GAN Prior-Enhanced Novel View Synthesis From Monocular Degraded Images
With the escalating demand for three-dimensional visual applications such as gaming, virtual reality, and autonomous driving, novel view synthesis has become a critical area of research. Current methods mainly depend on multiple views of the same subject to achieve satisfactory results, but there is...
Saved in:
Published in | IEEE transactions on multimedia Vol. 27; pp. 5352 - 5362 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1520-9210 1941-0077 |
DOI | 10.1109/TMM.2025.3542963 |
Cover
Loading…
Abstract | With the escalating demand for three-dimensional visual applications such as gaming, virtual reality, and autonomous driving, novel view synthesis has become a critical area of research. Current methods mainly depend on multiple views of the same subject to achieve satisfactory results, but there is often a significant lack of available data. Typically, only a single degraded image is available for reconstruction, which may be affected by occlusion, low resolution, or absence of color information. To overcome this limitation, we propose a two-stage feature matching approach designed specifically for single degraded images, leading to the synthesis of high-quality novel perspective images. This method involves the sequential use of an encoder for feature extraction followed by the fine-tuning of a generator for feature matching. Additionally, the integration of an information filtering module proposed by us during the GAN inversion process helps eliminate misleading information present in degraded images, thereby correcting the inversion direction. Extensive experimental results show that our method outperforms existing state-of-the-art single-view novel view synthesis techniques in handling challenges like occluded, grayscale, and low-resolution images. Moreover, the efficacy of our method remains unparalleled even when aforementioned method integrated with image restoration algorithms. |
---|---|
AbstractList | With the escalating demand for three-dimensional visual applications such as gaming, virtual reality, and autonomous driving, novel view synthesis has become a critical area of research. Current methods mainly depend on multiple views of the same subject to achieve satisfactory results, but there is often a significant lack of available data. Typically, only a single degraded image is available for reconstruction, which may be affected by occlusion, low resolution, or absence of color information. To overcome this limitation, we propose a two-stage feature matching approach designed specifically for single degraded images, leading to the synthesis of high-quality novel perspective images. This method involves the sequential use of an encoder for feature extraction followed by the fine-tuning of a generator for feature matching. Additionally, the integration of an information filtering module proposed by us during the GAN inversion process helps eliminate misleading information present in degraded images, thereby correcting the inversion direction. Extensive experimental results show that our method outperforms existing state-of-the-art single-view novel view synthesis techniques in handling challenges like occluded, grayscale, and low-resolution images. Moreover, the efficacy of our method remains unparalleled even when aforementioned method integrated with image restoration algorithms. |
Author | Guo, Kehua Wen, Xianhong Guo, Shaojun Wu, Zheng Xi, Zhipeng Chen, Tianyu |
Author_xml | – sequence: 1 givenname: Kehua orcidid: 0000-0003-4143-6399 surname: Guo fullname: Guo, Kehua email: guokehua@csu.edu.cn organization: School of Computer Science and Engineering, Central South University, Changsha, China – sequence: 2 givenname: Zheng orcidid: 0000-0001-5621-9878 surname: Wu fullname: Wu, Zheng email: wuzheng2022@csu.edu.cn organization: School of Computer Science and Engineering, Central South University, Changsha, China – sequence: 3 givenname: Xianhong orcidid: 0009-0008-8520-6011 surname: Wen fullname: Wen, Xianhong organization: School of Computer Science and Engineering, Central South University, Changsha, China – sequence: 4 givenname: Shaojun orcidid: 0000-0001-7360-7928 surname: Guo fullname: Guo, Shaojun email: guoba2000@163.com organization: National Institution of Defense Technology Innovation, Academy of Military Sciences of PLA China, Beijing, China – sequence: 5 givenname: Zhipeng orcidid: 0000-0002-8046-2816 surname: Xi fullname: Xi, Zhipeng email: xzp_paper@163.com organization: National Institution of Defense Technology Innovation, Academy of Military Sciences of PLA China, Beijing, China – sequence: 6 givenname: Tianyu orcidid: 0000-0003-2900-3881 surname: Chen fullname: Chen, Tianyu email: chentian-yu@csu.edu.cn organization: School of Computer Science and Engineering, Central South University, Changsha, China |
BookMark | eNpNkM1uwjAQhK2KSgXaew89-AVC10lsx0dEgSIBrdSo18ixN5AK4sruj3j7OoJDT7OHmZ3RNyKDznVIyD2DCWOgHsvNZpJCyicZz1MlsisyZCpnCYCUg3jzFBKVMrghoxA-AFjOQQ7JYjnd0lffOp_Mu73uDFq6dT94oO8t_tK3U_e1x9AGuvDuSDeuc-b7oD19wp3XNppXR73DcEuuG30IeHfRMSkX83L2nKxflqvZdJ0YEfstikYLrm3NaytFHgfagtVQmBqg4U2thFY1ZgKh4LaRssiV4tLwXBgeF2djAue3xrsQPDbVp2-P2p8qBlWPoYoYqh5DdcEQIw_nSIuI_-yF6pFkf3kOWgE |
CODEN | ITMUF8 |
Cites_doi | 10.1109/ICCV.2017.509 10.1109/ICCV51070.2023.00389 10.1109/ICCV.2019.00453 10.1109/CVPR52688.2022.00420 10.1109/ICCV.2015.50 10.1109/ICCV.2007.4408909 10.1109/ICCV.2019.00897 10.1109/CVPR46437.2021.00158 10.1016/j.neucom.2022.02.046 10.1109/TMM.2021.3092149 10.1109/CVPR52688.2022.00540 10.1109/LRA.2017.2730363 10.1109/TPAMI.2020.2969348 10.1109/TMM.2021.3092571 10.1145/3544777 10.48550/arXiv.1603.08155 10.1145/3550454.3555501 10.1609/aaai.v34i04.5708 10.1109/CVPR.2017.623 10.1109/CVPR.2017.405 10.1109/CVPR.2019.00482 10.1109/TMM.2021.3117092 10.1109/ICCV51070.2023.01672 10.1109/ICCV48922.2021.01447 10.1109/CVPR42600.2020.00813 10.1109/CVPR.2018.00856 10.1145/3450626.3459863 10.1109/TMM.2022.3212282 10.1145/3641519.3657462 10.1109/ICCV51070.2023.00832 10.1109/CVPR.2017.300 10.1109/iccv51070.2023.00853 10.1109/TIP.2010.2042098 10.1109/TPAMI.2021.3115428 10.1109/CVPR52733.2024.00951 10.1109/ICCV48922.2021.01384 10.1109/ICCVW.2015.17 10.1109/tmm.2023.3347642 10.1109/ICCV.2019.00467 10.1109/CVPR52688.2022.01041 10.1109/CVPR52688.2022.01565 10.1145/3550454.3555506 10.1109/TMM.2018.2875512 10.1145/3588432.3591567 10.1145/3649889 10.1109/CVPR.2019.00453 10.1109/TCI.2023.3288335 10.1109/WACV56688.2023.00298 10.29040/ijcis.v4i1.102 10.1109/CVPR42600.2020.00749 10.1016/j.jbusres.2023.113739 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TMM.2025.3542963 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 5362 |
ExternalDocumentID | 10_1109_TMM_2025_3542963 10891520 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation grantid: 2024JJ3032; 2025JJ60409 funderid: 10.13039/501100004735 – fundername: International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province grantid: 2021CB1013 – fundername: National Natural Science Foundation of China grantid: U24A20333; 62472443; 62376287 funderid: 10.13039/501100001809 – fundername: Noncommunicable Chronic Diseases - National Science and Technology Major Project grantid: 2023ZD0508200; 2023ZD0508201 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION |
ID | FETCH-LOGICAL-c620-de6fa65adb5bd764194d81b08cb00f5fb96a9be36e085df77849957c546c50143 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Wed Sep 03 16:41:45 EDT 2025 Wed Sep 03 07:09:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c620-de6fa65adb5bd764194d81b08cb00f5fb96a9be36e085df77849957c546c50143 |
ORCID | 0000-0001-7360-7928 0000-0003-4143-6399 0000-0002-8046-2816 0009-0008-8520-6011 0000-0003-2900-3881 0000-0001-5621-9878 |
PageCount | 11 |
ParticipantIDs | ieee_primary_10891520 crossref_primary_10_1109_TMM_2025_3542963 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref53 ref52 Liu (ref58) 2018; 15 ref55 ref54 ref17 ref16 ref18 ref50 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 Wang (ref8) 2023 Liu (ref25) 2024; 36 ref37 ref36 ref31 ref30 ref33 ref32 Karras (ref46) 2018 ref2 ref1 ref39 ref38 Ulyanov (ref11) 2018 ref24 Pan (ref51) 2021 ref23 ref26 ref20 ref22 Gu (ref19) 2022 ref21 Ding (ref10) 2022; 35 ref28 ref27 ref29 Goodfellow (ref48) 2014; 27 ref60 |
References_xml | – ident: ref38 doi: 10.1109/ICCV.2017.509 – ident: ref3 doi: 10.1109/ICCV51070.2023.00389 – ident: ref49 doi: 10.1109/ICCV.2019.00453 – ident: ref7 doi: 10.1109/CVPR52688.2022.00420 – ident: ref36 doi: 10.1109/ICCV.2015.50 – ident: ref41 doi: 10.1109/ICCV.2007.4408909 – ident: ref43 doi: 10.1109/ICCV.2019.00897 – ident: ref47 doi: 10.1109/CVPR46437.2021.00158 – ident: ref32 doi: 10.1016/j.neucom.2022.02.046 – volume: 36 start-page: 22226 year: 2024 ident: ref25 article-title: One-2-3-45: Any single image to 3D mesh in 45 seconds without per-shape optimization publication-title: Adv. Neural Inf. Process. Syst. – ident: ref15 doi: 10.1109/TMM.2021.3092149 – ident: ref56 doi: 10.1109/CVPR52688.2022.00540 – ident: ref42 doi: 10.1109/LRA.2017.2730363 – ident: ref45 doi: 10.1109/TPAMI.2020.2969348 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2018 ident: ref46 article-title: Progressive growing of GANs for improved quality, stability, and variation – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2022 ident: ref19 article-title: StyleNeRF: A style-based 3D-aware generator for high-resolution image synthesis – ident: ref50 doi: 10.1109/TMM.2021.3092571 – ident: ref53 doi: 10.1145/3544777 – ident: ref54 doi: 10.48550/arXiv.1603.08155 – ident: ref28 doi: 10.1145/3550454.3555501 – ident: ref52 doi: 10.1609/aaai.v34i04.5708 – ident: ref40 doi: 10.1109/CVPR.2017.623 – ident: ref35 doi: 10.1109/CVPR.2017.405 – ident: ref55 doi: 10.1109/CVPR.2019.00482 – ident: ref6 doi: 10.1109/TMM.2021.3117092 – ident: ref2 doi: 10.1109/ICCV51070.2023.01672 – start-page: 9446 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. year: 2018 ident: ref11 article-title: Deep image prior – ident: ref14 doi: 10.1109/ICCV48922.2021.01447 – ident: ref59 doi: 10.1109/CVPR42600.2020.00813 – ident: ref44 doi: 10.1109/CVPR.2018.00856 – ident: ref27 doi: 10.1145/3450626.3459863 – ident: ref33 doi: 10.1109/TMM.2022.3212282 – ident: ref31 doi: 10.1145/3641519.3657462 – ident: ref1 doi: 10.1109/ICCV51070.2023.00832 – ident: ref37 doi: 10.1109/CVPR.2017.300 – ident: ref24 doi: 10.1109/iccv51070.2023.00853 – ident: ref34 doi: 10.1109/TIP.2010.2042098 – ident: ref13 doi: 10.1109/TPAMI.2021.3115428 – volume: 27 start-page: 1 year: 2014 ident: ref48 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – ident: ref26 doi: 10.1109/CVPR52733.2024.00951 – ident: ref21 doi: 10.1109/ICCV48922.2021.01384 – ident: ref39 doi: 10.1109/ICCVW.2015.17 – ident: ref22 doi: 10.1109/tmm.2023.3347642 – ident: ref12 doi: 10.1109/ICCV.2019.00467 – ident: ref18 doi: 10.1109/CVPR52688.2022.01041 – ident: ref17 doi: 10.1109/CVPR52688.2022.01565 – ident: ref60 doi: 10.1145/3550454.3555506 – ident: ref16 doi: 10.1109/TMM.2018.2875512 – ident: ref29 doi: 10.1145/3588432.3591567 – volume: 35 start-page: 4638 year: 2022 ident: ref10 article-title: Comgan: Unsupervised disentanglement and segmentation via image composition publication-title: Adv. Neural Inf. Process. Syst. – ident: ref30 doi: 10.1145/3649889 – year: 2023 ident: ref8 article-title: Mis-fm: 3D medical image segmentation using foundation models pretrained on a large-scale unannotated dataset – volume: 15 start-page: 11 year: 2018 ident: ref58 article-title: Large-scale celebfaces attributes (celeba) dataset publication-title: Retrieved – ident: ref57 doi: 10.1109/CVPR.2019.00453 – ident: ref9 doi: 10.1109/TCI.2023.3288335 – ident: ref23 doi: 10.1109/WACV56688.2023.00298 – ident: ref4 doi: 10.29040/ijcis.v4i1.102 – ident: ref20 doi: 10.1109/CVPR42600.2020.00749 – ident: ref5 doi: 10.1016/j.jbusres.2023.113739 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2021 ident: ref51 article-title: Do 2D GANs know 3D shape? Unsupervised 3D shape reconstruction from 2D image GANs |
SSID | ssj0014507 |
Score | 2.4311516 |
Snippet | With the escalating demand for three-dimensional visual applications such as gaming, virtual reality, and autonomous driving, novel view synthesis has become a... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 5352 |
SubjectTerms | Codes Data mining Degradation degraded image GAN inversion Generative adversarial networks Generators Gray-scale Image reconstruction Image restoration monocular image Novel view synthesis Three-dimensional displays Training |
Title | GAN Prior-Enhanced Novel View Synthesis From Monocular Degraded Images |
URI | https://ieeexplore.ieee.org/document/10891520 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzgwGEOMl3LgwqGlbE3aHCdYGUirkBhot6p5iQnWom4Dwa_HSVs0kJC4VW1SRXbs2LH9GaFTbdAmhWaO4ow4vvCEw6RPnK6vA1CUngqZqUYexXT44N9OyKQqVre1MEopm3ymXPNoY_kyF0tzVQYSHjI4b8BDXwfPrSzW-g4Z-MTWRpvvDgNHpo5Jeux8PBqBJ9glbs90Z6K9H2fQSlMVe6ZETRTXqylTSZ7d5YK74vMXUOO_l7uNtirrEvfL7bCD1lTWQs26cwOuBLmFNldgCHdRdN2P8V0xzQtnkD3ZlAAc52_qBT9O1Tu-_8jASpxP5zgq8hkGLZDb5FV8ZYAmJAy-mYFWmrfROBqML4dO1V_BERSIJBXVKSWp5ITLgPoXzJdgxHqhAFHURHNGU8ZVjyowy6QOghC8IxII4lNhYQH3UCPLM7WPcKqE7qaUwkwBP9EhZz0wtKgw2Dya8Q46qwmevJYoGon1PjyWAHMSw5ykYk4HtQ0pV8aVVDz44_0h2jDTy2uRI9RYFEt1DIbCgp_YDfIFc7O4zQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-MHtSDKGLEzx68eBgOWLv1SJQJCouJaLgta9dGomxmgEb_el-7zaCJibdleW2a1_Z99L33ewidKY02KRSzJGfEcoQtLBY7xGo5ygVBaUuP6WrkYUB7D87NmIyLYnVTCyOlNMlnsqE_TSw_TsVCP5XBDfcY6Bvw0NdA8ZNmXq71HTRwiKmO1hQWA1emjEra7GI0HIIv2CKNtu7PRNs_tNBSWxWjVfwKCsr15Mkkz43FnDfE5y-oxn8veBttFfYl7uQHYgetyKSKKmXvBlxc5SraXAIi3EX-dSfAd9kkzaxu8mSSAnCQvskX_DiR7_j-IwE7cTaZYT9LpxjkQGrSV_GVhpqIgbg_Bbk0q6GR3x1d9qyiw4IlKDApllRFlEQxJzx2qdNkTgxmrO0JuIyKKM5oxLhsUwmGWaxc1wP_iLiCOFQYYMA9tJqkidxHOJJCtSJKYaSASZTHWRtMLSo0Oo9ivI7OS4aHrzmORmj8D5uFsDmh3pyw2Jw6qmlWLtHlXDz44_8pWu-NhoNw0A9uD9GGnip_JDlCq_NsIY_BbJjzE3NYvgBJrLwW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN+Prior-Enhanced+Novel+View+Synthesis+From+Monocular+Degraded+Images&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Guo%2C+Kehua&rft.au=Wu%2C+Zheng&rft.au=Wen%2C+Xianhong&rft.au=Guo%2C+Shaojun&rft.date=2025&rft.pub=IEEE&rft.issn=1520-9210&rft.volume=27&rft.spage=5352&rft.epage=5362&rft_id=info:doi/10.1109%2FTMM.2025.3542963&rft.externalDocID=10891520 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |