Photosynthesis and isoprene emission from trees along an urban–rural gradient in Texas
Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban–rural gradient that serves as a proxy for climate change, to understand daily and seas...
Saved in:
Published in | Global change biology Vol. 21; no. 11; pp. 4221 - 4236 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Science
01.11.2015
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban–rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf‐level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO₂ concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO₂ on isoprene emission. These are important considerations for modeling future biosphere–atmosphere interactions and for understanding tree physiological responses to climate change. |
---|---|
AbstractList | Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban-rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf-level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO2 concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO2 on isoprene emission. These are important considerations for modeling future biosphere-atmosphere interactions and for understanding tree physiological responses to climate change. Abstract Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban–rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf‐level gas exchange and basal isoprene emission of post oak (Quercus stellata ) and sweet gum ( Liquidambar styraciflua ) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO 2 concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO 2 on isoprene emission. These are important considerations for modeling future biosphere–atmosphere interactions and for understanding tree physiological responses to climate change. Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban-rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf-level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO sub(2) concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO sub(2) on isoprene emission. These are important considerations for modeling future biosphere-atmosphere interactions and for understanding tree physiological responses to climate change. Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban–rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf‐level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO₂ concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO₂ on isoprene emission. These are important considerations for modeling future biosphere–atmosphere interactions and for understanding tree physiological responses to climate change. |
Author | Watson, Matthew R. Lahr, Eleanor C. Crossett, Caitlin C. Schade, Gunnar W. |
Author_xml | – sequence: 1 fullname: Lahr, Eleanor C – sequence: 2 fullname: Schade, Gunnar W – sequence: 3 fullname: Crossett, Caitlin C – sequence: 4 fullname: Watson, Matthew R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26111255$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0ctu1DAUBmALFdELLHgBiMQGFmmPr0mWZaADUgWItsDOspOTqUvGHuxEdHa8A2_Ik-Bh2i6QkPDGlvWdX7b-fbLjg0dCHlM4pHkdLVp7SDlQuEf2KFeyZKJWO5uzFCUFynfJfkpXAMAZqAdkl6k8xqTcI18-XIYxpLUfLzG5VBjfFS6FVUSPBS5dSi74oo9hWYwRMYMh-EVmxRSt8b9-_IxTNEOxiKZz6MfC-eIcr016SO73Zkj46GY_IBcnr89nb8rT9_O3s-PTslW0gbKz3FZCVL3ighlb18gakK1saiVr29TQgW2tNbWQfdPn246BNJz2LesA89QBeb7NXcXwbcI06vzoFofBeAxT0rRilWoUA_E_lAkmaLWhz_6iV2GKPn9ko2hdSy6rrF5sVRtDShF7vYpuaeJaU9CbZnRuRv9pJtsnN4mTXWJ3J2-ryOBoC767Adf_TtLz2cvbyHI74dKI13cTJn7VquKV1J_fzTV9dSLgI3zSZ9k_3freBG0W0SV9ccaASgBGGWsY_w2D6bDR |
CitedBy_id | crossref_primary_10_3390_plants10010103 crossref_primary_10_1016_j_envpol_2016_01_075 crossref_primary_10_1016_j_envexpbot_2024_105756 crossref_primary_10_3390_atmos11030241 crossref_primary_10_3390_plants10040810 crossref_primary_10_1111_gcb_15976 crossref_primary_10_1016_j_fcr_2020_107735 crossref_primary_10_17660_ActaHortic_2023_1372_43 crossref_primary_10_3390_agronomy12081742 crossref_primary_10_3390_f14071429 crossref_primary_10_3389_ffgc_2019_00050 crossref_primary_10_1098_rspb_2018_0643 crossref_primary_10_3389_fpls_2021_786688 crossref_primary_10_3389_fpls_2022_1037720 crossref_primary_10_1111_pce_13513 crossref_primary_10_1016_j_jia_2022_07_036 crossref_primary_10_1039_D3EA00137G crossref_primary_10_3389_fphgy_2024_1331421 crossref_primary_10_1371_journal_pone_0197866 crossref_primary_10_1007_s11252_016_0627_0 crossref_primary_10_1016_j_foreco_2020_118748 crossref_primary_10_1080_15592324_2017_1356534 crossref_primary_10_17660_ActaHortic_2023_1382_22 crossref_primary_10_1002_fee_1426 crossref_primary_10_1016_j_atmosenv_2017_09_049 crossref_primary_10_1016_j_ecoser_2016_10_008 crossref_primary_10_1088_1748_9326_aabcd8 crossref_primary_10_3390_f14030523 crossref_primary_10_1002_ece3_3990 crossref_primary_10_1071_FP19242 crossref_primary_10_1093_pnasnexus_pgae147 crossref_primary_10_1111_pce_14911 crossref_primary_10_3390_f11050488 crossref_primary_10_1093_treephys_tpy123 crossref_primary_10_1111_ppl_12752 crossref_primary_10_3390_plants11050616 crossref_primary_10_1002_2017EF000653 crossref_primary_10_3390_f10111032 crossref_primary_10_1016_j_gecco_2022_e02243 crossref_primary_10_1093_jxb_erx052 crossref_primary_10_1016_j_envexpbot_2020_104304 crossref_primary_10_3389_fpls_2017_01281 crossref_primary_10_3389_fpls_2021_734531 crossref_primary_10_1111_jac_12314 crossref_primary_10_1111_ppl_13344 |
Cites_doi | 10.1890/1051-0761(2003)013[0269:DVITBE]2.0.CO;2 10.5194/acp-9-4053-2009 10.1111/j.1420-9101.2010.02210.x 10.1017/CBO9780511617799 10.1016/1352-2310(94)00360-W 10.1016/j.scitotenv.2014.02.065 10.1046/j.0016-8025.2001.00799.x 10.1093/biomet/76.2.297 10.1111/j.1365-3040.1997.00075.x 10.1016/j.tplants.2009.12.006 10.1104/pp.126.3.993 10.1126/science.1150195 10.5194/acp-6-3181-2006 10.1029/2004JD005229 10.1093/jxb/ert318 10.1029/2000GL011583 10.1093/treephys/19.7.453 10.1016/j.agrformet.2003.09.002 10.1007/s00265-010-1029-6 10.5194/gmd-5-1471-2012 10.1104/pp.115.4.1413 10.1093/treephys/18.7.441 10.1093/pcp/pcm104 10.1016/j.tplants.2014.01.009 10.5194/acp-6-2273-2006 10.1111/pce.12289 10.1016/S1352-2310(00)00407-6 10.1007/BF00320984 10.1111/j.1365-313X.2007.03157.x 10.1126/science.1141486 10.1104/pp.010909 10.1038/374769a0 10.1111/j.1365-3040.2004.01177.x 10.1111/j.1365-3040.2003.01155.x 10.5194/acp-11-8037-2011 10.1029/98JD02708 10.1104/pp.105.1.279 10.1890/08-0330.1 10.1051/forest:2006042 10.1093/treephys/16.1-2.25 10.1038/nature01312 10.1016/j.atmosenv.2013.11.055 10.1007/s004420050709 10.1111/j.1365-3040.2004.01314.x 10.1023/A:1006127516791 10.1111/j.1365-3040.2008.01893.x 10.1111/j.1469-8137.2012.04204.x 10.1111/pce.12015 10.1104/pp.111.182519 10.1016/j.tplants.2014.11.001 |
ContentType | Journal Article |
Copyright | 2015 John Wiley & Sons Ltd 2015 John Wiley & Sons Ltd. Copyright © 2015 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2015 John Wiley & Sons Ltd – notice: 2015 John Wiley & Sons Ltd. – notice: Copyright © 2015 John Wiley & Sons Ltd |
DBID | FBQ BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7U6 SOI |
DOI | 10.1111/gcb.13010 |
DatabaseName | AGRIS Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts Environment Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts |
DatabaseTitleList | MEDLINE - Academic CrossRef Ecology Abstracts MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences Agriculture |
EISSN | 1365-2486 |
EndPage | 4236 |
ExternalDocumentID | 3835219081 10_1111_gcb_13010 26111255 GCB13010 ark_67375_WNG_1DF40R0V_S US201500212292 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | Texas ASW, USA, Texas |
GeographicLocations_xml | – name: Texas – name: ASW, USA, Texas |
GrantInformation_xml | – fundername: NSF CAREER funderid: ACS‐0955438 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7U6 SOI |
ID | FETCH-LOGICAL-c6190-db3b7447f6342ab88e2905c598658b980d0bcbba845f9f986d205a31fc2d0ef63 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 |
IngestDate | Sat Aug 17 00:59:43 EDT 2024 Fri Aug 16 21:17:24 EDT 2024 Thu Oct 10 19:34:25 EDT 2024 Fri Aug 23 00:28:55 EDT 2024 Sat Sep 28 08:06:42 EDT 2024 Sat Aug 24 01:03:45 EDT 2024 Wed Oct 30 09:55:59 EDT 2024 Wed Dec 27 19:02:19 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | biosphere-atmosphere interactions carbon dioxide sweet gum temperature Liquidambar styraciflua VOC volatile organic compound Quercus stellata post oak |
Language | English |
License | 2015 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6190-db3b7447f6342ab88e2905c598658b980d0bcbba845f9f986d205a31fc2d0ef63 |
Notes | http://dx.doi.org/10.1111/gcb.13010 NSF CAREER - No. ACS-0955438 ArticleID:GCB13010 ark:/67375/WNG-1DF40R0V-S istex:D8ECCB0B0133DF89663CBF0CA543C3CBB07E37B0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.13010 |
PMID | 26111255 |
PQID | 1721885357 |
PQPubID | 30327 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1727696204 proquest_miscellaneous_1722424174 proquest_journals_1721885357 crossref_primary_10_1111_gcb_13010 pubmed_primary_26111255 wiley_primary_10_1111_gcb_13010_GCB13010 istex_primary_ark_67375_WNG_1DF40R0V_S fao_agris_US201500212292 |
PublicationCentury | 2000 |
PublicationDate | November 2015 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2015 |
Publisher | Blackwell Science Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd |
References | Arneth A, Shurgers G, Lathiere J et al. (2011) Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation. Atmospheric Chemistry and Physics, 11, 8037-8052. Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiology, 192, 269-277. Lerdau M (2007) A positive feedback with negative consequences. Science, 316, 212-213. Arneth A, Harrison SP, Zaehle S et al. (2010) Terrestrial biogeochemical feedbacks in the climate system. Nature, 3, 525-532. Funk JL, Mak JE, Lerdau MT (2004) Stress-induced changes in carbon sources for isoprene production in Populus deltoides. Plant, Cell and Environment, 27, 747-755. Funk JL, Jones CG, Bake CJ, Fuller HM, Giardina CP, Lerdau MT (2003) Diurnal variation in the basal emission rate of isoprene. Ecological Applications, 13, 269-278. Harley PC, Litvak ME, Sharkey TD, Monson RK (1994) Isoprene emission from velvet bean leaves: interactions among nitrogen availability, growth photon flux density, and leaf development. Plant Physiology, 105, 279-285. Sparks JP, Black RA (1999) Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiology, 19, 453-459. Sun ZH, Hve K, Vislap V, Niinemets Ü (2013) Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen. Journal of Experimental Botany, 64, 5509-5523. Velikova V, Várkonyi Z, Szabó M et al. (2011) Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiology, 157, 905-916. Goldstein AH, Goulden ML, Munger W, Wofsy SC, Geron CD (1998) Seasonal course of isoprene emissions from a midlatitude deciduous forest. Journal of Geophysical Research, 103, 31045-31056. Potosnak MJ, LeStourgeon L, Nunez O (2014b) Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO2 concentration. Science of the Total Environment, 481, 352-359. Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Modeling isoprene emission rate from leaves. New Phytologist, 195, 541-559. Singsass EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiology, 115, 1413-1420. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625-644. Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika, 76, 297-307. Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Dulh T, Emmons LK, Wang X (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471-2012. Scholefield PA, Doick KJ, Herbert BMJ, Hewitt CNS, Schnitzler J-P, Pinelli P, Loreto F (2004) Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant, Cell and Environment, 274, 393-401. Geron C, Harley P, Guenther A (2001) Isoprene emission capacity for US tree species. Atmospheric Environment, 35, 3341-3352. Barta C, Gramann J, White S, Shade GW (2011) The effect of drought stress on carbon assimilation and isoprene emission capacities of oak species in urban and rural areas of Texas. Abstract B54A-07. American Geophysical Union Meeting, San Francisco, CA. 5-9 December 2011. Calfapietra C, Peñuelas J, Niinemets Ü (2015) Urban plant physiology: adaptation-mitigation strategies under permanent stress. Trends in Plant Science, 20, 72-75. Loreto F, Schnitzler J-P (2010) Abiotic stress and induced BVOCs. Trends in Plant Science, 15, 154-166. Velikova V, Fares S, Loreto F (2008) Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress. Plant, Cell and Environment, 31, 1882-1894. Dani KG, Jamie IM, Prentice IC, Atwell BJ (2014) Evolution of isoprene emission capacity in plants. Trends in Plant Science, 19, 439-446. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology, 24, 699-711. Behnke K, Ehlting B, Teuber M et al. (2007) Transgenic, non-isoprene emitting poplars don't like it hot. The Plant Journal, 51, 485-499. Keenan T, Niinemets Ü, Sabaté S, Gracia C, Peñuelas J (2009) Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties. Atmospheric Chemistry and Physics, 9, 4053-4076. Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia, 95, 328-333. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65, 23-45. Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiology, 126, 993-1000. Funk JL, Jones CG, Gray DW, Throop HW, Hyatt LA, Lerdau MT (2005) Variation in isoprene emission from Quercus rubra: sources, causes, and consequences for estimating fluxes. Journal of Geophysical Research, 110, 1-10. Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach, 2nd edn. Springer Verlag, New York. Harley PC, Monson RK, Lerdau MT (1999) Ecological and evolutionary aspects of isoprene emission from plants. Oecologia, 118, 109-123. Lerdau M, Keller M (1997) Controls on isoprene emission from trees in a subtropical dry forest. Plant, Cell and Environment, 20, 569-578. Klos RJ, Wang GG, Bauerle WL, Rieck JR (2009) Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data. Ecological Applications, 19, 699-708. Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature, 421, 256-259. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3181-3200. Rey A, Jarvis PG (1998) Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch (Betula pendula) trees. Tree Physiology, 18, 441-450. Velikova V, Loreto F (2005) On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant, Cell and Environment, 28, 318-327. Harley P, Guenther A, Zimmerman P (1996) Effects of light, temperature, and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiology, 16, 25-32. Sharkey T, Monson R (2014) The future of isoprene emission from leaves, canopies, and landscapes. Plant, Cell and Environment, 37, 1727-1740. Pétron G, Harley P, Greenberg J, Guenther A (2001) Seasonal temperature variations influence isoprene emission. Geophysical Research Letters, 28, 1707-1710. Folberth GA, Hauglustaine DA, Lathière J, Brocheton F (2006) Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry. Atmospheric Chemistry and Physics, 6, 2273-2319. Potosnak MJ, LeStourgeon L, Pallardy SG et al. (2014a) Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress. Atmospheric Environment, 84, 314-322. Monson RK, Jones RT, Rosenstiel TN, Schnitzler J (2013) Why only some plants emit isoprene. Plant, Cell and Environment, 36, 503-516. Sasaki K, Saito T, Lämsä M et al. (2007) Plants utilize isoprene emission as a thermotolerance mechanism. Plant and Cell Physiology, 48, 1254-1262. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology, and ecology. Journal of Atmospheric Chemistry, 33, 23-88. Monson RK, Lerdau MT, Sharkey TD, Schimel DS, Fall R (1995) Biological aspects of constructing volatile organic compound emission inventories. Atmospheric Environment, 29, 2989-3002. Sharkey TD, Singsass EL (1995) Why plants emit isoprene. Nature, 374, 769. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science, 319, 756-760. Grace JB (2006) Structural Equation Modeling and Natural Systems. Cambridge University Press, New York. Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment, 25, 251-263. Ainsworth EA, Rogers A, Nelson R, Long SP (2003) Testing the "source-sink" hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology, 122, 85-94. 1997; 115 2011; 157 2010; 15 2002; 192 2004; 27 2013; 64 2003; 13 2011; 11 2008; 31 1995; 374 2005; 28 1998; 18 2006; 63 1994; 105 1989; 76 1999; 19 2008; 319 2011; 65 2011; 24 2014; 19 1995; 29 2010; 3 2009; 19 2003; 122 2005; 110 2011 1997; 20 2006; 6 2006 2014b; 481 1994 2007; 51 2001; 28 2002 1996; 16 2001; 126 2012; 195 2002; 25 2004; 274 2007; 316 2013; 36 1993; 95 2015; 20 2014; 37 2009; 9 1999; 33 2014a; 84 1998; 103 2014 2013 1999; 118 2001; 35 2003; 421 2012; 5 2007; 48 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 Burnham KP (e_1_2_6_11_1) 2002 Singsass EL (e_1_2_6_53_1) 1997; 115 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_50_1 Arneth A (e_1_2_6_4_1) 2010; 3 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 Barta C (e_1_2_6_6_1) 2011 e_1_2_6_40_1 IPCC (e_1_2_6_31_1) 2013 e_1_2_6_8_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 11 start-page: 8037 year: 2011 end-page: 8052 article-title: Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation publication-title: Atmospheric Chemistry and Physics – start-page: 3 year: 2013 end-page: 18 – volume: 192 start-page: 269 year: 2002 end-page: 277 article-title: Protection by isoprene against singlet oxygen in leaves publication-title: Plant Physiology – volume: 19 start-page: 699 year: 2009 end-page: 708 article-title: Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data publication-title: Ecological Applications – volume: 28 start-page: 1707 year: 2001 end-page: 1710 article-title: Seasonal temperature variations influence isoprene emission publication-title: Geophysical Research Letters – volume: 157 start-page: 905 year: 2011 end-page: 916 article-title: Increased thermostability of thylakoid membranes in isoprene‐emitting leaves probed with three biophysical techniques publication-title: Plant Physiology – volume: 105 start-page: 279 year: 1994 end-page: 285 article-title: Isoprene emission from velvet bean leaves: interactions among nitrogen availability, growth photon flux density, and leaf development publication-title: Plant Physiology – volume: 84 start-page: 314 year: 2014a end-page: 322 article-title: Observed and modeled ecosystem isoprene fluxes from an oak‐dominated temperate forest and the influence of drought stress publication-title: Atmospheric Environment – volume: 25 start-page: 251 year: 2002 end-page: 263 article-title: Water deficits and hydraulic limits to leaf water supply publication-title: Plant, Cell and Environment – year: 1994 – year: 2014 – volume: 122 start-page: 85 year: 2003 end-page: 94 article-title: Testing the “source‐sink” hypothesis of down‐regulation of photosynthesis in elevated [CO ] in the field with single gene substitutions in publication-title: Agricultural and Forest Meteorology – volume: 28 start-page: 318 year: 2005 end-page: 327 article-title: On the relationship between isoprene emission and thermotolerance in leaves exposed to high temperatures and during the recovery from a heat stress publication-title: Plant, Cell and Environment – volume: 33 start-page: 23 year: 1999 end-page: 88 article-title: Biogenic volatile organic compounds (VOC): an overview on emission, physiology, and ecology publication-title: Journal of Atmospheric Chemistry – volume: 5 start-page: 1471 year: 2012 end-page: 2012 article-title: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions publication-title: Geoscientific Model Development – volume: 24 start-page: 699 year: 2011 end-page: 711 article-title: Multimodel inference in ecology and evolution: challenges and solutions publication-title: Journal of Evolutionary Biology – volume: 126 start-page: 993 year: 2001 end-page: 1000 article-title: Ozone quenching properties of isoprene and its antioxidant role in leaves publication-title: Plant Physiology – volume: 31 start-page: 1882 year: 2008 end-page: 1894 article-title: Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress publication-title: Plant, Cell and Environment – volume: 20 start-page: 72 year: 2015 end-page: 75 article-title: Urban plant physiology: adaptation‐mitigation strategies under permanent stress publication-title: Trends in Plant Science – volume: 195 start-page: 541 year: 2012 end-page: 559 article-title: Modeling isoprene emission rate from leaves publication-title: New Phytologist – volume: 51 start-page: 485 year: 2007 end-page: 499 article-title: Transgenic, non‐isoprene emitting poplars don't like it hot publication-title: The Plant Journal – volume: 115 start-page: 1413 year: 1997 end-page: 1420 article-title: Isoprene increases thermotolerance of isoprene‐emitting species publication-title: Plant Physiology – volume: 319 start-page: 756 year: 2008 end-page: 760 article-title: Global change and the ecology of cities publication-title: Science – volume: 103 start-page: 31045 year: 1998 end-page: 31056 article-title: Seasonal course of isoprene emissions from a midlatitude deciduous forest publication-title: Journal of Geophysical Research – volume: 20 start-page: 569 year: 1997 end-page: 578 article-title: Controls on isoprene emission from trees in a subtropical dry forest publication-title: Plant, Cell and Environment – volume: 274 start-page: 393 year: 2004 end-page: 401 article-title: Impact of rising CO on emissions of volatile organic compounds: isoprene emission from growing at elevated CO in a natural carbon dioxide spring publication-title: Plant, Cell and Environment – volume: 27 start-page: 747 year: 2004 end-page: 755 article-title: Stress‐induced changes in carbon sources for isoprene production in publication-title: Plant, Cell and Environment – volume: 16 start-page: 25 year: 1996 end-page: 32 article-title: Effects of light, temperature, and canopy position on net photosynthesis and isoprene emission from sweetgum ( ) leaves publication-title: Tree Physiology – volume: 37 start-page: 1727 year: 2014 end-page: 1740 article-title: The future of isoprene emission from leaves, canopies, and landscapes publication-title: Plant, Cell and Environment – volume: 6 start-page: 2273 year: 2006 end-page: 2319 article-title: Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry publication-title: Atmospheric Chemistry and Physics – volume: 421 start-page: 256 year: 2003 end-page: 259 article-title: Increased CO uncouples growth from isoprene emission in an agriforest ecosystem publication-title: Nature – volume: 18 start-page: 441 year: 1998 end-page: 450 article-title: Long‐term photosynthetic acclimation to increased atmospheric CO concentration in young birch ( ) trees publication-title: Tree Physiology – volume: 63 start-page: 625 year: 2006 end-page: 644 article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long‐term consequences publication-title: Annals of Forest Science – volume: 64 start-page: 5509 year: 2013 end-page: 5523 article-title: Elevated [CO ] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen publication-title: Journal of Experimental Botany – volume: 29 start-page: 2989 year: 1995 end-page: 3002 article-title: Biological aspects of constructing volatile organic compound emission inventories publication-title: Atmospheric Environment – volume: 36 start-page: 503 year: 2013 end-page: 516 article-title: Why only some plants emit isoprene publication-title: Plant, Cell and Environment – volume: 35 start-page: 3341 year: 2001 end-page: 3352 article-title: Isoprene emission capacity for US tree species publication-title: Atmospheric Environment – volume: 19 start-page: 453 year: 1999 end-page: 459 article-title: Regulation of water loss in populations of : the role of stomatal control in preventing xylem cavitation publication-title: Tree Physiology – volume: 13 start-page: 269 year: 2003 end-page: 278 article-title: Diurnal variation in the basal emission rate of isoprene publication-title: Ecological Applications – volume: 316 start-page: 212 year: 2007 end-page: 213 article-title: A positive feedback with negative consequences publication-title: Science – volume: 65 start-page: 23 year: 2011 end-page: 45 article-title: AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons publication-title: Behavioral Ecology and Sociobiology – volume: 118 start-page: 109 year: 1999 end-page: 123 article-title: Ecological and evolutionary aspects of isoprene emission from plants publication-title: Oecologia – volume: 48 start-page: 1254 year: 2007 end-page: 1262 article-title: Plants utilize isoprene emission as a thermotolerance mechanism publication-title: Plant and Cell Physiology – volume: 110 start-page: 1 year: 2005 end-page: 10 article-title: Variation in isoprene emission from : sources, causes, and consequences for estimating fluxes publication-title: Journal of Geophysical Research – volume: 6 start-page: 3181 year: 2006 end-page: 3200 article-title: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) publication-title: Atmospheric Chemistry and Physics – volume: 76 start-page: 297 year: 1989 end-page: 307 article-title: Regression and time series model selection in small samples publication-title: Biometrika – year: 2002 – year: 2006 – volume: 15 start-page: 154 year: 2010 end-page: 166 article-title: Abiotic stress and induced BVOCs publication-title: Trends in Plant Science – volume: 95 start-page: 328 year: 1993 end-page: 333 article-title: Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves publication-title: Oecologia – volume: 374 start-page: 769 year: 1995 article-title: Why plants emit isoprene publication-title: Nature – volume: 3 start-page: 525 year: 2010 end-page: 532 article-title: Terrestrial biogeochemical feedbacks in the climate system publication-title: Nature – volume: 9 start-page: 4053 year: 2009 end-page: 4076 article-title: Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties publication-title: Atmospheric Chemistry and Physics – volume: 19 start-page: 439 year: 2014 end-page: 446 article-title: Evolution of isoprene emission capacity in plants publication-title: Trends in Plant Science – volume: 481 start-page: 352 year: 2014b end-page: 359 article-title: Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO2 concentration publication-title: Science of the Total Environment – start-page: 5 year: 2011 end-page: 9 – year: 2013 – ident: e_1_2_6_16_1 doi: 10.1890/1051-0761(2003)013[0269:DVITBE]2.0.CO;2 – ident: e_1_2_6_32_1 doi: 10.5194/acp-9-4053-2009 – ident: e_1_2_6_24_1 doi: 10.1111/j.1420-9101.2010.02210.x – ident: e_1_2_6_22_1 doi: 10.1017/CBO9780511617799 – ident: e_1_2_6_39_1 doi: 10.1016/1352-2310(94)00360-W – ident: e_1_2_6_44_1 doi: 10.1016/j.scitotenv.2014.02.065 – ident: e_1_2_6_45_1 – ident: e_1_2_6_55_1 doi: 10.1046/j.0016-8025.2001.00799.x – ident: e_1_2_6_30_1 doi: 10.1093/biomet/76.2.297 – ident: e_1_2_6_36_1 doi: 10.1111/j.1365-3040.1997.00075.x – ident: e_1_2_6_37_1 doi: 10.1016/j.tplants.2009.12.006 – ident: e_1_2_6_38_1 doi: 10.1104/pp.126.3.993 – ident: e_1_2_6_23_1 doi: 10.1126/science.1150195 – ident: e_1_2_6_25_1 doi: 10.5194/acp-6-3181-2006 – ident: e_1_2_6_18_1 doi: 10.1029/2004JD005229 – ident: e_1_2_6_56_1 doi: 10.1093/jxb/ert318 – ident: e_1_2_6_42_1 doi: 10.1029/2000GL011583 – ident: e_1_2_6_54_1 doi: 10.1093/treephys/19.7.453 – ident: e_1_2_6_3_1 doi: 10.1016/j.agrformet.2003.09.002 – ident: e_1_2_6_12_1 doi: 10.1007/s00265-010-1029-6 – ident: e_1_2_6_26_1 doi: 10.5194/gmd-5-1471-2012 – volume: 115 start-page: 1413 year: 1997 ident: e_1_2_6_53_1 article-title: Isoprene increases thermotolerance of isoprene‐emitting species publication-title: Plant Physiology doi: 10.1104/pp.115.4.1413 contributor: fullname: Singsass EL – ident: e_1_2_6_46_1 doi: 10.1093/treephys/18.7.441 – ident: e_1_2_6_48_1 doi: 10.1093/pcp/pcm104 – ident: e_1_2_6_14_1 doi: 10.1016/j.tplants.2014.01.009 – ident: e_1_2_6_15_1 doi: 10.5194/acp-6-2273-2006 – ident: e_1_2_6_51_1 doi: 10.1111/pce.12289 – ident: e_1_2_6_19_1 doi: 10.1016/S1352-2310(00)00407-6 – ident: e_1_2_6_50_1 doi: 10.1007/BF00320984 – ident: e_1_2_6_9_1 doi: 10.1111/j.1365-313X.2007.03157.x – ident: e_1_2_6_35_1 doi: 10.1126/science.1141486 – ident: e_1_2_6_20_1 – ident: e_1_2_6_2_1 doi: 10.1104/pp.010909 – ident: e_1_2_6_52_1 doi: 10.1038/374769a0 – ident: e_1_2_6_17_1 doi: 10.1111/j.1365-3040.2004.01177.x – ident: e_1_2_6_49_1 doi: 10.1111/j.1365-3040.2003.01155.x – ident: e_1_2_6_5_1 doi: 10.5194/acp-11-8037-2011 – ident: e_1_2_6_21_1 doi: 10.1029/98JD02708 – volume: 3 start-page: 525 year: 2010 ident: e_1_2_6_4_1 article-title: Terrestrial biogeochemical feedbacks in the climate system publication-title: Nature contributor: fullname: Arneth A – ident: e_1_2_6_27_1 doi: 10.1104/pp.105.1.279 – ident: e_1_2_6_34_1 doi: 10.1890/08-0330.1 – ident: e_1_2_6_7_1 – ident: e_1_2_6_10_1 doi: 10.1051/forest:2006042 – ident: e_1_2_6_28_1 doi: 10.1093/treephys/16.1-2.25 – ident: e_1_2_6_47_1 doi: 10.1038/nature01312 – start-page: 3 volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_6_31_1 contributor: fullname: IPCC – start-page: 5 volume-title: The effect of drought stress on carbon assimilation and isoprene emission capacities of oak species in urban and rural areas of Texas year: 2011 ident: e_1_2_6_6_1 contributor: fullname: Barta C – ident: e_1_2_6_43_1 doi: 10.1016/j.atmosenv.2013.11.055 – ident: e_1_2_6_8_1 – ident: e_1_2_6_29_1 doi: 10.1007/s004420050709 – ident: e_1_2_6_58_1 doi: 10.1111/j.1365-3040.2004.01314.x – ident: e_1_2_6_57_1 – volume-title: Model Selection and Multimodel Inference: A Practical Information‐Theoretical Approach year: 2002 ident: e_1_2_6_11_1 contributor: fullname: Burnham KP – ident: e_1_2_6_33_1 doi: 10.1023/A:1006127516791 – ident: e_1_2_6_59_1 doi: 10.1111/j.1365-3040.2008.01893.x – ident: e_1_2_6_40_1 doi: 10.1111/j.1469-8137.2012.04204.x – ident: e_1_2_6_41_1 doi: 10.1111/pce.12015 – ident: e_1_2_6_60_1 doi: 10.1104/pp.111.182519 – ident: e_1_2_6_13_1 doi: 10.1016/j.tplants.2014.11.001 |
SSID | ssj0003206 |
Score | 2.4221604 |
Snippet | Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured... Abstract Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we... |
SourceID | proquest crossref pubmed wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4221 |
SubjectTerms | Agriculture biosphere-atmosphere interactions Butadienes - metabolism Carbon dioxide Cities Climate Change Environment environmental factors gas exchange Greenhouse gases growing season heat tolerance Hemiterpenes - metabolism Hot Temperature isoprene leaves Liquidambar - metabolism Liquidambar styraciflua Pentanes - metabolism Photosynthesis physiological response Plant Leaves - metabolism post oak Quercus - metabolism Quercus stellata spring stomatal conductance summer sweet gum temperature Texas Trees Trees - metabolism Urban areas VOC volatile organic compound |
Title | Photosynthesis and isoprene emission from trees along an urban–rural gradient in Texas |
URI | https://api.istex.fr/ark:/67375/WNG-1DF40R0V-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13010 https://www.ncbi.nlm.nih.gov/pubmed/26111255 https://www.proquest.com/docview/1721885357 https://search.proquest.com/docview/1722424174 https://search.proquest.com/docview/1727696204 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qQfDFj9PaaJVVpPiSskl284FPeu21CC3S9vQehGU32ZxHSyLJHbQ--T_4H_qXOLO5S62oiC8hH7OwmZ2Z_GYzHwAv4hwtr4mEz00e-qIMhK9TLekQlmnMbaYpG_nwKD4Yi7cTOVmDV6tcmK4-RL_hRprh7DUpuDbtT0o-zQ21MnbpVUGUUDjX7vFV6agodH01g0gKNDVBtKwqRFE8_chr36Ibpa4RoRJzL34HN6-jV_f5Gd2Bj6uJd1EnZzuLudnJv_xS0_E_3-wu3F7CUva6k6N7sGarAdzsGlVeDmBj7yofDsmWBqEdgHeIoLtuHBnbZsPzGSJgd3UfJu8-1fO6vawQY7azlumqYLO2dkU0GbWZo406RvktjH6NI8F5XU2RjC0ao6vvX781VBOETRsXljZns4qd2gvdPoDxaO90eOAvGzn4eUyp6oWJTCJEUsaRCLVJUxtmXOZUGl6mJkt5gZJijE6FLLMS7xYhlzoKyjwsuMVRG7Be1ZXdBKYjntlY6IDrQOAS64yX2qKXaI0sRK49eL5aUvW5q9ehVn4O8lU5vnqwiYut9BTtqBqfhLTrQ6Xuwyz0YNtJQD9YN2cU-5ZI9eFoXwW7I8GP-Xt14sHWSkTUUu1bRf50igBIJh486x8jQ-kvjK5svXA0lJKDnuBfaZI4o1YBHjzsxK-fELq8iJGl9OClE6I_v6baH75xJ4_-nfQx3CJ2dNmWW7A-bxb2CcKuuXnq9OsH7UQl3Q |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIgQXHoFSQ4EFoYpLqrW964fEBdKmAZoItUnJBa12_QhRKxvZidRy4j_wD_klzKyTlCJAiEvk2LOSPTsz_ma98w3A8yDByGt80eYm8doid0VbR1rSj5dHAc9iTdXI_UHQG4m3Yzleg5fLWpiGH2K14EaeYeM1OTgtSP_k5ZPEUC9jqq-6iu7uU-OG3cML8ijfs501XV8KDDauv-AVon08q6GX3kZXcl0iRiX1nv0OcF7Gr_YF1L0FH5e33uw7OdmZz8xO8uUXVsf_fbbbcHOBTNmrxpTuwFpWtOBa06vyvAUbexclcSi2iAl1C5w-4u6ysmJsm3VOpwiC7b-7MH7_qZyV9XmBMLOe1kwXKZvWpeXRZNRpjtbqGJW4MPo6jgKnZTFBMTavjC6-f_1WES0Im1R2Z9qMTQs2zM50fQ9G3b1hp9de9HJoJwFVq6fGN6EQYR74wtMmijIv5jIhdngZmTjiKRqLMToSMo9zPJt6XGrfzRMv5RmO2oD1oiyyTWDa53EWCO1y7QqcYx3zXGeYKGZGpiLRDjxbzqn63FB2qGWqg3pVVq8ObOJsKz3BUKpGRx4t_BDbvRd7DmxbE1gN1tUJbX8Lpfow2FfublfwQ36sjhzYWtqIWnh-rSiljhADydCBp6vLqFD6EKOLrJxbGarKwWTwrzJhEFO3AAfuN_a3uiHMehEmS-nAC2tFf35Mtd95bQ8e_LvoE7jeG_YP1MGbwbuHcINU0xRfbsH6rJpnjxCFzcxj62w_AC1QKfU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NIRAvAwpjGQMMQhMvnZzEThPxBN268WfVtK3QByTLTpxSbUqmpJU2nvgOfEM-CXdO2zEECPFSpclZSs53l985vt8BPI9SjLwmFG1u0qAtcl-0dawl_QR5HHGbaKpG3u9HewPxdiiHS_ByXgvT8EMsFtzIM1y8Jgc_y_KfnHyUGmplTOVV10WEyJcQ0eEld1QYuMaafigFxho_nNEK0TaexdArL6NruS4RopJ2z3-HN6_CV_f-6d2GT_M7b7adnGxNJ2Yr_fILqeN_PtodWJnhUvaqMaS7sGSLFtxoOlVetGB157IgDsVmEaFugbePqLusnBjbZN3TMUJg9-8eDA8-l5OyvigQZNbjmukiY-O6dCyajPrM0UodowIXRt_GUeC0LEYoxqaV0cX3r98qIgVho8rtS5uwccGO7bmu78Ogt3Pc3WvPOjm004hq1TMTmo4QnTwKRaBNHNsg4TIlbngZmyTmGZqKMToWMk9yPJsFXOrQz9Mg4xZHrcJyURZ2DZgOeWIjoX2ufYFTrBOea4tpojUyE6n24Nl8StVZQ9ih5okO6lU5vXqwhpOt9AgDqRocBbTsQ1z3QRJ4sOksYDFYVye0-a0j1cf-rvK3e4If8g_qyIONuYmomd_XihLqGBGQ7HjwdHEZFUqfYXRhy6mToZocTAX_KtOJEuoV4MGDxvwWN4Q5L4JkKT144Yzoz4-pdruv3cH6v4s-gZsH2z31_k3_3UO4RZppKi83YHlSTe0jhGAT89i52g-LGSik |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photosynthesis+and+isoprene+emission+from+trees+along+an+urban%E2%80%93rural+gradient+in+Texas&rft.jtitle=Global+change+biology&rft.au=Lahr%2C+Eleanor+C&rft.au=Schade%2C+Gunnar+W&rft.au=Crossett%2C+Caitlin+C&rft.au=Watson%2C+Matthew+R&rft.date=2015-11-01&rft.pub=Blackwell+Science&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=21&rft.issue=11&rft.spage=4221&rft.epage=4236&rft_id=info:doi/10.1111%2Fgcb.13010&rft.externalDocID=US201500212292 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |