycorrhizae |
Title | mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland |
URI | https://www.jstor.org/stable/4131215 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8137.2006.01862.x https://www.ncbi.nlm.nih.gov/pubmed/17096799 https://www.proquest.com/docview/19554509 https://www.proquest.com/docview/47207759 https://www.proquest.com/docview/68136093 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sCFZ6HhUXzgSFa2N3HiIyCqFRIVAlbam-VnWXWbrPYh0f56ZvLYNlVBFeK2imxnM5mxv4nH30fI2yxGx33IU-aNTDMPMWd4VKkrDS-DLGVsimi-HMvJNPs8y2dd_ROehWn5IXYf3DAymvkaA9zY9fUgx09Y46LbU-CAzkeIJ7F0C_HRN3GFf1eKnpBZZnI2LOq5caDBSnU3mrovWcT6SbMGE8ZW--ImcDrEus1idfSQnPaP2daonI62GztyF9cYIP-PHR6RBx2mpe9bJ3xM7oTqCbn3oQbcef6ULMET6dk5ZLmrn_MLaNdUx3cyW3RT0-UC3i5dttSzjZbFu-5a1UsFUFN5uq7nC9ry3W5Xgc4relWegJ6sIA_AOs19Mj369OPjJO10HlInBUMNIM8UC5GFMjfM-dw6B8hBWW6DED5aCzDSQp6oMm-8Y6ZwzjMe4aKCPDqMn5G9qq7CAaE5l9EL58fRwrJbMBhCGVEGl0ufl44lpOjfqXYdCTpqcSz0IBlSGs2JEp1SN-bUvxLCdz2XLRHILfocgNtocwLztZ5-F7hLzPHMVj5OyH7jS7uxAEwg0UdCDge-dXkvSOXxuGtC3vTOpmEmwO0dU4V6u9ZcATQE_PfnFlkhkPHwLy0kPINkCv7e89aPL-9fQLJbKOgrG2-8tRH08dcJ_nrxrx1fkvuiU4ti_BXZAz8LrwEJbuxhE-O_AZh0Tso |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXaggQbnoUOj9YL2JGR7UmcZMECKNWUtiMEHWl2xs8y6jQZzUN0-mv8Ch_DdR7TpiqoQuqCXRTZTmLfG59rX5-D0KvQOU2NjQJiJA9CAz4nqUsDnUiaWJ5wVyTRHPR4tx9-GkSDFfSzPgtT8kMsF9y8ZxT_a-_gfkH6spf7NaxOXG0qUIDn7dMqw3LPLn5A_DZ9u7sNg_2asZ2Phx-6QSUxEGgOYX-giCEpsY7YJJJEm0hpDZNWqqiyjBmnFCAYBSFKGhppNJGx1oZQBzdTCOFsB9pdRbe8oLgn7t_-wi4w_nJWU0DzkA-aaURXvnljblx1Mq-TJH3GppzCoLlSbeMqONxE18X0uHMf_ao7tsyKOW7PZ6qtzy5xTv6nPf8A3atgO35X-tlDtGKzR-j2-xyg9eIxGoOz4ZMFBPKT78MzKFccAKiUxPAsx-MRGDAel-y6hVzHm-peVqshYJkZPM2HI1xS-s4nFg8zfFGBAR9NINTxqajrqH8jX_sErWV5ZjcQjih3hmnTcQqQRUygiVSyxOqImyjRpIXi2oiErnjevdzISDTivVT44fMqpFwUwydOW4gua45LrpNr1NkAOxXyCKYk0f_K_EY49cfSok4LrRfGu2wL8JLnMmmhzYYxnz8rAfzNEiiwVVu3gJ-d38GSmc3nU0FTQL8Acf9cIoyZJ3X8SwkO38BJCq_3tHSc8-fHEM_HKdTlhflfuxNE73PXXz3714pb6E738GBf7O_29p6ju6wSxyL0BVoDm7MvAfjO1Gbxg8Ho20371W-I467X |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXaghAbnoUOj9YL2JGR7UmcZMECKKMphVEFjDQ742cZdZpE8xCdfhq_ws9wnce0UxVUIXXBLopsJ7Hvtc-1b85B6EXonKbGRgExkgehAZ-T1KWBTiRNLE-4K5NoPvV5bxB-GEbDNfSz-Rem4odYbrh5zyjna-_ghXEXndxvYXXi-kyBAjpvn9QJlvt28QPCt-nrvV0Y65eMdd9_fdcLaoWBQHOI-gNFDEmJdcQmkSTaREprWLNSRZVlzDilAMAoiFDS0EijiYy1NoQ6uJlCBGc70O46uhFyaMUDss_sHOEvZw0DNA_5cDWL6NI3X1ka153MmxxJn7AppzBmrhLbuAwNr4LrcnXs3kW_mn6tkmKO2vOZauvTC5ST_2fH30N3atCO31Redh-t2ewBuvk2B2C9eIgKcDV8vIAwfvJ9dArlyvT_WkcMz3JcjMF8cVFx65ZiHa_qe1mjhYBlZvA0H41xReg7n1g8yvB5_QV8OIFAxyeibqLBtXztI7SR5ZndQjii3BmmTccpwBUxgSZSyRKrI26iRJMWihsbErpmefdiI2OxEu2lwg-f1yDlohw-cdJCdFmzqJhOrlBnC8xUyENYkMTgC_PH4NT_lBZ1WmiztN1lW4CWPJNJC22v2PLZsxJA3yyBAjuNcQuY6vz5lcxsPp8KmgL2BYD75xJhzDyl419KcPgG8FZ4vceV35w9P4ZoPk6hLi-t_8qdIPoHPX_15F8r7qBbB7td8XGvv_8U3Wa1Mhahz9AGmJx9Dqh3prbL6QWjb9ftVr8BteOthg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mycorrhizal+contribution+to+plant+productivity%2C+plant+nutrition+and+soil+structure+in+experimental+grassland&rft.jtitle=The+New+phytologist&rft.au=van+der+Heijden%2C+Marcel+G+A&rft.au=Streitwolf-Engel%2C+Ruth&rft.au=Riedl%2C+Ralph&rft.au=Siegrist%2C+Sabine&rft.date=2006-12-01&rft.issn=0028-646X&rft.volume=172&rft.issue=4&rft.spage=739&rft_id=info:doi/10.1111%2Fj.1469-8137.2006.01862.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |