Accuracy of electromyometrial imaging of uterine contractions in clinical environment

Clinically, uterine contractions are monitored with tocodynamometers or intrauterine pressure catheters. In the research setting, electromyography (EMG), which detects electrical activity of the uterus from a few electrodes on the abdomen, is feasible, can provide more accurate data than these other...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 116; p. 103543
Main Authors Wang, Hui, Wu, Wenjie, Talcott, Michael, McKinstry, Robert C., Woodard, Pamela K., Macones, George A., Schwartz, Alan L., Cuculich, Phillip, Cahill, Alison G., Wang, Yong
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2020
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2019.103543

Cover

Loading…
Abstract Clinically, uterine contractions are monitored with tocodynamometers or intrauterine pressure catheters. In the research setting, electromyography (EMG), which detects electrical activity of the uterus from a few electrodes on the abdomen, is feasible, can provide more accurate data than these other methods, and may be useful for predicting preterm birth. However, EMG lacks sufficient spatial resolution and coverage to reveal where uterine contractions originate, how they propagate, and whether preterm contractions differ between women who do and do not progress to preterm delivery. To address those limitations, electromyometrial imaging (EMMI) was recently developed and validated to non-invasively assess three-dimensional (3D) electrical activation patterns on the entire uterine surface in pregnant sheep. EMMI uses magnetic resonance imaging to obtain subject-specific body-uterus geometry and collects uterine EMG data from up to 256 electrodes on the body surface. EMMI software then solves an ill-posed inverse computation to combine the two datasets and generate maps of electrical activity on the entire 3D uterine surface. Here, we assessed the feasibility to clinically translate EMMI by evaluating EMMI's accuracy under the unavoidable geometrical alterations and electrical noise contamination in a clinical environment. We developed a hybrid experimental-simulation platform to model the effects of fetal kicks, contractions, fetal/maternal movements, and noise contamination caused by maternal respiration and environmental electrical activity. Our data indicate that EMMI can accurately image uterine electrical activity in the presence of geometrical deformations and electrical noise, suggesting that EMMI can be reliably translated to non-invasively image 3D uterine electrical activation in pregnant women. •The accuracy of Electromyometrial Imaging (EMMI) is evaluated with a hybrid method.•Multiple levels of geometry deformations and of electrical noise are considered.•Ten different levels of deformations/noise are studied.•Accuracy of EMMI uterine electrogram, isochrone and activation time are evaluated.•Geometrical deformation and electrical noise have minor effects on EMMI accuracy.
AbstractList Clinically, uterine contractions are monitored with tocodynamometers or intrauterine pressure catheters. In the research setting, electromyography (EMG), which detects electrical activity of the uterus from a few electrodes on the abdomen, is feasible, can provide more accurate data than these other methods, and may be useful for predicting preterm birth. However, EMG lacks sufficient spatial resolution and coverage to reveal where uterine contractions originate, how they propagate, and whether preterm contractions differ between women who do and do not progress to preterm delivery. To address those limitations, electromyometrial imaging (EMMI) was recently developed and validated to non-invasively assess three-dimensional (3D) electrical activation patterns on the entire uterine surface in pregnant sheep. EMMI uses magnetic resonance imaging to obtain subject-specific body-uterus geometry and collects uterine EMG data from up to 256 electrodes on the body surface. EMMI software then solves an ill-posed inverse computation to combine the two datasets and generate maps of electrical activity on the entire 3D uterine surface. Here, we assessed the feasibility to clinically translate EMMI by evaluating EMMI's accuracy under the unavoidable geometrical alterations and electrical noise contamination in a clinical environment. We developed a hybrid experimental-simulation platform to model the effects of fetal kicks, contractions, fetal/maternal movements, and noise contamination caused by maternal respiration and environmental electrical activity. Our data indicate that EMMI can accurately image uterine electrical activity in the presence of geometrical deformations and electrical noise, suggesting that EMMI can be reliably translated to non-invasively image 3D uterine electrical activation in pregnant women.
Clinically, uterine contractions are monitored with tocodynamometers or intrauterine pressure catheters. In the research setting, electromyography (EMG), which detects electrical activity of the uterus from a few electrodes on the abdomen, is feasible, can provide more accurate data than these other methods, and may be useful for predicting preterm birth. However, EMG lacks sufficient spatial resolution and coverage to reveal where uterine contractions originate, how they propagate, and whether preterm contractions differ between women who do and do not progress to preterm delivery. To address those limitations, electromyometrial imaging (EMMI) was recently developed and validated to non-invasively assess three-dimensional (3D) electrical activation patterns on the entire uterine surface in pregnant sheep. EMMI uses magnetic resonance imaging to obtain subject-specific body-uterus geometry and collects uterine EMG data from up to 256 electrodes on the body surface. EMMI software then solves an ill-posed inverse computation to combine the two datasets and generate maps of electrical activity on the entire 3D uterine surface. Here, we assessed the feasibility to clinically translate EMMI by evaluating EMMI's accuracy under the unavoidable geometrical alterations and electrical noise contamination in a clinical environment. We developed a hybrid experimental-simulation platform to model the effects of fetal kicks, contractions, fetal/maternal movements, and noise contamination caused by maternal respiration and environmental electrical activity. Our data indicate that EMMI can accurately image uterine electrical activity in the presence of geometrical deformations and electrical noise, suggesting that EMMI can be reliably translated to non-invasively image 3D uterine electrical activation in pregnant women.Clinically, uterine contractions are monitored with tocodynamometers or intrauterine pressure catheters. In the research setting, electromyography (EMG), which detects electrical activity of the uterus from a few electrodes on the abdomen, is feasible, can provide more accurate data than these other methods, and may be useful for predicting preterm birth. However, EMG lacks sufficient spatial resolution and coverage to reveal where uterine contractions originate, how they propagate, and whether preterm contractions differ between women who do and do not progress to preterm delivery. To address those limitations, electromyometrial imaging (EMMI) was recently developed and validated to non-invasively assess three-dimensional (3D) electrical activation patterns on the entire uterine surface in pregnant sheep. EMMI uses magnetic resonance imaging to obtain subject-specific body-uterus geometry and collects uterine EMG data from up to 256 electrodes on the body surface. EMMI software then solves an ill-posed inverse computation to combine the two datasets and generate maps of electrical activity on the entire 3D uterine surface. Here, we assessed the feasibility to clinically translate EMMI by evaluating EMMI's accuracy under the unavoidable geometrical alterations and electrical noise contamination in a clinical environment. We developed a hybrid experimental-simulation platform to model the effects of fetal kicks, contractions, fetal/maternal movements, and noise contamination caused by maternal respiration and environmental electrical activity. Our data indicate that EMMI can accurately image uterine electrical activity in the presence of geometrical deformations and electrical noise, suggesting that EMMI can be reliably translated to non-invasively image 3D uterine electrical activation in pregnant women.
Clinically, uterine contractions are monitored with tocodynamometers or intrauterine pressure catheters. In the research setting, electromyography (EMG), which detects electrical activity of the uterus from a few electrodes on the abdomen, is feasible, can provide more accurate data than these other methods, and may be useful for predicting preterm birth. However, EMG lacks sufficient spatial resolution and coverage to reveal where uterine contractions originate, how they propagate, and whether preterm contractions differ between women who do and do not progress to preterm delivery. To address those limitations, electromyometrial imaging (EMMI) was recently developed and validated to non-invasively assess three-dimensional (3D) electrical activation patterns on the entire uterine surface in pregnant sheep. EMMI uses magnetic resonance imaging to obtain subject-specific body-uterus geometry and collects uterine EMG data from up to 256 electrodes on the body surface. EMMI software then solves an ill-posed inverse computation to combine the two datasets and generate maps of electrical activity on the entire 3D uterine surface. Here, we assessed the feasibility to clinically translate EMMI by evaluating EMMI's accuracy under the unavoidable geometrical alterations and electrical noise contamination in a clinical environment. We developed a hybrid experimental-simulation platform to model the effects of fetal kicks, contractions, fetal/maternal movements, and noise contamination caused by maternal respiration and environmental electrical activity. Our data indicate that EMMI can accurately image uterine electrical activity in the presence of geometrical deformations and electrical noise, suggesting that EMMI can be reliably translated to non-invasively image 3D uterine electrical activation in pregnant women. •The accuracy of Electromyometrial Imaging (EMMI) is evaluated with a hybrid method.•Multiple levels of geometry deformations and of electrical noise are considered.•Ten different levels of deformations/noise are studied.•Accuracy of EMMI uterine electrogram, isochrone and activation time are evaluated.•Geometrical deformation and electrical noise have minor effects on EMMI accuracy.
AbstractClinically, uterine contractions are monitored with tocodynamometers or intrauterine pressure catheters. In the research setting, electromyography (EMG), which detects electrical activity of the uterus from a few electrodes on the abdomen, is feasible, can provide more accurate data than these other methods, and may be useful for predicting preterm birth. However, EMG lacks sufficient spatial resolution and coverage to reveal where uterine contractions originate, how they propagate, and whether preterm contractions differ between women who do and do not progress to preterm delivery. To address those limitations, electromyometrial imaging (EMMI) was recently developed and validated to non-invasively assess three-dimensional (3D) electrical activation patterns on the entire uterine surface in pregnant sheep. EMMI uses magnetic resonance imaging to obtain subject-specific body-uterus geometry and collects uterine EMG data from up to 256 electrodes on the body surface. EMMI software then solves an ill-posed inverse computation to combine the two datasets and generate maps of electrical activity on the entire 3D uterine surface. Here, we assessed the feasibility to clinically translate EMMI by evaluating EMMI's accuracy under the unavoidable geometrical alterations and electrical noise contamination in a clinical environment. We developed a hybrid experimental-simulation platform to model the effects of fetal kicks, contractions, fetal/maternal movements, and noise contamination caused by maternal respiration and environmental electrical activity. Our data indicate that EMMI can accurately image uterine electrical activity in the presence of geometrical deformations and electrical noise, suggesting that EMMI can be reliably translated to non-invasively image 3D uterine electrical activation in pregnant women.
ArticleNumber 103543
Author Cuculich, Phillip
Cahill, Alison G.
Wang, Hui
Wu, Wenjie
Macones, George A.
McKinstry, Robert C.
Talcott, Michael
Woodard, Pamela K.
Schwartz, Alan L.
Wang, Yong
AuthorAffiliation 2 Center for Reproductive Health Sciences, Washington University, St. Louis, MO, 63130, USA
4 Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA
1 Department of Physics, Washington University, St. Louis, MO, 63130, USA
6 Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
9 Department of Cardiology, Washington University School of Medicine, St. Louis, MO 63110, USA
7 Department of Women’s Health, University of Texas at Austin, Austin, TX, 78712, USA
8 Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
5 Division of Comparative Medicine, Washington University, St. Louis, MO 63110, USA
3 Department of Obstetrics & Gynecology, School of Medicine, St. Louis, MO 63110, USA
AuthorAffiliation_xml – name: 3 Department of Obstetrics & Gynecology, School of Medicine, St. Louis, MO 63110, USA
– name: 9 Department of Cardiology, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 8 Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 7 Department of Women’s Health, University of Texas at Austin, Austin, TX, 78712, USA
– name: 6 Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
– name: 1 Department of Physics, Washington University, St. Louis, MO, 63130, USA
– name: 5 Division of Comparative Medicine, Washington University, St. Louis, MO 63110, USA
– name: 4 Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA
– name: 2 Center for Reproductive Health Sciences, Washington University, St. Louis, MO, 63130, USA
Author_xml – sequence: 1
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  email: wang.hui@wustl.edu
  organization: Department of Physics, Washington University, St. Louis, MO, 63130, USA
– sequence: 2
  givenname: Wenjie
  surname: Wu
  fullname: Wu, Wenjie
  organization: Center for Reproductive Health Sciences, Washington University, St. Louis, MO, 63130, USA
– sequence: 3
  givenname: Michael
  surname: Talcott
  fullname: Talcott, Michael
  organization: Division of Comparative Medicine, Washington University, St. Louis, MO, 63110, USA
– sequence: 4
  givenname: Robert C.
  surname: McKinstry
  fullname: McKinstry, Robert C.
  organization: Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
– sequence: 5
  givenname: Pamela K.
  surname: Woodard
  fullname: Woodard, Pamela K.
  organization: Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA
– sequence: 6
  givenname: George A.
  surname: Macones
  fullname: Macones, George A.
  organization: Department of Women's Health, University of Texas at Austin, Austin, TX, 78712, USA
– sequence: 7
  givenname: Alan L.
  surname: Schwartz
  fullname: Schwartz, Alan L.
  organization: Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
– sequence: 8
  givenname: Phillip
  surname: Cuculich
  fullname: Cuculich, Phillip
  organization: Department of Cardiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
– sequence: 9
  givenname: Alison G.
  surname: Cahill
  fullname: Cahill, Alison G.
  email: alison.cahill@austin.utexas.edu
  organization: Department of Women's Health, University of Texas at Austin, Austin, TX, 78712, USA
– sequence: 10
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: wangyong@wustl.edu
  organization: Center for Reproductive Health Sciences, Washington University, St. Louis, MO, 63130, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31786490$$D View this record in MEDLINE/PubMed
BookMark eNqNkltr20AQhZeS0jhu_0IR9KUvdvemy76EpqE3CPShzfMij0buutKuuysZ_O87wnHSGgpGIIH2zKejc-aKXfjgkbFM8KXgoni3WULotysXemyWkgtDr1Wu1TM2E1VpFjxX-oLNOBd8oSuZX7KrlDacc80Vf8EulSirQhs-Y_c3AGOsYZ-FNsMOYYih3xN3iK7uMtfXa-fX0-E4YHQeMwh-oIHBBZ8y5zPonHdAWvQ7F4Pv0Q8v2fO27hK-enjO2f2njz9uvyzuvn3-entzt4BCmGFRQq5LEFq1ecEbUZi2ka0oi5WplKlqkUsJGpQAU7RCNkK3WBuJUmKpTSFQzdn1gbsdVxQF4GSts9tIvuPehtrZf0-8-2nXYWdLLilIRYC3D4AYfo-YBtu7BNh1tccwJiuV5IWme0XSNyfSTRijp98jlaarzEk4Z6__dvRo5Zj4k2WIIaWIrQU31FOaZNB1VnA7VWw39qliO1VsDxUToDoBHL9xxuiHwyhSJzuH0SZw6AEbF6l52wR3DuT6BHLcgF-4x_QYirBJWm6_T0s47aAwitaPlwR4_3_AeR7-ADmg8mQ
CitedBy_id crossref_primary_10_3390_s24196426
crossref_primary_10_1007_s43032_020_00358_5
crossref_primary_10_1016_j_dib_2019_105078
crossref_primary_10_1016_j_bspc_2021_102531
crossref_primary_10_1109_TBCAS_2023_3278104
crossref_primary_10_1007_s43032_023_01268_y
crossref_primary_10_1001_jamanetworkopen_2022_14707
crossref_primary_10_1038_s41467_023_36440_0
crossref_primary_10_1371_journal_pone_0272155
crossref_primary_10_1038_s44294_023_00003_x
crossref_primary_10_1016_j_amc_2020_125604
crossref_primary_10_1007_s11517_020_02183_z
crossref_primary_10_1021_acsnano_2c04962
Cites_doi 10.1016/j.ajog.2013.05.056
10.1016/j.mri.2004.01.047
10.1126/scitranslmed.aau1428
10.1111/apha.12424
10.1016/j.compbiomed.2017.12.001
10.1109/PROC.1977.10539
10.1080/14767050802220508
10.1111/j.1600-0412.2010.01031.x
10.1088/1361-6579/aaad56
10.1016/j.ajog.2013.04.001
10.1016/j.bbe.2016.06.004
10.1145/2010324.1964967
10.1007/s10439-006-9131-7
10.1016/0002-9378(93)90456-S
10.1016/S0140-6736(12)60820-4
10.1161/01.CIR.102.17.2152
10.1088/0031-9155/52/23/017
10.1053/j.semperi.2013.06.005
10.1016/S0140-6736(08)60136-1
10.1109/10.553710
10.1371/journal.pone.0086775
10.1046/j.1540-8167.2001.00241.x
10.1145/1057432.1057456
10.1016/j.bpobgyn.2018.04.002
10.1126/science.1251816
10.1001/jama.2016.12126
10.1016/j.ejogrb.2009.02.023
10.1371/journal.pone.0202125
10.1016/j.theriogenology.2007.09.021
10.14302/issn.2381-862X.jwrh-15-771
ContentType Journal Article
Copyright 2020 The Authors
The Authors
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
2020. The Authors
Copyright_xml – notice: 2020 The Authors
– notice: The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: 2020. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1016/j.compbiomed.2019.103543
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library (ProQuest)
Biological Science Database (ProQuest)
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 103543
ExternalDocumentID PMC7021013
31786490
10_1016_j_compbiomed_2019_103543
S0010482519304007
1_s2_0_S0010482519304007
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG050548
– fundername: NIA NIH HHS
  grantid: R01 AG054567
– fundername: NICHD NIH HHS
  grantid: R01 HD094381
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c619t-7c547c143f560d169fd2f176b98398a1522c4c31c96f12d14fea92e22e74961e3
IEDL.DBID 7X7
ISSN 0010-4825
1879-0534
IngestDate Thu Aug 21 17:56:58 EDT 2025
Fri Jul 11 08:02:24 EDT 2025
Wed Aug 13 07:39:51 EDT 2025
Thu Apr 03 06:58:58 EDT 2025
Tue Jul 01 03:28:35 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Fri Feb 23 02:42:45 EST 2024
Sun Feb 23 10:19:14 EST 2025
Tue Aug 26 16:34:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electrophysiology
Clinical translation
Preterm birth
Electromyometrial imaging
Inverse problem
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c619t-7c547c143f560d169fd2f176b98398a1522c4c31c96f12d14fea92e22e74961e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: H.W., A.G.C, and Y.W. designed this study. Y.W., R.C.M., and P.K.W. designed the MRI protocol and optimized the MRI sequences. H.W., W.W, M.T, G.A.M., A.L.S., P.C., A.G.C., and Y.W. performed sheep experiments and acquired the data. H.W. did the simulation study and data analysis. H.W., A.G.C., and Y.W. wrote the manuscript. All authors revised the paper.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010482519304007
PMID 31786490
PQID 2343437542
PQPubID 1226355
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7021013
proquest_miscellaneous_2320642328
proquest_journals_2343437542
pubmed_primary_31786490
crossref_citationtrail_10_1016_j_compbiomed_2019_103543
crossref_primary_10_1016_j_compbiomed_2019_103543
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103543
elsevier_clinicalkeyesjournals_1_s2_0_S0010482519304007
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103543
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Barry, Anthony (bib23) 2008; 69
Kok, de Vries, Heerschap, van den Berg (bib21) 2004; 22
Liu, Belfore, Shen, Scerbo (bib27) 2010
Saigal, Doyle (bib2) 2008; 371
Zahran, Diab, Khalil, Marque (bib36) 2018
Lucovnik, Kuon, Chambliss, Maner, SHI, Shi, Balducci, Garfield (bib13) 2011; 90
Jain, Saad, Basraon (bib11) 2016; 1
Garcia-Casado, Ye-Lin, Prats-Boluda, Mas-Cabo, Alberola-Rubio, Perales (bib4) 2018; 39
Wu, Wang, Zhao, Talcott, Lai, McKinstry, Woodard, Macones, Schwartz, Cahill, Cuculich, Wang (bib6) 2019; 11
Blencowe, Cousens, Oestergaard, Chou, Moller, Narwal, Adler, Garcia, Rohde, Say (bib1) 2012; 379
Wilmink, Wilms, Heydanus, Mol, Papatsonis (bib7) 2008; 21
Aster, Borchers, Thurber (bib31) 2013
Garfield, Maner (bib16) 2007; 18
Plonsey (bib28) 1977; 65
O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, H.-P. Seidel, Laplacian Surface Editing, in: ACM Press, n.d.: p. 175. doi:10.1145/1057432.1057456.
Martin, Thomaszewski, Grinspun, Gross (bib25) 2011; 30
Johnston, Gulrajani (bib33) 1997; 44
Ray, Vermeulen, Bharatha, Montanera, Park (bib20) 2016; 316
Yochum, Laforêt, Marque (bib39) 2018; 93
Young (bib18) 2018; 52
Rabotti, Mischi (bib17) 2015; 213
Burnes, Taccardi, Rudy (bib32) 2000; 102
Romero, Dey, Fisher (bib3) 2014; 345
Ramanathan, Rudy (bib29) 2001; 12
Harper, Shanks, Tuuli, Roehl, Cahill (bib8) 2013; 209
Horoba, Jezewski, Matonia, Wrobel, Czabanski, Jezewski (bib15) 2016; 36
Zhang, La Rosa, Eswaran, Nehorai (bib26) 2018; 13
Eswaran, Govindan, Furdea, Murphy, Lowery, Preissl (bib9) 2009; 144
Lange, Vaeggemose, Kidmose, Mikkelsen, Uldbjerg, Johansen (bib34) 2014; 9
Bulas, Egloff (bib19) 2013; 37
Wang, Rudy (bib22) 2006; 34
Jager, Libenšek, Geršak (bib14) 2018; 13
Vasak, Graatsma, Hekman-Drost, Eijkemans, van Leeuwen, Visser, Jacod (bib35) 2013; 209
Xu, Taranenko, Zhang, Shi (bib37) 2007; 52
Escalona-Vargas, Zhang, Nehorai, Eswaran (bib10) 2018
Zhang, Tidwell, La Rosa, Wilson, Eswaran, Nehorai (bib38) 2016; 11
Devedeux, Marque, Mansour, Germain, Duchêne (bib12) 1993; 169
Macfarlane, Van Oosterom, Pahlm, Kligfield, Janse, Camm (bib30) 2010
Huber, Shazly, Ruano (bib5) 2019; 0
Zhang (10.1016/j.compbiomed.2019.103543_bib26) 2018; 13
Garfield (10.1016/j.compbiomed.2019.103543_bib16) 2007; 18
Vasak (10.1016/j.compbiomed.2019.103543_bib35) 2013; 209
Zhang (10.1016/j.compbiomed.2019.103543_bib38) 2016; 11
Zahran (10.1016/j.compbiomed.2019.103543_bib36) 2018
Wu (10.1016/j.compbiomed.2019.103543_bib6) 2019; 11
Saigal (10.1016/j.compbiomed.2019.103543_bib2) 2008; 371
Kok (10.1016/j.compbiomed.2019.103543_bib21) 2004; 22
Wang (10.1016/j.compbiomed.2019.103543_bib22) 2006; 34
Young (10.1016/j.compbiomed.2019.103543_bib18) 2018; 52
Lucovnik (10.1016/j.compbiomed.2019.103543_bib13) 2011; 90
Escalona-Vargas (10.1016/j.compbiomed.2019.103543_bib10) 2018
Johnston (10.1016/j.compbiomed.2019.103543_bib33) 1997; 44
Xu (10.1016/j.compbiomed.2019.103543_bib37) 2007; 52
Horoba (10.1016/j.compbiomed.2019.103543_bib15) 2016; 36
Ramanathan (10.1016/j.compbiomed.2019.103543_bib29) 2001; 12
Lange (10.1016/j.compbiomed.2019.103543_bib34) 2014; 9
Wilmink (10.1016/j.compbiomed.2019.103543_bib7) 2008; 21
Eswaran (10.1016/j.compbiomed.2019.103543_bib9) 2009; 144
Martin (10.1016/j.compbiomed.2019.103543_bib25) 2011; 30
Bulas (10.1016/j.compbiomed.2019.103543_bib19) 2013; 37
Liu (10.1016/j.compbiomed.2019.103543_bib27) 2010
Macfarlane (10.1016/j.compbiomed.2019.103543_bib30) 2010
Rabotti (10.1016/j.compbiomed.2019.103543_bib17) 2015; 213
Jain (10.1016/j.compbiomed.2019.103543_bib11) 2016; 1
10.1016/j.compbiomed.2019.103543_bib24
Harper (10.1016/j.compbiomed.2019.103543_bib8) 2013; 209
Romero (10.1016/j.compbiomed.2019.103543_bib3) 2014; 345
Burnes (10.1016/j.compbiomed.2019.103543_bib32) 2000; 102
Blencowe (10.1016/j.compbiomed.2019.103543_bib1) 2012; 379
Jager (10.1016/j.compbiomed.2019.103543_bib14) 2018; 13
Garcia-Casado (10.1016/j.compbiomed.2019.103543_bib4) 2018; 39
Ray (10.1016/j.compbiomed.2019.103543_bib20) 2016; 316
Yochum (10.1016/j.compbiomed.2019.103543_bib39) 2018; 93
Barry (10.1016/j.compbiomed.2019.103543_bib23) 2008; 69
Devedeux (10.1016/j.compbiomed.2019.103543_bib12) 1993; 169
Plonsey (10.1016/j.compbiomed.2019.103543_bib28) 1977; 65
Aster (10.1016/j.compbiomed.2019.103543_bib31) 2013
Huber (10.1016/j.compbiomed.2019.103543_bib5) 2019; 0
References_xml – volume: 37
  start-page: 301
  year: 2013
  end-page: 304
  ident: bib19
  article-title: Benefits and risks of MRI in pregnancy
  publication-title: Semin. Perinatol.
– volume: 0
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib5
  article-title: Potential use of electrohysterography in obstetrics: a review article
  publication-title: J. Matern. Neonatal Med.
– volume: 11
  year: 2019
  ident: bib6
  article-title: Noninvasive high-resolution electromyometrial imaging of uterine contractions in a translational sheep model
  publication-title: Sci. Transl. Med.
– volume: 209
  start-page: 38. e1
  year: 2013
  end-page: 38. e6
  ident: bib8
  article-title: The risks and benefits of internal monitors in laboring patients
  publication-title: Am. J. Obstet. Gynecol.
– volume: 13
  year: 2018
  ident: bib14
  article-title: Characterization and automatic classification of preterm and term uterine records
  publication-title: PLoS One
– volume: 22
  start-page: 851
  year: 2004
  end-page: 854
  ident: bib21
  article-title: Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: a follow-up study
  publication-title: Magn. Reson. Imaging
– volume: 21
  start-page: 880
  year: 2008
  end-page: 883
  ident: bib7
  article-title: Fetal complications after placement of an intrauterine pressure catheter: a report of two cases and review of the literature
  publication-title: J. Matern. Neonatal Med.
– volume: 316
  start-page: 952
  year: 2016
  end-page: 961
  ident: bib20
  article-title: Association between MRI exposure during pregnancy and fetal and childhood outcomes
  publication-title: JAMA
– volume: 209
  start-page: 232. e1
  year: 2013
  end-page: 232. e8
  ident: bib35
  article-title: Uterine electromyography for identification of first-stage labor arrest in term nulliparous women with spontaneous onset of labor
  publication-title: Am. J. Obstet. Gynecol.
– volume: 52
  start-page: 7023
  year: 2007
  end-page: 7044
  ident: bib37
  article-title: A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods—RPI-P3, -P6 and -P9
  publication-title: Phys. Med. Biol.
– volume: 144
  start-page: S96
  year: 2009
  end-page: S100
  ident: bib9
  article-title: Extraction, quantification and characterization of uterine magnetomyographic activity—a proof of concept case study
  publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol.
– volume: 213
  start-page: 406
  year: 2015
  end-page: 416
  ident: bib17
  article-title: Propagation of electrical activity in uterine muscle during pregnancy: a review
  publication-title: Acta Physiol.
– year: 2010
  ident: bib30
  article-title: Comprehensive Electrocardiology
– volume: 93
  start-page: 17
  year: 2018
  end-page: 30
  ident: bib39
  article-title: Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction
  publication-title: Comput. Biol. Med.
– volume: 34
  start-page: 1272
  year: 2006
  end-page: 1288
  ident: bib22
  article-title: Application of the method of fundamental solutions to potential-based inverse electrocardiography
  publication-title: Ann. Biomed. Eng.
– volume: 379
  start-page: 2162
  year: 2012
  end-page: 2172
  ident: bib1
  article-title: National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications
  publication-title: Lancet
– year: 2013
  ident: bib31
  article-title: Parameter Estimation and Inverse Problems
– volume: 30
  start-page: 72
  year: 2011
  ident: bib25
  article-title: Example-based elastic materials
  publication-title: ACM Trans. Graph.
– volume: 18
  start-page: 289
  year: 2007
  end-page: 295
  ident: bib16
  article-title: Physiology and Electrical Activity of Uterine Contractions
– volume: 11
  year: 2016
  ident: bib38
  article-title: Modeling magnetomyograms of uterine contractions during pregnancy using a multiscale forward electromagnetic approach
  publication-title: PLoS One
– volume: 13
  year: 2018
  ident: bib26
  article-title: Estimating uterine source current during contractions using magnetomyography measurements
  publication-title: PLoS One
– volume: 90
  start-page: 150
  year: 2011
  end-page: 157
  ident: bib13
  article-title: Use of uterine electromyography to diagnose term and preterm labor
  publication-title: Acta Obstet. Gynecol. Scand.
– volume: 1
  start-page: 22
  year: 2016
  end-page: 30
  ident: bib11
  article-title: Comparing uterine electromyography & tocodynamometer to intrauterine pressure catheter for monitoring labor
  publication-title: J. Woman Reprod. Heal
– volume: 169
  start-page: 1636
  year: 1993
  end-page: 1653
  ident: bib12
  article-title: Uterine electromyography: a critical review
  publication-title: Am. J. Obstet. Gynecol.
– reference: O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, H.-P. Seidel, Laplacian Surface Editing, in: ACM Press, n.d.: p. 175. doi:10.1145/1057432.1057456.
– volume: 371
  start-page: 261
  year: 2008
  end-page: 269
  ident: bib2
  article-title: An overview of mortality and sequelae of preterm birth from infancy to adulthood
  publication-title: Lancet
– volume: 65
  start-page: 601
  year: 1977
  end-page: 611
  ident: bib28
  article-title: Action potential sources and their volume conductor fields
  publication-title: Proc. IEEE
– volume: 102
  start-page: 2152
  year: 2000
  end-page: 2158
  ident: bib32
  article-title: A noninvasive imaging modality for cardiac arrhythmias
  publication-title: Circulation
– start-page: 247
  year: 2018
  end-page: 251
  ident: bib36
  article-title: Source localization of uterine activity using Maximum Entropy on the Mean approach
  publication-title: 2018 IEEE 4th Middle East Conf. Biomed. Eng
– volume: 52
  start-page: 68
  year: 2018
  end-page: 87
  ident: bib18
  article-title: The uterine pacemaker of labor
  publication-title: Best Pract. Res. Clin. Obstet. Gynaecol.
– start-page: 5878
  year: 2018
  end-page: 5881
  ident: bib10
  article-title: Connectivity measures of uterine activity using magnetomyography
  publication-title: 2018 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., IEEE
– volume: 345
  start-page: 760
  year: 2014
  end-page: 765
  ident: bib3
  article-title: Preterm labor: one syndrome, many causes
  publication-title: Science (80)
– volume: 36
  start-page: 574
  year: 2016
  end-page: 583
  ident: bib15
  article-title: Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals
  publication-title: Biocybern. Biomed. Eng.
– volume: 9
  year: 2014
  ident: bib34
  article-title: Velocity and directionality of the electrohysterographic signal propagation
  publication-title: PLoS One
– volume: 39
  year: 2018
  ident: bib4
  article-title: Electrohysterography in the diagnosis of preterm birth: a review
  publication-title: Physiol. Meas.
– volume: 12
  start-page: 241
  year: 2001
  end-page: 252
  ident: bib29
  article-title: Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones
  publication-title: J. Cardiovasc. Electrophysiol.
– volume: 44
  start-page: 19
  year: 1997
  end-page: 39
  ident: bib33
  article-title: A new method for regularization parameter determination in the inverse problem of electrocardiography
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2010
  ident: bib27
  article-title: Uterine Contraction Modeling and Simulation
– volume: 69
  start-page: 55
  year: 2008
  end-page: 67
  ident: bib23
  article-title: The pregnant sheep as a model for human pregnancy
  publication-title: Theriogenology
– volume: 209
  start-page: 232. e1
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103543_bib35
  article-title: Uterine electromyography for identification of first-stage labor arrest in term nulliparous women with spontaneous onset of labor
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2013.05.056
– volume: 22
  start-page: 851
  year: 2004
  ident: 10.1016/j.compbiomed.2019.103543_bib21
  article-title: Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: a follow-up study
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2004.01.047
– volume: 11
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103543_bib6
  article-title: Noninvasive high-resolution electromyometrial imaging of uterine contractions in a translational sheep model
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aau1428
– volume: 213
  start-page: 406
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103543_bib17
  article-title: Propagation of electrical activity in uterine muscle during pregnancy: a review
  publication-title: Acta Physiol.
  doi: 10.1111/apha.12424
– volume: 93
  start-page: 17
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103543_bib39
  article-title: Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.12.001
– year: 2010
  ident: 10.1016/j.compbiomed.2019.103543_bib27
– volume: 65
  start-page: 601
  year: 1977
  ident: 10.1016/j.compbiomed.2019.103543_bib28
  article-title: Action potential sources and their volume conductor fields
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1977.10539
– start-page: 247
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103543_bib36
  article-title: Source localization of uterine activity using Maximum Entropy on the Mean approach
– volume: 21
  start-page: 880
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103543_bib7
  article-title: Fetal complications after placement of an intrauterine pressure catheter: a report of two cases and review of the literature
  publication-title: J. Matern. Neonatal Med.
  doi: 10.1080/14767050802220508
– volume: 90
  start-page: 150
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103543_bib13
  article-title: Use of uterine electromyography to diagnose term and preterm labor
  publication-title: Acta Obstet. Gynecol. Scand.
  doi: 10.1111/j.1600-0412.2010.01031.x
– volume: 0
  start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103543_bib5
  article-title: Potential use of electrohysterography in obstetrics: a review article
  publication-title: J. Matern. Neonatal Med.
– volume: 39
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103543_bib4
  article-title: Electrohysterography in the diagnosis of preterm birth: a review
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aaad56
– year: 2013
  ident: 10.1016/j.compbiomed.2019.103543_bib31
– volume: 209
  start-page: 38. e1
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103543_bib8
  article-title: The risks and benefits of internal monitors in laboring patients
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2013.04.001
– volume: 36
  start-page: 574
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103543_bib15
  article-title: Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2016.06.004
– volume: 30
  start-page: 72
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103543_bib25
  article-title: Example-based elastic materials
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2010324.1964967
– volume: 34
  start-page: 1272
  year: 2006
  ident: 10.1016/j.compbiomed.2019.103543_bib22
  article-title: Application of the method of fundamental solutions to potential-based inverse electrocardiography
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-006-9131-7
– volume: 169
  start-page: 1636
  year: 1993
  ident: 10.1016/j.compbiomed.2019.103543_bib12
  article-title: Uterine electromyography: a critical review
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/0002-9378(93)90456-S
– volume: 379
  start-page: 2162
  year: 2012
  ident: 10.1016/j.compbiomed.2019.103543_bib1
  article-title: National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60820-4
– volume: 102
  start-page: 2152
  year: 2000
  ident: 10.1016/j.compbiomed.2019.103543_bib32
  article-title: A noninvasive imaging modality for cardiac arrhythmias
  publication-title: Circulation
  doi: 10.1161/01.CIR.102.17.2152
– volume: 52
  start-page: 7023
  year: 2007
  ident: 10.1016/j.compbiomed.2019.103543_bib37
  article-title: A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods—RPI-P3, -P6 and -P9
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/23/017
– volume: 37
  start-page: 301
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103543_bib19
  article-title: Benefits and risks of MRI in pregnancy
  publication-title: Semin. Perinatol.
  doi: 10.1053/j.semperi.2013.06.005
– volume: 13
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103543_bib26
  article-title: Estimating uterine source current during contractions using magnetomyography measurements
  publication-title: PLoS One
– volume: 371
  start-page: 261
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103543_bib2
  article-title: An overview of mortality and sequelae of preterm birth from infancy to adulthood
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)60136-1
– volume: 18
  start-page: 289
  year: 2007
  ident: 10.1016/j.compbiomed.2019.103543_bib16
  article-title: Physiology and Electrical Activity of Uterine Contractions
– volume: 44
  start-page: 19
  year: 1997
  ident: 10.1016/j.compbiomed.2019.103543_bib33
  article-title: A new method for regularization parameter determination in the inverse problem of electrocardiography
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.553710
– year: 2010
  ident: 10.1016/j.compbiomed.2019.103543_bib30
– volume: 9
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103543_bib34
  article-title: Velocity and directionality of the electrohysterographic signal propagation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086775
– volume: 11
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103543_bib38
  article-title: Modeling magnetomyograms of uterine contractions during pregnancy using a multiscale forward electromagnetic approach
  publication-title: PLoS One
– volume: 12
  start-page: 241
  year: 2001
  ident: 10.1016/j.compbiomed.2019.103543_bib29
  article-title: Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1046/j.1540-8167.2001.00241.x
– start-page: 5878
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103543_bib10
  article-title: Connectivity measures of uterine activity using magnetomyography
– ident: 10.1016/j.compbiomed.2019.103543_bib24
  doi: 10.1145/1057432.1057456
– volume: 52
  start-page: 68
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103543_bib18
  article-title: The uterine pacemaker of labor
  publication-title: Best Pract. Res. Clin. Obstet. Gynaecol.
  doi: 10.1016/j.bpobgyn.2018.04.002
– volume: 345
  start-page: 760
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103543_bib3
  article-title: Preterm labor: one syndrome, many causes
  publication-title: Science (80)
  doi: 10.1126/science.1251816
– volume: 316
  start-page: 952
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103543_bib20
  article-title: Association between MRI exposure during pregnancy and fetal and childhood outcomes
  publication-title: JAMA
  doi: 10.1001/jama.2016.12126
– volume: 144
  start-page: S96
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103543_bib9
  article-title: Extraction, quantification and characterization of uterine magnetomyographic activity—a proof of concept case study
  publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol.
  doi: 10.1016/j.ejogrb.2009.02.023
– volume: 13
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103543_bib14
  article-title: Characterization and automatic classification of preterm and term uterine records
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0202125
– volume: 69
  start-page: 55
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103543_bib23
  article-title: The pregnant sheep as a model for human pregnancy
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2007.09.021
– volume: 1
  start-page: 22
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103543_bib11
  article-title: Comparing uterine electromyography & tocodynamometer to intrauterine pressure catheter for monitoring labor
  publication-title: J. Woman Reprod. Heal
  doi: 10.14302/issn.2381-862X.jwrh-15-771
SSID ssj0004030
Score 2.3252017
Snippet Clinically, uterine contractions are monitored with tocodynamometers or intrauterine pressure catheters. In the research setting, electromyography (EMG), which...
AbstractClinically, uterine contractions are monitored with tocodynamometers or intrauterine pressure catheters. In the research setting, electromyography...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103543
SubjectTerms Abdomen
Abdomen - diagnostic imaging
Activation
Animals
Catheters
Clinical medicine
Clinical translation
Computer simulation
Contamination
Deformation
Diagnostic Imaging - methods
Electrical noise
Electrodes
Electromyography
Electromyography - methods
Electromyometrial imaging
Electrophysiology
Environmental monitoring
Feasibility
Female
Fetuses
Geometric accuracy
Geometry
Ill posed problems
Image Processing, Computer-Assisted
Internal Medicine
Inverse problem
Magnetic resonance imaging
Monitoring, Physiologic - methods
Noise
Other
Pregnancy
Premature birth
Preterm birth
Propagation
Sheep
Signal processing
Signal Processing, Computer-Assisted
Software
Spatial discrimination
Spatial resolution
Uterine Contraction - physiology
Uterus
Uterus - diagnostic imaging
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhh9JLafp0kwYVenVjPdayyCmEhlBIT13ITdh6UJfGG7K7h1z62zMjyU62SWGhV0uDpfFoNLK-b4aQz00bQugqVVrHXCkdLKmm6bqyarnQdeO7EK8LLr7X53P57XJ2uUNORy4Mwiqz708-PXrr_OQoa_Pouu-R4wtHici8FGiJyCiXUqGVf_lzD_OQlUg0FPA32DujeRLGC2HbieaOIC-NDPSZFP_aoh6HoH8jKR9sTWcvyYscU9KTNOw9suOHV-TZRb41f03mJ9aub1p7SxeB5ro3V7cwnliyg_ZXsVIRNmJ9BxChEcCeKA9L2g905E_SB7y4N2R-9vXH6XmZyymUFk5Jq1LZmVQW4qMAUY5jtQ6OB6bqTkOQ1LSwkXMrrWBW14Fxx2Twreaec6-krpkXb8nusBj8e0I9x6QwWEzMWtkG27mGec-dBEnmbFcQNWrQ2JxrHEte_DYjqOyXude9Qd2bpPuCsEnyOuXb2EJGjx_JjPoAD2hgU9hCVj0l65d5KS8NM0tuKvPI3ApyPEluWOyW7z0YrclMr-ICeb5Yk7ggn6ZmWO94idMOfrHGPhzPjII3BXmXjG9SFMSCTS11BZPaMMupA-YS32wZ-p8xp7jCsz8TH_5rUvvkOcffEfEP1QHZXd2s_UeI2VbdYVyUd41gQuA
  priority: 102
  providerName: Elsevier
Title Accuracy of electromyometrial imaging of uterine contractions in clinical environment
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519304007
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482519304007
https://dx.doi.org/10.1016/j.compbiomed.2019.103543
https://www.ncbi.nlm.nih.gov/pubmed/31786490
https://www.proquest.com/docview/2343437542
https://www.proquest.com/docview/2320642328
https://pubmed.ncbi.nlm.nih.gov/PMC7021013
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB6xuxLisuJNYKmCxDUQO26ciAMqaEsBbYWASr1ZiR-iiE13t-1hL_x2Zhwn3eWlXpKDPUoyGY8_2zPzATwvKudcncpEG2YSYXBIFUVdJ2nFszIvbO38ccHJNJ_MxIf5cB423FYhrLLzid5Rm6WmPfKXPKMcSOJrfX12nhBrFJ2uBgqNPTig0mUU0iXncpsXmWZtCgr6GoFLoRDJ08Z3Uch2m-JOAV4lZZ8PRfav6elP-Pl7FOWVaWl8Gw4DnoxHrQHcgRu2uQs3T8KJ-T2YjbTeXFT6Ml66OHDenF7i-3i6jnhx6lmKqJG4HVAk9sHrbbrDKl40cZc7GV_JibsPs_Hx17eTJFApJBpXSOtE6qGQGrGRQ4RjWF46wx2TeV0iQCoqnMS5Fjpjuswd44YJZ6uSW86tFGXObPYA9ptlYx9BbDkVhCEiMa1F5XRtCmYtNwIlmdF1BLLToNKhzjjRXfxQXUDZd7XVvSLdq1b3EbBe8qyttbGDTNn9JNXpA72fwglhB1n5N1m7CsN4pZhacZWqL76KkU_yzcjpyQhe9ZIBqbQIZMfnHnXWpPpHbe07gmd9M451OsCpGrvcUB9O68WMFxE8bI2vVxTiwCIXZYofdc0s-w5UR_x6S7P45uuJS1r3s-zx_1_rCdzitNfgt5-OYH99sbFPEZCt6wHsvfjJBn7s4bUYvxvAwej9x8kU72-Op58-_wLFZzzC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKkYCXirOkFDASPEbEx-YQQqgCli3t9oWu1DeT-BCLaLY0u0L7p_iNzNhJtuXSvvTZmRyT8czYnm8-Qp7npXOuSrJYG2ZiaWBK5XlVxUnJRZHmtnL-uGB8lI4m8uPJ4GSD_OywMFhW2flE76jNTOMe-UsuEAOJfK1vzr7HyBqFp6sdhUYwiwO7_AFLtub1_jv4vy84H74_fjuKW1aBWMNiYR5neiAzDWmCg2BvWFo4wx3L0qqAXCEvIZ5xLbVgukgd44ZJZ8uCW85tJouUWQH3vUauSwHfgsj04YcVDjMRAfICvk3C0qutHAr1ZFgiHiD1WFBWINp9IMW_wuGf6e7vVZsXwuDwNtlq81e6FwzuDtmw9V1yY9ye0N8jkz2tF-elXtKZoy3HzukS3sfTg9DpqWdFwkHkkgAR6ovlA7yiodOadlhNegGDd59MrkTJD8hmPavtQ0ItxwY0SFymtSydrkzOrOVGgiQzuopI1mlQ6bavOdJrfFNdAdtXtdK9Qt2roPuIsF7yLPT2WEOm6H6S6vQB3lZBAFpDNvubrG1at9EophquEvXJd03yoGKBTjaLyKtess2MQsaz5nN3O2tS_aNW8ykiz_ph8C14YFTWdrbAaziuTwXPI7IdjK9XFOSdeSqLBD7qkln2F2Df8ssj9fSL71-e4T4DEzv_f62n5OboeHyoDvePDh6RWxz3OfzW1y7ZnJ8v7GNIBufVEz8DKfl81VP-Fyv1cwI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKkSpeEHcDBYwEj1HXx8aJEEIVZdVSWiHBSvtmEh9iEc2WZldo_xq_jhk7ybZc2pc-O5NjMjMe2_PNR8jzvPTeVwOVGstsKi24VJ5XVToouSiy3FU-HBccn2QHY_luMpxskJ8dFgbLKruYGAK1nRncI9_lAjGQyNe669uyiA_7o9dn31NkkMKT1o5OI5rIkVv-gOVb8-pwH_71C85Hbz-9OUhbhoHUwMJhniozlMpAyuBh4rcsK7zlnqmsKiBvyEuY27iRRjBTZJ5xy6R3ZcEd507JImNOwH2vketKDBn6mJqoFSZzICL8BeKchGVYW0UUa8uwXDzC67G4rEDk-1CKf02Nf6a-v1dwXpgSR7fIzTaXpXvR-G6TDVffIVvH7Wn9XTLeM2ZxXpolnXna8u2cLuF9AlUInZ4GhiQcRF4JEKGhcD5CLRo6rWmH26QX8Hj3yPhKlHyfbNaz2m0T6jg2o0ESM2Nk6U1lc-YctxIkmTVVQlSnQW3aHudItfFNd8VsX_VK9xp1r6PuE8J6ybPY52MNmaL7SbrTB0ReDZPRGrLqb7KuaUNIo5luuB7oj6GDUgAYCwy4KiEve8k2S4rZz5rP3emsSfePWvlWQp71wxBn8PCorN1sgddwXKsKnifkQTS-XlGQg-aZLAbwUZfMsr8Ae5hfHqmnX0Ivc4V7Dkw8_P9rPSVb4Oz6_eHJ0SNyg-OWR9gF2yGb8_OFewx54bx6EhyQks9X7fG_AFSrdy8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+electromyometrial+imaging+of+uterine+contractions+in+clinical+environment&rft.jtitle=Computers+in+biology+and+medicine&rft.date=2020-01-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=116&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103543&rft.externalDBID=HAS_PDF_LINK
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482519X00128%2Fcov150h.gif