GAN Prior-Enhanced Novel View Synthesis From Monocular Degraded Images

With the escalating demand for three-dimensional visual applications such as gaming, virtual reality, and autonomous driving, novel view synthesis has become a critical area of research. Current methods mainly depend on multiple views of the same subject to achieve satisfactory results, but there is...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 27; pp. 5352 - 5362
Main Authors Guo, Kehua, Wu, Zheng, Wen, Xianhong, Guo, Shaojun, Xi, Zhipeng, Chen, Tianyu
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN1520-9210
1941-0077
DOI10.1109/TMM.2025.3542963

Cover

Loading…
Abstract With the escalating demand for three-dimensional visual applications such as gaming, virtual reality, and autonomous driving, novel view synthesis has become a critical area of research. Current methods mainly depend on multiple views of the same subject to achieve satisfactory results, but there is often a significant lack of available data. Typically, only a single degraded image is available for reconstruction, which may be affected by occlusion, low resolution, or absence of color information. To overcome this limitation, we propose a two-stage feature matching approach designed specifically for single degraded images, leading to the synthesis of high-quality novel perspective images. This method involves the sequential use of an encoder for feature extraction followed by the fine-tuning of a generator for feature matching. Additionally, the integration of an information filtering module proposed by us during the GAN inversion process helps eliminate misleading information present in degraded images, thereby correcting the inversion direction. Extensive experimental results show that our method outperforms existing state-of-the-art single-view novel view synthesis techniques in handling challenges like occluded, grayscale, and low-resolution images. Moreover, the efficacy of our method remains unparalleled even when aforementioned method integrated with image restoration algorithms.
AbstractList With the escalating demand for three-dimensional visual applications such as gaming, virtual reality, and autonomous driving, novel view synthesis has become a critical area of research. Current methods mainly depend on multiple views of the same subject to achieve satisfactory results, but there is often a significant lack of available data. Typically, only a single degraded image is available for reconstruction, which may be affected by occlusion, low resolution, or absence of color information. To overcome this limitation, we propose a two-stage feature matching approach designed specifically for single degraded images, leading to the synthesis of high-quality novel perspective images. This method involves the sequential use of an encoder for feature extraction followed by the fine-tuning of a generator for feature matching. Additionally, the integration of an information filtering module proposed by us during the GAN inversion process helps eliminate misleading information present in degraded images, thereby correcting the inversion direction. Extensive experimental results show that our method outperforms existing state-of-the-art single-view novel view synthesis techniques in handling challenges like occluded, grayscale, and low-resolution images. Moreover, the efficacy of our method remains unparalleled even when aforementioned method integrated with image restoration algorithms.
Author Guo, Kehua
Wen, Xianhong
Guo, Shaojun
Wu, Zheng
Xi, Zhipeng
Chen, Tianyu
Author_xml – sequence: 1
  givenname: Kehua
  orcidid: 0000-0003-4143-6399
  surname: Guo
  fullname: Guo, Kehua
  email: guokehua@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 2
  givenname: Zheng
  orcidid: 0000-0001-5621-9878
  surname: Wu
  fullname: Wu, Zheng
  email: wuzheng2022@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 3
  givenname: Xianhong
  orcidid: 0009-0008-8520-6011
  surname: Wen
  fullname: Wen, Xianhong
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 4
  givenname: Shaojun
  orcidid: 0000-0001-7360-7928
  surname: Guo
  fullname: Guo, Shaojun
  email: guoba2000@163.com
  organization: National Institution of Defense Technology Innovation, Academy of Military Sciences of PLA China, Beijing, China
– sequence: 5
  givenname: Zhipeng
  orcidid: 0000-0002-8046-2816
  surname: Xi
  fullname: Xi, Zhipeng
  email: xzp_paper@163.com
  organization: National Institution of Defense Technology Innovation, Academy of Military Sciences of PLA China, Beijing, China
– sequence: 6
  givenname: Tianyu
  orcidid: 0000-0003-2900-3881
  surname: Chen
  fullname: Chen, Tianyu
  email: chentian-yu@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
BookMark eNpNkM1uwjAQhK2KSgXaew89-AVC10lsx0dEgSIBrdSo18ixN5AK4sruj3j7OoJDT7OHmZ3RNyKDznVIyD2DCWOgHsvNZpJCyicZz1MlsisyZCpnCYCUg3jzFBKVMrghoxA-AFjOQQ7JYjnd0lffOp_Mu73uDFq6dT94oO8t_tK3U_e1x9AGuvDuSDeuc-b7oD19wp3XNppXR73DcEuuG30IeHfRMSkX83L2nKxflqvZdJ0YEfstikYLrm3NaytFHgfagtVQmBqg4U2thFY1ZgKh4LaRssiV4tLwXBgeF2djAue3xrsQPDbVp2-P2p8qBlWPoYoYqh5DdcEQIw_nSIuI_-yF6pFkf3kOWgE
CODEN ITMUF8
Cites_doi 10.1109/ICCV.2017.509
10.1109/ICCV51070.2023.00389
10.1109/ICCV.2019.00453
10.1109/CVPR52688.2022.00420
10.1109/ICCV.2015.50
10.1109/ICCV.2007.4408909
10.1109/ICCV.2019.00897
10.1109/CVPR46437.2021.00158
10.1016/j.neucom.2022.02.046
10.1109/TMM.2021.3092149
10.1109/CVPR52688.2022.00540
10.1109/LRA.2017.2730363
10.1109/TPAMI.2020.2969348
10.1109/TMM.2021.3092571
10.1145/3544777
10.48550/arXiv.1603.08155
10.1145/3550454.3555501
10.1609/aaai.v34i04.5708
10.1109/CVPR.2017.623
10.1109/CVPR.2017.405
10.1109/CVPR.2019.00482
10.1109/TMM.2021.3117092
10.1109/ICCV51070.2023.01672
10.1109/ICCV48922.2021.01447
10.1109/CVPR42600.2020.00813
10.1109/CVPR.2018.00856
10.1145/3450626.3459863
10.1109/TMM.2022.3212282
10.1145/3641519.3657462
10.1109/ICCV51070.2023.00832
10.1109/CVPR.2017.300
10.1109/iccv51070.2023.00853
10.1109/TIP.2010.2042098
10.1109/TPAMI.2021.3115428
10.1109/CVPR52733.2024.00951
10.1109/ICCV48922.2021.01384
10.1109/ICCVW.2015.17
10.1109/tmm.2023.3347642
10.1109/ICCV.2019.00467
10.1109/CVPR52688.2022.01041
10.1109/CVPR52688.2022.01565
10.1145/3550454.3555506
10.1109/TMM.2018.2875512
10.1145/3588432.3591567
10.1145/3649889
10.1109/CVPR.2019.00453
10.1109/TCI.2023.3288335
10.1109/WACV56688.2023.00298
10.29040/ijcis.v4i1.102
10.1109/CVPR42600.2020.00749
10.1016/j.jbusres.2023.113739
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TMM.2025.3542963
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 5362
ExternalDocumentID 10_1109_TMM_2025_3542963
10891520
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation
  grantid: 2024JJ3032; 2025JJ60409
  funderid: 10.13039/501100004735
– fundername: International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province
  grantid: 2021CB1013
– fundername: National Natural Science Foundation of China
  grantid: U24A20333; 62472443; 62376287
  funderid: 10.13039/501100001809
– fundername: Noncommunicable Chronic Diseases - National Science and Technology Major Project
  grantid: 2023ZD0508200; 2023ZD0508201
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c620-de6fa65adb5bd764194d81b08cb00f5fb96a9be36e085df77849957c546c50143
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Wed Sep 03 16:41:45 EDT 2025
Wed Sep 03 07:09:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620-de6fa65adb5bd764194d81b08cb00f5fb96a9be36e085df77849957c546c50143
ORCID 0000-0001-7360-7928
0000-0003-4143-6399
0000-0002-8046-2816
0009-0008-8520-6011
0000-0003-2900-3881
0000-0001-5621-9878
PageCount 11
ParticipantIDs ieee_primary_10891520
crossref_primary_10_1109_TMM_2025_3542963
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref53
ref52
Liu (ref58) 2018; 15
ref55
ref54
ref17
ref16
ref18
ref50
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
Wang (ref8) 2023
Liu (ref25) 2024; 36
ref37
ref36
ref31
ref30
ref33
ref32
Karras (ref46) 2018
ref2
ref1
ref39
ref38
Ulyanov (ref11) 2018
ref24
Pan (ref51) 2021
ref23
ref26
ref20
ref22
Gu (ref19) 2022
ref21
Ding (ref10) 2022; 35
ref28
ref27
ref29
Goodfellow (ref48) 2014; 27
ref60
References_xml – ident: ref38
  doi: 10.1109/ICCV.2017.509
– ident: ref3
  doi: 10.1109/ICCV51070.2023.00389
– ident: ref49
  doi: 10.1109/ICCV.2019.00453
– ident: ref7
  doi: 10.1109/CVPR52688.2022.00420
– ident: ref36
  doi: 10.1109/ICCV.2015.50
– ident: ref41
  doi: 10.1109/ICCV.2007.4408909
– ident: ref43
  doi: 10.1109/ICCV.2019.00897
– ident: ref47
  doi: 10.1109/CVPR46437.2021.00158
– ident: ref32
  doi: 10.1016/j.neucom.2022.02.046
– volume: 36
  start-page: 22226
  year: 2024
  ident: ref25
  article-title: One-2-3-45: Any single image to 3D mesh in 45 seconds without per-shape optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref15
  doi: 10.1109/TMM.2021.3092149
– ident: ref56
  doi: 10.1109/CVPR52688.2022.00540
– ident: ref42
  doi: 10.1109/LRA.2017.2730363
– ident: ref45
  doi: 10.1109/TPAMI.2020.2969348
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2018
  ident: ref46
  article-title: Progressive growing of GANs for improved quality, stability, and variation
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2022
  ident: ref19
  article-title: StyleNeRF: A style-based 3D-aware generator for high-resolution image synthesis
– ident: ref50
  doi: 10.1109/TMM.2021.3092571
– ident: ref53
  doi: 10.1145/3544777
– ident: ref54
  doi: 10.48550/arXiv.1603.08155
– ident: ref28
  doi: 10.1145/3550454.3555501
– ident: ref52
  doi: 10.1609/aaai.v34i04.5708
– ident: ref40
  doi: 10.1109/CVPR.2017.623
– ident: ref35
  doi: 10.1109/CVPR.2017.405
– ident: ref55
  doi: 10.1109/CVPR.2019.00482
– ident: ref6
  doi: 10.1109/TMM.2021.3117092
– ident: ref2
  doi: 10.1109/ICCV51070.2023.01672
– start-page: 9446
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  year: 2018
  ident: ref11
  article-title: Deep image prior
– ident: ref14
  doi: 10.1109/ICCV48922.2021.01447
– ident: ref59
  doi: 10.1109/CVPR42600.2020.00813
– ident: ref44
  doi: 10.1109/CVPR.2018.00856
– ident: ref27
  doi: 10.1145/3450626.3459863
– ident: ref33
  doi: 10.1109/TMM.2022.3212282
– ident: ref31
  doi: 10.1145/3641519.3657462
– ident: ref1
  doi: 10.1109/ICCV51070.2023.00832
– ident: ref37
  doi: 10.1109/CVPR.2017.300
– ident: ref24
  doi: 10.1109/iccv51070.2023.00853
– ident: ref34
  doi: 10.1109/TIP.2010.2042098
– ident: ref13
  doi: 10.1109/TPAMI.2021.3115428
– volume: 27
  start-page: 1
  year: 2014
  ident: ref48
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref26
  doi: 10.1109/CVPR52733.2024.00951
– ident: ref21
  doi: 10.1109/ICCV48922.2021.01384
– ident: ref39
  doi: 10.1109/ICCVW.2015.17
– ident: ref22
  doi: 10.1109/tmm.2023.3347642
– ident: ref12
  doi: 10.1109/ICCV.2019.00467
– ident: ref18
  doi: 10.1109/CVPR52688.2022.01041
– ident: ref17
  doi: 10.1109/CVPR52688.2022.01565
– ident: ref60
  doi: 10.1145/3550454.3555506
– ident: ref16
  doi: 10.1109/TMM.2018.2875512
– ident: ref29
  doi: 10.1145/3588432.3591567
– volume: 35
  start-page: 4638
  year: 2022
  ident: ref10
  article-title: Comgan: Unsupervised disentanglement and segmentation via image composition
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref30
  doi: 10.1145/3649889
– year: 2023
  ident: ref8
  article-title: Mis-fm: 3D medical image segmentation using foundation models pretrained on a large-scale unannotated dataset
– volume: 15
  start-page: 11
  year: 2018
  ident: ref58
  article-title: Large-scale celebfaces attributes (celeba) dataset
  publication-title: Retrieved
– ident: ref57
  doi: 10.1109/CVPR.2019.00453
– ident: ref9
  doi: 10.1109/TCI.2023.3288335
– ident: ref23
  doi: 10.1109/WACV56688.2023.00298
– ident: ref4
  doi: 10.29040/ijcis.v4i1.102
– ident: ref20
  doi: 10.1109/CVPR42600.2020.00749
– ident: ref5
  doi: 10.1016/j.jbusres.2023.113739
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref51
  article-title: Do 2D GANs know 3D shape? Unsupervised 3D shape reconstruction from 2D image GANs
SSID ssj0014507
Score 2.4311516
Snippet With the escalating demand for three-dimensional visual applications such as gaming, virtual reality, and autonomous driving, novel view synthesis has become a...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 5352
SubjectTerms Codes
Data mining
Degradation
degraded image
GAN inversion
Generative adversarial networks
Generators
Gray-scale
Image reconstruction
Image restoration
monocular image
Novel view synthesis
Three-dimensional displays
Training
Title GAN Prior-Enhanced Novel View Synthesis From Monocular Degraded Images
URI https://ieeexplore.ieee.org/document/10891520
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzgwGEOMl3LgwqGlbE3aHCdYGUirkBhot6p5iQnWom4Dwa_HSVs0kJC4VW1SRXbs2LH9GaFTbdAmhWaO4ow4vvCEw6RPnK6vA1CUngqZqUYexXT44N9OyKQqVre1MEopm3ymXPNoY_kyF0tzVQYSHjI4b8BDXwfPrSzW-g4Z-MTWRpvvDgNHpo5Jeux8PBqBJ9glbs90Z6K9H2fQSlMVe6ZETRTXqylTSZ7d5YK74vMXUOO_l7uNtirrEvfL7bCD1lTWQs26cwOuBLmFNldgCHdRdN2P8V0xzQtnkD3ZlAAc52_qBT9O1Tu-_8jASpxP5zgq8hkGLZDb5FV8ZYAmJAy-mYFWmrfROBqML4dO1V_BERSIJBXVKSWp5ITLgPoXzJdgxHqhAFHURHNGU8ZVjyowy6QOghC8IxII4lNhYQH3UCPLM7WPcKqE7qaUwkwBP9EhZz0wtKgw2Dya8Q46qwmevJYoGon1PjyWAHMSw5ykYk4HtQ0pV8aVVDz44_0h2jDTy2uRI9RYFEt1DIbCgp_YDfIFc7O4zQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-MHtSDKGLEzx68eBgOWLv1SJQJCouJaLgta9dGomxmgEb_el-7zaCJibdleW2a1_Z99L33ewidKY02KRSzJGfEcoQtLBY7xGo5ygVBaUuP6WrkYUB7D87NmIyLYnVTCyOlNMlnsqE_TSw_TsVCP5XBDfcY6Bvw0NdA8ZNmXq71HTRwiKmO1hQWA1emjEra7GI0HIIv2CKNtu7PRNs_tNBSWxWjVfwKCsr15Mkkz43FnDfE5y-oxn8veBttFfYl7uQHYgetyKSKKmXvBlxc5SraXAIi3EX-dSfAd9kkzaxu8mSSAnCQvskX_DiR7_j-IwE7cTaZYT9LpxjkQGrSV_GVhpqIgbg_Bbk0q6GR3x1d9qyiw4IlKDApllRFlEQxJzx2qdNkTgxmrO0JuIyKKM5oxLhsUwmGWaxc1wP_iLiCOFQYYMA9tJqkidxHOJJCtSJKYaSASZTHWRtMLSo0Oo9ivI7OS4aHrzmORmj8D5uFsDmh3pyw2Jw6qmlWLtHlXDz44_8pWu-NhoNw0A9uD9GGnip_JDlCq_NsIY_BbJjzE3NYvgBJrLwW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN+Prior-Enhanced+Novel+View+Synthesis+From+Monocular+Degraded+Images&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Guo%2C+Kehua&rft.au=Wu%2C+Zheng&rft.au=Wen%2C+Xianhong&rft.au=Guo%2C+Shaojun&rft.date=2025&rft.pub=IEEE&rft.issn=1520-9210&rft.volume=27&rft.spage=5352&rft.epage=5362&rft_id=info:doi/10.1109%2FTMM.2025.3542963&rft.externalDocID=10891520
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon