Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait
Summary Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cul...
Saved in:
Published in | Environmental microbiology Vol. 17; no. 2; pp. 316 - 331 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.02.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp‐labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress‐dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought‐challenged grapevines, with an enhanced effect in drought‐sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress‐induced promotion ability. |
---|---|
AbstractList | Summary Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp-labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress-dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought-challenged grapevines, with an enhanced effect in drought-sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress-induced promotion ability. Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp-labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress-dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought-challenged grapevines, with an enhanced effect in drought-sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress-induced promotion ability. Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting ( PGP ) traits, and confocal microscopy observation of gfp ‐labelled A cinetobacter and P seudomonas isolates showed their ability to adhere and colonize both the A rabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress‐dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought‐challenged grapevines, with an enhanced effect in drought‐sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress‐induced promotion ability. Summary Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp‐labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress‐dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought‐challenged grapevines, with an enhanced effect in drought‐sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress‐induced promotion ability. |
Author | Rolli, Eleonora Mapelli, Francesca Deangelis, Maria Laura Vigani, Gianpiero Sorlini, Claudia Marasco, Ramona Gandolfi, Claudio Gerbino, Roberto Zocchi, Graziano Previtali, Franco Ettoumi, Besma Borin, Sara Pierotti Cei, Fabio Daffonchio, Daniele Casati, Enrico |
Author_xml | – sequence: 1 givenname: Eleonora surname: Rolli fullname: Rolli, Eleonora organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy – sequence: 2 givenname: Ramona surname: Marasco fullname: Marasco, Ramona organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy – sequence: 3 givenname: Gianpiero surname: Vigani fullname: Vigani, Gianpiero organization: Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, DISAA, University of Milan, Milan, Italy – sequence: 4 givenname: Besma surname: Ettoumi fullname: Ettoumi, Besma organization: Laboratory of Microbiology and Active Biomolecules (LMBA), Faculté des Sciences de Tunis, Campus Universitaire, Tunis, Tunisia – sequence: 5 givenname: Francesca surname: Mapelli fullname: Mapelli, Francesca organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy – sequence: 6 givenname: Maria Laura surname: Deangelis fullname: Deangelis, Maria Laura organization: Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, DISAA, University of Milan, Milan, Italy – sequence: 7 givenname: Claudio surname: Gandolfi fullname: Gandolfi, Claudio organization: Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, DISAA, University of Milan, Milan, Italy – sequence: 8 givenname: Enrico surname: Casati fullname: Casati, Enrico organization: Department of Environmental Science, University of Milan Bicocca, Milan, Italy – sequence: 9 givenname: Franco surname: Previtali fullname: Previtali, Franco organization: Department of Environmental Science, University of Milan Bicocca, Milan, Italy – sequence: 10 givenname: Roberto surname: Gerbino fullname: Gerbino, Roberto organization: Bussolera Branca Foundation, Le Fracce Farm, Pavia, Italy – sequence: 11 givenname: Fabio surname: Pierotti Cei fullname: Pierotti Cei, Fabio organization: Bussolera Branca Foundation, Le Fracce Farm, Pavia, Italy – sequence: 12 givenname: Sara surname: Borin fullname: Borin, Sara organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy – sequence: 13 givenname: Claudia surname: Sorlini fullname: Sorlini, Claudia organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy – sequence: 14 givenname: Graziano surname: Zocchi fullname: Zocchi, Graziano organization: Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, DISAA, University of Milan, Milan, Italy – sequence: 15 givenname: Daniele surname: Daffonchio fullname: Daffonchio, Daniele email: daniele.daffonchio@unimi.it organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24571749$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URB-wZocssWET6rfHS1S1ZVBbEA8hsbGc5IamTOKp7VDm33PDtLNgA97YvvrOsa-PD8neGEcg5DlnrzmOY66MqIQTuBVKukfkYFfZ26252CeHOd8wxq207AnZF0pbbpU7IGU5rFP8CS1dr8JYaILc5xLGBmiJtE1x-n5daJ8pUkMsyNUbWq6BphhLFXKOTR_m8tA3KdZ9HICGTAO9w2qiuaBhrlpYw9gC-pcU-vKUPO7CKsOz-_mIfDk7_Xzytrp4f748eXNRNYY7V1mrRMcdk9o5MLJWgfGu1UEKppRxLDgpVGiM4Kxz1rmG1Yuas4UyTW2ks_KIvNr64uVvJ8jFD31uYIWdQpyy52ZhjTVC6_9ADR4qnXaIvvwLvYlTGrERpLRjRhozGx5vKXyWnBN0fp36IaSN58zP2fk5HT8n5f9kh4oX975TPUC74x_CQkBvgbt-BZt_-fnTy-WDcbXVYbLwa6cL6Yc3-CG0_3p17j9e8U9nlx---XfyNw5xsx4 |
CitedBy_id | crossref_primary_10_3390_plants10010125 crossref_primary_10_1007_s11104_016_3090_z crossref_primary_10_1094_PBIOMES_09_23_0095_R crossref_primary_10_1093_femsec_fiaa226 crossref_primary_10_1146_annurev_genet_120215_034952 crossref_primary_10_1371_journal_pbio_2003862 crossref_primary_10_1016_j_apsoil_2019_02_024 crossref_primary_10_3354_dao03289 crossref_primary_10_3389_frsus_2022_928970 crossref_primary_10_1016_j_egg_2023_100212 crossref_primary_10_1016_j_tplants_2019_12_024 crossref_primary_10_1093_femsec_fiy037 crossref_primary_10_1080_15226514_2019_1696743 crossref_primary_10_1111_1751_7915_13634 crossref_primary_10_1007_s12275_021_0619_5 crossref_primary_10_1016_j_biocontrol_2016_04_005 crossref_primary_10_1007_s11738_019_2952_4 crossref_primary_10_1094_PBIOMES_09_20_0065_R crossref_primary_10_1186_s40168_017_0391_2 crossref_primary_10_1111_ppl_13153 crossref_primary_10_1007_s11104_024_06658_y crossref_primary_10_1016_j_envexpbot_2019_03_028 crossref_primary_10_1038_s41598_017_18839_0 crossref_primary_10_1093_femsec_fix050 crossref_primary_10_1111_1758_2229_13254 crossref_primary_10_1080_10643389_2020_1738193 crossref_primary_10_3389_fmicb_2017_01385 crossref_primary_10_1007_s11756_022_01061_3 crossref_primary_10_3389_fmicb_2021_772420 crossref_primary_10_1007_s00203_022_02934_6 crossref_primary_10_1017_S0021859618000126 crossref_primary_10_1021_acsomega_8b02604 crossref_primary_10_3390_ijms23042374 crossref_primary_10_1016_j_cub_2018_03_054 crossref_primary_10_3389_fmicb_2021_744897 crossref_primary_10_1007_s11104_023_06270_6 crossref_primary_10_1016_j_jare_2019_03_004 crossref_primary_10_1016_j_plantsci_2022_111323 crossref_primary_10_1038_s41396_021_01133_3 crossref_primary_10_3389_fpls_2016_01994 crossref_primary_10_1016_j_scitotenv_2020_139701 crossref_primary_10_3390_microorganisms5040070 crossref_primary_10_1007_s00284_021_02566_x crossref_primary_10_3390_plants12051079 crossref_primary_10_1007_s11104_023_06204_2 crossref_primary_10_1016_j_bcab_2023_102880 crossref_primary_10_1093_jambio_lxae050 crossref_primary_10_1111_tpj_15775 crossref_primary_10_1038_s41598_020_61140_w crossref_primary_10_1038_srep32032 crossref_primary_10_1590_1807_1929_agriambi_v25n11p779_786 crossref_primary_10_3389_fpls_2024_1429096 crossref_primary_10_1007_s00253_021_11555_w crossref_primary_10_1128_mSystems_00092_20 crossref_primary_10_3389_fbioe_2021_567548 crossref_primary_10_3389_fmicb_2023_1108036 crossref_primary_10_1007_s13205_021_02833_5 crossref_primary_10_1177_1934578X20934228 crossref_primary_10_1016_j_catena_2023_107472 crossref_primary_10_1111_1462_2920_15839 crossref_primary_10_1111_1751_7915_13618 crossref_primary_10_3389_fmicb_2021_729022 crossref_primary_10_1128_spectrum_00208_23 crossref_primary_10_1086_688926 crossref_primary_10_1146_annurev_ecolsys_110617_062605 crossref_primary_10_1007_s11557_016_1219_3 crossref_primary_10_1007_s41207_024_00579_z crossref_primary_10_1186_s12284_023_00641_4 crossref_primary_10_1038_s41598_020_69713_5 crossref_primary_10_48022_mbl_2008_08015 crossref_primary_10_1007_s00203_018_1582_3 crossref_primary_10_1007_s11104_024_06778_5 crossref_primary_10_1016_j_stress_2023_100242 crossref_primary_10_1002_ecy_3679 crossref_primary_10_1016_j_apsoil_2022_104503 crossref_primary_10_1073_pnas_1908600116 crossref_primary_10_1007_s13199_018_0574_z crossref_primary_10_1016_S1002_0160_20_60092_3 crossref_primary_10_3390_agriculture14050769 crossref_primary_10_3390_ijms22073438 crossref_primary_10_3390_ijms22073319 crossref_primary_10_1007_s00442_016_3783_2 crossref_primary_10_3389_fsufs_2021_687531 crossref_primary_10_3389_fpls_2019_01256 crossref_primary_10_3390_jof7090686 crossref_primary_10_3390_su15032338 crossref_primary_10_1007_s10526_016_9725_4 crossref_primary_10_1016_j_molp_2023_07_011 crossref_primary_10_1016_j_agwat_2015_08_021 crossref_primary_10_3390_jof8040384 crossref_primary_10_1016_j_pbiomolbio_2018_12_002 crossref_primary_10_1016_j_micres_2020_126579 crossref_primary_10_21833_ijaas_2022_07_016 crossref_primary_10_1016_j_agwat_2019_04_010 crossref_primary_10_1016_j_jaridenv_2020_104137 crossref_primary_10_1038_s41598_018_36971_3 crossref_primary_10_1016_j_micres_2020_126690 crossref_primary_10_1016_j_indcrop_2020_112163 crossref_primary_10_1038_srep41564 crossref_primary_10_1016_j_jplph_2021_153437 crossref_primary_10_1016_j_scitotenv_2023_165524 crossref_primary_10_1007_s42729_021_00724_5 crossref_primary_10_1139_cjm_2017_0529 crossref_primary_10_1016_j_agee_2016_06_031 crossref_primary_10_3390_plants12040718 crossref_primary_10_1186_s40538_016_0054_8 crossref_primary_10_1093_jxb_erac520 crossref_primary_10_1093_jxb_erv466 crossref_primary_10_1371_journal_pone_0287084 crossref_primary_10_1016_j_jplph_2018_10_029 crossref_primary_10_1038_s41467_023_40916_4 crossref_primary_10_1093_treephys_tpaa109 crossref_primary_10_1016_j_ocsci_2020_03_005 crossref_primary_10_3389_fpls_2024_1356338 crossref_primary_10_1016_j_apsoil_2020_103807 crossref_primary_10_3390_app11041615 crossref_primary_10_1099_ijsem_0_001666 crossref_primary_10_1016_j_ecoenv_2018_03_013 crossref_primary_10_1016_j_ecoenv_2020_110854 crossref_primary_10_1016_j_pbi_2017_04_018 crossref_primary_10_1111_mec_15666 crossref_primary_10_1007_s11104_016_3019_6 crossref_primary_10_1093_plphys_kiac418 crossref_primary_10_1186_s40168_018_0445_0 crossref_primary_10_1007_s11104_023_05965_0 crossref_primary_10_1016_j_crmicr_2021_100021 crossref_primary_10_1016_j_micres_2022_127148 crossref_primary_10_1094_PBIOMES_5_3 crossref_primary_10_1094_PBIOMES_5_2 crossref_primary_10_3390_horticulturae10010012 crossref_primary_10_1007_s11104_021_05123_4 crossref_primary_10_1111_nph_13697 crossref_primary_10_3389_fmicb_2021_643904 crossref_primary_10_1007_s11240_016_1144_9 crossref_primary_10_5604_01_3001_0010_4866 crossref_primary_10_31857_S0555109923050185 crossref_primary_10_3390_ijms20071769 crossref_primary_10_1016_j_biotechadv_2016_08_005 crossref_primary_10_17816_ecogen17119_32 crossref_primary_10_1128_aem_02078_23 crossref_primary_10_3390_plants12244155 crossref_primary_10_1111_1462_2920_16042 crossref_primary_10_1371_journal_pcbi_1007109 crossref_primary_10_3389_fmicb_2016_01600 crossref_primary_10_1007_s11104_017_3403_x crossref_primary_10_1016_j_chemosphere_2019_124843 crossref_primary_10_3389_fmicb_2016_01286 crossref_primary_10_3390_agronomy10081179 crossref_primary_10_1016_j_tplants_2015_11_008 crossref_primary_10_1111_nph_17928 crossref_primary_10_1007_s00253_015_6874_9 crossref_primary_10_1007_s10661_020_08340_z crossref_primary_10_1016_j_micres_2015_12_003 crossref_primary_10_1111_tpj_13795 crossref_primary_10_1007_s11104_017_3451_2 crossref_primary_10_1016_j_micres_2019_03_008 crossref_primary_10_3389_fpls_2024_1325048 crossref_primary_10_1111_1462_2920_15764 crossref_primary_10_3389_fmicb_2015_00091 crossref_primary_10_1016_j_scitotenv_2016_09_218 crossref_primary_10_1038_s43705_022_00130_7 crossref_primary_10_1093_pcp_pcab067 crossref_primary_10_3390_plants12234000 crossref_primary_10_3389_fmicb_2020_563118 crossref_primary_10_3389_fagro_2021_725804 crossref_primary_10_3389_fmicb_2021_660134 crossref_primary_10_1016_j_apsoil_2018_12_006 crossref_primary_10_3390_su15021671 crossref_primary_10_15252_embj_2021109102 crossref_primary_10_3389_fmicb_2016_01971 crossref_primary_10_3390_microorganisms9061209 crossref_primary_10_1016_j_micres_2021_126771 crossref_primary_10_1002_ps_5507 crossref_primary_10_1094_PBIOMES_4_4 crossref_primary_10_1016_j_scitotenv_2022_157132 crossref_primary_10_1094_PBIOMES_07_20_0052_R crossref_primary_10_3390_microorganisms8101619 crossref_primary_10_1002_aps3_11334 crossref_primary_10_1016_j_rhisph_2023_100825 crossref_primary_10_1038_s41396_022_01245_4 crossref_primary_10_1371_journal_pone_0262932 crossref_primary_10_1111_nph_16890 crossref_primary_10_3389_fmicb_2022_981288 crossref_primary_10_3390_agriculture13112042 crossref_primary_10_1007_s10811_021_02387_2 crossref_primary_10_1016_j_micres_2023_127352 crossref_primary_10_3390_microorganisms8050694 crossref_primary_10_1007_s12088_024_01201_0 crossref_primary_10_1007_s12275_020_9565_x crossref_primary_10_1007_s00203_021_02320_8 crossref_primary_10_1016_j_micres_2015_08_002 crossref_primary_10_3389_fpls_2019_01741 crossref_primary_10_3390_plants13060857 crossref_primary_10_1038_s41598_020_75591_8 crossref_primary_10_1002_ece3_8283 crossref_primary_10_1080_01904167_2019_1659335 crossref_primary_10_1111_nph_15791 crossref_primary_10_1038_s41467_022_33238_4 crossref_primary_10_7717_peerj_16836 crossref_primary_10_3389_fmicb_2022_913349 crossref_primary_10_1186_s12870_020_02493_2 crossref_primary_10_3389_fmicb_2016_00937 crossref_primary_10_1371_journal_pone_0233783 crossref_primary_10_3390_agronomy9090514 crossref_primary_10_1094_PBIOMES_3_1 crossref_primary_10_1007_s11104_018_3674_x crossref_primary_10_1094_PBIOMES_04_17_0015_R crossref_primary_10_3390_biology10060520 crossref_primary_10_1371_journal_pone_0140252 crossref_primary_10_1094_PBIOMES_01_19_0006_W crossref_primary_10_1016_j_rhisph_2018_11_008 crossref_primary_10_1038_s41598_021_82768_2 crossref_primary_10_1111_tpj_15135 crossref_primary_10_3389_fmicb_2020_00443 crossref_primary_10_1016_j_biotechadv_2020_107614 crossref_primary_10_22207_JPAM_14_1_10 crossref_primary_10_1007_s00248_020_01543_4 crossref_primary_10_1007_s42729_024_01756_3 crossref_primary_10_1186_s40793_022_00407_3 crossref_primary_10_3389_fpls_2023_1081537 crossref_primary_10_1016_j_agee_2018_08_020 crossref_primary_10_1007_s11274_022_03392_4 crossref_primary_10_1093_femsec_fiaa053 crossref_primary_10_3389_fpls_2020_00544 crossref_primary_10_1073_pnas_1717308115 crossref_primary_10_1093_hr_uhac019 crossref_primary_10_1016_j_rhisph_2021_100439 crossref_primary_10_1128_spectrum_01476_22 crossref_primary_10_1016_j_tplants_2022_08_012 crossref_primary_10_3390_microorganisms8091329 crossref_primary_10_1007_s10482_021_01593_9 crossref_primary_10_1002_ajb2_1404 crossref_primary_10_1016_j_micres_2020_126564 crossref_primary_10_5424_sjar_2017151_9990 crossref_primary_10_1007_s10343_021_00604_z crossref_primary_10_1094_PBIOMES_2_4 crossref_primary_10_3390_horticulturae8121138 crossref_primary_10_1007_s00248_020_01529_2 crossref_primary_10_1371_journal_pone_0208223 crossref_primary_10_1186_s12864_022_09019_0 crossref_primary_10_1094_PBIOMES_2_1 crossref_primary_10_1016_j_scienta_2018_09_017 crossref_primary_10_1038_s41598_019_54685_y crossref_primary_10_3389_fmicb_2024_1362722 crossref_primary_10_3390_horticulturae9020180 crossref_primary_10_3390_microorganisms11010055 crossref_primary_10_1007_s42729_021_00684_w crossref_primary_10_1080_00103624_2023_2276265 crossref_primary_10_1029_2018WR022656 crossref_primary_10_1093_femsec_fiy071 crossref_primary_10_1007_s11274_019_2659_0 crossref_primary_10_1007_s11738_019_2826_9 crossref_primary_10_3390_cimb45080398 crossref_primary_10_3389_fmicb_2021_743512 crossref_primary_10_1007_s42729_022_00958_x crossref_primary_10_1042_BSR20201679 crossref_primary_10_3390_plants12030638 crossref_primary_10_1007_s10341_021_00579_1 crossref_primary_10_3389_fpls_2017_02223 crossref_primary_10_1080_01904167_2020_1799004 crossref_primary_10_3389_fgene_2021_697090 crossref_primary_10_3390_microorganisms10122479 crossref_primary_10_1007_s11104_021_05226_y crossref_primary_10_1080_10643389_2017_1318619 crossref_primary_10_3390_plants9020263 crossref_primary_10_3389_fmicb_2017_02552 crossref_primary_10_1016_j_envexpbot_2022_104933 crossref_primary_10_1038_srep32467 crossref_primary_10_1016_j_micres_2020_126503 crossref_primary_10_1080_02571862_2019_1626500 crossref_primary_10_3390_microorganisms9010150 crossref_primary_10_1016_j_plaphy_2015_06_007 crossref_primary_10_3389_fmicb_2022_1064055 crossref_primary_10_1094_PBIOMES_04_20_0027_R crossref_primary_10_1155_2020_8897998 crossref_primary_10_1016_j_micres_2024_127780 crossref_primary_10_3390_plants12061275 crossref_primary_10_1007_s00299_023_03060_3 crossref_primary_10_1007_s11368_023_03479_x crossref_primary_10_3389_fmicb_2019_00581 crossref_primary_10_3390_microorganisms12030448 crossref_primary_10_3389_fpls_2024_1349401 crossref_primary_10_1080_15592324_2022_2104004 crossref_primary_10_1007_s10482_023_01906_0 crossref_primary_10_3389_fmicb_2014_00283 crossref_primary_10_3390_d13080366 crossref_primary_10_1128_AEM_02863_19 crossref_primary_10_1111_jam_14334 crossref_primary_10_3390_ijms221910529 crossref_primary_10_3389_fmicb_2021_673810 crossref_primary_10_1016_j_rhisph_2020_100205 crossref_primary_10_1134_S0003683823050186 crossref_primary_10_1007_s11274_018_2509_5 crossref_primary_10_1094_PBIOMES_04_18_0021_R crossref_primary_10_1371_journal_pcbi_1004365 crossref_primary_10_1007_s10482_021_01701_9 crossref_primary_10_3389_fsufs_2024_1378436 crossref_primary_10_1111_jam_15552 crossref_primary_10_1007_s11104_021_05227_x crossref_primary_10_1094_PBIOMES_07_23_0069_R crossref_primary_10_3389_fmicb_2020_583120 crossref_primary_10_1111_nph_18600 crossref_primary_10_1128_AEM_00054_18 crossref_primary_10_1111_1462_2920_14272 crossref_primary_10_1186_s40168_020_00997_5 crossref_primary_10_1139_cjm_2021_0237 crossref_primary_10_1186_s12870_021_03226_9 crossref_primary_10_3390_jof8111210 crossref_primary_10_3390_plants11223090 crossref_primary_10_3389_fpls_2020_00293 crossref_primary_10_3389_fpls_2018_00813 crossref_primary_10_3390_biology11020155 crossref_primary_10_1038_s41522_021_00253_0 crossref_primary_10_1111_jipb_13226 crossref_primary_10_1186_s40168_018_0597_y crossref_primary_10_3389_fpls_2016_01015 crossref_primary_10_1016_j_rhisph_2017_04_012 crossref_primary_10_1016_S1002_0160_21_60061_9 crossref_primary_10_1016_j_pbi_2017_01_004 crossref_primary_10_2478_fhort_2023_0031 crossref_primary_10_3389_fpls_2019_00922 |
Cites_doi | 10.1007/s00442-012-2578-3 10.1111/j.1469-8137.2012.04059.x 10.1104/pp.113.221283 10.1094/MPMI-05-11-0124 10.1016/j.jbiotec.2011.11.013 10.1016/j.plantsci.2003.10.025 10.1128/AEM.66.12.5460-5468.2000 10.1016/j.soilbio.2011.10.016 10.1007/s10658-007-9162-4 10.3390/molecules17067103 10.1038/nature11295 10.1007/s002840010259 10.1007/s00253-012-4224-8 10.1007/s12275-012-1439-4 10.1007/s13213-010-0117-1 10.1016/j.mib.2004.10.014 10.1094/MPMI-08-11-0213 10.1016/j.envpol.2008.04.015 10.1007/s11104-011-0851-6 10.1128/aem.57.2.535-538.1991 10.1094/MPMI-09-11-0245 10.1016/j.eja.2010.11.003 10.1094/MPMI-21-7-1001 10.1016/j.ejsobi.2010.11.004 10.1016/0003-2697(87)90612-9 10.1007/978-90-481-3664-3_8 10.1016/j.soilbio.2012.06.004 10.1128/AEM.71.4.1685-1693.2005 10.1146/annurev.phyto.011708.103102 10.1099/00207713-48-3-1081 10.1007/s00248-011-9883-y 10.1111/j.1574-6968.1998.tb13116.x 10.1371/journal.pone.0048479 10.1371/journal.pone.0017968 10.1104/pp.108.128645 10.1007/s00299-013-1430-5 10.1007/s11274-012-1234-8 10.1155/2013/248078 10.1603/ME12007 10.1016/j.envint.2009.10.005 10.1002/jsfa.5600 10.1073/pnas.1200311109 10.1007/s00374-012-0688-z 10.1016/j.agee.2008.05.006 10.1038/nmeth.2089 10.1093/jxb/erq247 10.1111/j.1462-2920.2005.00891.x 10.1371/journal.pone.0024452 10.1007/s12010-012-9983-2 10.5344/ajev.2009.60.2.189 10.1111/j.1574-6941.2007.00410.x 10.1111/j.1574-6968.2009.01840.x 10.1007/s00374-012-0707-0 10.1128/aem.59.3.695-700.1993 10.1002/jobm.201200031 10.1007/s00374-011-0605-x 10.1371/journal.pone.0014823 10.1016/S1049-9644(02)00034-8 10.1155/2013/491091 10.1128/AEM.66.8.3393-3398.2000 10.1104/pp.121.2.675 10.4161/psb.26741 10.1111/1574-6976.12028 10.1034/j.1399-3054.2003.00086.x 10.1093/aob/mcq030 10.1038/nature03972 10.1016/S0065-2164(04)56009-4 10.1128/AEM.01047-06 10.1111/j.1574-6968.1999.tb13383.x |
ContentType | Journal Article |
Copyright | 2014 Society for Applied Microbiology and John Wiley & Sons Ltd 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Copyright © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2014 Society for Applied Microbiology and John Wiley & Sons Ltd – notice: 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: Copyright © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 |
DOI | 10.1111/1462-2920.12439 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineering Research Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 331 |
ExternalDocumentID | 3610081651 10_1111_1462_2920_12439 24571749 EMI12439 ark_67375_WNG_RN1SFMPZ_J |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Regione Lombardia – fundername: DeFENS – fundername: BIOGESTECA funderid: 15083/RCC – fundername: Fondazione Bussolera Branca – fundername: Università degli Studi di Milano – fundername: BIODESERT funderid: 245746 – fundername: European Social Fund (FSE) |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 |
ID | FETCH-LOGICAL-c6199-7742f1903599e63b4a01fd5a32044690a9324ac6210f9799c0b8b10846cb63973 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 |
IngestDate | Wed Dec 04 01:01:26 EST 2024 Tue Dec 03 23:11:45 EST 2024 Thu Nov 21 04:30:01 EST 2024 Fri Dec 06 02:49:00 EST 2024 Sat Sep 28 08:02:42 EDT 2024 Sat Aug 24 00:37:43 EDT 2024 Wed Oct 30 09:47:57 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6199-7742f1903599e63b4a01fd5a32044690a9324ac6210f9799c0b8b10846cb63973 |
Notes | Regione Lombardia istex:6907AD764800A957E0BFBED13836111E16009010 Table S1. Details of the bacterial collection obtained from the Oltrepò Pavese soil. The numbers of total, rhizosphere (R) and endosphere (E) isolates obtained from each plant type are shown. The results of isolate dereplication are shown as number of ITS types. The number of species identifying the different ITS types for the R and E fractions are also indicated. Species identification, according to 16S rRNA gene sequences, of the eight isolates selected for the in vivo experiments on grapevine plantlets are also shown. Table S2. Physical-chemical characterization of the soil used for greenhouse and outdoor experiments. Table S3. Environmental conditions during the outdoor experiment, performed during summer (22 July to 10 September 2012). Fondazione Bussolera Branca European Social Fund (FSE) BIOGESTECA - No. 15083/RCC ark:/67375/WNG-RN1SFMPZ-J DeFENS BIODESERT - No. 245746 Università degli Studi di Milano ArticleID:EMI12439 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://iris.unito.it/bitstream/2318/1655363/1/post%20print_Rolli%20et%20al_2015.pdf |
PMID | 24571749 |
PQID | 1659063665 |
PQPubID | 1066360 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1687676255 proquest_miscellaneous_1660443959 proquest_journals_1659063665 crossref_primary_10_1111_1462_2920_12439 pubmed_primary_24571749 wiley_primary_10_1111_1462_2920_12439_EMI12439 istex_primary_ark_67375_WNG_RN1SFMPZ_J |
PublicationCentury | 2000 |
PublicationDate | February 2015 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Koberl, M., Muller, H., Ramadan, E.M., and Berg, G. (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS ONE 6: e24452. Palliotti, A., Silvestroni, O., and Petoumenou, D. (2009) Photosynthetic and photoinhibition behavior of two field-grown grapevine cultivars under multiple summer stresses. Am J Enol Vitic 60: 189-198. Alsina, M.M., Smart, D.R., Bauerle, T., de Herralde, F., Biel, C., Stockert, C., et al. (2011) Seasonal changes of whole root system conductance by a drought-tolerant grape root system. J Exp Bot 62: 99-109. Ramey, B.E., Koutsoudis, M., von Bodman, S.B., and Fuqua, C. (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7: 602-609. Vandeleur, R.K., Mayo, G., Shelden, M.C., Gilliham, M., Kaiser, B.N., and Tyerman, S.D. (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149: 445-460. Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., et al. (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res Int 2013: ID 248078. Brick, J.M., Bostock, R.M., and Silverstone, S.E. (1991) Rapid in situ assay for indolacetic acid detection by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57: 535-538. Chaves, M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., et al. (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105: 661-676. Marasco, R., Rolli, E., Fusi, M., Cherif, A., Abou-Hadid, A., El-Bahairy, U., et al. (2013b) Plant growth promotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments. Biomed Res Int 2013: ID 491091. Gambetta, G.A., Fei, J., Rost, T.L., Knipfer, T., Matthews, M.A., Shakel, K.A., et al. (2013) Water uptake along the lenght of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression and pathways of water transport. Plant Physiol 163: 1254-1265. Marasco, R., Rolli, E., Vigani, G., Borin, S., Sorlini, C., Ouzari, H., et al. (2013a) Are drought-resistance promoting bacteria cross-compatible with different plant models? Plant Signal Behav 8: e26741. Xu, Y.H., Rossi, F., Colica, G., Deng, S.Q., De Philippis, R., and Chen, L.Z. (2013) Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of desertified areas. Biol Fertil Soils 49: 143-152. Zhang, Q.T., Wang, S.P., Inoue, M., Moritani, S., Tsuji, W., Geng, S., et al. (2012) A new methodology for determining irrigation schedule of grapevines using photogrammetric measurement of berry diameter. J Food Agric Environ 10: 582-587. Nautiyal, C.S. (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170: 265-270. Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvag, A.O., Seguin, B., Peltonen-Sainio, P., et al. (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34: 96-112. Barka, E.A., Nowak, J., and Clement, C. (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72: 7246-7252. Mendes, R., Garbeva, P., and Raaijmakers, J.M. (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37: 634-663. Balloi, A., Rolli, E., Marasco, R., Mapelli, F., Tamagnini, I., Cappitelli, F., et al. (2010) The role of microorganisms in bioremediation and phytoremediation of polluted and stressed soils. Agrochimica 54: 353-369. Sabir, A., Yazici, M.A., Kara, Z., and Sahin, F. (2012) Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth-promoting rhizobacteria (PGPR). J Sci Food Agric 92: 2148-2153. Alami, Y., Achouak, W., Marol, C., and Heulin, T. (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp strain isolated from sunflower roots. Appl Environ Microbiol 66: 3393-3398. Koundouras, S., Tsialtas, I.T., Zioziou, E., and Nikolaou, N. (2008) Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet-Sauvignon) under contrasting water status: leaf physiological and structural responses. Agric Ecosyst Environ 128: 86-96. Mayak, S., Tirosh, T., and Glick, B.R. (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166: 525-530. Barret, M., Morrissey, J.P., and O'Gara, F. (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47: 729-743. Chopin, E.I.B., Marin, B., Mkoungafoko, R., Rigaux, A., Hopgood, M.J., Delannoy, E., et al. (2008) Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France. Environ Pollut 156: 1092-1098. Sanaullah, M., Chabbi, A., Rumpel, C., and Kuzyakov, Y. (2012) Carbon allocation in grassland communities under drought stress followed by C-14 pulse labeling. Soil Biol Biochem 55: 132-139. Daffonchio, D., De Biase, A., Rizzi, A., and Sorlini, C. (1998a) Interspecific, intraspecific and interoperonic variability in the 16S rRNA gene of methanogens revealed by length and single-strand conformation polymorphism analysis. FEMS Microbiol Lett 164: 403-410. Schmidt, C.S., Alavi, M., Cardinale, M., Muller, H., and Berg, G. (2012) Stenotrophomonas rhizophila DSM14405(T) promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils 48: 947-960. Schwyn, B., and Neilands, J.B. (1987) Universal chemical-assay for the detection and determination of siderophores. Anal Biochem 160: 47-56. Penrose, D.M., and Glick, B.R. (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118: 10-15. Muyzer, G., Dewaal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16 s Ribosomal-Rna. Appl Environ Microbiol 59: 695-700. Vassilev, N., Eichler-Lobermann, B., and Vassileva, M. (2012) Stress-tolerant P-solubilizing microorganisms. Appl Microbiol Biotechnol 95: 851-859. Compant, S., Kaplan, H., Sessitsch, A., Nowak, J., Barka, E.A., and Clement, C. (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63: 84-93. Flexas, J., Badger, M., Chow, W.S., Medrano, H., and Osmond, C.B. (1999) Analysis of the relative increase in photosynthetic O(2) uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress. Plant Physiol 121: 675-684. Zsofi, Z., Toth, E., Varadi, G., Rusjan, D., and Balo, B. (2008) The effect of progressive drought on water relations and photosynthetic performance of two grapevine cultivars (Vitis vinifera L.). Acta Biol Szeged 52: 321-322. Dimitrova, S., Pavlova, K., Lukanov, L., Korotkova, E., Petrova, E., Zagorchev, P., and Kuncheva, M. (2013) Production of metabolites with antioxidant and emulsifying properties by Antarctic strain Sporobolomyces salmonicolor AL(1). Appl Biochem Biotechnol 169: 301-311. Compant, S., Mitter, B., Colli-Mull, J.G., Gangl, H., and Sessitsch, A. (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62: 188-197. Fan, B., Borriss, R., Bleiss, W., and Wu, X.Q. (2012) Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol 50: 38-44. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., and Barka, E.A. (2005) Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp strain PsJN. Appl Environ Microbiol 71: 1685-1693. Redman, R.S., Kim, Y.O., Woodward, C.J.D.A., Greer, C., Espino, L., Doty, S.L., and Rodriguez, R.J. (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6: e14823. Komarek, M., Cadkova, E., Chrastny, V., Bordas, F., and Bollinger, J.C. (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36: 138-151. Berg, G., Eberl, L., and Hartmann, A. (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7: 1673-1685. Gleeson, T., Wada, Y., Bierkens, M.F.P., and van Beek, L.P.H. (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488: 197-200. Glick, B.R. (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56: 291-312. Saini, S., Sharma, I., Kaur, N., and Pati, P.K. (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32: 741-757. Fernandez, O., Theocharis, A., Bordiec, S., Feil, R., Jacquens, L., Clement, C., et al. (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant Microbe Interact 25: 496-504. Baize, D. (1997) Detection of moderate contamination by trace metals in agricultural soils. Analusis 25: M29-M35. Mehta, S., and Nautiyal, C.S. (2001) An efficient method for qualitative screening of phosphate-solubilizing bact 2013; 29 2004; 166 2010; 54 2003; 118 2006; 72 1991; 57 2010; 105 1998b; 48 2010; 304 2004; 7 2011; 62 1999; 170 1999; 121 2013; 169 2013; 163 2012; 17 2012; 488 2012; 55 2012; 10 2010; 60 2001; 43 2012; 95 2013; 2013 2013; 53 1998a; 164 2008; 21 2005; 71 2008; 63 2013b; 2013 2008; 156 2012; 25 1987; 160 2010; 36 2013; 49 2011 2009; 60 2013a; 8 2000; 66 1997; 25 2005; 437 2008; 128 2005 2011; 34 2008; 52 2011; 6 2012; 109 2011; 347 2012; 50 2012; 194 1993; 59 2012; 92 2013; 37 2007; 119 2012; 157 2013; 32 2002; 24 2004; 56 2005; 7 2008; 46 2012; 49 2011; 47 2012; 48 2012; 7 2012; 46 2013; 171 2009; 149 2012; 9 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 Muyzer G. (e_1_2_6_48_1) 1993; 59 Zhang Q.T. (e_1_2_6_74_1) 2012; 10 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Zsofi Z. (e_1_2_6_75_1) 2008; 52 e_1_2_6_9_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 Brick J.M. (e_1_2_6_12_1) 1991; 57 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Alami Y. (e_1_2_6_3_1) 2000; 66 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 Palliotti A. (e_1_2_6_51_1) 2009; 60 Baize D. (e_1_2_6_5_1) 1997; 25 Balloi A. (e_1_2_6_6_1) 2010; 54 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 6 start-page: e24452 year: 2011 article-title: Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health publication-title: PLoS ONE – volume: 59 start-page: 695 year: 1993 end-page: 700 article-title: Profiling of complex microbial‐populations by denaturing gradient gel‐electrophoresis analysis of polymerase chain reaction‐amplified genes‐coding for 16 s Ribosomal‐Rna publication-title: Appl Environ Microbiol – volume: 304 start-page: 1 year: 2010 end-page: 11 article-title: An integrated view of biofilm formation in rhizobia publication-title: FEMS Microbiol Lett – volume: 55 start-page: 132 year: 2012 end-page: 139 article-title: Carbon allocation in grassland communities under drought stress followed by C‐14 pulse labeling publication-title: Soil Biol Biochem – volume: 119 start-page: 329 year: 2007 end-page: 339 article-title: Promotion of plant growth by ACC deaminase‐producing soil bacteria publication-title: Eur J Plant Pathol – volume: 2013 year: 2013b article-title: Plant growth promotion potential is equally represented in diverse grapevine root‐associated bacterial communities from different biopedoclimatic environments publication-title: Biomed Res Int – volume: 53 start-page: 355 year: 2013 end-page: 364 article-title: Study of the siderophore‐producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress publication-title: J Basic Microbiol – volume: 34 start-page: 96 year: 2011 end-page: 112 article-title: Impacts and adaptation of European crop production systems to climate change publication-title: Eur J Agron – volume: 118 start-page: 10 year: 2003 end-page: 15 article-title: Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria publication-title: Physiol Plant – volume: 62 start-page: 188 year: 2011 end-page: 197 article-title: Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization publication-title: Microb Ecol – volume: 488 start-page: 197 year: 2012 end-page: 200 article-title: Water balance of global aquifers revealed by groundwater footprint publication-title: Nature – volume: 29 start-page: 789 year: 2013 end-page: 803 article-title: Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria publication-title: World J Microbiol Biotechnol – volume: 169 start-page: 301 year: 2013 end-page: 311 article-title: Production of metabolites with antioxidant and emulsifying properties by Antarctic strain AL(1) publication-title: Appl Biochem Biotechnol – volume: 9 start-page: 671 year: 2012 end-page: 675 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat Methods – volume: 157 start-page: 473 year: 2012 end-page: 481 article-title: Mineral‐microbe interactions: biotechnological potential of bioweathering publication-title: J Biotechnol – volume: 54 start-page: 353 year: 2010 end-page: 369 article-title: The role of microorganisms in bioremediation and phytoremediation of polluted and stressed soils publication-title: Agrochimica – volume: 52 start-page: 321 year: 2008 end-page: 322 article-title: The effect of progressive drought on water relations and photosynthetic performance of two grapevine cultivars ( L.) publication-title: Acta Biol Szeged – volume: 46 start-page: 53 year: 2008 end-page: 73 article-title: Plants as a habitat for beneficial and/or human pathogenic bacteria publication-title: Annu Rev Phytopathol – volume: 160 start-page: 47 year: 1987 end-page: 56 article-title: Universal chemical‐assay for the detection and determination of siderophores publication-title: Anal Biochem – volume: 46 start-page: 33 year: 2012 end-page: 40 article-title: The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts publication-title: Soil Biol Biochem – volume: 166 start-page: 525 year: 2004 end-page: 530 article-title: Plant growth‐promoting bacteria that confer resistance to water stress in tomatoes and peppers publication-title: Plant Sci – volume: 7 start-page: e48479 year: 2012 article-title: A drought resistance‐promoting microbiome is selected by root system under desert farming publication-title: PLoS ONE – volume: 47 start-page: 729 year: 2011 end-page: 743 article-title: Functional genomics analysis of plant growth‐promoting rhizobacterial traits involved in rhizosphere competence publication-title: Biol Fertil Soils – volume: 156 start-page: 1092 year: 2008 end-page: 1098 article-title: Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France publication-title: Environ Pollut – volume: 66 start-page: 3393 year: 2000 end-page: 3398 article-title: Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide‐producing Rhizobium sp strain isolated from sunflower roots publication-title: Appl Environ Microbiol – volume: 62 start-page: 99 year: 2011 end-page: 109 article-title: Seasonal changes of whole root system conductance by a drought‐tolerant grape root system publication-title: J Exp Bot – volume: 21 start-page: 1001 year: 2008 end-page: 1009 article-title: Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato publication-title: Mol Plant Microbe Interact – volume: 164 start-page: 403 year: 1998a end-page: 410 article-title: Interspecific, intraspecific and interoperonic variability in the 16S rRNA gene of methanogens revealed by length and single‐strand conformation polymorphism analysis publication-title: FEMS Microbiol Lett – volume: 43 start-page: 51 year: 2001 end-page: 56 article-title: An efficient method for qualitative screening of phosphate‐solubilizing bacteria publication-title: Curr Microbiol – volume: 171 start-page: 705 year: 2013 end-page: 717 article-title: Effects of drought and N‐fertilization on N cycling in two grassland soils publication-title: Oecologia – volume: 437 start-page: 529 year: 2005 end-page: 533 article-title: Europe‐wide reduction in primary productivity caused by the heat and drought in 2003 publication-title: Nature – volume: 17 start-page: 7103 year: 2012 end-page: 7120 article-title: The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium publication-title: Molecules – volume: 7 start-page: 602 year: 2004 end-page: 609 article-title: Biofilm formation in plant‐microbe associations publication-title: Curr Opin Microbiol – volume: 37 start-page: 634 year: 2013 end-page: 663 article-title: The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms publication-title: FEMS Microbiol Rev – volume: 49 start-page: 143 year: 2013 end-page: 152 article-title: Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of desertified areas publication-title: Biol Fertil Soils – volume: 95 start-page: 851 year: 2012 end-page: 859 article-title: Stress‐tolerant P‐solubilizing microorganisms publication-title: Appl Microbiol Biotechnol – volume: 121 start-page: 675 year: 1999 end-page: 684 article-title: Analysis of the relative increase in photosynthetic O(2) uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress publication-title: Plant Physiol – volume: 49 start-page: 1481 year: 2012 end-page: 1484 article-title: Incidence of bacteria of public health interest carried by cockroaches in different food‐related environments publication-title: J Med Entomol – volume: 105 start-page: 661 year: 2010 end-page: 676 article-title: Grapevine under deficit irrigation: hints from physiological and molecular data publication-title: Ann Bot – volume: 72 start-page: 7246 year: 2006 end-page: 7252 article-title: Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth‐promoting rhizobacterium, Burkholderia phytofirmans strain PsJN publication-title: Appl Environ Microbiol – start-page: 175 year: 2011 end-page: 189 – volume: 6 start-page: e17968 year: 2011 article-title: Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates publication-title: PLoS ONE – start-page: 115 year: 2005 end-page: 119 – volume: 24 start-page: 135 year: 2002 end-page: 142 article-title: Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth publication-title: Biol Control – volume: 48 start-page: 1081 year: 1998b end-page: 1081 article-title: PCR fingerprinting of whole genomes, the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveal a different intraspecific genomic variability of Bacillus cereus and Bacillus licheniformis (vol 48, pg 107, 1998) publication-title: Int J Syst Bacteriol – volume: 149 start-page: 445 year: 2009 end-page: 460 article-title: The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine publication-title: Plant Physiol – volume: 60 start-page: 189 year: 2009 end-page: 198 article-title: Photosynthetic and photoinhibition behavior of two field‐grown grapevine cultivars under multiple summer stresses publication-title: Am J Enol Vitic – volume: 36 start-page: 138 year: 2010 end-page: 151 article-title: Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects publication-title: Environ Int – volume: 63 start-page: 84 year: 2008 end-page: 93 article-title: Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues publication-title: FEMS Microbiol Ecol – volume: 50 start-page: 38 year: 2012 end-page: 44 article-title: Gram‐positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns publication-title: J Microbiol – volume: 2013 year: 2013 article-title: Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils publication-title: Biomed Res Int – volume: 8 start-page: e26741 year: 2013a article-title: Are drought‐resistance promoting bacteria cross‐compatible with different plant models? publication-title: Plant Signal Behav – volume: 194 start-page: 416 year: 2012 end-page: 429 article-title: Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes publication-title: New Phytol – volume: 25 start-page: M29 year: 1997 end-page: M35 article-title: Detection of moderate contamination by trace metals in agricultural soils publication-title: Analusis – volume: 60 start-page: 579 year: 2010 end-page: 598 article-title: Soil beneficial bacteria and their role in plant growth promotion: a review publication-title: Ann Microbiol – volume: 10 start-page: 582 year: 2012 end-page: 587 article-title: A new methodology for determining irrigation schedule of grapevines using photogrammetric measurement of berry diameter publication-title: J Food Agric Environ – volume: 56 start-page: 291 year: 2004 end-page: 312 article-title: Bacterial ACC deaminase and the alleviation of plant stress publication-title: Adv Appl Microbiol – volume: 25 start-page: 496 year: 2012 end-page: 504 article-title: Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism publication-title: Mol Plant Microbe Interact – volume: 6 start-page: e14823 year: 2011 article-title: Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change publication-title: PLoS ONE – volume: 7 start-page: 1673 year: 2005 end-page: 1685 article-title: The rhizosphere as a reservoir for opportunistic human pathogenic bacteria publication-title: Environ Microbiol – volume: 71 start-page: 1685 year: 2005 end-page: 1693 article-title: Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp strain PsJN publication-title: Appl Environ Microbiol – volume: 48 start-page: 947 year: 2012 end-page: 960 article-title: Stenotrophomonas rhizophila DSM14405(T) promotes plant growth probably by altering fungal communities in the rhizosphere publication-title: Biol Fertil Soils – volume: 25 start-page: 241 year: 2012 end-page: 249 article-title: Burkholderia phytofirmans PsJN primes Vitis vinifera L and confers a better tolerance to low nonfreezing temperatures publication-title: Mol Plant Microbe Interact – volume: 57 start-page: 535 year: 1991 end-page: 538 article-title: Rapid in situ assay for indolacetic acid detection by bacteria immobilized on nitrocellulose membrane publication-title: Appl Environ Microbiol – volume: 47 start-page: 44 year: 2011 end-page: 54 article-title: Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand publication-title: Eur J Soil Biol – volume: 25 start-page: 668 year: 2012 end-page: 676 article-title: Effects of bacterial ACC deaminase on Brassica napus gene expression publication-title: Mol Plant Microbe Interact – volume: 66 start-page: 5460 year: 2000 end-page: 5468 article-title: Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S‐23S internal transcribed spacers describe genetic relationships in the ‘Bacillus cereus group’ publication-title: Appl Environ Microbiol – volume: 92 start-page: 2148 year: 2012 end-page: 2153 article-title: Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth‐promoting rhizobacteria (PGPR) publication-title: J Sci Food Agric – volume: 163 start-page: 1254 year: 2013 end-page: 1265 article-title: Water uptake along the lenght of grapevine fine roots: developmental anatomy, tissue‐specific aquaporin expression and pathways of water transport publication-title: Plant Physiol – volume: 128 start-page: 86 year: 2008 end-page: 96 article-title: Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet‐Sauvignon) under contrasting water status: leaf physiological and structural responses publication-title: Agric Ecosyst Environ – volume: 32 start-page: 741 year: 2013 end-page: 757 article-title: Auxin: a master regulator in plant root development publication-title: Plant Cell Rep – volume: 347 start-page: 313 year: 2011 end-page: 325 article-title: Screening of rhizosphere bacteria from grapevine for their suppressive effect on Xiphinema index Thorne & Allen on in vitro grape plants publication-title: Plant Soil – volume: 170 start-page: 265 year: 1999 end-page: 270 article-title: An efficient microbiological growth medium for screening phosphate solubilizing microorganisms publication-title: FEMS Microbiol Lett – volume: 109 start-page: 9320 year: 2012 end-page: 9325 article-title: Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley publication-title: Proc Nat Acad Sci USA – ident: e_1_2_6_32_1 doi: 10.1007/s00442-012-2578-3 – ident: e_1_2_6_43_1 doi: 10.1111/j.1469-8137.2012.04059.x – ident: e_1_2_6_27_1 doi: 10.1104/pp.113.221283 – ident: e_1_2_6_68_1 doi: 10.1094/MPMI-05-11-0124 – ident: e_1_2_6_38_1 doi: 10.1016/j.jbiotec.2011.11.013 – ident: e_1_2_6_44_1 doi: 10.1016/j.plantsci.2003.10.025 – ident: e_1_2_6_20_1 doi: 10.1128/AEM.66.12.5460-5468.2000 – ident: e_1_2_6_58_1 doi: 10.1016/j.soilbio.2011.10.016 – ident: e_1_2_6_31_1 doi: 10.1007/s10658-007-9162-4 – ident: e_1_2_6_37_1 doi: 10.3390/molecules17067103 – ident: e_1_2_6_29_1 doi: 10.1038/nature11295 – ident: e_1_2_6_45_1 doi: 10.1007/s002840010259 – ident: e_1_2_6_72_1 doi: 10.1007/s00253-012-4224-8 – ident: e_1_2_6_24_1 doi: 10.1007/s12275-012-1439-4 – ident: e_1_2_6_33_1 doi: 10.1007/s13213-010-0117-1 – ident: e_1_2_6_55_1 doi: 10.1016/j.mib.2004.10.014 – ident: e_1_2_6_67_1 doi: 10.1094/MPMI-08-11-0213 – volume: 52 start-page: 321 year: 2008 ident: e_1_2_6_75_1 article-title: The effect of progressive drought on water relations and photosynthetic performance of two grapevine cultivars (Vitis vinifera L.) publication-title: Acta Biol Szeged contributor: fullname: Zsofi Z. – ident: e_1_2_6_15_1 doi: 10.1016/j.envpol.2008.04.015 – ident: e_1_2_6_2_1 doi: 10.1007/s11104-011-0851-6 – volume: 57 start-page: 535 year: 1991 ident: e_1_2_6_12_1 article-title: Rapid in situ assay for indolacetic acid detection by bacteria immobilized on nitrocellulose membrane publication-title: Appl Environ Microbiol doi: 10.1128/aem.57.2.535-538.1991 contributor: fullname: Brick J.M. – ident: e_1_2_6_25_1 doi: 10.1094/MPMI-09-11-0245 – ident: e_1_2_6_50_1 doi: 10.1016/j.eja.2010.11.003 – ident: e_1_2_6_47_1 doi: 10.1094/MPMI-21-7-1001 – ident: e_1_2_6_53_1 doi: 10.1016/j.ejsobi.2010.11.004 – ident: e_1_2_6_66_1 doi: 10.1016/0003-2697(87)90612-9 – ident: e_1_2_6_11_1 doi: 10.1007/978-90-481-3664-3_8 – ident: e_1_2_6_62_1 doi: 10.1016/j.soilbio.2012.06.004 – ident: e_1_2_6_61_1 – ident: e_1_2_6_18_1 doi: 10.1128/AEM.71.4.1685-1693.2005 – ident: e_1_2_6_70_1 doi: 10.1146/annurev.phyto.011708.103102 – ident: e_1_2_6_22_1 doi: 10.1099/00207713-48-3-1081 – ident: e_1_2_6_17_1 doi: 10.1007/s00248-011-9883-y – volume: 25 start-page: M29 year: 1997 ident: e_1_2_6_5_1 article-title: Detection of moderate contamination by trace metals in agricultural soils publication-title: Analusis contributor: fullname: Baize D. – ident: e_1_2_6_21_1 doi: 10.1111/j.1574-6968.1998.tb13116.x – ident: e_1_2_6_40_1 doi: 10.1371/journal.pone.0048479 – ident: e_1_2_6_69_1 doi: 10.1371/journal.pone.0017968 – ident: e_1_2_6_71_1 doi: 10.1104/pp.108.128645 – ident: e_1_2_6_60_1 doi: 10.1007/s00299-013-1430-5 – ident: e_1_2_6_13_1 doi: 10.1007/s11274-012-1234-8 – ident: e_1_2_6_39_1 doi: 10.1155/2013/248078 – ident: e_1_2_6_28_1 doi: 10.1603/ME12007 – ident: e_1_2_6_35_1 doi: 10.1016/j.envint.2009.10.005 – ident: e_1_2_6_59_1 doi: 10.1002/jsfa.5600 – ident: e_1_2_6_63_1 doi: 10.1073/pnas.1200311109 – ident: e_1_2_6_64_1 doi: 10.1007/s00374-012-0688-z – ident: e_1_2_6_36_1 doi: 10.1016/j.agee.2008.05.006 – ident: e_1_2_6_65_1 doi: 10.1038/nmeth.2089 – ident: e_1_2_6_4_1 doi: 10.1093/jxb/erq247 – ident: e_1_2_6_10_1 doi: 10.1111/j.1462-2920.2005.00891.x – ident: e_1_2_6_34_1 doi: 10.1371/journal.pone.0024452 – ident: e_1_2_6_23_1 doi: 10.1007/s12010-012-9983-2 – volume: 60 start-page: 189 year: 2009 ident: e_1_2_6_51_1 article-title: Photosynthetic and photoinhibition behavior of two field‐grown grapevine cultivars under multiple summer stresses publication-title: Am J Enol Vitic doi: 10.5344/ajev.2009.60.2.189 contributor: fullname: Palliotti A. – ident: e_1_2_6_19_1 doi: 10.1111/j.1574-6941.2007.00410.x – ident: e_1_2_6_57_1 doi: 10.1111/j.1574-6968.2009.01840.x – ident: e_1_2_6_73_1 doi: 10.1007/s00374-012-0707-0 – volume: 59 start-page: 695 year: 1993 ident: e_1_2_6_48_1 article-title: Profiling of complex microbial‐populations by denaturing gradient gel‐electrophoresis analysis of polymerase chain reaction‐amplified genes‐coding for 16 s Ribosomal‐Rna publication-title: Appl Environ Microbiol doi: 10.1128/aem.59.3.695-700.1993 contributor: fullname: Muyzer G. – ident: e_1_2_6_54_1 doi: 10.1002/jobm.201200031 – ident: e_1_2_6_9_1 doi: 10.1007/s00374-011-0605-x – ident: e_1_2_6_56_1 doi: 10.1371/journal.pone.0014823 – ident: e_1_2_6_8_1 doi: 10.1016/S1049-9644(02)00034-8 – ident: e_1_2_6_42_1 doi: 10.1155/2013/491091 – volume: 66 start-page: 3393 year: 2000 ident: e_1_2_6_3_1 article-title: Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide‐producing Rhizobium sp strain isolated from sunflower roots publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.8.3393-3398.2000 contributor: fullname: Alami Y. – ident: e_1_2_6_26_1 doi: 10.1104/pp.121.2.675 – ident: e_1_2_6_41_1 doi: 10.4161/psb.26741 – volume: 10 start-page: 582 year: 2012 ident: e_1_2_6_74_1 article-title: A new methodology for determining irrigation schedule of grapevines using photogrammetric measurement of berry diameter publication-title: J Food Agric Environ contributor: fullname: Zhang Q.T. – ident: e_1_2_6_46_1 doi: 10.1111/1574-6976.12028 – ident: e_1_2_6_52_1 doi: 10.1034/j.1399-3054.2003.00086.x – ident: e_1_2_6_14_1 doi: 10.1093/aob/mcq030 – ident: e_1_2_6_16_1 doi: 10.1038/nature03972 – volume: 54 start-page: 353 year: 2010 ident: e_1_2_6_6_1 article-title: The role of microorganisms in bioremediation and phytoremediation of polluted and stressed soils publication-title: Agrochimica contributor: fullname: Balloi A. – ident: e_1_2_6_30_1 doi: 10.1016/S0065-2164(04)56009-4 – ident: e_1_2_6_7_1 doi: 10.1128/AEM.01047-06 – ident: e_1_2_6_49_1 doi: 10.1111/j.1574-6968.1999.tb13383.x |
SSID | ssj0017370 |
Score | 2.6523466 |
Snippet | Summary
Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water... Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water stress is... Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water stress is... Summary Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 316 |
SubjectTerms | Acinetobacter Acinetobacter - isolation & purification Adaptation, Physiological Arabidopsis Arabidopsis - microbiology Biomass Drought Droughts Microbiota Photosynthesis - physiology Plant growth Plant Leaves - growth & development Plant resistance Plant Roots - growth & development Plant Roots - microbiology Pseudomonas Pseudomonas - isolation & purification Stress, Physiological Vitaceae Vitis - microbiology Water |
Title | Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait |
URI | https://api.istex.fr/ark:/67375/WNG-RN1SFMPZ-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.12439 https://www.ncbi.nlm.nih.gov/pubmed/24571749 https://www.proquest.com/docview/1659063665 https://search.proquest.com/docview/1660443959 https://search.proquest.com/docview/1687676255 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9QwFA2yIvji98foKhFEfOnQNk2meVzUcVnYQVYXxZeQtCks684MMx3c9cmfsL_RX-K5SVvcRRTxrbQ3pUnu7T0nubmXseeFqmXutU1yWr6nFOaJc6VNlJaulr6xqSOiuD9Tu4fF3ifZRxPSWZiYH2JYcCPLCP9rMnDr1r8YOUw8T6jW0hguStARvkxMKKjv9cGQQCqbiFAurpPN8i65D8XyXGp_wS9dpSE-_R3ovIhhgxOa3mSu__wYe3I83rRuXH27lNnxv_p3i93oICrfiTp1m13x8zvsWixaeXaXncZ1CF_z5RdMCwdfJwwK5eHtgteh7E_Lj9Z8GSL9IOfOOGAmB0Zvf3w_t51C4MHJUUwDdeK5XXPLv-LuisfjK5DsC_S2nApZtPfY4fTNh1e7SVe_IalAyzSAe5E3ABxCau2VcIVNs6aWVuS0i6xTC-xY2EqBdTa0u1ilrnRZCkRUOdpvFPfZ1nwx9w8Zr20tXQn2BLYGt1uUubClBRfDTZH6ZsRe9rNnljFNh-npDQ2koYE0YSBH7EWY3UHOro4pum0izcfZW3Mwy95P9999Nnsjtt1Pv-kMe20yJTVQnVJyxJ4Nj2GStM9i536xIRmFDgot9Z9k4IbgiCTe8yCq1vBBeSFBsgu0jgrytx4ZWGy4ePSvDR6z6wCAMkahb7OtdrXxTwCyWvc02NFPjm8arg |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BKwQXyl9hoYCREOKSVRLHbnxEhWUp3RUqrai4WHbiSFXp7mo3K1pOPALP2CfpjJ1EbYVAiFvkTKzYnsl8nz2ZAXiZyVKkTpkope17SmEeWZubSCphS-EqE1siiqOxHO5n2wfi4MK_MCE_RLfhRpbhv9dk4LQhfcHK0cbTiIot9dFHcXUdVtHoEwrrervbpZBKNrkvGNcIJ2mT3oeiea50cMkzrdIkn_wOdl5Gsd4NDdagaAcQok-O-sva9osfV3I7_t8I78DtBqWyN0Gt7sI1N7kHN0LdytP7cBK2IlzJZt9wZRhSdoKhqD-snrLSV_6p2eGCzXywH8rZU4ZIkyFMr89-_jKNTuCN48OQCerYMbNghn3H1jkLf7CgZFujt2ZUy6J-APuDd3tbw6gp4RAVyMwUYvcsrRBzcKGUk9xmJk6qUhie0kGyig3Cx8wUEolnRQeMRWxzm8QIigpLR458HVYm04l7BKw0pbA5EigkbOh5szzlJjdIx7CRx67qwet2-fQsZOrQLcOhidQ0kdpPZA9e-eXt5Mz8iALcNoX-Mn6vd8fJ58Ho01e93YONdv11Y9sLnUihENhJKXrworuNVklHLWbipkuSkThAroT6kwx6IvRFAvt5GHSre6E0E8izM3w6aMjfRqTRaP3F43994DncHO6NdvTOh_HHJ3AL8aAIQekbsFLPl-4pYq7aPvNGdQ5L6B7P |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VVqBeSvlpWWiLkRDiklUSx258RLTbUuiqKlQgLpadOFJVurvazaotJx6BZ-RJmLGTiFYIhLhFziSK7ZnM99njGYDnmSxF6pSJUlq-pxTmkbW5iaQSthSuMrElong4lPsn2cEn0UYT0lmYkB-iW3Ajy_D_azLwSVn9YuRo4mlEtZb66KK4ugVL2KAoff7OcZdBKtnmvl5cI5ykTXYfCua58YJrjmmJxvjyd6jzOoj1XmhwF2z7_SH45Kw_r22_-HojteN_dXAVVhqMyl4FpboHC250H26HqpVXD-AyLES4kk2-4LwwJOwEQlF7WD1mpa_7U7PTGZv4UD-Us1cMcSZDkF7_-PbdNBqBN85PQx6oc8fMjBl2ga1TFs6voGRbobdmVMmifggng90Pr_ejpoBDVCAvU4jcs7RCxMGFUk5ym5k4qUpheErbyCo2CB4zU0iknRVtLxaxzW0SIyQqLG048jVYHI1H7hGw0pTC5kifkK6h383ylJvcIBnDRh67qgcv29nTk5CnQ7f8hgZS00BqP5A9eOFnt5Mz0zMKb9sW-uNwTx8Pk_eDw6PP-qAHG-3068ayZzqRQiGsk1L04Fl3G22SNlrMyI3nJCOxg1wJ9ScZ9EPoiQS-Zz2oVvdBaSaQZWf4dFCQv_VIo8n6i8f_-sBTuHO0M9Dv3gzfPoFlBIMiRKRvwGI9nbtNBFy13fIm9RPKIB1- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+plant+resistance+to+drought+is+promoted+by+the+root-associated+microbiome+as+a+water+stress-dependent+trait&rft.jtitle=Environmental+microbiology&rft.au=Rolli%2C+Eleonora&rft.au=Marasco%2C+Ramona&rft.au=Vigani%2C+Gianpiero&rft.au=Ettoumi%2C+Besma&rft.date=2015-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=17&rft.issue=2&rft.spage=316&rft_id=info:doi/10.1111%2F1462-2920.12439&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3610081651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |