Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait

Summary Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cul...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 17; no. 2; pp. 316 - 331
Main Authors Rolli, Eleonora, Marasco, Ramona, Vigani, Gianpiero, Ettoumi, Besma, Mapelli, Francesca, Deangelis, Maria Laura, Gandolfi, Claudio, Casati, Enrico, Previtali, Franco, Gerbino, Roberto, Pierotti Cei, Fabio, Borin, Sara, Sorlini, Claudia, Zocchi, Graziano, Daffonchio, Daniele
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.02.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp‐labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress‐dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought‐challenged grapevines, with an enhanced effect in drought‐sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress‐induced promotion ability.
AbstractList Summary Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp-labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress-dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought-challenged grapevines, with an enhanced effect in drought-sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress-induced promotion ability.
Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp-labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress-dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought-challenged grapevines, with an enhanced effect in drought-sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress-induced promotion ability.
Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting ( PGP ) traits, and confocal microscopy observation of gfp ‐labelled A cinetobacter and P seudomonas isolates showed their ability to adhere and colonize both the A rabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress‐dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought‐challenged grapevines, with an enhanced effect in drought‐sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress‐induced promotion ability.
Summary Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp‐labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress‐dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought‐challenged grapevines, with an enhanced effect in drought‐sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress‐induced promotion ability.
Author Rolli, Eleonora
Mapelli, Francesca
Deangelis, Maria Laura
Vigani, Gianpiero
Sorlini, Claudia
Marasco, Ramona
Gandolfi, Claudio
Gerbino, Roberto
Zocchi, Graziano
Previtali, Franco
Ettoumi, Besma
Borin, Sara
Pierotti Cei, Fabio
Daffonchio, Daniele
Casati, Enrico
Author_xml – sequence: 1
  givenname: Eleonora
  surname: Rolli
  fullname: Rolli, Eleonora
  organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy
– sequence: 2
  givenname: Ramona
  surname: Marasco
  fullname: Marasco, Ramona
  organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy
– sequence: 3
  givenname: Gianpiero
  surname: Vigani
  fullname: Vigani, Gianpiero
  organization: Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, DISAA, University of Milan, Milan, Italy
– sequence: 4
  givenname: Besma
  surname: Ettoumi
  fullname: Ettoumi, Besma
  organization: Laboratory of Microbiology and Active Biomolecules (LMBA), Faculté des Sciences de Tunis, Campus Universitaire, Tunis, Tunisia
– sequence: 5
  givenname: Francesca
  surname: Mapelli
  fullname: Mapelli, Francesca
  organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy
– sequence: 6
  givenname: Maria Laura
  surname: Deangelis
  fullname: Deangelis, Maria Laura
  organization: Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, DISAA, University of Milan, Milan, Italy
– sequence: 7
  givenname: Claudio
  surname: Gandolfi
  fullname: Gandolfi, Claudio
  organization: Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, DISAA, University of Milan, Milan, Italy
– sequence: 8
  givenname: Enrico
  surname: Casati
  fullname: Casati, Enrico
  organization: Department of Environmental Science, University of Milan Bicocca, Milan, Italy
– sequence: 9
  givenname: Franco
  surname: Previtali
  fullname: Previtali, Franco
  organization: Department of Environmental Science, University of Milan Bicocca, Milan, Italy
– sequence: 10
  givenname: Roberto
  surname: Gerbino
  fullname: Gerbino, Roberto
  organization: Bussolera Branca Foundation, Le Fracce Farm, Pavia, Italy
– sequence: 11
  givenname: Fabio
  surname: Pierotti Cei
  fullname: Pierotti Cei, Fabio
  organization: Bussolera Branca Foundation, Le Fracce Farm, Pavia, Italy
– sequence: 12
  givenname: Sara
  surname: Borin
  fullname: Borin, Sara
  organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy
– sequence: 13
  givenname: Claudia
  surname: Sorlini
  fullname: Sorlini, Claudia
  organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy
– sequence: 14
  givenname: Graziano
  surname: Zocchi
  fullname: Zocchi, Graziano
  organization: Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, DISAA, University of Milan, Milan, Italy
– sequence: 15
  givenname: Daniele
  surname: Daffonchio
  fullname: Daffonchio, Daniele
  email: daniele.daffonchio@unimi.it
  organization: Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24571749$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB-wZocssWET6rfHS1S1ZVBbEA8hsbGc5IamTOKp7VDm33PDtLNgA97YvvrOsa-PD8neGEcg5DlnrzmOY66MqIQTuBVKukfkYFfZ26252CeHOd8wxq207AnZF0pbbpU7IGU5rFP8CS1dr8JYaILc5xLGBmiJtE1x-n5daJ8pUkMsyNUbWq6BphhLFXKOTR_m8tA3KdZ9HICGTAO9w2qiuaBhrlpYw9gC-pcU-vKUPO7CKsOz-_mIfDk7_Xzytrp4f748eXNRNYY7V1mrRMcdk9o5MLJWgfGu1UEKppRxLDgpVGiM4Kxz1rmG1Yuas4UyTW2ks_KIvNr64uVvJ8jFD31uYIWdQpyy52ZhjTVC6_9ADR4qnXaIvvwLvYlTGrERpLRjRhozGx5vKXyWnBN0fp36IaSN58zP2fk5HT8n5f9kh4oX975TPUC74x_CQkBvgbt-BZt_-fnTy-WDcbXVYbLwa6cL6Yc3-CG0_3p17j9e8U9nlx---XfyNw5xsx4
CitedBy_id crossref_primary_10_3390_plants10010125
crossref_primary_10_1007_s11104_016_3090_z
crossref_primary_10_1094_PBIOMES_09_23_0095_R
crossref_primary_10_1093_femsec_fiaa226
crossref_primary_10_1146_annurev_genet_120215_034952
crossref_primary_10_1371_journal_pbio_2003862
crossref_primary_10_1016_j_apsoil_2019_02_024
crossref_primary_10_3354_dao03289
crossref_primary_10_3389_frsus_2022_928970
crossref_primary_10_1016_j_egg_2023_100212
crossref_primary_10_1016_j_tplants_2019_12_024
crossref_primary_10_1093_femsec_fiy037
crossref_primary_10_1080_15226514_2019_1696743
crossref_primary_10_1111_1751_7915_13634
crossref_primary_10_1007_s12275_021_0619_5
crossref_primary_10_1016_j_biocontrol_2016_04_005
crossref_primary_10_1007_s11738_019_2952_4
crossref_primary_10_1094_PBIOMES_09_20_0065_R
crossref_primary_10_1186_s40168_017_0391_2
crossref_primary_10_1111_ppl_13153
crossref_primary_10_1007_s11104_024_06658_y
crossref_primary_10_1016_j_envexpbot_2019_03_028
crossref_primary_10_1038_s41598_017_18839_0
crossref_primary_10_1093_femsec_fix050
crossref_primary_10_1111_1758_2229_13254
crossref_primary_10_1080_10643389_2020_1738193
crossref_primary_10_3389_fmicb_2017_01385
crossref_primary_10_1007_s11756_022_01061_3
crossref_primary_10_3389_fmicb_2021_772420
crossref_primary_10_1007_s00203_022_02934_6
crossref_primary_10_1017_S0021859618000126
crossref_primary_10_1021_acsomega_8b02604
crossref_primary_10_3390_ijms23042374
crossref_primary_10_1016_j_cub_2018_03_054
crossref_primary_10_3389_fmicb_2021_744897
crossref_primary_10_1007_s11104_023_06270_6
crossref_primary_10_1016_j_jare_2019_03_004
crossref_primary_10_1016_j_plantsci_2022_111323
crossref_primary_10_1038_s41396_021_01133_3
crossref_primary_10_3389_fpls_2016_01994
crossref_primary_10_1016_j_scitotenv_2020_139701
crossref_primary_10_3390_microorganisms5040070
crossref_primary_10_1007_s00284_021_02566_x
crossref_primary_10_3390_plants12051079
crossref_primary_10_1007_s11104_023_06204_2
crossref_primary_10_1016_j_bcab_2023_102880
crossref_primary_10_1093_jambio_lxae050
crossref_primary_10_1111_tpj_15775
crossref_primary_10_1038_s41598_020_61140_w
crossref_primary_10_1038_srep32032
crossref_primary_10_1590_1807_1929_agriambi_v25n11p779_786
crossref_primary_10_3389_fpls_2024_1429096
crossref_primary_10_1007_s00253_021_11555_w
crossref_primary_10_1128_mSystems_00092_20
crossref_primary_10_3389_fbioe_2021_567548
crossref_primary_10_3389_fmicb_2023_1108036
crossref_primary_10_1007_s13205_021_02833_5
crossref_primary_10_1177_1934578X20934228
crossref_primary_10_1016_j_catena_2023_107472
crossref_primary_10_1111_1462_2920_15839
crossref_primary_10_1111_1751_7915_13618
crossref_primary_10_3389_fmicb_2021_729022
crossref_primary_10_1128_spectrum_00208_23
crossref_primary_10_1086_688926
crossref_primary_10_1146_annurev_ecolsys_110617_062605
crossref_primary_10_1007_s11557_016_1219_3
crossref_primary_10_1007_s41207_024_00579_z
crossref_primary_10_1186_s12284_023_00641_4
crossref_primary_10_1038_s41598_020_69713_5
crossref_primary_10_48022_mbl_2008_08015
crossref_primary_10_1007_s00203_018_1582_3
crossref_primary_10_1007_s11104_024_06778_5
crossref_primary_10_1016_j_stress_2023_100242
crossref_primary_10_1002_ecy_3679
crossref_primary_10_1016_j_apsoil_2022_104503
crossref_primary_10_1073_pnas_1908600116
crossref_primary_10_1007_s13199_018_0574_z
crossref_primary_10_1016_S1002_0160_20_60092_3
crossref_primary_10_3390_agriculture14050769
crossref_primary_10_3390_ijms22073438
crossref_primary_10_3390_ijms22073319
crossref_primary_10_1007_s00442_016_3783_2
crossref_primary_10_3389_fsufs_2021_687531
crossref_primary_10_3389_fpls_2019_01256
crossref_primary_10_3390_jof7090686
crossref_primary_10_3390_su15032338
crossref_primary_10_1007_s10526_016_9725_4
crossref_primary_10_1016_j_molp_2023_07_011
crossref_primary_10_1016_j_agwat_2015_08_021
crossref_primary_10_3390_jof8040384
crossref_primary_10_1016_j_pbiomolbio_2018_12_002
crossref_primary_10_1016_j_micres_2020_126579
crossref_primary_10_21833_ijaas_2022_07_016
crossref_primary_10_1016_j_agwat_2019_04_010
crossref_primary_10_1016_j_jaridenv_2020_104137
crossref_primary_10_1038_s41598_018_36971_3
crossref_primary_10_1016_j_micres_2020_126690
crossref_primary_10_1016_j_indcrop_2020_112163
crossref_primary_10_1038_srep41564
crossref_primary_10_1016_j_jplph_2021_153437
crossref_primary_10_1016_j_scitotenv_2023_165524
crossref_primary_10_1007_s42729_021_00724_5
crossref_primary_10_1139_cjm_2017_0529
crossref_primary_10_1016_j_agee_2016_06_031
crossref_primary_10_3390_plants12040718
crossref_primary_10_1186_s40538_016_0054_8
crossref_primary_10_1093_jxb_erac520
crossref_primary_10_1093_jxb_erv466
crossref_primary_10_1371_journal_pone_0287084
crossref_primary_10_1016_j_jplph_2018_10_029
crossref_primary_10_1038_s41467_023_40916_4
crossref_primary_10_1093_treephys_tpaa109
crossref_primary_10_1016_j_ocsci_2020_03_005
crossref_primary_10_3389_fpls_2024_1356338
crossref_primary_10_1016_j_apsoil_2020_103807
crossref_primary_10_3390_app11041615
crossref_primary_10_1099_ijsem_0_001666
crossref_primary_10_1016_j_ecoenv_2018_03_013
crossref_primary_10_1016_j_ecoenv_2020_110854
crossref_primary_10_1016_j_pbi_2017_04_018
crossref_primary_10_1111_mec_15666
crossref_primary_10_1007_s11104_016_3019_6
crossref_primary_10_1093_plphys_kiac418
crossref_primary_10_1186_s40168_018_0445_0
crossref_primary_10_1007_s11104_023_05965_0
crossref_primary_10_1016_j_crmicr_2021_100021
crossref_primary_10_1016_j_micres_2022_127148
crossref_primary_10_1094_PBIOMES_5_3
crossref_primary_10_1094_PBIOMES_5_2
crossref_primary_10_3390_horticulturae10010012
crossref_primary_10_1007_s11104_021_05123_4
crossref_primary_10_1111_nph_13697
crossref_primary_10_3389_fmicb_2021_643904
crossref_primary_10_1007_s11240_016_1144_9
crossref_primary_10_5604_01_3001_0010_4866
crossref_primary_10_31857_S0555109923050185
crossref_primary_10_3390_ijms20071769
crossref_primary_10_1016_j_biotechadv_2016_08_005
crossref_primary_10_17816_ecogen17119_32
crossref_primary_10_1128_aem_02078_23
crossref_primary_10_3390_plants12244155
crossref_primary_10_1111_1462_2920_16042
crossref_primary_10_1371_journal_pcbi_1007109
crossref_primary_10_3389_fmicb_2016_01600
crossref_primary_10_1007_s11104_017_3403_x
crossref_primary_10_1016_j_chemosphere_2019_124843
crossref_primary_10_3389_fmicb_2016_01286
crossref_primary_10_3390_agronomy10081179
crossref_primary_10_1016_j_tplants_2015_11_008
crossref_primary_10_1111_nph_17928
crossref_primary_10_1007_s00253_015_6874_9
crossref_primary_10_1007_s10661_020_08340_z
crossref_primary_10_1016_j_micres_2015_12_003
crossref_primary_10_1111_tpj_13795
crossref_primary_10_1007_s11104_017_3451_2
crossref_primary_10_1016_j_micres_2019_03_008
crossref_primary_10_3389_fpls_2024_1325048
crossref_primary_10_1111_1462_2920_15764
crossref_primary_10_3389_fmicb_2015_00091
crossref_primary_10_1016_j_scitotenv_2016_09_218
crossref_primary_10_1038_s43705_022_00130_7
crossref_primary_10_1093_pcp_pcab067
crossref_primary_10_3390_plants12234000
crossref_primary_10_3389_fmicb_2020_563118
crossref_primary_10_3389_fagro_2021_725804
crossref_primary_10_3389_fmicb_2021_660134
crossref_primary_10_1016_j_apsoil_2018_12_006
crossref_primary_10_3390_su15021671
crossref_primary_10_15252_embj_2021109102
crossref_primary_10_3389_fmicb_2016_01971
crossref_primary_10_3390_microorganisms9061209
crossref_primary_10_1016_j_micres_2021_126771
crossref_primary_10_1002_ps_5507
crossref_primary_10_1094_PBIOMES_4_4
crossref_primary_10_1016_j_scitotenv_2022_157132
crossref_primary_10_1094_PBIOMES_07_20_0052_R
crossref_primary_10_3390_microorganisms8101619
crossref_primary_10_1002_aps3_11334
crossref_primary_10_1016_j_rhisph_2023_100825
crossref_primary_10_1038_s41396_022_01245_4
crossref_primary_10_1371_journal_pone_0262932
crossref_primary_10_1111_nph_16890
crossref_primary_10_3389_fmicb_2022_981288
crossref_primary_10_3390_agriculture13112042
crossref_primary_10_1007_s10811_021_02387_2
crossref_primary_10_1016_j_micres_2023_127352
crossref_primary_10_3390_microorganisms8050694
crossref_primary_10_1007_s12088_024_01201_0
crossref_primary_10_1007_s12275_020_9565_x
crossref_primary_10_1007_s00203_021_02320_8
crossref_primary_10_1016_j_micres_2015_08_002
crossref_primary_10_3389_fpls_2019_01741
crossref_primary_10_3390_plants13060857
crossref_primary_10_1038_s41598_020_75591_8
crossref_primary_10_1002_ece3_8283
crossref_primary_10_1080_01904167_2019_1659335
crossref_primary_10_1111_nph_15791
crossref_primary_10_1038_s41467_022_33238_4
crossref_primary_10_7717_peerj_16836
crossref_primary_10_3389_fmicb_2022_913349
crossref_primary_10_1186_s12870_020_02493_2
crossref_primary_10_3389_fmicb_2016_00937
crossref_primary_10_1371_journal_pone_0233783
crossref_primary_10_3390_agronomy9090514
crossref_primary_10_1094_PBIOMES_3_1
crossref_primary_10_1007_s11104_018_3674_x
crossref_primary_10_1094_PBIOMES_04_17_0015_R
crossref_primary_10_3390_biology10060520
crossref_primary_10_1371_journal_pone_0140252
crossref_primary_10_1094_PBIOMES_01_19_0006_W
crossref_primary_10_1016_j_rhisph_2018_11_008
crossref_primary_10_1038_s41598_021_82768_2
crossref_primary_10_1111_tpj_15135
crossref_primary_10_3389_fmicb_2020_00443
crossref_primary_10_1016_j_biotechadv_2020_107614
crossref_primary_10_22207_JPAM_14_1_10
crossref_primary_10_1007_s00248_020_01543_4
crossref_primary_10_1007_s42729_024_01756_3
crossref_primary_10_1186_s40793_022_00407_3
crossref_primary_10_3389_fpls_2023_1081537
crossref_primary_10_1016_j_agee_2018_08_020
crossref_primary_10_1007_s11274_022_03392_4
crossref_primary_10_1093_femsec_fiaa053
crossref_primary_10_3389_fpls_2020_00544
crossref_primary_10_1073_pnas_1717308115
crossref_primary_10_1093_hr_uhac019
crossref_primary_10_1016_j_rhisph_2021_100439
crossref_primary_10_1128_spectrum_01476_22
crossref_primary_10_1016_j_tplants_2022_08_012
crossref_primary_10_3390_microorganisms8091329
crossref_primary_10_1007_s10482_021_01593_9
crossref_primary_10_1002_ajb2_1404
crossref_primary_10_1016_j_micres_2020_126564
crossref_primary_10_5424_sjar_2017151_9990
crossref_primary_10_1007_s10343_021_00604_z
crossref_primary_10_1094_PBIOMES_2_4
crossref_primary_10_3390_horticulturae8121138
crossref_primary_10_1007_s00248_020_01529_2
crossref_primary_10_1371_journal_pone_0208223
crossref_primary_10_1186_s12864_022_09019_0
crossref_primary_10_1094_PBIOMES_2_1
crossref_primary_10_1016_j_scienta_2018_09_017
crossref_primary_10_1038_s41598_019_54685_y
crossref_primary_10_3389_fmicb_2024_1362722
crossref_primary_10_3390_horticulturae9020180
crossref_primary_10_3390_microorganisms11010055
crossref_primary_10_1007_s42729_021_00684_w
crossref_primary_10_1080_00103624_2023_2276265
crossref_primary_10_1029_2018WR022656
crossref_primary_10_1093_femsec_fiy071
crossref_primary_10_1007_s11274_019_2659_0
crossref_primary_10_1007_s11738_019_2826_9
crossref_primary_10_3390_cimb45080398
crossref_primary_10_3389_fmicb_2021_743512
crossref_primary_10_1007_s42729_022_00958_x
crossref_primary_10_1042_BSR20201679
crossref_primary_10_3390_plants12030638
crossref_primary_10_1007_s10341_021_00579_1
crossref_primary_10_3389_fpls_2017_02223
crossref_primary_10_1080_01904167_2020_1799004
crossref_primary_10_3389_fgene_2021_697090
crossref_primary_10_3390_microorganisms10122479
crossref_primary_10_1007_s11104_021_05226_y
crossref_primary_10_1080_10643389_2017_1318619
crossref_primary_10_3390_plants9020263
crossref_primary_10_3389_fmicb_2017_02552
crossref_primary_10_1016_j_envexpbot_2022_104933
crossref_primary_10_1038_srep32467
crossref_primary_10_1016_j_micres_2020_126503
crossref_primary_10_1080_02571862_2019_1626500
crossref_primary_10_3390_microorganisms9010150
crossref_primary_10_1016_j_plaphy_2015_06_007
crossref_primary_10_3389_fmicb_2022_1064055
crossref_primary_10_1094_PBIOMES_04_20_0027_R
crossref_primary_10_1155_2020_8897998
crossref_primary_10_1016_j_micres_2024_127780
crossref_primary_10_3390_plants12061275
crossref_primary_10_1007_s00299_023_03060_3
crossref_primary_10_1007_s11368_023_03479_x
crossref_primary_10_3389_fmicb_2019_00581
crossref_primary_10_3390_microorganisms12030448
crossref_primary_10_3389_fpls_2024_1349401
crossref_primary_10_1080_15592324_2022_2104004
crossref_primary_10_1007_s10482_023_01906_0
crossref_primary_10_3389_fmicb_2014_00283
crossref_primary_10_3390_d13080366
crossref_primary_10_1128_AEM_02863_19
crossref_primary_10_1111_jam_14334
crossref_primary_10_3390_ijms221910529
crossref_primary_10_3389_fmicb_2021_673810
crossref_primary_10_1016_j_rhisph_2020_100205
crossref_primary_10_1134_S0003683823050186
crossref_primary_10_1007_s11274_018_2509_5
crossref_primary_10_1094_PBIOMES_04_18_0021_R
crossref_primary_10_1371_journal_pcbi_1004365
crossref_primary_10_1007_s10482_021_01701_9
crossref_primary_10_3389_fsufs_2024_1378436
crossref_primary_10_1111_jam_15552
crossref_primary_10_1007_s11104_021_05227_x
crossref_primary_10_1094_PBIOMES_07_23_0069_R
crossref_primary_10_3389_fmicb_2020_583120
crossref_primary_10_1111_nph_18600
crossref_primary_10_1128_AEM_00054_18
crossref_primary_10_1111_1462_2920_14272
crossref_primary_10_1186_s40168_020_00997_5
crossref_primary_10_1139_cjm_2021_0237
crossref_primary_10_1186_s12870_021_03226_9
crossref_primary_10_3390_jof8111210
crossref_primary_10_3390_plants11223090
crossref_primary_10_3389_fpls_2020_00293
crossref_primary_10_3389_fpls_2018_00813
crossref_primary_10_3390_biology11020155
crossref_primary_10_1038_s41522_021_00253_0
crossref_primary_10_1111_jipb_13226
crossref_primary_10_1186_s40168_018_0597_y
crossref_primary_10_3389_fpls_2016_01015
crossref_primary_10_1016_j_rhisph_2017_04_012
crossref_primary_10_1016_S1002_0160_21_60061_9
crossref_primary_10_1016_j_pbi_2017_01_004
crossref_primary_10_2478_fhort_2023_0031
crossref_primary_10_3389_fpls_2019_00922
Cites_doi 10.1007/s00442-012-2578-3
10.1111/j.1469-8137.2012.04059.x
10.1104/pp.113.221283
10.1094/MPMI-05-11-0124
10.1016/j.jbiotec.2011.11.013
10.1016/j.plantsci.2003.10.025
10.1128/AEM.66.12.5460-5468.2000
10.1016/j.soilbio.2011.10.016
10.1007/s10658-007-9162-4
10.3390/molecules17067103
10.1038/nature11295
10.1007/s002840010259
10.1007/s00253-012-4224-8
10.1007/s12275-012-1439-4
10.1007/s13213-010-0117-1
10.1016/j.mib.2004.10.014
10.1094/MPMI-08-11-0213
10.1016/j.envpol.2008.04.015
10.1007/s11104-011-0851-6
10.1128/aem.57.2.535-538.1991
10.1094/MPMI-09-11-0245
10.1016/j.eja.2010.11.003
10.1094/MPMI-21-7-1001
10.1016/j.ejsobi.2010.11.004
10.1016/0003-2697(87)90612-9
10.1007/978-90-481-3664-3_8
10.1016/j.soilbio.2012.06.004
10.1128/AEM.71.4.1685-1693.2005
10.1146/annurev.phyto.011708.103102
10.1099/00207713-48-3-1081
10.1007/s00248-011-9883-y
10.1111/j.1574-6968.1998.tb13116.x
10.1371/journal.pone.0048479
10.1371/journal.pone.0017968
10.1104/pp.108.128645
10.1007/s00299-013-1430-5
10.1007/s11274-012-1234-8
10.1155/2013/248078
10.1603/ME12007
10.1016/j.envint.2009.10.005
10.1002/jsfa.5600
10.1073/pnas.1200311109
10.1007/s00374-012-0688-z
10.1016/j.agee.2008.05.006
10.1038/nmeth.2089
10.1093/jxb/erq247
10.1111/j.1462-2920.2005.00891.x
10.1371/journal.pone.0024452
10.1007/s12010-012-9983-2
10.5344/ajev.2009.60.2.189
10.1111/j.1574-6941.2007.00410.x
10.1111/j.1574-6968.2009.01840.x
10.1007/s00374-012-0707-0
10.1128/aem.59.3.695-700.1993
10.1002/jobm.201200031
10.1007/s00374-011-0605-x
10.1371/journal.pone.0014823
10.1016/S1049-9644(02)00034-8
10.1155/2013/491091
10.1128/AEM.66.8.3393-3398.2000
10.1104/pp.121.2.675
10.4161/psb.26741
10.1111/1574-6976.12028
10.1034/j.1399-3054.2003.00086.x
10.1093/aob/mcq030
10.1038/nature03972
10.1016/S0065-2164(04)56009-4
10.1128/AEM.01047-06
10.1111/j.1574-6968.1999.tb13383.x
ContentType Journal Article
Copyright 2014 Society for Applied Microbiology and John Wiley & Sons Ltd
2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Copyright © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd
Copyright_xml – notice: 2014 Society for Applied Microbiology and John Wiley & Sons Ltd
– notice: 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: Copyright © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
DOI 10.1111/1462-2920.12439
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineering Research Database
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 331
ExternalDocumentID 3610081651
10_1111_1462_2920_12439
24571749
EMI12439
ark_67375_WNG_RN1SFMPZ_J
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Regione Lombardia
– fundername: DeFENS
– fundername: BIOGESTECA
  funderid: 15083/RCC
– fundername: Fondazione Bussolera Branca
– fundername: Università degli Studi di Milano
– fundername: BIODESERT
  funderid: 245746
– fundername: European Social Fund (FSE)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
ID FETCH-LOGICAL-c6199-7742f1903599e63b4a01fd5a32044690a9324ac6210f9799c0b8b10846cb63973
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Wed Dec 04 01:01:26 EST 2024
Tue Dec 03 23:11:45 EST 2024
Thu Nov 21 04:30:01 EST 2024
Fri Dec 06 02:49:00 EST 2024
Sat Sep 28 08:02:42 EDT 2024
Sat Aug 24 00:37:43 EDT 2024
Wed Oct 30 09:47:57 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6199-7742f1903599e63b4a01fd5a32044690a9324ac6210f9799c0b8b10846cb63973
Notes Regione Lombardia
istex:6907AD764800A957E0BFBED13836111E16009010
Table S1. Details of the bacterial collection obtained from the Oltrepò Pavese soil. The numbers of total, rhizosphere (R) and endosphere (E) isolates obtained from each plant type are shown. The results of isolate dereplication are shown as number of ITS types. The number of species identifying the different ITS types for the R and E fractions are also indicated. Species identification, according to 16S rRNA gene sequences, of the eight isolates selected for the in vivo experiments on grapevine plantlets are also shown. Table S2. Physical-chemical characterization of the soil used for greenhouse and outdoor experiments. Table S3. Environmental conditions during the outdoor experiment, performed during summer (22 July to 10 September 2012).
Fondazione Bussolera Branca
European Social Fund (FSE)
BIOGESTECA - No. 15083/RCC
ark:/67375/WNG-RN1SFMPZ-J
DeFENS
BIODESERT - No. 245746
Università degli Studi di Milano
ArticleID:EMI12439
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://iris.unito.it/bitstream/2318/1655363/1/post%20print_Rolli%20et%20al_2015.pdf
PMID 24571749
PQID 1659063665
PQPubID 1066360
PageCount 16
ParticipantIDs proquest_miscellaneous_1687676255
proquest_miscellaneous_1660443959
proquest_journals_1659063665
crossref_primary_10_1111_1462_2920_12439
pubmed_primary_24571749
wiley_primary_10_1111_1462_2920_12439_EMI12439
istex_primary_ark_67375_WNG_RN1SFMPZ_J
PublicationCentury 2000
PublicationDate February 2015
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Koberl, M., Muller, H., Ramadan, E.M., and Berg, G. (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS ONE 6: e24452.
Palliotti, A., Silvestroni, O., and Petoumenou, D. (2009) Photosynthetic and photoinhibition behavior of two field-grown grapevine cultivars under multiple summer stresses. Am J Enol Vitic 60: 189-198.
Alsina, M.M., Smart, D.R., Bauerle, T., de Herralde, F., Biel, C., Stockert, C., et al. (2011) Seasonal changes of whole root system conductance by a drought-tolerant grape root system. J Exp Bot 62: 99-109.
Ramey, B.E., Koutsoudis, M., von Bodman, S.B., and Fuqua, C. (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7: 602-609.
Vandeleur, R.K., Mayo, G., Shelden, M.C., Gilliham, M., Kaiser, B.N., and Tyerman, S.D. (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149: 445-460.
Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., et al. (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res Int 2013: ID 248078.
Brick, J.M., Bostock, R.M., and Silverstone, S.E. (1991) Rapid in situ assay for indolacetic acid detection by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57: 535-538.
Chaves, M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., et al. (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105: 661-676.
Marasco, R., Rolli, E., Fusi, M., Cherif, A., Abou-Hadid, A., El-Bahairy, U., et al. (2013b) Plant growth promotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments. Biomed Res Int 2013: ID 491091.
Gambetta, G.A., Fei, J., Rost, T.L., Knipfer, T., Matthews, M.A., Shakel, K.A., et al. (2013) Water uptake along the lenght of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression and pathways of water transport. Plant Physiol 163: 1254-1265.
Marasco, R., Rolli, E., Vigani, G., Borin, S., Sorlini, C., Ouzari, H., et al. (2013a) Are drought-resistance promoting bacteria cross-compatible with different plant models? Plant Signal Behav 8: e26741.
Xu, Y.H., Rossi, F., Colica, G., Deng, S.Q., De Philippis, R., and Chen, L.Z. (2013) Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of desertified areas. Biol Fertil Soils 49: 143-152.
Zhang, Q.T., Wang, S.P., Inoue, M., Moritani, S., Tsuji, W., Geng, S., et al. (2012) A new methodology for determining irrigation schedule of grapevines using photogrammetric measurement of berry diameter. J Food Agric Environ 10: 582-587.
Nautiyal, C.S. (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170: 265-270.
Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvag, A.O., Seguin, B., Peltonen-Sainio, P., et al. (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34: 96-112.
Barka, E.A., Nowak, J., and Clement, C. (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72: 7246-7252.
Mendes, R., Garbeva, P., and Raaijmakers, J.M. (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37: 634-663.
Balloi, A., Rolli, E., Marasco, R., Mapelli, F., Tamagnini, I., Cappitelli, F., et al. (2010) The role of microorganisms in bioremediation and phytoremediation of polluted and stressed soils. Agrochimica 54: 353-369.
Sabir, A., Yazici, M.A., Kara, Z., and Sahin, F. (2012) Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth-promoting rhizobacteria (PGPR). J Sci Food Agric 92: 2148-2153.
Alami, Y., Achouak, W., Marol, C., and Heulin, T. (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp strain isolated from sunflower roots. Appl Environ Microbiol 66: 3393-3398.
Koundouras, S., Tsialtas, I.T., Zioziou, E., and Nikolaou, N. (2008) Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet-Sauvignon) under contrasting water status: leaf physiological and structural responses. Agric Ecosyst Environ 128: 86-96.
Mayak, S., Tirosh, T., and Glick, B.R. (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166: 525-530.
Barret, M., Morrissey, J.P., and O'Gara, F. (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47: 729-743.
Chopin, E.I.B., Marin, B., Mkoungafoko, R., Rigaux, A., Hopgood, M.J., Delannoy, E., et al. (2008) Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France. Environ Pollut 156: 1092-1098.
Sanaullah, M., Chabbi, A., Rumpel, C., and Kuzyakov, Y. (2012) Carbon allocation in grassland communities under drought stress followed by C-14 pulse labeling. Soil Biol Biochem 55: 132-139.
Daffonchio, D., De Biase, A., Rizzi, A., and Sorlini, C. (1998a) Interspecific, intraspecific and interoperonic variability in the 16S rRNA gene of methanogens revealed by length and single-strand conformation polymorphism analysis. FEMS Microbiol Lett 164: 403-410.
Schmidt, C.S., Alavi, M., Cardinale, M., Muller, H., and Berg, G. (2012) Stenotrophomonas rhizophila DSM14405(T) promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils 48: 947-960.
Schwyn, B., and Neilands, J.B. (1987) Universal chemical-assay for the detection and determination of siderophores. Anal Biochem 160: 47-56.
Penrose, D.M., and Glick, B.R. (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118: 10-15.
Muyzer, G., Dewaal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16 s Ribosomal-Rna. Appl Environ Microbiol 59: 695-700.
Vassilev, N., Eichler-Lobermann, B., and Vassileva, M. (2012) Stress-tolerant P-solubilizing microorganisms. Appl Microbiol Biotechnol 95: 851-859.
Compant, S., Kaplan, H., Sessitsch, A., Nowak, J., Barka, E.A., and Clement, C. (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63: 84-93.
Flexas, J., Badger, M., Chow, W.S., Medrano, H., and Osmond, C.B. (1999) Analysis of the relative increase in photosynthetic O(2) uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress. Plant Physiol 121: 675-684.
Zsofi, Z., Toth, E., Varadi, G., Rusjan, D., and Balo, B. (2008) The effect of progressive drought on water relations and photosynthetic performance of two grapevine cultivars (Vitis vinifera L.). Acta Biol Szeged 52: 321-322.
Dimitrova, S., Pavlova, K., Lukanov, L., Korotkova, E., Petrova, E., Zagorchev, P., and Kuncheva, M. (2013) Production of metabolites with antioxidant and emulsifying properties by Antarctic strain Sporobolomyces salmonicolor AL(1). Appl Biochem Biotechnol 169: 301-311.
Compant, S., Mitter, B., Colli-Mull, J.G., Gangl, H., and Sessitsch, A. (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62: 188-197.
Fan, B., Borriss, R., Bleiss, W., and Wu, X.Q. (2012) Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol 50: 38-44.
Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., and Barka, E.A. (2005) Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp strain PsJN. Appl Environ Microbiol 71: 1685-1693.
Redman, R.S., Kim, Y.O., Woodward, C.J.D.A., Greer, C., Espino, L., Doty, S.L., and Rodriguez, R.J. (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6: e14823.
Komarek, M., Cadkova, E., Chrastny, V., Bordas, F., and Bollinger, J.C. (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36: 138-151.
Berg, G., Eberl, L., and Hartmann, A. (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7: 1673-1685.
Gleeson, T., Wada, Y., Bierkens, M.F.P., and van Beek, L.P.H. (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488: 197-200.
Glick, B.R. (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56: 291-312.
Saini, S., Sharma, I., Kaur, N., and Pati, P.K. (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32: 741-757.
Fernandez, O., Theocharis, A., Bordiec, S., Feil, R., Jacquens, L., Clement, C., et al. (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant Microbe Interact 25: 496-504.
Baize, D. (1997) Detection of moderate contamination by trace metals in agricultural soils. Analusis 25: M29-M35.
Mehta, S., and Nautiyal, C.S. (2001) An efficient method for qualitative screening of phosphate-solubilizing bact
2013; 29
2004; 166
2010; 54
2003; 118
2006; 72
1991; 57
2010; 105
1998b; 48
2010; 304
2004; 7
2011; 62
1999; 170
1999; 121
2013; 169
2013; 163
2012; 17
2012; 488
2012; 55
2012; 10
2010; 60
2001; 43
2012; 95
2013; 2013
2013; 53
1998a; 164
2008; 21
2005; 71
2008; 63
2013b; 2013
2008; 156
2012; 25
1987; 160
2010; 36
2013; 49
2011
2009; 60
2013a; 8
2000; 66
1997; 25
2005; 437
2008; 128
2005
2011; 34
2008; 52
2011; 6
2012; 109
2011; 347
2012; 50
2012; 194
1993; 59
2012; 92
2013; 37
2007; 119
2012; 157
2013; 32
2002; 24
2004; 56
2005; 7
2008; 46
2012; 49
2011; 47
2012; 48
2012; 7
2012; 46
2013; 171
2009; 149
2012; 9
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
Muyzer G. (e_1_2_6_48_1) 1993; 59
Zhang Q.T. (e_1_2_6_74_1) 2012; 10
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Zsofi Z. (e_1_2_6_75_1) 2008; 52
e_1_2_6_9_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
Brick J.M. (e_1_2_6_12_1) 1991; 57
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Alami Y. (e_1_2_6_3_1) 2000; 66
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
Palliotti A. (e_1_2_6_51_1) 2009; 60
Baize D. (e_1_2_6_5_1) 1997; 25
Balloi A. (e_1_2_6_6_1) 2010; 54
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 6
  start-page: e24452
  year: 2011
  article-title: Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health
  publication-title: PLoS ONE
– volume: 59
  start-page: 695
  year: 1993
  end-page: 700
  article-title: Profiling of complex microbial‐populations by denaturing gradient gel‐electrophoresis analysis of polymerase chain reaction‐amplified genes‐coding for 16 s Ribosomal‐Rna
  publication-title: Appl Environ Microbiol
– volume: 304
  start-page: 1
  year: 2010
  end-page: 11
  article-title: An integrated view of biofilm formation in rhizobia
  publication-title: FEMS Microbiol Lett
– volume: 55
  start-page: 132
  year: 2012
  end-page: 139
  article-title: Carbon allocation in grassland communities under drought stress followed by C‐14 pulse labeling
  publication-title: Soil Biol Biochem
– volume: 119
  start-page: 329
  year: 2007
  end-page: 339
  article-title: Promotion of plant growth by ACC deaminase‐producing soil bacteria
  publication-title: Eur J Plant Pathol
– volume: 2013
  year: 2013b
  article-title: Plant growth promotion potential is equally represented in diverse grapevine root‐associated bacterial communities from different biopedoclimatic environments
  publication-title: Biomed Res Int
– volume: 53
  start-page: 355
  year: 2013
  end-page: 364
  article-title: Study of the siderophore‐producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress
  publication-title: J Basic Microbiol
– volume: 34
  start-page: 96
  year: 2011
  end-page: 112
  article-title: Impacts and adaptation of European crop production systems to climate change
  publication-title: Eur J Agron
– volume: 118
  start-page: 10
  year: 2003
  end-page: 15
  article-title: Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria
  publication-title: Physiol Plant
– volume: 62
  start-page: 188
  year: 2011
  end-page: 197
  article-title: Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization
  publication-title: Microb Ecol
– volume: 488
  start-page: 197
  year: 2012
  end-page: 200
  article-title: Water balance of global aquifers revealed by groundwater footprint
  publication-title: Nature
– volume: 29
  start-page: 789
  year: 2013
  end-page: 803
  article-title: Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria
  publication-title: World J Microbiol Biotechnol
– volume: 169
  start-page: 301
  year: 2013
  end-page: 311
  article-title: Production of metabolites with antioxidant and emulsifying properties by Antarctic strain AL(1)
  publication-title: Appl Biochem Biotechnol
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
– volume: 157
  start-page: 473
  year: 2012
  end-page: 481
  article-title: Mineral‐microbe interactions: biotechnological potential of bioweathering
  publication-title: J Biotechnol
– volume: 54
  start-page: 353
  year: 2010
  end-page: 369
  article-title: The role of microorganisms in bioremediation and phytoremediation of polluted and stressed soils
  publication-title: Agrochimica
– volume: 52
  start-page: 321
  year: 2008
  end-page: 322
  article-title: The effect of progressive drought on water relations and photosynthetic performance of two grapevine cultivars ( L.)
  publication-title: Acta Biol Szeged
– volume: 46
  start-page: 53
  year: 2008
  end-page: 73
  article-title: Plants as a habitat for beneficial and/or human pathogenic bacteria
  publication-title: Annu Rev Phytopathol
– volume: 160
  start-page: 47
  year: 1987
  end-page: 56
  article-title: Universal chemical‐assay for the detection and determination of siderophores
  publication-title: Anal Biochem
– volume: 46
  start-page: 33
  year: 2012
  end-page: 40
  article-title: The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts
  publication-title: Soil Biol Biochem
– volume: 166
  start-page: 525
  year: 2004
  end-page: 530
  article-title: Plant growth‐promoting bacteria that confer resistance to water stress in tomatoes and peppers
  publication-title: Plant Sci
– volume: 7
  start-page: e48479
  year: 2012
  article-title: A drought resistance‐promoting microbiome is selected by root system under desert farming
  publication-title: PLoS ONE
– volume: 47
  start-page: 729
  year: 2011
  end-page: 743
  article-title: Functional genomics analysis of plant growth‐promoting rhizobacterial traits involved in rhizosphere competence
  publication-title: Biol Fertil Soils
– volume: 156
  start-page: 1092
  year: 2008
  end-page: 1098
  article-title: Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France
  publication-title: Environ Pollut
– volume: 66
  start-page: 3393
  year: 2000
  end-page: 3398
  article-title: Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide‐producing Rhizobium sp strain isolated from sunflower roots
  publication-title: Appl Environ Microbiol
– volume: 62
  start-page: 99
  year: 2011
  end-page: 109
  article-title: Seasonal changes of whole root system conductance by a drought‐tolerant grape root system
  publication-title: J Exp Bot
– volume: 21
  start-page: 1001
  year: 2008
  end-page: 1009
  article-title: Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato
  publication-title: Mol Plant Microbe Interact
– volume: 164
  start-page: 403
  year: 1998a
  end-page: 410
  article-title: Interspecific, intraspecific and interoperonic variability in the 16S rRNA gene of methanogens revealed by length and single‐strand conformation polymorphism analysis
  publication-title: FEMS Microbiol Lett
– volume: 43
  start-page: 51
  year: 2001
  end-page: 56
  article-title: An efficient method for qualitative screening of phosphate‐solubilizing bacteria
  publication-title: Curr Microbiol
– volume: 171
  start-page: 705
  year: 2013
  end-page: 717
  article-title: Effects of drought and N‐fertilization on N cycling in two grassland soils
  publication-title: Oecologia
– volume: 437
  start-page: 529
  year: 2005
  end-page: 533
  article-title: Europe‐wide reduction in primary productivity caused by the heat and drought in 2003
  publication-title: Nature
– volume: 17
  start-page: 7103
  year: 2012
  end-page: 7120
  article-title: The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium
  publication-title: Molecules
– volume: 7
  start-page: 602
  year: 2004
  end-page: 609
  article-title: Biofilm formation in plant‐microbe associations
  publication-title: Curr Opin Microbiol
– volume: 37
  start-page: 634
  year: 2013
  end-page: 663
  article-title: The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms
  publication-title: FEMS Microbiol Rev
– volume: 49
  start-page: 143
  year: 2013
  end-page: 152
  article-title: Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of desertified areas
  publication-title: Biol Fertil Soils
– volume: 95
  start-page: 851
  year: 2012
  end-page: 859
  article-title: Stress‐tolerant P‐solubilizing microorganisms
  publication-title: Appl Microbiol Biotechnol
– volume: 121
  start-page: 675
  year: 1999
  end-page: 684
  article-title: Analysis of the relative increase in photosynthetic O(2) uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress
  publication-title: Plant Physiol
– volume: 49
  start-page: 1481
  year: 2012
  end-page: 1484
  article-title: Incidence of bacteria of public health interest carried by cockroaches in different food‐related environments
  publication-title: J Med Entomol
– volume: 105
  start-page: 661
  year: 2010
  end-page: 676
  article-title: Grapevine under deficit irrigation: hints from physiological and molecular data
  publication-title: Ann Bot
– volume: 72
  start-page: 7246
  year: 2006
  end-page: 7252
  article-title: Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth‐promoting rhizobacterium, Burkholderia phytofirmans strain PsJN
  publication-title: Appl Environ Microbiol
– start-page: 175
  year: 2011
  end-page: 189
– volume: 6
  start-page: e17968
  year: 2011
  article-title: Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates
  publication-title: PLoS ONE
– start-page: 115
  year: 2005
  end-page: 119
– volume: 24
  start-page: 135
  year: 2002
  end-page: 142
  article-title: Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth
  publication-title: Biol Control
– volume: 48
  start-page: 1081
  year: 1998b
  end-page: 1081
  article-title: PCR fingerprinting of whole genomes, the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveal a different intraspecific genomic variability of Bacillus cereus and Bacillus licheniformis (vol 48, pg 107, 1998)
  publication-title: Int J Syst Bacteriol
– volume: 149
  start-page: 445
  year: 2009
  end-page: 460
  article-title: The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine
  publication-title: Plant Physiol
– volume: 60
  start-page: 189
  year: 2009
  end-page: 198
  article-title: Photosynthetic and photoinhibition behavior of two field‐grown grapevine cultivars under multiple summer stresses
  publication-title: Am J Enol Vitic
– volume: 36
  start-page: 138
  year: 2010
  end-page: 151
  article-title: Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects
  publication-title: Environ Int
– volume: 63
  start-page: 84
  year: 2008
  end-page: 93
  article-title: Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues
  publication-title: FEMS Microbiol Ecol
– volume: 50
  start-page: 38
  year: 2012
  end-page: 44
  article-title: Gram‐positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns
  publication-title: J Microbiol
– volume: 2013
  year: 2013
  article-title: Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils
  publication-title: Biomed Res Int
– volume: 8
  start-page: e26741
  year: 2013a
  article-title: Are drought‐resistance promoting bacteria cross‐compatible with different plant models?
  publication-title: Plant Signal Behav
– volume: 194
  start-page: 416
  year: 2012
  end-page: 429
  article-title: Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes
  publication-title: New Phytol
– volume: 25
  start-page: M29
  year: 1997
  end-page: M35
  article-title: Detection of moderate contamination by trace metals in agricultural soils
  publication-title: Analusis
– volume: 60
  start-page: 579
  year: 2010
  end-page: 598
  article-title: Soil beneficial bacteria and their role in plant growth promotion: a review
  publication-title: Ann Microbiol
– volume: 10
  start-page: 582
  year: 2012
  end-page: 587
  article-title: A new methodology for determining irrigation schedule of grapevines using photogrammetric measurement of berry diameter
  publication-title: J Food Agric Environ
– volume: 56
  start-page: 291
  year: 2004
  end-page: 312
  article-title: Bacterial ACC deaminase and the alleviation of plant stress
  publication-title: Adv Appl Microbiol
– volume: 25
  start-page: 496
  year: 2012
  end-page: 504
  article-title: Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism
  publication-title: Mol Plant Microbe Interact
– volume: 6
  start-page: e14823
  year: 2011
  article-title: Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change
  publication-title: PLoS ONE
– volume: 7
  start-page: 1673
  year: 2005
  end-page: 1685
  article-title: The rhizosphere as a reservoir for opportunistic human pathogenic bacteria
  publication-title: Environ Microbiol
– volume: 71
  start-page: 1685
  year: 2005
  end-page: 1693
  article-title: Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp strain PsJN
  publication-title: Appl Environ Microbiol
– volume: 48
  start-page: 947
  year: 2012
  end-page: 960
  article-title: Stenotrophomonas rhizophila DSM14405(T) promotes plant growth probably by altering fungal communities in the rhizosphere
  publication-title: Biol Fertil Soils
– volume: 25
  start-page: 241
  year: 2012
  end-page: 249
  article-title: Burkholderia phytofirmans PsJN primes Vitis vinifera L and confers a better tolerance to low nonfreezing temperatures
  publication-title: Mol Plant Microbe Interact
– volume: 57
  start-page: 535
  year: 1991
  end-page: 538
  article-title: Rapid in situ assay for indolacetic acid detection by bacteria immobilized on nitrocellulose membrane
  publication-title: Appl Environ Microbiol
– volume: 47
  start-page: 44
  year: 2011
  end-page: 54
  article-title: Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand
  publication-title: Eur J Soil Biol
– volume: 25
  start-page: 668
  year: 2012
  end-page: 676
  article-title: Effects of bacterial ACC deaminase on Brassica napus gene expression
  publication-title: Mol Plant Microbe Interact
– volume: 66
  start-page: 5460
  year: 2000
  end-page: 5468
  article-title: Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S‐23S internal transcribed spacers describe genetic relationships in the ‘Bacillus cereus group’
  publication-title: Appl Environ Microbiol
– volume: 92
  start-page: 2148
  year: 2012
  end-page: 2153
  article-title: Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth‐promoting rhizobacteria (PGPR)
  publication-title: J Sci Food Agric
– volume: 163
  start-page: 1254
  year: 2013
  end-page: 1265
  article-title: Water uptake along the lenght of grapevine fine roots: developmental anatomy, tissue‐specific aquaporin expression and pathways of water transport
  publication-title: Plant Physiol
– volume: 128
  start-page: 86
  year: 2008
  end-page: 96
  article-title: Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet‐Sauvignon) under contrasting water status: leaf physiological and structural responses
  publication-title: Agric Ecosyst Environ
– volume: 32
  start-page: 741
  year: 2013
  end-page: 757
  article-title: Auxin: a master regulator in plant root development
  publication-title: Plant Cell Rep
– volume: 347
  start-page: 313
  year: 2011
  end-page: 325
  article-title: Screening of rhizosphere bacteria from grapevine for their suppressive effect on Xiphinema index Thorne & Allen on in vitro grape plants
  publication-title: Plant Soil
– volume: 170
  start-page: 265
  year: 1999
  end-page: 270
  article-title: An efficient microbiological growth medium for screening phosphate solubilizing microorganisms
  publication-title: FEMS Microbiol Lett
– volume: 109
  start-page: 9320
  year: 2012
  end-page: 9325
  article-title: Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley
  publication-title: Proc Nat Acad Sci USA
– ident: e_1_2_6_32_1
  doi: 10.1007/s00442-012-2578-3
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1469-8137.2012.04059.x
– ident: e_1_2_6_27_1
  doi: 10.1104/pp.113.221283
– ident: e_1_2_6_68_1
  doi: 10.1094/MPMI-05-11-0124
– ident: e_1_2_6_38_1
  doi: 10.1016/j.jbiotec.2011.11.013
– ident: e_1_2_6_44_1
  doi: 10.1016/j.plantsci.2003.10.025
– ident: e_1_2_6_20_1
  doi: 10.1128/AEM.66.12.5460-5468.2000
– ident: e_1_2_6_58_1
  doi: 10.1016/j.soilbio.2011.10.016
– ident: e_1_2_6_31_1
  doi: 10.1007/s10658-007-9162-4
– ident: e_1_2_6_37_1
  doi: 10.3390/molecules17067103
– ident: e_1_2_6_29_1
  doi: 10.1038/nature11295
– ident: e_1_2_6_45_1
  doi: 10.1007/s002840010259
– ident: e_1_2_6_72_1
  doi: 10.1007/s00253-012-4224-8
– ident: e_1_2_6_24_1
  doi: 10.1007/s12275-012-1439-4
– ident: e_1_2_6_33_1
  doi: 10.1007/s13213-010-0117-1
– ident: e_1_2_6_55_1
  doi: 10.1016/j.mib.2004.10.014
– ident: e_1_2_6_67_1
  doi: 10.1094/MPMI-08-11-0213
– volume: 52
  start-page: 321
  year: 2008
  ident: e_1_2_6_75_1
  article-title: The effect of progressive drought on water relations and photosynthetic performance of two grapevine cultivars (Vitis vinifera L.)
  publication-title: Acta Biol Szeged
  contributor:
    fullname: Zsofi Z.
– ident: e_1_2_6_15_1
  doi: 10.1016/j.envpol.2008.04.015
– ident: e_1_2_6_2_1
  doi: 10.1007/s11104-011-0851-6
– volume: 57
  start-page: 535
  year: 1991
  ident: e_1_2_6_12_1
  article-title: Rapid in situ assay for indolacetic acid detection by bacteria immobilized on nitrocellulose membrane
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.57.2.535-538.1991
  contributor:
    fullname: Brick J.M.
– ident: e_1_2_6_25_1
  doi: 10.1094/MPMI-09-11-0245
– ident: e_1_2_6_50_1
  doi: 10.1016/j.eja.2010.11.003
– ident: e_1_2_6_47_1
  doi: 10.1094/MPMI-21-7-1001
– ident: e_1_2_6_53_1
  doi: 10.1016/j.ejsobi.2010.11.004
– ident: e_1_2_6_66_1
  doi: 10.1016/0003-2697(87)90612-9
– ident: e_1_2_6_11_1
  doi: 10.1007/978-90-481-3664-3_8
– ident: e_1_2_6_62_1
  doi: 10.1016/j.soilbio.2012.06.004
– ident: e_1_2_6_61_1
– ident: e_1_2_6_18_1
  doi: 10.1128/AEM.71.4.1685-1693.2005
– ident: e_1_2_6_70_1
  doi: 10.1146/annurev.phyto.011708.103102
– ident: e_1_2_6_22_1
  doi: 10.1099/00207713-48-3-1081
– ident: e_1_2_6_17_1
  doi: 10.1007/s00248-011-9883-y
– volume: 25
  start-page: M29
  year: 1997
  ident: e_1_2_6_5_1
  article-title: Detection of moderate contamination by trace metals in agricultural soils
  publication-title: Analusis
  contributor:
    fullname: Baize D.
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1574-6968.1998.tb13116.x
– ident: e_1_2_6_40_1
  doi: 10.1371/journal.pone.0048479
– ident: e_1_2_6_69_1
  doi: 10.1371/journal.pone.0017968
– ident: e_1_2_6_71_1
  doi: 10.1104/pp.108.128645
– ident: e_1_2_6_60_1
  doi: 10.1007/s00299-013-1430-5
– ident: e_1_2_6_13_1
  doi: 10.1007/s11274-012-1234-8
– ident: e_1_2_6_39_1
  doi: 10.1155/2013/248078
– ident: e_1_2_6_28_1
  doi: 10.1603/ME12007
– ident: e_1_2_6_35_1
  doi: 10.1016/j.envint.2009.10.005
– ident: e_1_2_6_59_1
  doi: 10.1002/jsfa.5600
– ident: e_1_2_6_63_1
  doi: 10.1073/pnas.1200311109
– ident: e_1_2_6_64_1
  doi: 10.1007/s00374-012-0688-z
– ident: e_1_2_6_36_1
  doi: 10.1016/j.agee.2008.05.006
– ident: e_1_2_6_65_1
  doi: 10.1038/nmeth.2089
– ident: e_1_2_6_4_1
  doi: 10.1093/jxb/erq247
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1462-2920.2005.00891.x
– ident: e_1_2_6_34_1
  doi: 10.1371/journal.pone.0024452
– ident: e_1_2_6_23_1
  doi: 10.1007/s12010-012-9983-2
– volume: 60
  start-page: 189
  year: 2009
  ident: e_1_2_6_51_1
  article-title: Photosynthetic and photoinhibition behavior of two field‐grown grapevine cultivars under multiple summer stresses
  publication-title: Am J Enol Vitic
  doi: 10.5344/ajev.2009.60.2.189
  contributor:
    fullname: Palliotti A.
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1574-6941.2007.00410.x
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1574-6968.2009.01840.x
– ident: e_1_2_6_73_1
  doi: 10.1007/s00374-012-0707-0
– volume: 59
  start-page: 695
  year: 1993
  ident: e_1_2_6_48_1
  article-title: Profiling of complex microbial‐populations by denaturing gradient gel‐electrophoresis analysis of polymerase chain reaction‐amplified genes‐coding for 16 s Ribosomal‐Rna
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.59.3.695-700.1993
  contributor:
    fullname: Muyzer G.
– ident: e_1_2_6_54_1
  doi: 10.1002/jobm.201200031
– ident: e_1_2_6_9_1
  doi: 10.1007/s00374-011-0605-x
– ident: e_1_2_6_56_1
  doi: 10.1371/journal.pone.0014823
– ident: e_1_2_6_8_1
  doi: 10.1016/S1049-9644(02)00034-8
– ident: e_1_2_6_42_1
  doi: 10.1155/2013/491091
– volume: 66
  start-page: 3393
  year: 2000
  ident: e_1_2_6_3_1
  article-title: Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide‐producing Rhizobium sp strain isolated from sunflower roots
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.8.3393-3398.2000
  contributor:
    fullname: Alami Y.
– ident: e_1_2_6_26_1
  doi: 10.1104/pp.121.2.675
– ident: e_1_2_6_41_1
  doi: 10.4161/psb.26741
– volume: 10
  start-page: 582
  year: 2012
  ident: e_1_2_6_74_1
  article-title: A new methodology for determining irrigation schedule of grapevines using photogrammetric measurement of berry diameter
  publication-title: J Food Agric Environ
  contributor:
    fullname: Zhang Q.T.
– ident: e_1_2_6_46_1
  doi: 10.1111/1574-6976.12028
– ident: e_1_2_6_52_1
  doi: 10.1034/j.1399-3054.2003.00086.x
– ident: e_1_2_6_14_1
  doi: 10.1093/aob/mcq030
– ident: e_1_2_6_16_1
  doi: 10.1038/nature03972
– volume: 54
  start-page: 353
  year: 2010
  ident: e_1_2_6_6_1
  article-title: The role of microorganisms in bioremediation and phytoremediation of polluted and stressed soils
  publication-title: Agrochimica
  contributor:
    fullname: Balloi A.
– ident: e_1_2_6_30_1
  doi: 10.1016/S0065-2164(04)56009-4
– ident: e_1_2_6_7_1
  doi: 10.1128/AEM.01047-06
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1574-6968.1999.tb13383.x
SSID ssj0017370
Score 2.6523466
Snippet Summary Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water...
Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water stress is...
Although drought is an increasing problem in agriculture, the contribution of the root‐associated bacterial microbiome to plant adaptation to water stress is...
Summary Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 316
SubjectTerms Acinetobacter
Acinetobacter - isolation & purification
Adaptation, Physiological
Arabidopsis
Arabidopsis - microbiology
Biomass
Drought
Droughts
Microbiota
Photosynthesis - physiology
Plant growth
Plant Leaves - growth & development
Plant resistance
Plant Roots - growth & development
Plant Roots - microbiology
Pseudomonas
Pseudomonas - isolation & purification
Stress, Physiological
Vitaceae
Vitis - microbiology
Water
Title Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait
URI https://api.istex.fr/ark:/67375/WNG-RN1SFMPZ-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.12439
https://www.ncbi.nlm.nih.gov/pubmed/24571749
https://www.proquest.com/docview/1659063665
https://search.proquest.com/docview/1660443959
https://search.proquest.com/docview/1687676255
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9QwFA2yIvji98foKhFEfOnQNk2meVzUcVnYQVYXxZeQtCks684MMx3c9cmfsL_RX-K5SVvcRRTxrbQ3pUnu7T0nubmXseeFqmXutU1yWr6nFOaJc6VNlJaulr6xqSOiuD9Tu4fF3ifZRxPSWZiYH2JYcCPLCP9rMnDr1r8YOUw8T6jW0hguStARvkxMKKjv9cGQQCqbiFAurpPN8i65D8XyXGp_wS9dpSE-_R3ovIhhgxOa3mSu__wYe3I83rRuXH27lNnxv_p3i93oICrfiTp1m13x8zvsWixaeXaXncZ1CF_z5RdMCwdfJwwK5eHtgteh7E_Lj9Z8GSL9IOfOOGAmB0Zvf3w_t51C4MHJUUwDdeK5XXPLv-LuisfjK5DsC_S2nApZtPfY4fTNh1e7SVe_IalAyzSAe5E3ABxCau2VcIVNs6aWVuS0i6xTC-xY2EqBdTa0u1ilrnRZCkRUOdpvFPfZ1nwx9w8Zr20tXQn2BLYGt1uUubClBRfDTZH6ZsRe9rNnljFNh-npDQ2koYE0YSBH7EWY3UHOro4pum0izcfZW3Mwy95P9999Nnsjtt1Pv-kMe20yJTVQnVJyxJ4Nj2GStM9i536xIRmFDgot9Z9k4IbgiCTe8yCq1vBBeSFBsgu0jgrytx4ZWGy4ePSvDR6z6wCAMkahb7OtdrXxTwCyWvc02NFPjm8arg
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BKwQXyl9hoYCREOKSVRLHbnxEhWUp3RUqrai4WHbiSFXp7mo3K1pOPALP2CfpjJ1EbYVAiFvkTKzYnsl8nz2ZAXiZyVKkTpkope17SmEeWZubSCphS-EqE1siiqOxHO5n2wfi4MK_MCE_RLfhRpbhv9dk4LQhfcHK0cbTiIot9dFHcXUdVtHoEwrrervbpZBKNrkvGNcIJ2mT3oeiea50cMkzrdIkn_wOdl5Gsd4NDdagaAcQok-O-sva9osfV3I7_t8I78DtBqWyN0Gt7sI1N7kHN0LdytP7cBK2IlzJZt9wZRhSdoKhqD-snrLSV_6p2eGCzXywH8rZU4ZIkyFMr89-_jKNTuCN48OQCerYMbNghn3H1jkLf7CgZFujt2ZUy6J-APuDd3tbw6gp4RAVyMwUYvcsrRBzcKGUk9xmJk6qUhie0kGyig3Cx8wUEolnRQeMRWxzm8QIigpLR458HVYm04l7BKw0pbA5EigkbOh5szzlJjdIx7CRx67qwet2-fQsZOrQLcOhidQ0kdpPZA9e-eXt5Mz8iALcNoX-Mn6vd8fJ58Ho01e93YONdv11Y9sLnUihENhJKXrworuNVklHLWbipkuSkThAroT6kwx6IvRFAvt5GHSre6E0E8izM3w6aMjfRqTRaP3F43994DncHO6NdvTOh_HHJ3AL8aAIQekbsFLPl-4pYq7aPvNGdQ5L6B7P
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VVqBeSvlpWWiLkRDiklUSx258RLTbUuiqKlQgLpadOFJVurvazaotJx6BZ-RJmLGTiFYIhLhFziSK7ZnM99njGYDnmSxF6pSJUlq-pxTmkbW5iaQSthSuMrElong4lPsn2cEn0UYT0lmYkB-iW3Ajy_D_azLwSVn9YuRo4mlEtZb66KK4ugVL2KAoff7OcZdBKtnmvl5cI5ykTXYfCua58YJrjmmJxvjyd6jzOoj1XmhwF2z7_SH45Kw_r22_-HojteN_dXAVVhqMyl4FpboHC250H26HqpVXD-AyLES4kk2-4LwwJOwEQlF7WD1mpa_7U7PTGZv4UD-Us1cMcSZDkF7_-PbdNBqBN85PQx6oc8fMjBl2ga1TFs6voGRbobdmVMmifggng90Pr_ejpoBDVCAvU4jcs7RCxMGFUk5ym5k4qUpheErbyCo2CB4zU0iknRVtLxaxzW0SIyQqLG048jVYHI1H7hGw0pTC5kifkK6h383ylJvcIBnDRh67qgcv29nTk5CnQ7f8hgZS00BqP5A9eOFnt5Mz0zMKb9sW-uNwTx8Pk_eDw6PP-qAHG-3068ayZzqRQiGsk1L04Fl3G22SNlrMyI3nJCOxg1wJ9ScZ9EPoiQS-Zz2oVvdBaSaQZWf4dFCQv_VIo8n6i8f_-sBTuHO0M9Dv3gzfPoFlBIMiRKRvwGI9nbtNBFy13fIm9RPKIB1-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+plant+resistance+to+drought+is+promoted+by+the+root-associated+microbiome+as+a+water+stress-dependent+trait&rft.jtitle=Environmental+microbiology&rft.au=Rolli%2C+Eleonora&rft.au=Marasco%2C+Ramona&rft.au=Vigani%2C+Gianpiero&rft.au=Ettoumi%2C+Besma&rft.date=2015-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=17&rft.issue=2&rft.spage=316&rft_id=info:doi/10.1111%2F1462-2920.12439&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3610081651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon