Role of Nb 2 O 5 Crystal Phases on the Photocatalytic Conversion of Lignin Model Molecules and Selectivity for Value-Added Products

The photocatalytic conversion in aqueous media of phenol and guaiacol as a lignin model compound using Nb O with different crystal phases was studied. Nb O particles were synthesized using hydrothermal methods, where it was observed that changes in the solvent control their morphology and crystal ph...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 17; no. 14; p. e202301594
Main Authors Rojas, Susana D, Rafaela, Gabriela, Espinoza-Villalobos, Nicole, Diaz-Droguett, Donovan E, Salazar-González, Ricardo, Caceres-Jensen, Lizethly, Escalona, Néstor, Barrientos, Lorena
Format Journal Article
LanguageEnglish
Published Germany 22.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photocatalytic conversion in aqueous media of phenol and guaiacol as a lignin model compound using Nb O with different crystal phases was studied. Nb O particles were synthesized using hydrothermal methods, where it was observed that changes in the solvent control their morphology and crystal phase. Different photocatalytic behavior of Nb O was observed with the selected model compounds, indicating that its selection directly impacts the resulting conversion and selectivity rates as well as the reaction pathway, highlighting the relevance of model molecule selection. Photocatalytic conversion of phenol showed conversion rate (C%) up to 25 % after 2 h irradiation and high selectivity (S%) to pyrogallol (up to 50 %). Orthorhombic Nb O spheres favored conversion through free hydroxyl radicals while monoclinic rods did not convert phenol. Guaiacol photocatalytic oxidation showed high conversion rate but lower selectivity. Orthorhombic and monoclinic Nb O favored the formation of resorcinol with S % ~0.43 % (C % ~33 %) and ~13 % (C % ~27 %) respectively. The mixture of both phases enhanced the guaiacol conversion rate to ~55 % with ~17 % of selectivity to salicylaldehyde. The use of radical scavengers provided information to elucidate the reaction pathway for these model compounds, showing that different reaction pathways may be obtained for the same photocatalyst if the model compound is changed.
AbstractList The photocatalytic conversion in aqueous media of phenol and guaiacol as a lignin model compound using Nb O with different crystal phases was studied. Nb O particles were synthesized using hydrothermal methods, where it was observed that changes in the solvent control their morphology and crystal phase. Different photocatalytic behavior of Nb O was observed with the selected model compounds, indicating that its selection directly impacts the resulting conversion and selectivity rates as well as the reaction pathway, highlighting the relevance of model molecule selection. Photocatalytic conversion of phenol showed conversion rate (C%) up to 25 % after 2 h irradiation and high selectivity (S%) to pyrogallol (up to 50 %). Orthorhombic Nb O spheres favored conversion through free hydroxyl radicals while monoclinic rods did not convert phenol. Guaiacol photocatalytic oxidation showed high conversion rate but lower selectivity. Orthorhombic and monoclinic Nb O favored the formation of resorcinol with S % ~0.43 % (C % ~33 %) and ~13 % (C % ~27 %) respectively. The mixture of both phases enhanced the guaiacol conversion rate to ~55 % with ~17 % of selectivity to salicylaldehyde. The use of radical scavengers provided information to elucidate the reaction pathway for these model compounds, showing that different reaction pathways may be obtained for the same photocatalyst if the model compound is changed.
Abstract The photocatalytic conversion in aqueous media of phenol and guaiacol as a lignin model compound using Nb 2 O 5 with different crystal phases was studied. Nb 2 O 5 particles were synthesized using hydrothermal methods, where it was observed that changes in the solvent control their morphology and crystal phase. Different photocatalytic behavior of Nb 2 O 5 was observed with the selected model compounds, indicating that its selection directly impacts the resulting conversion and selectivity rates as well as the reaction pathway, highlighting the relevance of model molecule selection. Photocatalytic conversion of phenol showed conversion rate (C%) up to 25 % after 2 h irradiation and high selectivity (S%) to pyrogallol (up to 50 %). Orthorhombic Nb 2 O 5 spheres favored conversion through free hydroxyl radicals while monoclinic rods did not convert phenol. Guaiacol photocatalytic oxidation showed high conversion rate but lower selectivity. Orthorhombic and monoclinic Nb 2 O 5 favored the formation of resorcinol with S % ~0.43 % (C % ~33 %) and ~13 % (C % ~27 %) respectively. The mixture of both phases enhanced the guaiacol conversion rate to ~55 % with ~17 % of selectivity to salicylaldehyde. The use of radical scavengers provided information to elucidate the reaction pathway for these model compounds, showing that different reaction pathways may be obtained for the same photocatalyst if the model compound is changed.
Author Rafaela, Gabriela
Rojas, Susana D
Espinoza-Villalobos, Nicole
Escalona, Néstor
Barrientos, Lorena
Salazar-González, Ricardo
Caceres-Jensen, Lizethly
Diaz-Droguett, Donovan E
Author_xml – sequence: 1
  givenname: Susana D
  orcidid: 0000-0003-0557-0734
  surname: Rojas
  fullname: Rojas, Susana D
  organization: Gran Avenida 4160, San Miguel, Santiago, Chile
– sequence: 2
  givenname: Gabriela
  surname: Rafaela
  fullname: Rafaela, Gabriela
  organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
– sequence: 3
  givenname: Nicole
  orcidid: 0000-0001-9341-3928
  surname: Espinoza-Villalobos
  fullname: Espinoza-Villalobos, Nicole
  organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
– sequence: 4
  givenname: Donovan E
  orcidid: 0000-0002-3391-3485
  surname: Diaz-Droguett
  fullname: Diaz-Droguett, Donovan E
  organization: Centro de Energía UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
– sequence: 5
  givenname: Ricardo
  orcidid: 0000-0003-2180-6022
  surname: Salazar-González
  fullname: Salazar-González, Ricardo
  organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
– sequence: 6
  givenname: Lizethly
  orcidid: 0000-0002-5903-7356
  surname: Caceres-Jensen
  fullname: Caceres-Jensen, Lizethly
  organization: Laboratorio de Fisicoquímica & Analítica (PachemLab), Nucleus of Computational Thinking and Education for Sustainable Development (NuCES), Center for Research in Education (CIE-UMCE), Departamento de Química, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Ñuñoa, Santiago, 776019, Chile
– sequence: 7
  givenname: Néstor
  orcidid: 0000-0002-2628-4609
  surname: Escalona
  fullname: Escalona, Néstor
  organization: Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
– sequence: 8
  givenname: Lorena
  orcidid: 0000-0002-9641-6507
  surname: Barrientos
  fullname: Barrientos, Lorena
  organization: Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Santiago, Chile
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38452280$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRS0Eog_YskT-gRS_4iTLKuIlFVpBhdhFjj2hQWlc2UmlrPlxXBW6mZmrmTOLM0HnrW0BoRtKZpQQdqe91zNGGCc0zsQZGtNUiiiW4vP8NHM6QhPvvwmRJJPyEo14KmLGUjJGP2-2AWwr_Fpihpc4xrkbfKcavNooDx7bFncbCMl2VquwGLpa49y2e3C-DtvALuqvtm7xizXQhNqA7puAqtbgdwipq_d1N-DKOvyhmh6iuTFg8MpZ0-vOX6GLSjUerv_6FK0f7tf5U7RYPj7n80WkJSOR1DItldRJypkBLWNJS84TIoTijAGLVVxJlqQZTUomIDWZKLkoAYSuMpMZPkWz41vtrPcOqmLn6q1yQ0FJcZBZHGQWJ5kBuD0Cu77cgjmd_9vjv-evcns
Cites_doi 10.3390/ijms23084378
10.1021/es504094x
10.1039/C5GC02109J
10.1016/S0926-3373(03)00125-5
10.1016/j.jallcom.2021.162657
10.1016/j.radphyschem.2014.04.029
10.1016/j.solener.2017.03.091
10.1016/j.apcatb.2011.12.043
10.1007/s11164-015-2417-3
10.1016/j.cattod.2016.11.030
10.1016/j.indcrop.2016.05.044
10.1021/acs.est.8b04507
10.1016/j.jphotochem.2021.113513
10.1021/jp106515k
10.1021/la970469g
10.1016/j.jhazmat.2022.129783
10.1016/j.catcom.2008.09.012
10.1002/adfm.201100743
10.1039/C5TA07554H
10.1039/C9CP03246K
10.1021/acscentsci.7b00140
10.1016/j.jallcom.2012.11.128
10.3390/ma5122874
10.1039/C7TA03252H
10.1039/C7DT02021J
10.1021/jp2009786
10.1126/science.aaf7810
10.1002/cphc.201402343
10.1016/j.molliq.2023.121831
10.1021/acs.jpcc.7b10312
10.1002/ceat.201500251
10.1039/C9GC01728C
10.1016/j.jallcom.2017.08.266
10.3389/fchem.2022.881495
10.1021/acs.inorgchem.0c00949
10.1021/acs.jpclett.1c03204
10.1007/s13399-022-02701-z
10.1016/j.molcata.2016.09.035
10.1021/cs200318n
10.1021/acscatal.1c02551
10.1016/j.desal.2010.04.062
10.1016/j.electacta.2019.06.173
10.1039/c3ta12599h
10.1016/j.apcatb.2008.01.024
10.1002/cssc.202000601
10.1016/S1872-2067(21)63910-4
10.1016/j.jphotochem.2020.113057
10.1016/0368-2048(80)85003-1
10.1103/PhysRevLett.53.948
10.1016/j.solmat.2020.110408
10.1002/ceat.201000270
10.1016/j.jallcom.2021.160145
10.1021/acs.chemrev.6b00396
10.1021/acsami.2c04743
10.3390/catal10010126
10.1016/j.apcatb.2016.06.049
10.1016/j.fuproc.2019.04.007
10.1039/b307768n
10.1021/acssuschemeng.1c03528
10.1016/j.cej.2022.136063
10.3402/nano.v3i0.17631
10.1016/S0926-3373(00)00248-4
10.1016/j.jes.2016.01.024
10.1021/acscatal.8b03093
10.1021/acs.jpca.8b06301
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH.
DBID NPM
AAYXX
CITATION
DOI 10.1002/cssc.202301594
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
ExternalDocumentID 10_1002_cssc_202301594
38452280
Genre Journal Article
GrantInformation_xml – fundername: Unidad de Equipamiento Cientifico, MAINI, of Universidad Católica del Norte (UCN-Chile)
  grantid: EQM 140044 (2014e2016)
– fundername: ANID Convocatoria Nacional Subvención a la Instalación en la Academia (SIA)
  grantid: SA77210032
– fundername: ANID Fondecyt Postdoctoral
  grantid: 3210554
– fundername: ANID-Millennium Science Initiative
  grantid: NCN2021_090
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
NPM
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
CITATION
ID FETCH-LOGICAL-c620-6c68ba6c7832dec6561b337044a322e25a5f6278917b24e8d94b34bee4cf9d9d3
ISSN 1864-5631
IngestDate Wed Aug 28 12:35:21 EDT 2024
Sat Nov 02 12:30:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords high value products
crystal phase
photocatalytic conversion
hydroxyl radical
lignin model compounds
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c620-6c68ba6c7832dec6561b337044a322e25a5f6278917b24e8d94b34bee4cf9d9d3
ORCID 0000-0002-9641-6507
0000-0001-9341-3928
0000-0002-5903-7356
0000-0003-0557-0734
0000-0002-3391-3485
0000-0003-2180-6022
0000-0002-2628-4609
PMID 38452280
ParticipantIDs crossref_primary_10_1002_cssc_202301594
pubmed_primary_38452280
PublicationCentury 2000
PublicationDate 2024-07-22
PublicationDateYYYYMMDD 2024-07-22
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-22
  day: 22
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2024
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Zhang Y. (e_1_2_8_16_1) 2023; 856
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Su K. (e_1_2_8_56_1) 2021; 8
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – ident: e_1_2_8_37_1
– ident: e_1_2_8_12_1
  doi: 10.3390/ijms23084378
– ident: e_1_2_8_66_1
  doi: 10.1021/es504094x
– ident: e_1_2_8_6_1
  doi: 10.1039/C5GC02109J
– ident: e_1_2_8_29_1
  doi: 10.1016/S0926-3373(03)00125-5
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jallcom.2021.162657
– ident: e_1_2_8_54_1
– ident: e_1_2_8_62_1
  doi: 10.1016/j.radphyschem.2014.04.029
– ident: e_1_2_8_49_1
  doi: 10.1016/j.solener.2017.03.091
– ident: e_1_2_8_58_1
  doi: 10.1016/j.apcatb.2011.12.043
– ident: e_1_2_8_65_1
  doi: 10.1007/s11164-015-2417-3
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cattod.2016.11.030
– ident: e_1_2_8_55_1
  doi: 10.1016/j.indcrop.2016.05.044
– ident: e_1_2_8_68_1
  doi: 10.1021/acs.est.8b04507
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jphotochem.2021.113513
– ident: e_1_2_8_28_1
  doi: 10.1021/jp106515k
– ident: e_1_2_8_57_1
  doi: 10.1021/la970469g
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jhazmat.2022.129783
– ident: e_1_2_8_23_1
  doi: 10.1016/j.catcom.2008.09.012
– ident: e_1_2_8_22_1
  doi: 10.1002/adfm.201100743
– ident: e_1_2_8_38_1
  doi: 10.1039/C5TA07554H
– ident: e_1_2_8_71_1
  doi: 10.1039/C9CP03246K
– ident: e_1_2_8_8_1
  doi: 10.1021/acscentsci.7b00140
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jallcom.2012.11.128
– ident: e_1_2_8_53_1
  doi: 10.3390/ma5122874
– ident: e_1_2_8_3_1
  doi: 10.1039/C7TA03252H
– ident: e_1_2_8_31_1
  doi: 10.1039/C7DT02021J
– ident: e_1_2_8_51_1
  doi: 10.1021/jp2009786
– ident: e_1_2_8_9_1
  doi: 10.1126/science.aaf7810
– ident: e_1_2_8_25_1
  doi: 10.1002/cphc.201402343
– volume: 856
  year: 2023
  ident: e_1_2_8_16_1
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Zhang Y.
– ident: e_1_2_8_34_1
  doi: 10.1016/j.molliq.2023.121831
– ident: e_1_2_8_50_1
  doi: 10.1021/acs.jpcc.7b10312
– ident: e_1_2_8_69_1
  doi: 10.1002/ceat.201500251
– ident: e_1_2_8_1_1
  doi: 10.1039/C9GC01728C
– ident: e_1_2_8_39_1
  doi: 10.1016/j.jallcom.2017.08.266
– ident: e_1_2_8_19_1
  doi: 10.3389/fchem.2022.881495
– ident: e_1_2_8_42_1
– ident: e_1_2_8_48_1
  doi: 10.1021/acs.inorgchem.0c00949
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.jpclett.1c03204
– ident: e_1_2_8_10_1
  doi: 10.1007/s13399-022-02701-z
– ident: e_1_2_8_32_1
  doi: 10.1016/j.molcata.2016.09.035
– ident: e_1_2_8_24_1
  doi: 10.1021/cs200318n
– ident: e_1_2_8_20_1
  doi: 10.1021/acscatal.1c02551
– ident: e_1_2_8_30_1
  doi: 10.1016/j.desal.2010.04.062
– ident: e_1_2_8_35_1
  doi: 10.1016/j.electacta.2019.06.173
– ident: e_1_2_8_67_1
  doi: 10.1016/j.radphyschem.2014.04.029
– volume: 8
  year: 2021
  ident: e_1_2_8_56_1
  publication-title: Adv. Sci.
  contributor:
    fullname: Su K.
– ident: e_1_2_8_52_1
  doi: 10.1039/c3ta12599h
– ident: e_1_2_8_21_1
  doi: 10.1016/j.apcatb.2008.01.024
– ident: e_1_2_8_4_1
  doi: 10.1002/cssc.202000601
– ident: e_1_2_8_15_1
  doi: 10.1016/S1872-2067(21)63910-4
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jphotochem.2020.113057
– ident: e_1_2_8_44_1
  doi: 10.1016/0368-2048(80)85003-1
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevLett.53.948
– ident: e_1_2_8_26_1
  doi: 10.1016/j.solmat.2020.110408
– ident: e_1_2_8_5_1
  doi: 10.1002/ceat.201000270
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jallcom.2021.160145
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.chemrev.6b00396
– ident: e_1_2_8_59_1
  doi: 10.1021/acsami.2c04743
– ident: e_1_2_8_60_1
  doi: 10.3390/catal10010126
– ident: e_1_2_8_64_1
  doi: 10.1016/j.apcatb.2016.06.049
– ident: e_1_2_8_7_1
  doi: 10.1016/j.fuproc.2019.04.007
– ident: e_1_2_8_43_1
  doi: 10.1039/b307768n
– ident: e_1_2_8_70_1
  doi: 10.1021/acssuschemeng.1c03528
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cej.2022.136063
– ident: e_1_2_8_61_1
  doi: 10.3402/nano.v3i0.17631
– ident: e_1_2_8_63_1
  doi: 10.1016/S0926-3373(00)00248-4
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jes.2016.01.024
– ident: e_1_2_8_14_1
  doi: 10.1021/acscatal.8b03093
– ident: e_1_2_8_72_1
  doi: 10.1021/acs.jpca.8b06301
– ident: e_1_2_8_45_1
  doi: 10.3390/catal10010126
SSID ssj0060966
Score 2.4657924
Snippet The photocatalytic conversion in aqueous media of phenol and guaiacol as a lignin model compound using Nb O with different crystal phases was studied. Nb O...
Abstract The photocatalytic conversion in aqueous media of phenol and guaiacol as a lignin model compound using Nb 2 O 5 with different crystal phases was...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage e202301594
Title Role of Nb 2 O 5 Crystal Phases on the Photocatalytic Conversion of Lignin Model Molecules and Selectivity for Value-Added Products
URI https://www.ncbi.nlm.nih.gov/pubmed/38452280
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoAL4s3ykg9IHKKU1HGc5LhqCiskumi3rPZW2Ym7FFXJqmkP2xMX7vwh_gy_hBk7cVPUw8LFTaw8qswnz8Mz3xDyhqFQ8yL1BzKQPo_SwlcCy7hirXIRa7A4sHb401gcf-EfL6KLXu9XJ2tpvVL9fLO3ruR_pApzIFeskv0HybqHwgQcg3xhBAnDeCMZnzapgWPlMe_Ei7zh8rrG6sbPX0E5tRsBcFatKhOnuUZ61iEmmpsomdkgmF8ivyr2RFvAaJrlakvcfGZ65NjuEpiNeC4Xa-2yI45gyTKFBsgYW3eNXCQhOFvX-LPdz_lmK8dMFpD0sv52g2km9cKYsB-kAsd94RTFqL6al9VGuleeY4ukRaVsaqABscNlNpcbd2G2xIiU3ffKKuz7WnqjfjfCwTiGTlkn6DlIBPcj0WgL3Z2z2Z1uJY-7iOV7NYRlnM3rGvkrwf8Cc45vdWG7__-XinSJi5bkmU3x_qm7_xa5zWCdw4zC7NSxlwnwDk1xW_v3W87QgL3bff-OTbTj3RgrZ3Kf3GvcE3pksfaA9HT5kNwZtl0BH5EfiDlazehYUUZPaEQbzFGLOVqVFDBHdzFHt5jDey3mqMEcdZijgDnawRwFzFGDud_ffxq00RZtj8nk_WgyPPabVh5-LjA-kYtESZHHoD8KnYMPMVBhGAecS1AomkUymgmsyR7EinGdFClXIVda83yWFmkRPiEHZVXqZ4TqGdeRQpahiKG7nwZS8xAPwiQQhT4kb9tvOb2yhC3T_VI7JE_tp3bXhQn2F0iC5zd-xgtyd4vYl-RgtVzrV2ClrtRrg4U_jLuPxA
link.rule.ids 315,783,787,27938,27939
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Nb+2+O+5+Crystal+Phases+on+the+Photocatalytic+Conversion+of+Lignin+Model+Molecules+and+Selectivity+for+Value%E2%80%90Added+Products&rft.jtitle=ChemSusChem&rft.au=Rojas%2C+Susana+D.&rft.au=Rafaela%2C+Gabriela&rft.au=Espinoza%E2%80%90Villalobos%2C+Nicole&rft.au=Diaz%E2%80%90Droguett%2C+Donovan+E.&rft.date=2024-07-22&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=17&rft.issue=14&rft_id=info:doi/10.1002%2Fcssc.202301594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_202301594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon