mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland

• Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil struc...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 172; no. 4; pp. 739 - 752
Main Authors Heijden, Marcel G.A. van der, Streitwolf-Engel, Ruth, Riedl, Ralph, Siegrist, Sabine, Neudecker, Angelica, Ineichen, Kurt, Boller, Thomas, Wiemken, Andres, Sanders, Ian R
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.12.2006
Blackwell Science
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. • We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. • AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. • This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make-up of the plant community.
AbstractList Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make-up of the plant community.
Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make-up of the plant community.Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make-up of the plant community.
Summary •  Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. •  We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. •  AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. •  This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make‐up of the plant community.
• Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. • We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. • AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. • This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make‐up of the plant community.
Author Sanders, Ian R
Streitwolf-Engel, Ruth
Ineichen, Kurt
Heijden, Marcel G.A. van der
Neudecker, Angelica
Riedl, Ralph
Siegrist, Sabine
Wiemken, Andres
Boller, Thomas
Author_xml – sequence: 1
  fullname: Heijden, Marcel G.A. van der
– sequence: 2
  fullname: Streitwolf-Engel, Ruth
– sequence: 3
  fullname: Riedl, Ralph
– sequence: 4
  fullname: Siegrist, Sabine
– sequence: 5
  fullname: Neudecker, Angelica
– sequence: 6
  fullname: Ineichen, Kurt
– sequence: 7
  fullname: Boller, Thomas
– sequence: 8
  fullname: Wiemken, Andres
– sequence: 9
  fullname: Sanders, Ian R
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18256285$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17096799$$D View this record in MEDLINE/PubMed
BookMark eNqNklGP1CAQx4k54-2dfgOjfdEnuw600PKgibmoZ3JRE73EN0KBnmy6sAdUd_300uu6Jr6svECG3__PMDNn6MR5ZxAqMCxxXi9XS1wzXra4apYEgC0Bt4wst_fQ4nBxghYApC1Zzb6dorMYVwDAKSMP0ClugLOG8wUa1jvlQ_huf8mhUN6lYLsxWe-K5IvNIF0qNsHrUSX7w6bdi33MjRm8w6TTRfR2KGIKmRqDKawrzHZjgl0bl7LtTZAxZpl-iO73cojm0X4_R9fv3n69uCyvPr3_cPHmqlSMACk70MDB9GBaKkFp2ilFasI73BlCdN91jEJHas5rLbUC2SilAfc5yCmpTHWOns--OfXb0cQk1jYqM-QcjB-jYLk-DHh1FKwbAk1D-VEQc0prChP4ZA-O3dposclVkGEn_lQ8A8_2gIxKDn2QTtn4l2tJblFLM_d65lTwMQbTC2WTnEqegrSDwCCmURArMXVcTB0X0yiIu1EQ22zQ_mNweOO49NUs_WkHs_tvnfj4-XI6Zf3jWb-KyYeDvsYVJnj62tP5updeyJuQv3_9hQCuILsTRqvqN6uQ4B8
CODEN NEPHAV
CitedBy_id crossref_primary_10_1016_j_pedobi_2010_11_001
crossref_primary_10_3390_app7070692
crossref_primary_10_1007_s13199_012_0186_y
crossref_primary_10_1094_PBIOMES_09_23_0095_R
crossref_primary_10_1111_1462_2920_14882
crossref_primary_10_1007_s11258_019_00953_w
crossref_primary_10_1111_mec_13178
crossref_primary_10_1007_s11104_015_2568_4
crossref_primary_10_1016_j_geoderma_2016_01_039
crossref_primary_10_3390_microorganisms10122399
crossref_primary_10_1007_s40333_014_0046_0
crossref_primary_10_1016_j_sjbs_2020_11_018
crossref_primary_10_1016_j_scienta_2016_04_023
crossref_primary_10_1038_s41598_019_44665_7
crossref_primary_10_1111_j_1469_8137_2007_02041_x
crossref_primary_10_1007_s11104_011_1116_0
crossref_primary_10_37871_jbres1215
crossref_primary_10_1007_s00203_019_01653_9
crossref_primary_10_1111_j_1574_6941_2009_00720_x
crossref_primary_10_1016_j_geoderma_2022_116117
crossref_primary_10_2903_j_efsa_2017_4690
crossref_primary_10_1007_s11104_021_05073_x
crossref_primary_10_1016_j_plantsci_2014_01_009
crossref_primary_10_3389_fpls_2018_00607
crossref_primary_10_1007_s10021_020_00575_8
crossref_primary_10_3389_fpls_2015_00344
crossref_primary_10_1007_s11104_011_0727_9
crossref_primary_10_1016_j_ecoleng_2015_03_007
crossref_primary_10_1002_jpln_201300548
crossref_primary_10_1016_j_funeco_2008_11_001
crossref_primary_10_3390_d12090324
crossref_primary_10_1007_s11104_012_1256_x
crossref_primary_10_3389_fmicb_2018_02327
crossref_primary_10_1111_nph_15158
crossref_primary_10_3389_fmicb_2019_01106
crossref_primary_10_1016_j_jaridenv_2013_05_019
crossref_primary_10_1111_1365_2745_12249
crossref_primary_10_1111_j_1365_2486_2008_01691_x
crossref_primary_10_1890_10_1915_1
crossref_primary_10_1007_s11104_013_1647_7
crossref_primary_10_1016_j_soilbio_2010_01_006
crossref_primary_10_3923_jps_2007_518_529
crossref_primary_10_1007_s11104_023_06074_8
crossref_primary_10_1111_j_1365_2486_2009_02058_x
crossref_primary_10_1016_j_apsoil_2015_05_012
crossref_primary_10_1016_j_rhisph_2023_100728
crossref_primary_10_1016_j_scitotenv_2021_150122
crossref_primary_10_1016_j_scienta_2015_02_033
crossref_primary_10_1007_s12155_019_10072_z
crossref_primary_10_1080_01904167_2016_1263317
crossref_primary_10_1016_j_scienta_2015_09_021
crossref_primary_10_1111_j_1744_7348_2008_00286_x
crossref_primary_10_1016_j_tplants_2015_03_004
crossref_primary_10_1111_jvs_12640
crossref_primary_10_1016_j_foreco_2020_118367
crossref_primary_10_1016_j_apsoil_2011_10_001
crossref_primary_10_1016_j_apsoil_2021_104325
crossref_primary_10_1111_pce_13442
crossref_primary_10_1080_01904167_2020_1766075
crossref_primary_10_1007_s40626_021_00208_y
crossref_primary_10_1016_j_funeco_2023_101225
crossref_primary_10_1093_jpe_rtac045
crossref_primary_10_1104_pp_107_111898
crossref_primary_10_1002_ppp3_10600
crossref_primary_10_1007_s00442_014_3089_1
crossref_primary_10_1111_nph_20048
crossref_primary_10_1038_s41564_023_01520_w
crossref_primary_10_1111_nph_15010
crossref_primary_10_1016_j_flora_2021_151845
crossref_primary_10_1007_s11104_007_9290_9
crossref_primary_10_1007_s10021_021_00689_7
crossref_primary_10_5424_sjar_20110904_307_10
crossref_primary_10_3389_fevo_2023_1224849
crossref_primary_10_1007_s00344_017_9712_8
crossref_primary_10_1016_j_agee_2017_08_010
crossref_primary_10_1016_j_jia_2023_09_011
crossref_primary_10_1007_s00374_011_0576_y
crossref_primary_10_1016_j_apsoil_2011_02_005
crossref_primary_10_1016_j_plaphy_2014_06_002
crossref_primary_10_1007_s11104_013_1625_0
crossref_primary_10_1016_j_soilbio_2010_09_029
crossref_primary_10_1016_j_soilbio_2009_08_016
crossref_primary_10_1007_s13199_011_0141_3
crossref_primary_10_1590_0103_8478cr20180361
crossref_primary_10_3390_ijms17060930
crossref_primary_10_1111_nph_12372
crossref_primary_10_1186_s40168_018_0434_3
crossref_primary_10_1016_j_rhisph_2019_100178
crossref_primary_10_1016_j_soilbio_2013_12_019
crossref_primary_10_1128_AEM_00262_07
crossref_primary_10_1038_s41467_021_24714_4
crossref_primary_10_1111_jvs_12944
crossref_primary_10_1002_ldr_3491
crossref_primary_10_1002_ldr_3372
crossref_primary_10_1002_ecs2_2999
crossref_primary_10_1007_s11258_008_9427_9
crossref_primary_10_1007_s11104_008_9753_7
crossref_primary_10_1007_s11104_024_06927_w
crossref_primary_10_1016_j_rhisph_2022_100510
crossref_primary_10_1093_femsec_fiv078
crossref_primary_10_1007_s11104_022_05534_x
crossref_primary_10_1111_nph_19792
crossref_primary_10_1007_s00572_012_0465_8
crossref_primary_10_1016_j_soilbio_2014_10_016
crossref_primary_10_1139_cjfr_2023_0288
crossref_primary_10_3390_plants11172187
crossref_primary_10_1111_pce_12102
crossref_primary_10_1016_j_soilbio_2021_108465
crossref_primary_10_1038_ismej_2013_224
crossref_primary_10_3390_agronomy9010033
crossref_primary_10_1093_jpe_rtp015
crossref_primary_10_1007_s00572_016_0739_7
crossref_primary_10_3852_08_176
crossref_primary_10_1007_s00572_019_00926_x
crossref_primary_10_1007_s11356_016_6941_5
crossref_primary_10_1007_s11104_022_05380_x
crossref_primary_10_1016_j_apsoil_2016_02_006
crossref_primary_10_3390_jof9090870
crossref_primary_10_1007_s11104_014_2060_6
crossref_primary_10_1007_s00248_019_01475_8
crossref_primary_10_1111_lam_12084
crossref_primary_10_1093_femsec_fiad080
crossref_primary_10_1155_2014_562797
crossref_primary_10_3390_plants11202795
crossref_primary_10_1071_FP07061
crossref_primary_10_1111_nph_13206
crossref_primary_10_1002_eap_2047
crossref_primary_10_3390_plants12051048
crossref_primary_10_1016_j_baae_2021_01_005
crossref_primary_10_1002_jsfa_6565
crossref_primary_10_1016_j_soilbio_2019_03_025
crossref_primary_10_3923_ajcs_2015_233_243
crossref_primary_10_1016_j_ecolind_2021_107792
crossref_primary_10_1016_j_apsoil_2014_10_017
crossref_primary_10_1007_s00442_014_3091_7
crossref_primary_10_1007_s11104_011_0828_5
crossref_primary_10_1007_s11104_020_04746_3
crossref_primary_10_1111_ele_13947
crossref_primary_10_3389_fpls_2023_1084218
crossref_primary_10_1016_j_scitotenv_2016_07_185
crossref_primary_10_1016_j_soilbio_2015_11_019
crossref_primary_10_1016_j_jtemb_2020_126594
crossref_primary_10_1016_S1002_0160_11_60193_8
crossref_primary_10_1007_s11284_016_1356_9
crossref_primary_10_1155_2014_531824
crossref_primary_10_1080_13416979_2022_2108657
crossref_primary_10_5338_KJEA_2010_29_4_408
crossref_primary_10_1016_j_apsoil_2022_104795
crossref_primary_10_1002_ecy_3727
crossref_primary_10_1016_j_still_2012_01_001
crossref_primary_10_3390_microorganisms9010081
crossref_primary_10_1007_s00572_014_0609_0
crossref_primary_10_3389_fevo_2022_833389
crossref_primary_10_7717_peerj_17138
crossref_primary_10_1111_j_1469_8137_2009_03058_x
crossref_primary_10_1111_1365_2745_12773
crossref_primary_10_3390_f14122402
crossref_primary_10_1007_s00572_009_0237_2
crossref_primary_10_1007_s00248_020_01557_y
crossref_primary_10_1007_s11104_019_04137_3
crossref_primary_10_1038_s41396_019_0350_y
crossref_primary_10_1186_s12870_022_03795_3
crossref_primary_10_1098_rspb_2011_1550
crossref_primary_10_1016_j_rhisph_2021_100414
crossref_primary_10_1093_plcell_koac225
crossref_primary_10_1080_17429140902947010
crossref_primary_10_1016_j_funeco_2018_02_002
crossref_primary_10_1002_jsfa_8606
crossref_primary_10_1038_s41598_019_45702_1
crossref_primary_10_1007_s00442_011_2037_6
crossref_primary_10_1016_j_soilbio_2015_09_021
crossref_primary_10_1094_PHYTOFR_09_23_0119_R
crossref_primary_10_1016_j_scitotenv_2019_135744
crossref_primary_10_3390_jof11020117
crossref_primary_10_1016_j_apsoil_2016_09_018
crossref_primary_10_2111_REM_D_11_00016_1
crossref_primary_10_1007_s40333_016_0027_6
crossref_primary_10_1016_j_pedobi_2013_07_003
crossref_primary_10_1093_femsec_fiy092
crossref_primary_10_1016_j_jaridenv_2011_06_001
crossref_primary_10_1007_s11104_016_3054_3
crossref_primary_10_1016_j_rsci_2018_02_006
crossref_primary_10_1111_een_12022
crossref_primary_10_1007_s00572_015_0627_6
crossref_primary_10_1111_1365_2745_13521
crossref_primary_10_1002_ecy_2850
crossref_primary_10_1016_j_scienta_2009_06_025
crossref_primary_10_1111_j_1461_0248_2007_01139_x
crossref_primary_10_1007_s00425_012_1677_z
crossref_primary_10_1111_nph_15786
crossref_primary_10_5897_AJPS2016_1498
crossref_primary_10_1007_s00442_022_05253_1
crossref_primary_10_1016_j_apsoil_2020_103591
crossref_primary_10_1016_j_jenvman_2023_119509
crossref_primary_10_1016_j_apsoil_2014_05_007
crossref_primary_10_1111_1365_2664_12939
crossref_primary_10_18619_2072_9146_2018_3_93_98
crossref_primary_10_1016_j_apsoil_2017_12_025
crossref_primary_10_1111_j_1469_8137_2009_03040_x
crossref_primary_10_1007_s11104_024_06861_x
crossref_primary_10_51758_AGJSR_01_2014_0005
crossref_primary_10_1016_j_apsoil_2016_10_015
crossref_primary_10_1007_s11104_009_0202_z
crossref_primary_10_18006_2017_5_2__235_241
crossref_primary_10_1016_j_still_2015_07_009
crossref_primary_10_1016_j_geoderma_2019_01_036
crossref_primary_10_1016_j_funeco_2019_100902
crossref_primary_10_1007_s11104_016_2850_0
crossref_primary_10_1111_j_1365_2745_2007_01244_x
crossref_primary_10_1016_j_pedobi_2013_03_006
crossref_primary_10_1007_s00572_023_01126_4
crossref_primary_10_1016_j_scitotenv_2020_136976
crossref_primary_10_1002_jpln_200900204
crossref_primary_10_1016_j_baae_2018_07_002
crossref_primary_10_3389_fpls_2017_01809
crossref_primary_10_1007_s00253_015_6487_3
crossref_primary_10_1016_j_scitotenv_2018_06_379
crossref_primary_10_1007_s00442_012_2363_3
crossref_primary_10_1016_j_funeco_2019_07_010
crossref_primary_10_3390_horticulturae7100395
crossref_primary_10_4236_ojss_2021_114012
crossref_primary_10_1016_j_soilbio_2011_10_008
crossref_primary_10_1016_j_soilbio_2020_107922
crossref_primary_10_1007_s11104_012_1321_5
crossref_primary_10_1016_j_ejsobi_2020_103272
crossref_primary_10_1146_annurev_ento_54_110807_090614
crossref_primary_10_1016_j_indcrop_2018_02_087
crossref_primary_10_1007_s11104_020_04440_4
crossref_primary_10_1016_j_ecoleng_2023_106895
crossref_primary_10_1007_s11104_020_04825_5
crossref_primary_10_1007_s00572_010_0344_0
crossref_primary_10_3389_fpls_2020_00760
crossref_primary_10_1007_s13593_018_0545_z
crossref_primary_10_1111_jvs_13082
crossref_primary_10_1111_j_1365_3040_2009_01983_x
crossref_primary_10_1080_17429145_2022_2120212
crossref_primary_10_1016_j_soilbio_2016_04_024
crossref_primary_10_1016_j_funeco_2022_101211
crossref_primary_10_1186_s12862_021_01928_0
crossref_primary_10_1111_nph_15119
crossref_primary_10_1093_femsec_fiz020
crossref_primary_10_1016_j_myc_2012_12_005
crossref_primary_10_1016_j_rhisph_2021_100405
crossref_primary_10_1016_j_soilbio_2024_109605
crossref_primary_10_17221_676_2011_PSE
crossref_primary_10_3389_fpls_2017_00931
crossref_primary_10_1088_1755_1315_1045_1_012087
crossref_primary_10_3390_rs15215212
crossref_primary_10_1016_j_soilbio_2015_07_007
crossref_primary_10_1016_j_mimet_2012_04_010
crossref_primary_10_1093_pcp_pcy094
crossref_primary_10_1016_j_rhisph_2023_100775
crossref_primary_10_1111_j_1461_0248_2011_01666_x
crossref_primary_10_3390_microorganisms12071281
crossref_primary_10_1371_journal_pone_0027825
crossref_primary_10_1080_00103624_2013_848284
crossref_primary_10_1016_j_soilbio_2011_09_011
crossref_primary_10_1071_FP18327
crossref_primary_10_1080_07352689_2011_605741
crossref_primary_10_5423_PPJ_SI_07_2012_0111
crossref_primary_10_1016_S1002_0160_14_60086_2
crossref_primary_10_1093_jpe_rtw066
crossref_primary_10_1007_s42729_023_01372_7
crossref_primary_10_1088_1755_1315_743_1_012029
crossref_primary_10_1038_srep24749
crossref_primary_10_1016_j_soilbio_2010_08_027
crossref_primary_10_4236_oje_2014_46028
crossref_primary_10_1038_ismej_2015_116
crossref_primary_10_1016_j_apsoil_2021_104012
crossref_primary_10_3923_ijss_2016_108_122
crossref_primary_10_3389_fmicb_2023_1196101
crossref_primary_10_3923_pjbs_2015_1_10
crossref_primary_10_1016_j_scienta_2012_09_018
crossref_primary_10_3390_agriculture12101598
crossref_primary_10_1007_s11104_014_2162_1
crossref_primary_10_1007_s00572_021_01031_8
crossref_primary_10_1111_oik_02351
Cites_doi 10.1007/BF00377271
10.1046/j.1469-8137.2000.00615.x
10.1038/23936
10.2307/2261676
10.1111/j.1365-2745.2005.01000.x
10.1126/science.267.5201.1117
10.1126/science.1064088
10.1023/A:1026500810385
10.1111/j.1469-8137.2004.01236.x
10.1038/415068a
10.1016/0167-8809(90)90268-I
10.2307/2960650
10.1046/j.1461-0248.2000.00131.x
10.1111/j.1469-8137.2006.01750.x
10.1023/A:1004301423150
10.1093/acprof:oso/9780198525035.001.0001
10.1111/j.1365-2389.1994.tb00531.x
10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2
10.1038/35095041
10.1017/S0953756299001240
10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2
10.1007/978-94-017-0776-3_1
10.1111/j.1469-8137.2004.01169.x
10.1007/s00442-002-1022-5
10.1046/j.1469-8137.2003.00688.x
10.1111/j.1469-8137.1992.tb01077.x
10.1111/j.1574-6941.2006.00086.x
10.1139/b04-110
10.1038/379718a0
10.1038/nature01054
10.1641/0006-3568(2001)051[0923:AMFMDT]2.0.CO;2
10.1046/j.1365-294X.2003.01967.x
10.1126/science.289.5486.1920
10.1111/j.1365-2745.2005.01043.x
10.2307/2404783
10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2
10.1890/02-0413
10.1890/02-0298
10.1111/j.1469-8137.1991.tb00001.x
10.1046/j.1365-294X.2002.01647.x
10.1016/S0007-1536(70)80110-3
10.1007/s00442-004-1790-1
10.2307/2402144
10.1111/j.1469-8137.1990.tb00925.x
10.1126/science.1071148
10.1111/j.1461-0248.2004.00577.x
10.1023/A:1004271525014
10.1371/journal.pbio.0040140
10.1002/9781444313765
10.1111/j.1469-8137.2004.01039.x
10.1111/j.1469-8137.1994.tb07536.x
10.1046/j.1469-8137.2002.00364.x
10.1111/j.1365-2486.1996.tb00089.x
10.1111/j.1469-8137.2005.01536.x
10.1007/978-3-540-38364-2_10
10.1111/j.1469-8137.1989.tb04215.x
10.1016/0016-7061(93)90123-3
10.1890/0012-9658(1997)078[1312:BFAHTI]2.0.CO;2
10.1111/j.1469-8137.2005.01455.x
10.1007/BF01972080
10.1111/j.1469-8137.1990.tb00476.x
10.1016/S0167-8809(98)00113-3
10.1038/328420a0
10.2136/sssaj1965.03615995002900060025x
10.1034/j.1600-0706.2003.12006.x
10.1126/science.1084269
10.1073/pnas.0306441101
10.1038/nature01548
ContentType Journal Article
Copyright Copyright 2006 New Phytologist
2007 INIST-CNRS
Copyright_xml – notice: Copyright 2006 New Phytologist
– notice: 2007 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
C1K
M7N
7S9
L.6
7X8
DOI 10.1111/j.1469-8137.2006.01862.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Environmental Sciences and Pollution Management
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Ecology Abstracts

AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 752
ExternalDocumentID 17096799
18256285
10_1111_j_1469_8137_2006_01862_x
NPH1862
4131215
US201301112653
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABLJU
ABPLY
ABPTK
ABPVW
ABTLG
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFMIJ
AFPWT
AFVGU
AFZJQ
AGJLS
AGUYK
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LW7
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
79B
AAHBH
AAHQN
AAMMB
AAMNL
AAYCA
ABSQW
ABVKB
ABXSQ
ACHIC
AEFGJ
AEYWJ
AFWVQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
HGLYW
IPSME
OIG
ABGDZ
ADXHL
AGHNM
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7SN
C1K
M7N
7S9
L.6
7X8
ID FETCH-LOGICAL-c6202-b0d090ef0e85a0cd5bcc2429b1be22dfbb650b24994dadc0a7ccd01f50b9523e3
IEDL.DBID DR2
ISSN 0028-646X
IngestDate Fri Jul 11 05:35:25 EDT 2025
Fri Jul 11 18:32:50 EDT 2025
Thu Jul 10 18:05:43 EDT 2025
Wed Feb 19 01:46:40 EST 2025
Mon Jul 21 09:14:48 EDT 2025
Tue Jul 01 03:08:52 EDT 2025
Thu Apr 24 23:00:33 EDT 2025
Wed Aug 20 07:26:37 EDT 2025
Thu Jul 03 22:56:15 EDT 2025
Wed Dec 27 19:18:49 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Symbiosis
Grassland
Stability
Nutrition
Interspecific association
aggregate stability
Experimental study
Mutualism
Glomus
temporal variability
Soils
Plant
Sustainable agriculture
Mycorrhiza
Microorganism
microbial diversity
Interspecific relation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6202-b0d090ef0e85a0cd5bcc2429b1be22dfbb650b24994dadc0a7ccd01f50b9523e3
Notes http://dx.doi.org/10.1111/j.1469-8137.2006.01862.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1469-8137.2006.01862.x
PMID 17096799
PQID 19554509
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_68136093
proquest_miscellaneous_47207759
proquest_miscellaneous_19554509
pubmed_primary_17096799
pascalfrancis_primary_18256285
crossref_citationtrail_10_1111_j_1469_8137_2006_01862_x
crossref_primary_10_1111_j_1469_8137_2006_01862_x
wiley_primary_10_1111_j_1469_8137_2006_01862_x_NPH1862
jstor_primary_4131215
fao_agris_US201301112653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2006
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: December 2006
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2006
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Science
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Science
– name: Blackwell Publishing Ltd
– name: Blackwell
References 2004; 164
1992; 120
2002; 154
2000; 3
1997; 85
2004; 7
2004; 162
2002; 11
1989; 111
1988; 77
2006; 171
1991; 117
1999; 80
2003; 157
1996; 33
2003; 12
1971; 8
2001; 294
1991; 47
2005; 143
2000; 289
2000
1997; 188
1998; 202
1996; 379
2003; 84
1996; 2
1965; 29
2001; 51
2001; 413
1988
2004; 101
2004; 82
2006; 56
2002; 296
1993; 81
2002; 133
1987; 328
1994; 45
1998a; 396
2002; 415
1970; 55
1997
1996
2005
2002; 419
2006; 4
2002
2002; 417
1991
1998; 69
1993; 56
1990; 115
1994; 126
2000; 146
2005; 165
2000; 104
2006; 87
2005; 167
1990; 29
2000; 226
2005; 168
1998b; 79
1980; 11
1997; 78
1995; 267
2003; 422
2003; 300
2003; 100
e_1_2_7_5_1
Oldeman LR (e_1_2_7_54_1) 1991
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
Hart M (e_1_2_7_15_1) 2002
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Jakobsen I (e_1_2_7_28_1) 2002
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Wardle DA (e_1_2_7_75_1) 2002
Smith SE (e_1_2_7_66_1) 1997
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
Law R (e_1_2_7_41_1) 1988
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Read DJ (e_1_2_7_59_1) 2002
References_xml – volume: 167
  start-page: 869
  year: 2005
  end-page: 880
  article-title: Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old‐field perennials under low nitrogen supply in glasshouse culture
  publication-title: New Phytologist
– volume: 133
  start-page: 54
  year: 2002
  end-page: 61
  article-title: Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra‐specific competition and size distribution
  publication-title: Oecologia
– year: 2005
– volume: 79
  start-page: 2082
  year: 1998b
  end-page: 2091
  article-title: Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure
  publication-title: Ecology
– volume: 146
  start-page: 155
  year: 2000
  end-page: 161
  article-title: Transport of N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 188
  start-page: 199
  year: 1997
  end-page: 209
  article-title: Mycorrhizal fungi influence plant and soil functions and interactions
  publication-title: Plant and Soil
– volume: 117
  start-page: 365
  year: 1991
  end-page: 386
  article-title: Nutrient supply, nutrient demand and plant response to mycorrhizal infection
  publication-title: New Phytologist
– volume: 154
  start-page: 209
  year: 2002
  end-page: 218
  article-title: Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland
  publication-title: New Phytologist
– volume: 104
  start-page: 81
  year: 2000
  end-page: 86
  article-title: Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi
  publication-title: Mycological Research
– volume: 7
  start-page: 293
  year: 2004
  end-page: 303
  article-title: Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland
  publication-title: Ecology Letters
– start-page: 315
  year: 1988
  end-page: 341
– volume: 4
  start-page: 727
  year: 2006
  end-page: 731
  article-title: Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms
  publication-title: PLOS Biology
– volume: 419
  start-page: 389
  year: 2002
  end-page: 392
  article-title: Epiparasitic plants specialized on arbuscular mycorrhizal fungi
  publication-title: Nature
– volume: 162
  start-page: 511
  year: 2004
  end-page: 524
  article-title: Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake
  publication-title: New Phytologist
– volume: 11
  start-page: 233
  year: 1980
  end-page: 260
  article-title: The mineral nutrition of wild plants
  publication-title: Annual Review of Ecology and Systematics
– volume: 29
  start-page: 677
  year: 1965
  end-page: 678
  article-title: Test of an ascorbic acid method for determining phosphorus water and NaHCO extracts from soil
  publication-title: Soil Science Society Proceedings
– volume: 422
  start-page: 711
  year: 2003
  end-page: 713
  article-title: Soil invertebrate fauna enhances grassland succession and diversity
  publication-title: Nature
– volume: 115
  start-page: 85
  year: 1990
  end-page: 91
  article-title: A test of mycorrhizal benefit in an early successional plant community
  publication-title: New Phytologist
– volume: 267
  start-page: 1117
  year: 1995
  end-page: 1123
  article-title: Environmental and economic costs of soil erosion and conservation benefits
  publication-title: Science
– volume: 379
  start-page: 718
  year: 1996
  end-page: 720
  article-title: Productivity and sustainability influenced by biodiversity in grassland ecosystems
  publication-title: Nature
– volume: 413
  start-page: 297
  year: 2001
  end-page: 299
  article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material
  publication-title: Nature
– start-page: 75
  year: 2002
  end-page: 92
– volume: 294
  start-page: 804
  year: 2001
  end-page: 808
  article-title: Ecology–biodiversity and ecosystem functioning: current knowledge and future challenges
  publication-title: Science
– volume: 328
  start-page: 420
  year: 1987
  end-page: 422
  article-title: Floristic diversity in a model system using experimental microcosms
  publication-title: Nature
– volume: 51
  start-page: 923
  year: 2001
  end-page: 931
  article-title: Arbuscular mycorrhizal fungi: More diverse than meets the eye, and the ecological tale of why
  publication-title: Bioscience
– volume: 415
  start-page: 68
  year: 2002
  end-page: 71
  article-title: Resource‐based niches provide a basis for plant species diversity and dominance in arctic tundra
  publication-title: Nature
– volume: 55
  start-page: 158
  year: 1970
  end-page: 161
  article-title: Improved procedure for clearing roots and staining parasitic and vesicular–arbuscular fungi for rapid assessment of infection
  publication-title: Transactions of the British Mycological Society
– year: 1997
– volume: 56
  start-page: 178
  year: 2006
  end-page: 187
  article-title: Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland
  publication-title: FEMS Microbiology Ecology
– start-page: 243
  year: 2002
  end-page: 265
– volume: 56
  start-page: 377
  year: 1993
  end-page: 400
  article-title: The role of biology in the formation, stabilization and degradation of soil structure
  publication-title: Geoderma
– volume: 101
  start-page: 2369
  year: 2004
  end-page: 2374
  article-title: High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 168
  start-page: 687
  year: 2005
  end-page: 696
  article-title: The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis
  publication-title: New Phytologist
– volume: 296
  start-page: 1694
  year: 2002
  end-page: 1697
  article-title: Soil fertility and biodiversity in organic farming
  publication-title: Science
– volume: 157
  start-page: 569
  year: 2003
  end-page: 578
  article-title: Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co‐occurring plants
  publication-title: New Phytologist
– start-page: 225
  year: 2002
  end-page: 242
– volume: 3
  start-page: 137
  year: 2000
  end-page: 141
  article-title: The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity
  publication-title: Ecology Letters
– volume: 80
  start-page: 1187
  year: 1999
  end-page: 1195
  article-title: Mycorrhizae influence plant community structure and diversity in tall grass prairie
  publication-title: Ecology
– volume: 84
  start-page: 2281
  year: 2003
  end-page: 2291
  article-title: Grassroots ecology: plant–microbe interactions as drivers of plant community structure and dynamics
  publication-title: Ecology
– volume: 85
  start-page: 181
  year: 1997
  end-page: 191
  article-title: Clonal growth traits of two species are determined by co‐occurring arbuscular mycorrhizal fungi from a calcareous grassland
  publication-title: Journal of Ecology
– volume: 143
  start-page: 232
  year: 2005
  end-page: 240
  article-title: Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms
  publication-title: Oecologia
– volume: 45
  start-page: 459
  year: 1994
  end-page: 468
  article-title: The contribution from hyphae, roots and organic carbon constituents to the aggregation of a sandy loam under long‐term clover‐based and grass pastures
  publication-title: European Journal of Soil Science
– volume: 289
  start-page: 1920
  year: 2000
  end-page: 1921
  article-title: Glomalean fungi from the Ordovician
  publication-title: Science
– volume: 81
  start-page: 787
  year: 1993
  end-page: 795
  article-title: Mycorrhizal influence on intraspecific and interspecific neighbor interactions among co‐occurring prairie grasses
  publication-title: Journal of Ecology
– volume: 84
  start-page: 2292
  year: 2003
  end-page: 2301
  article-title: Variation in plant response to native and exotic arbuscular mycorrhizal fungi
  publication-title: Ecology
– year: 1996
– volume: 11
  start-page: 2669
  year: 2002
  end-page: 2678
  article-title: Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest
  publication-title: Molecular Ecology
– volume: 202
  start-page: 89
  year: 1998
  end-page: 96
  article-title: Soil aggregation status and rhizobacteria in the mycorrhizosphere
  publication-title: Plant and Soil
– volume: 29
  start-page: 257
  year: 1990
  end-page: 265
  article-title: The role and ecological significance of vesicular‐arbuscular mycorrhizas in temperate ecosystems
  publication-title: Agriculture, Ecosystems and Environment
– volume: 87
  start-page: 1627
  year: 2006
  end-page: 1636
  article-title: Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation
  publication-title: Ecology
– volume: 69
  start-page: 253
  year: 1998
  end-page: 264
  article-title: Does organic agriculture reduce soil erodibility? The results of a long‐term field study on loess in Switzerland
  publication-title: Agriculture, Ecosystems and Environment
– start-page: 3
  year: 2002
  end-page: 29
– volume: 165
  start-page: 261
  year: 2005
  end-page: 271
  article-title: Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups
  publication-title: New Phytologist
– volume: 77
  start-page: 537
  year: 1988
  end-page: 543
  article-title: Role of mycorrhizal infection in the growth and reproduction of wild vs cultivated plants. 1. wild vs cultivated oats
  publication-title: Oecologia
– volume: 12
  start-page: 3085
  year: 2003
  end-page: 3095
  article-title: Co‐existing grass species have distinctive arbuscular mycorrhizal communities
  publication-title: Molecular Ecology
– volume: 8
  start-page: 265
  year: 1971
  end-page: 267
  article-title: Measurement of length in random arrangement of lines
  publication-title: Journal of Applied Ecology
– volume: 126
  start-page: 119
  year: 1994
  end-page: 122
  article-title: Improved nitrogen uptake and transport from N‐labeled nitrate by external hyphae of arbuscular mycorrhizal under water stressed conditions
  publication-title: New Phytologist
– volume: 82
  start-page: 1089
  year: 2004
  end-page: 1109
  article-title: Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms?
  publication-title: Canadian Journal of Botany
– volume: 47
  start-page: 376
  year: 1991
  end-page: 391
  article-title: Mycorrhizas in ecosystems
  publication-title: Experientia
– volume: 115
  start-page: 495
  year: 1990
  end-page: 501
  article-title: A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 120
  start-page: 371
  year: 1992
  end-page: 380
  article-title: External hyphae of vesicular–arbuscular mycorrhizal fungi associated with L. I: Spread of hyphae and phosphorus inflow into roots
  publication-title: New Phytologist
– volume: 171
  start-page: 41
  year: 2006
  end-page: 53
  article-title: Mycorrhizas and soil structure
  publication-title: New Phytologist
– volume: 2
  start-page: 389
  year: 1996
  end-page: 397
  article-title: Effects of elevated CO on model calcareous grasslands: community, species, and genotype level responses
  publication-title: Global Change Biology
– year: 2002
– volume: 300
  start-page: 1138
  year: 2003
  end-page: 1140
  article-title: Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C
  publication-title: Science
– volume: 396
  start-page: 72
  year: 1998a
  end-page: 75
  article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity
  publication-title: Nature
– volume: 33
  start-page: 1441
  year: 1996
  end-page: 1450
  article-title: The vegetation N : P ratio: a new tool to detect the nature of nutrient limitation
  publication-title: Journal of Applied Ecology
– volume: 78
  start-page: 1312
  year: 1997
  end-page: 1320
  article-title: Blocking factors and hypothesis tests in ecology: is your statistics text wrong?
  publication-title: Ecology
– volume: 111
  start-page: 35
  year: 1989
  end-page: 44
  article-title: Appropriate controls for vesicular–arbuscular mycorrhizal research
  publication-title: New Phytologist
– volume: 164
  start-page: 357
  year: 2004
  end-page: 364
  article-title: High functional diversity within species of arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– year: 1991
– start-page: 3
  year: 2000
  end-page: 18
– volume: 226
  start-page: 275
  year: 2000
  end-page: 285
  article-title: Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi
  publication-title: Plant and Soil
– volume: 417
  start-page: 67
  year: 2002
  end-page: 70
  article-title: Feedback with soil biota contributes to plant rarity and invasiveness in communities
  publication-title: Nature
– volume: 100
  start-page: 362
  year: 2003
  end-page: 372
  article-title: Mycorrhizal species identity affects plant community structure and invasion: a microcosm study
  publication-title: Oikos
– ident: e_1_2_7_40_1
  doi: 10.1007/BF00377271
– ident: e_1_2_7_44_1
  doi: 10.1046/j.1469-8137.2000.00615.x
– start-page: 225
  volume-title: Mycorrhizal ecology.
  year: 2002
  ident: e_1_2_7_15_1
– ident: e_1_2_7_21_1
  doi: 10.1038/23936
– ident: e_1_2_7_17_1
  doi: 10.2307/2261676
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1365-2745.2005.01000.x
– ident: e_1_2_7_56_1
  doi: 10.1126/science.267.5201.1117
– ident: e_1_2_7_43_1
  doi: 10.1126/science.1064088
– ident: e_1_2_7_18_1
  doi: 10.1023/A:1026500810385
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1469-8137.2004.01236.x
– ident: e_1_2_7_48_1
  doi: 10.1038/415068a
– ident: e_1_2_7_12_1
  doi: 10.1016/0167-8809(90)90268-I
– ident: e_1_2_7_71_1
  doi: 10.2307/2960650
– ident: e_1_2_7_35_1
  doi: 10.1046/j.1461-0248.2000.00131.x
– ident: e_1_2_7_63_1
  doi: 10.1111/j.1469-8137.2006.01750.x
– ident: e_1_2_7_2_1
  doi: 10.1023/A:1004301423150
– ident: e_1_2_7_3_1
  doi: 10.1093/acprof:oso/9780198525035.001.0001
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1365-2389.1994.tb00531.x
– ident: e_1_2_7_32_1
  doi: 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2
– ident: e_1_2_7_25_1
  doi: 10.1038/35095041
– ident: e_1_2_7_30_1
  doi: 10.1017/S0953756299001240
– ident: e_1_2_7_16_1
  doi: 10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2
– volume-title: Mycorrhizal symbiosis
  year: 1997
  ident: e_1_2_7_66_1
– ident: e_1_2_7_49_1
  doi: 10.1007/978-94-017-0776-3_1
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1469-8137.2004.01169.x
– ident: e_1_2_7_11_1
  doi: 10.1007/s00442-002-1022-5
– ident: e_1_2_7_23_1
  doi: 10.1046/j.1469-8137.2003.00688.x
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1469-8137.1992.tb01077.x
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1574-6941.2006.00086.x
– start-page: 315
  volume-title: Plant population ecology.
  year: 1988
  ident: e_1_2_7_41_1
– ident: e_1_2_7_31_1
  doi: 10.1139/b04-110
– ident: e_1_2_7_72_1
  doi: 10.1038/379718a0
– volume-title: Communities and ecosystems: linking the aboveground and belowground components
  year: 2002
  ident: e_1_2_7_75_1
– ident: e_1_2_7_6_1
  doi: 10.1038/nature01054
– ident: e_1_2_7_5_1
  doi: 10.1641/0006-3568(2001)051[0923:AMFMDT]2.0.CO;2
– start-page: 75
  volume-title: Mycorrhizal ecology.
  year: 2002
  ident: e_1_2_7_28_1
– ident: e_1_2_7_74_1
  doi: 10.1046/j.1365-294X.2003.01967.x
– ident: e_1_2_7_60_1
  doi: 10.1126/science.289.5486.1920
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1365-2745.2005.01043.x
– ident: e_1_2_7_37_1
  doi: 10.2307/2404783
– ident: e_1_2_7_22_1
  doi: 10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2
– ident: e_1_2_7_34_1
  doi: 10.1890/02-0413
– ident: e_1_2_7_61_1
  doi: 10.1890/02-0298
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1469-8137.1991.tb00001.x
– ident: e_1_2_7_26_1
  doi: 10.1046/j.1365-294X.2002.01647.x
– ident: e_1_2_7_55_1
  doi: 10.1016/S0007-1536(70)80110-3
– ident: e_1_2_7_7_1
  doi: 10.1007/s00442-004-1790-1
– ident: e_1_2_7_46_1
  doi: 10.2307/2402144
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1469-8137.1990.tb00925.x
– ident: e_1_2_7_45_1
  doi: 10.1126/science.1071148
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1461-0248.2004.00577.x
– ident: e_1_2_7_64_1
  doi: 10.1023/A:1004271525014
– ident: e_1_2_7_70_1
  doi: 10.1371/journal.pbio.0040140
– ident: e_1_2_7_4_1
  doi: 10.1002/9781444313765
– ident: e_1_2_7_67_1
  doi: 10.1111/j.1469-8137.2004.01039.x
– ident: e_1_2_7_73_1
  doi: 10.1111/j.1469-8137.1994.tb07536.x
– ident: e_1_2_7_52_1
  doi: 10.1046/j.1469-8137.2002.00364.x
– volume-title: Global Assessment of Soil Degradation – GLASOD. World map of the status of human‐induced soil degradation
  year: 1991
  ident: e_1_2_7_54_1
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1365-2486.1996.tb00089.x
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1469-8137.2005.01536.x
– ident: e_1_2_7_19_1
  doi: 10.1007/978-3-540-38364-2_10
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1469-8137.1989.tb04215.x
– ident: e_1_2_7_53_1
  doi: 10.1016/0016-7061(93)90123-3
– ident: e_1_2_7_51_1
  doi: 10.1890/0012-9658(1997)078[1312:BFAHTI]2.0.CO;2
– ident: e_1_2_7_62_1
  doi: 10.1111/j.1469-8137.2005.01455.x
– ident: e_1_2_7_58_1
  doi: 10.1007/BF01972080
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1469-8137.1990.tb00476.x
– ident: e_1_2_7_65_1
  doi: 10.1016/S0167-8809(98)00113-3
– ident: e_1_2_7_14_1
  doi: 10.1038/328420a0
– start-page: 3
  volume-title: Mycorrhizal ecology.
  year: 2002
  ident: e_1_2_7_59_1
– ident: e_1_2_7_76_1
  doi: 10.2136/sssaj1965.03615995002900060025x
– ident: e_1_2_7_69_1
  doi: 10.1034/j.1600-0706.2003.12006.x
– ident: e_1_2_7_68_1
  doi: 10.1126/science.1084269
– ident: e_1_2_7_36_1
  doi: 10.1073/pnas.0306441101
– ident: e_1_2_7_9_1
  doi: 10.1038/nature01548
SSID ssj0009562
Score 2.3937056
Snippet • Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about...
Summary •  Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is...
Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 739
SubjectTerms Acid soils
aggregate stability
Agronomy. Soil science and plant productions
Biological and medical sciences
Biomass
Economic plant physiology
Ecosystem
ecosystems
Fundamental and applied biological sciences. Psychology
Glomus
Grassland soils
grasslands
microbial diversity
Microcosms
mutualism
Mycorrhizae - physiology
Mycorrhizal fungi
nitrogen
Nitrogen - metabolism
Parasitism and symbiosis
phosphorus
Phosphorus - metabolism
Plant communities
plant growth
plant nutrition
Plant physiology and development
Plant roots
Plant Roots - metabolism
Plant Roots - microbiology
Plant Roots - physiology
Plants
Poaceae - metabolism
Poaceae - microbiology
Poaceae - physiology
Seasons
Soil
Soil aggregation
Soil ecology
Soil Microbiology
soil structure
species diversity
sustainable agriculture
Symbiosis
Symbiosis (nodules, symbiotic nitrogen fixation, mycorrhiza...)
Symbiosis - physiology
Taxa
temporal variability
Time Factors
total nitrogen
vesicular arbuscular mycorrhizae
Title mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland
URI https://www.jstor.org/stable/4131215
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8137.2006.01862.x
https://www.ncbi.nlm.nih.gov/pubmed/17096799
https://www.proquest.com/docview/19554509
https://www.proquest.com/docview/47207759
https://www.proquest.com/docview/68136093
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sCFZ6HhUXzgSFa2N3HiIyCqFRIVAlbam-VnWXWbrPYh0f56ZvLYNlVBFeK2imxnM5mxv4nH30fI2yxGx33IU-aNTDMPMWd4VKkrDS-DLGVsimi-HMvJNPs8y2dd_ROehWn5IXYf3DAymvkaA9zY9fUgx09Y46LbU-CAzkeIJ7F0C_HRN3GFf1eKnpBZZnI2LOq5caDBSnU3mrovWcT6SbMGE8ZW--ImcDrEus1idfSQnPaP2daonI62GztyF9cYIP-PHR6RBx2mpe9bJ3xM7oTqCbn3oQbcef6ULMET6dk5ZLmrn_MLaNdUx3cyW3RT0-UC3i5dttSzjZbFu-5a1UsFUFN5uq7nC9ry3W5Xgc4relWegJ6sIA_AOs19Mj369OPjJO10HlInBUMNIM8UC5GFMjfM-dw6B8hBWW6DED5aCzDSQp6oMm-8Y6ZwzjMe4aKCPDqMn5G9qq7CAaE5l9EL58fRwrJbMBhCGVEGl0ufl44lpOjfqXYdCTpqcSz0IBlSGs2JEp1SN-bUvxLCdz2XLRHILfocgNtocwLztZ5-F7hLzPHMVj5OyH7jS7uxAEwg0UdCDge-dXkvSOXxuGtC3vTOpmEmwO0dU4V6u9ZcATQE_PfnFlkhkPHwLy0kPINkCv7e89aPL-9fQLJbKOgrG2-8tRH08dcJ_nrxrx1fkvuiU4ti_BXZAz8LrwEJbuxhE-O_AZh0Tso
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXaggQbnoUOj9YL2JGR7UmcZMECKNWUtiMEHWl2xs8y6jQZzUN0-mv8Ch_DdR7TpiqoQuqCXRTZTmLfG59rX5-D0KvQOU2NjQJiJA9CAz4nqUsDnUiaWJ5wVyTRHPR4tx9-GkSDFfSzPgtT8kMsF9y8ZxT_a-_gfkH6spf7NaxOXG0qUIDn7dMqw3LPLn5A_DZ9u7sNg_2asZ2Phx-6QSUxEGgOYX-giCEpsY7YJJJEm0hpDZNWqqiyjBmnFCAYBSFKGhppNJGx1oZQBzdTCOFsB9pdRbe8oLgn7t_-wi4w_nJWU0DzkA-aaURXvnljblx1Mq-TJH3GppzCoLlSbeMqONxE18X0uHMf_ao7tsyKOW7PZ6qtzy5xTv6nPf8A3atgO35X-tlDtGKzR-j2-xyg9eIxGoOz4ZMFBPKT78MzKFccAKiUxPAsx-MRGDAel-y6hVzHm-peVqshYJkZPM2HI1xS-s4nFg8zfFGBAR9NINTxqajrqH8jX_sErWV5ZjcQjih3hmnTcQqQRUygiVSyxOqImyjRpIXi2oiErnjevdzISDTivVT44fMqpFwUwydOW4gua45LrpNr1NkAOxXyCKYk0f_K_EY49cfSok4LrRfGu2wL8JLnMmmhzYYxnz8rAfzNEiiwVVu3gJ-d38GSmc3nU0FTQL8Acf9cIoyZJ3X8SwkO38BJCq_3tHSc8-fHEM_HKdTlhflfuxNE73PXXz3714pb6E738GBf7O_29p6ju6wSxyL0BVoDm7MvAfjO1Gbxg8Ho20371W-I467X
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXaghAbnoUOj9YL2JGR7UmcZMECKKMphVEFjDQ742cZdZpE8xCdfhq_ws9wnce0UxVUIXXBLopsJ7Hvtc-1b85B6EXonKbGRgExkgehAZ-T1KWBTiRNLE-4K5NoPvV5bxB-GEbDNfSz-Rem4odYbrh5zyjna-_ghXEXndxvYXXi-kyBAjpvn9QJlvt28QPCt-nrvV0Y65eMdd9_fdcLaoWBQHOI-gNFDEmJdcQmkSTaREprWLNSRZVlzDilAMAoiFDS0EijiYy1NoQ6uJlCBGc70O46uhFyaMUDss_sHOEvZw0DNA_5cDWL6NI3X1ka153MmxxJn7AppzBmrhLbuAwNr4LrcnXs3kW_mn6tkmKO2vOZauvTC5ST_2fH30N3atCO31Redh-t2ewBuvk2B2C9eIgKcDV8vIAwfvJ9dArlyvT_WkcMz3JcjMF8cVFx65ZiHa_qe1mjhYBlZvA0H41xReg7n1g8yvB5_QV8OIFAxyeibqLBtXztI7SR5ZndQjii3BmmTccpwBUxgSZSyRKrI26iRJMWihsbErpmefdiI2OxEu2lwg-f1yDlohw-cdJCdFmzqJhOrlBnC8xUyENYkMTgC_PH4NT_lBZ1WmiztN1lW4CWPJNJC22v2PLZsxJA3yyBAjuNcQuY6vz5lcxsPp8KmgL2BYD75xJhzDyl419KcPgG8FZ4vceV35w9P4ZoPk6hLi-t_8qdIPoHPX_15F8r7qBbB7td8XGvv_8U3Wa1Mhahz9AGmJx9Dqh3prbL6QWjb9ftVr8BteOthg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mycorrhizal+contribution+to+plant+productivity%2C+plant+nutrition+and+soil+structure+in+experimental+grassland&rft.jtitle=The+New+phytologist&rft.au=van+der+Heijden%2C+Marcel+G+A&rft.au=Streitwolf-Engel%2C+Ruth&rft.au=Riedl%2C+Ralph&rft.au=Siegrist%2C+Sabine&rft.date=2006-12-01&rft.issn=0028-646X&rft.volume=172&rft.issue=4&rft.spage=739&rft_id=info:doi/10.1111%2Fj.1469-8137.2006.01862.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon