Photosynthesis and isoprene emission from trees along an urban–rural gradient in Texas

Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban–rural gradient that serves as a proxy for climate change, to understand daily and seas...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 21; no. 11; pp. 4221 - 4236
Main Authors Lahr, Eleanor C, Schade, Gunnar W, Crossett, Caitlin C, Watson, Matthew R
Format Journal Article
LanguageEnglish
Published England Blackwell Science 01.11.2015
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban–rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf‐level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO₂ concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO₂ on isoprene emission. These are important considerations for modeling future biosphere–atmosphere interactions and for understanding tree physiological responses to climate change.
AbstractList Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban-rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf-level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO2 concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO2 on isoprene emission. These are important considerations for modeling future biosphere-atmosphere interactions and for understanding tree physiological responses to climate change.
Abstract Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban–rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf‐level gas exchange and basal isoprene emission of post oak (Quercus stellata ) and sweet gum ( Liquidambar styraciflua ) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO 2 concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO 2 on isoprene emission. These are important considerations for modeling future biosphere–atmosphere interactions and for understanding tree physiological responses to climate change.
Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban-rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf-level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO sub(2) concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO sub(2) on isoprene emission. These are important considerations for modeling future biosphere-atmosphere interactions and for understanding tree physiological responses to climate change.
Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban–rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf‐level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO₂ concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO₂ on isoprene emission. These are important considerations for modeling future biosphere–atmosphere interactions and for understanding tree physiological responses to climate change.
Author Watson, Matthew R.
Lahr, Eleanor C.
Crossett, Caitlin C.
Schade, Gunnar W.
Author_xml – sequence: 1
  fullname: Lahr, Eleanor C
– sequence: 2
  fullname: Schade, Gunnar W
– sequence: 3
  fullname: Crossett, Caitlin C
– sequence: 4
  fullname: Watson, Matthew R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26111255$$D View this record in MEDLINE/PubMed
BookMark eNqN0ctu1DAUBmALFdELLHgBiMQGFmmPr0mWZaADUgWItsDOspOTqUvGHuxEdHa8A2_Ik-Bh2i6QkPDGlvWdX7b-fbLjg0dCHlM4pHkdLVp7SDlQuEf2KFeyZKJWO5uzFCUFynfJfkpXAMAZqAdkl6k8xqTcI18-XIYxpLUfLzG5VBjfFS6FVUSPBS5dSi74oo9hWYwRMYMh-EVmxRSt8b9-_IxTNEOxiKZz6MfC-eIcr016SO73Zkj46GY_IBcnr89nb8rT9_O3s-PTslW0gbKz3FZCVL3ighlb18gakK1saiVr29TQgW2tNbWQfdPn246BNJz2LesA89QBeb7NXcXwbcI06vzoFofBeAxT0rRilWoUA_E_lAkmaLWhz_6iV2GKPn9ko2hdSy6rrF5sVRtDShF7vYpuaeJaU9CbZnRuRv9pJtsnN4mTXWJ3J2-ryOBoC767Adf_TtLz2cvbyHI74dKI13cTJn7VquKV1J_fzTV9dSLgI3zSZ9k_3freBG0W0SV9ccaASgBGGWsY_w2D6bDR
CitedBy_id crossref_primary_10_3390_plants10010103
crossref_primary_10_1016_j_envpol_2016_01_075
crossref_primary_10_1016_j_envexpbot_2024_105756
crossref_primary_10_3390_atmos11030241
crossref_primary_10_3390_plants10040810
crossref_primary_10_1111_gcb_15976
crossref_primary_10_1016_j_fcr_2020_107735
crossref_primary_10_17660_ActaHortic_2023_1372_43
crossref_primary_10_3390_agronomy12081742
crossref_primary_10_3390_f14071429
crossref_primary_10_3389_ffgc_2019_00050
crossref_primary_10_1098_rspb_2018_0643
crossref_primary_10_3389_fpls_2021_786688
crossref_primary_10_3389_fpls_2022_1037720
crossref_primary_10_1111_pce_13513
crossref_primary_10_1016_j_jia_2022_07_036
crossref_primary_10_1039_D3EA00137G
crossref_primary_10_3389_fphgy_2024_1331421
crossref_primary_10_1371_journal_pone_0197866
crossref_primary_10_1007_s11252_016_0627_0
crossref_primary_10_1016_j_foreco_2020_118748
crossref_primary_10_1080_15592324_2017_1356534
crossref_primary_10_17660_ActaHortic_2023_1382_22
crossref_primary_10_1002_fee_1426
crossref_primary_10_1016_j_atmosenv_2017_09_049
crossref_primary_10_1016_j_ecoser_2016_10_008
crossref_primary_10_1088_1748_9326_aabcd8
crossref_primary_10_3390_f14030523
crossref_primary_10_1002_ece3_3990
crossref_primary_10_1071_FP19242
crossref_primary_10_1093_pnasnexus_pgae147
crossref_primary_10_1111_pce_14911
crossref_primary_10_3390_f11050488
crossref_primary_10_1093_treephys_tpy123
crossref_primary_10_1111_ppl_12752
crossref_primary_10_3390_plants11050616
crossref_primary_10_1002_2017EF000653
crossref_primary_10_3390_f10111032
crossref_primary_10_1016_j_gecco_2022_e02243
crossref_primary_10_1093_jxb_erx052
crossref_primary_10_1016_j_envexpbot_2020_104304
crossref_primary_10_3389_fpls_2017_01281
crossref_primary_10_3389_fpls_2021_734531
crossref_primary_10_1111_jac_12314
crossref_primary_10_1111_ppl_13344
Cites_doi 10.1890/1051-0761(2003)013[0269:DVITBE]2.0.CO;2
10.5194/acp-9-4053-2009
10.1111/j.1420-9101.2010.02210.x
10.1017/CBO9780511617799
10.1016/1352-2310(94)00360-W
10.1016/j.scitotenv.2014.02.065
10.1046/j.0016-8025.2001.00799.x
10.1093/biomet/76.2.297
10.1111/j.1365-3040.1997.00075.x
10.1016/j.tplants.2009.12.006
10.1104/pp.126.3.993
10.1126/science.1150195
10.5194/acp-6-3181-2006
10.1029/2004JD005229
10.1093/jxb/ert318
10.1029/2000GL011583
10.1093/treephys/19.7.453
10.1016/j.agrformet.2003.09.002
10.1007/s00265-010-1029-6
10.5194/gmd-5-1471-2012
10.1104/pp.115.4.1413
10.1093/treephys/18.7.441
10.1093/pcp/pcm104
10.1016/j.tplants.2014.01.009
10.5194/acp-6-2273-2006
10.1111/pce.12289
10.1016/S1352-2310(00)00407-6
10.1007/BF00320984
10.1111/j.1365-313X.2007.03157.x
10.1126/science.1141486
10.1104/pp.010909
10.1038/374769a0
10.1111/j.1365-3040.2004.01177.x
10.1111/j.1365-3040.2003.01155.x
10.5194/acp-11-8037-2011
10.1029/98JD02708
10.1104/pp.105.1.279
10.1890/08-0330.1
10.1051/forest:2006042
10.1093/treephys/16.1-2.25
10.1038/nature01312
10.1016/j.atmosenv.2013.11.055
10.1007/s004420050709
10.1111/j.1365-3040.2004.01314.x
10.1023/A:1006127516791
10.1111/j.1365-3040.2008.01893.x
10.1111/j.1469-8137.2012.04204.x
10.1111/pce.12015
10.1104/pp.111.182519
10.1016/j.tplants.2014.11.001
ContentType Journal Article
Copyright 2015 John Wiley & Sons Ltd
2015 John Wiley & Sons Ltd.
Copyright © 2015 John Wiley & Sons Ltd
Copyright_xml – notice: 2015 John Wiley & Sons Ltd
– notice: 2015 John Wiley & Sons Ltd.
– notice: Copyright © 2015 John Wiley & Sons Ltd
DBID FBQ
BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7U6
SOI
DOI 10.1111/gcb.13010
DatabaseName AGRIS
Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
Environment Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList MEDLINE - Academic
CrossRef
Ecology Abstracts


MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Agriculture
EISSN 1365-2486
EndPage 4236
ExternalDocumentID 3835219081
10_1111_gcb_13010
26111255
GCB13010
ark_67375_WNG_1DF40R0V_S
US201500212292
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations Texas
ASW, USA, Texas
GeographicLocations_xml – name: Texas
– name: ASW, USA, Texas
GrantInformation_xml – fundername: NSF CAREER
  funderid: ACS‐0955438
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7U6
SOI
ID FETCH-LOGICAL-c6190-db3b7447f6342ab88e2905c598658b980d0bcbba845f9f986d205a31fc2d0ef63
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Sat Aug 17 00:59:43 EDT 2024
Fri Aug 16 21:17:24 EDT 2024
Thu Oct 10 19:34:25 EDT 2024
Fri Aug 23 00:28:55 EDT 2024
Sat Sep 28 08:06:42 EDT 2024
Sat Aug 24 01:03:45 EDT 2024
Wed Oct 30 09:55:59 EDT 2024
Wed Dec 27 19:02:19 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords biosphere-atmosphere interactions
carbon dioxide
sweet gum
temperature
Liquidambar styraciflua
VOC
volatile organic compound
Quercus stellata
post oak
Language English
License 2015 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6190-db3b7447f6342ab88e2905c598658b980d0bcbba845f9f986d205a31fc2d0ef63
Notes http://dx.doi.org/10.1111/gcb.13010
NSF CAREER - No. ACS-0955438
ArticleID:GCB13010
ark:/67375/WNG-1DF40R0V-S
istex:D8ECCB0B0133DF89663CBF0CA543C3CBB07E37B0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.13010
PMID 26111255
PQID 1721885357
PQPubID 30327
PageCount 16
ParticipantIDs proquest_miscellaneous_1727696204
proquest_miscellaneous_1722424174
proquest_journals_1721885357
crossref_primary_10_1111_gcb_13010
pubmed_primary_26111255
wiley_primary_10_1111_gcb_13010_GCB13010
istex_primary_ark_67375_WNG_1DF40R0V_S
fao_agris_US201500212292
PublicationCentury 2000
PublicationDate November 2015
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2015
Publisher Blackwell Science
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
References Arneth A, Shurgers G, Lathiere J et al. (2011) Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation. Atmospheric Chemistry and Physics, 11, 8037-8052.
Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiology, 192, 269-277.
Lerdau M (2007) A positive feedback with negative consequences. Science, 316, 212-213.
Arneth A, Harrison SP, Zaehle S et al. (2010) Terrestrial biogeochemical feedbacks in the climate system. Nature, 3, 525-532.
Funk JL, Mak JE, Lerdau MT (2004) Stress-induced changes in carbon sources for isoprene production in Populus deltoides. Plant, Cell and Environment, 27, 747-755.
Funk JL, Jones CG, Bake CJ, Fuller HM, Giardina CP, Lerdau MT (2003) Diurnal variation in the basal emission rate of isoprene. Ecological Applications, 13, 269-278.
Harley PC, Litvak ME, Sharkey TD, Monson RK (1994) Isoprene emission from velvet bean leaves: interactions among nitrogen availability, growth photon flux density, and leaf development. Plant Physiology, 105, 279-285.
Sparks JP, Black RA (1999) Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiology, 19, 453-459.
Sun ZH, Hve K, Vislap V, Niinemets Ü (2013) Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen. Journal of Experimental Botany, 64, 5509-5523.
Velikova V, Várkonyi Z, Szabó M et al. (2011) Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiology, 157, 905-916.
Goldstein AH, Goulden ML, Munger W, Wofsy SC, Geron CD (1998) Seasonal course of isoprene emissions from a midlatitude deciduous forest. Journal of Geophysical Research, 103, 31045-31056.
Potosnak MJ, LeStourgeon L, Nunez O (2014b) Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO2 concentration. Science of the Total Environment, 481, 352-359.
Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Modeling isoprene emission rate from leaves. New Phytologist, 195, 541-559.
Singsass EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiology, 115, 1413-1420.
Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625-644.
Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika, 76, 297-307.
Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Dulh T, Emmons LK, Wang X (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471-2012.
Scholefield PA, Doick KJ, Herbert BMJ, Hewitt CNS, Schnitzler J-P, Pinelli P, Loreto F (2004) Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant, Cell and Environment, 274, 393-401.
Geron C, Harley P, Guenther A (2001) Isoprene emission capacity for US tree species. Atmospheric Environment, 35, 3341-3352.
Barta C, Gramann J, White S, Shade GW (2011) The effect of drought stress on carbon assimilation and isoprene emission capacities of oak species in urban and rural areas of Texas. Abstract B54A-07. American Geophysical Union Meeting, San Francisco, CA. 5-9 December 2011.
Calfapietra C, Peñuelas J, Niinemets Ü (2015) Urban plant physiology: adaptation-mitigation strategies under permanent stress. Trends in Plant Science, 20, 72-75.
Loreto F, Schnitzler J-P (2010) Abiotic stress and induced BVOCs. Trends in Plant Science, 15, 154-166.
Velikova V, Fares S, Loreto F (2008) Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress. Plant, Cell and Environment, 31, 1882-1894.
Dani KG, Jamie IM, Prentice IC, Atwell BJ (2014) Evolution of isoprene emission capacity in plants. Trends in Plant Science, 19, 439-446.
Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology, 24, 699-711.
Behnke K, Ehlting B, Teuber M et al. (2007) Transgenic, non-isoprene emitting poplars don't like it hot. The Plant Journal, 51, 485-499.
Keenan T, Niinemets Ü, Sabaté S, Gracia C, Peñuelas J (2009) Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties. Atmospheric Chemistry and Physics, 9, 4053-4076.
Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia, 95, 328-333.
Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65, 23-45.
Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiology, 126, 993-1000.
Funk JL, Jones CG, Gray DW, Throop HW, Hyatt LA, Lerdau MT (2005) Variation in isoprene emission from Quercus rubra: sources, causes, and consequences for estimating fluxes. Journal of Geophysical Research, 110, 1-10.
Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach, 2nd edn. Springer Verlag, New York.
Harley PC, Monson RK, Lerdau MT (1999) Ecological and evolutionary aspects of isoprene emission from plants. Oecologia, 118, 109-123.
Lerdau M, Keller M (1997) Controls on isoprene emission from trees in a subtropical dry forest. Plant, Cell and Environment, 20, 569-578.
Klos RJ, Wang GG, Bauerle WL, Rieck JR (2009) Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data. Ecological Applications, 19, 699-708.
Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature, 421, 256-259.
Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3181-3200.
Rey A, Jarvis PG (1998) Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch (Betula pendula) trees. Tree Physiology, 18, 441-450.
Velikova V, Loreto F (2005) On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant, Cell and Environment, 28, 318-327.
Harley P, Guenther A, Zimmerman P (1996) Effects of light, temperature, and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiology, 16, 25-32.
Sharkey T, Monson R (2014) The future of isoprene emission from leaves, canopies, and landscapes. Plant, Cell and Environment, 37, 1727-1740.
Pétron G, Harley P, Greenberg J, Guenther A (2001) Seasonal temperature variations influence isoprene emission. Geophysical Research Letters, 28, 1707-1710.
Folberth GA, Hauglustaine DA, Lathière J, Brocheton F (2006) Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry. Atmospheric Chemistry and Physics, 6, 2273-2319.
Potosnak MJ, LeStourgeon L, Pallardy SG et al. (2014a) Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress. Atmospheric Environment, 84, 314-322.
Monson RK, Jones RT, Rosenstiel TN, Schnitzler J (2013) Why only some plants emit isoprene. Plant, Cell and Environment, 36, 503-516.
Sasaki K, Saito T, Lämsä M et al. (2007) Plants utilize isoprene emission as a thermotolerance mechanism. Plant and Cell Physiology, 48, 1254-1262.
Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology, and ecology. Journal of Atmospheric Chemistry, 33, 23-88.
Monson RK, Lerdau MT, Sharkey TD, Schimel DS, Fall R (1995) Biological aspects of constructing volatile organic compound emission inventories. Atmospheric Environment, 29, 2989-3002.
Sharkey TD, Singsass EL (1995) Why plants emit isoprene. Nature, 374, 769.
Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science, 319, 756-760.
Grace JB (2006) Structural Equation Modeling and Natural Systems. Cambridge University Press, New York.
Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment, 25, 251-263.
Ainsworth EA, Rogers A, Nelson R, Long SP (2003) Testing the "source-sink" hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology, 122, 85-94.
1997; 115
2011; 157
2010; 15
2002; 192
2004; 27
2013; 64
2003; 13
2011; 11
2008; 31
1995; 374
2005; 28
1998; 18
2006; 63
1994; 105
1989; 76
1999; 19
2008; 319
2011; 65
2011; 24
2014; 19
1995; 29
2010; 3
2009; 19
2003; 122
2005; 110
2011
1997; 20
2006; 6
2006
2014b; 481
1994
2007; 51
2001; 28
2002
1996; 16
2001; 126
2012; 195
2002; 25
2004; 274
2007; 316
2013; 36
1993; 95
2015; 20
2014; 37
2009; 9
1999; 33
2014a; 84
1998; 103
2014
2013
1999; 118
2001; 35
2003; 421
2012; 5
2007; 48
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
Burnham KP (e_1_2_6_11_1) 2002
Singsass EL (e_1_2_6_53_1) 1997; 115
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_50_1
Arneth A (e_1_2_6_4_1) 2010; 3
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
Barta C (e_1_2_6_6_1) 2011
e_1_2_6_40_1
IPCC (e_1_2_6_31_1) 2013
e_1_2_6_8_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 11
  start-page: 8037
  year: 2011
  end-page: 8052
  article-title: Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation
  publication-title: Atmospheric Chemistry and Physics
– start-page: 3
  year: 2013
  end-page: 18
– volume: 192
  start-page: 269
  year: 2002
  end-page: 277
  article-title: Protection by isoprene against singlet oxygen in leaves
  publication-title: Plant Physiology
– volume: 19
  start-page: 699
  year: 2009
  end-page: 708
  article-title: Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data
  publication-title: Ecological Applications
– volume: 28
  start-page: 1707
  year: 2001
  end-page: 1710
  article-title: Seasonal temperature variations influence isoprene emission
  publication-title: Geophysical Research Letters
– volume: 157
  start-page: 905
  year: 2011
  end-page: 916
  article-title: Increased thermostability of thylakoid membranes in isoprene‐emitting leaves probed with three biophysical techniques
  publication-title: Plant Physiology
– volume: 105
  start-page: 279
  year: 1994
  end-page: 285
  article-title: Isoprene emission from velvet bean leaves: interactions among nitrogen availability, growth photon flux density, and leaf development
  publication-title: Plant Physiology
– volume: 84
  start-page: 314
  year: 2014a
  end-page: 322
  article-title: Observed and modeled ecosystem isoprene fluxes from an oak‐dominated temperate forest and the influence of drought stress
  publication-title: Atmospheric Environment
– volume: 25
  start-page: 251
  year: 2002
  end-page: 263
  article-title: Water deficits and hydraulic limits to leaf water supply
  publication-title: Plant, Cell and Environment
– year: 1994
– year: 2014
– volume: 122
  start-page: 85
  year: 2003
  end-page: 94
  article-title: Testing the “source‐sink” hypothesis of down‐regulation of photosynthesis in elevated [CO ] in the field with single gene substitutions in
  publication-title: Agricultural and Forest Meteorology
– volume: 28
  start-page: 318
  year: 2005
  end-page: 327
  article-title: On the relationship between isoprene emission and thermotolerance in leaves exposed to high temperatures and during the recovery from a heat stress
  publication-title: Plant, Cell and Environment
– volume: 33
  start-page: 23
  year: 1999
  end-page: 88
  article-title: Biogenic volatile organic compounds (VOC): an overview on emission, physiology, and ecology
  publication-title: Journal of Atmospheric Chemistry
– volume: 5
  start-page: 1471
  year: 2012
  end-page: 2012
  article-title: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions
  publication-title: Geoscientific Model Development
– volume: 24
  start-page: 699
  year: 2011
  end-page: 711
  article-title: Multimodel inference in ecology and evolution: challenges and solutions
  publication-title: Journal of Evolutionary Biology
– volume: 126
  start-page: 993
  year: 2001
  end-page: 1000
  article-title: Ozone quenching properties of isoprene and its antioxidant role in leaves
  publication-title: Plant Physiology
– volume: 31
  start-page: 1882
  year: 2008
  end-page: 1894
  article-title: Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress
  publication-title: Plant, Cell and Environment
– volume: 20
  start-page: 72
  year: 2015
  end-page: 75
  article-title: Urban plant physiology: adaptation‐mitigation strategies under permanent stress
  publication-title: Trends in Plant Science
– volume: 195
  start-page: 541
  year: 2012
  end-page: 559
  article-title: Modeling isoprene emission rate from leaves
  publication-title: New Phytologist
– volume: 51
  start-page: 485
  year: 2007
  end-page: 499
  article-title: Transgenic, non‐isoprene emitting poplars don't like it hot
  publication-title: The Plant Journal
– volume: 115
  start-page: 1413
  year: 1997
  end-page: 1420
  article-title: Isoprene increases thermotolerance of isoprene‐emitting species
  publication-title: Plant Physiology
– volume: 319
  start-page: 756
  year: 2008
  end-page: 760
  article-title: Global change and the ecology of cities
  publication-title: Science
– volume: 103
  start-page: 31045
  year: 1998
  end-page: 31056
  article-title: Seasonal course of isoprene emissions from a midlatitude deciduous forest
  publication-title: Journal of Geophysical Research
– volume: 20
  start-page: 569
  year: 1997
  end-page: 578
  article-title: Controls on isoprene emission from trees in a subtropical dry forest
  publication-title: Plant, Cell and Environment
– volume: 274
  start-page: 393
  year: 2004
  end-page: 401
  article-title: Impact of rising CO on emissions of volatile organic compounds: isoprene emission from growing at elevated CO in a natural carbon dioxide spring
  publication-title: Plant, Cell and Environment
– volume: 27
  start-page: 747
  year: 2004
  end-page: 755
  article-title: Stress‐induced changes in carbon sources for isoprene production in
  publication-title: Plant, Cell and Environment
– volume: 16
  start-page: 25
  year: 1996
  end-page: 32
  article-title: Effects of light, temperature, and canopy position on net photosynthesis and isoprene emission from sweetgum ( ) leaves
  publication-title: Tree Physiology
– volume: 37
  start-page: 1727
  year: 2014
  end-page: 1740
  article-title: The future of isoprene emission from leaves, canopies, and landscapes
  publication-title: Plant, Cell and Environment
– volume: 6
  start-page: 2273
  year: 2006
  end-page: 2319
  article-title: Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry
  publication-title: Atmospheric Chemistry and Physics
– volume: 421
  start-page: 256
  year: 2003
  end-page: 259
  article-title: Increased CO uncouples growth from isoprene emission in an agriforest ecosystem
  publication-title: Nature
– volume: 18
  start-page: 441
  year: 1998
  end-page: 450
  article-title: Long‐term photosynthetic acclimation to increased atmospheric CO concentration in young birch ( ) trees
  publication-title: Tree Physiology
– volume: 63
  start-page: 625
  year: 2006
  end-page: 644
  article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long‐term consequences
  publication-title: Annals of Forest Science
– volume: 64
  start-page: 5509
  year: 2013
  end-page: 5523
  article-title: Elevated [CO ] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen
  publication-title: Journal of Experimental Botany
– volume: 29
  start-page: 2989
  year: 1995
  end-page: 3002
  article-title: Biological aspects of constructing volatile organic compound emission inventories
  publication-title: Atmospheric Environment
– volume: 36
  start-page: 503
  year: 2013
  end-page: 516
  article-title: Why only some plants emit isoprene
  publication-title: Plant, Cell and Environment
– volume: 35
  start-page: 3341
  year: 2001
  end-page: 3352
  article-title: Isoprene emission capacity for US tree species
  publication-title: Atmospheric Environment
– volume: 19
  start-page: 453
  year: 1999
  end-page: 459
  article-title: Regulation of water loss in populations of : the role of stomatal control in preventing xylem cavitation
  publication-title: Tree Physiology
– volume: 13
  start-page: 269
  year: 2003
  end-page: 278
  article-title: Diurnal variation in the basal emission rate of isoprene
  publication-title: Ecological Applications
– volume: 316
  start-page: 212
  year: 2007
  end-page: 213
  article-title: A positive feedback with negative consequences
  publication-title: Science
– volume: 65
  start-page: 23
  year: 2011
  end-page: 45
  article-title: AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons
  publication-title: Behavioral Ecology and Sociobiology
– volume: 118
  start-page: 109
  year: 1999
  end-page: 123
  article-title: Ecological and evolutionary aspects of isoprene emission from plants
  publication-title: Oecologia
– volume: 48
  start-page: 1254
  year: 2007
  end-page: 1262
  article-title: Plants utilize isoprene emission as a thermotolerance mechanism
  publication-title: Plant and Cell Physiology
– volume: 110
  start-page: 1
  year: 2005
  end-page: 10
  article-title: Variation in isoprene emission from : sources, causes, and consequences for estimating fluxes
  publication-title: Journal of Geophysical Research
– volume: 6
  start-page: 3181
  year: 2006
  end-page: 3200
  article-title: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)
  publication-title: Atmospheric Chemistry and Physics
– volume: 76
  start-page: 297
  year: 1989
  end-page: 307
  article-title: Regression and time series model selection in small samples
  publication-title: Biometrika
– year: 2002
– year: 2006
– volume: 15
  start-page: 154
  year: 2010
  end-page: 166
  article-title: Abiotic stress and induced BVOCs
  publication-title: Trends in Plant Science
– volume: 95
  start-page: 328
  year: 1993
  end-page: 333
  article-title: Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves
  publication-title: Oecologia
– volume: 374
  start-page: 769
  year: 1995
  article-title: Why plants emit isoprene
  publication-title: Nature
– volume: 3
  start-page: 525
  year: 2010
  end-page: 532
  article-title: Terrestrial biogeochemical feedbacks in the climate system
  publication-title: Nature
– volume: 9
  start-page: 4053
  year: 2009
  end-page: 4076
  article-title: Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties
  publication-title: Atmospheric Chemistry and Physics
– volume: 19
  start-page: 439
  year: 2014
  end-page: 446
  article-title: Evolution of isoprene emission capacity in plants
  publication-title: Trends in Plant Science
– volume: 481
  start-page: 352
  year: 2014b
  end-page: 359
  article-title: Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO2 concentration
  publication-title: Science of the Total Environment
– start-page: 5
  year: 2011
  end-page: 9
– year: 2013
– ident: e_1_2_6_16_1
  doi: 10.1890/1051-0761(2003)013[0269:DVITBE]2.0.CO;2
– ident: e_1_2_6_32_1
  doi: 10.5194/acp-9-4053-2009
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1420-9101.2010.02210.x
– ident: e_1_2_6_22_1
  doi: 10.1017/CBO9780511617799
– ident: e_1_2_6_39_1
  doi: 10.1016/1352-2310(94)00360-W
– ident: e_1_2_6_44_1
  doi: 10.1016/j.scitotenv.2014.02.065
– ident: e_1_2_6_45_1
– ident: e_1_2_6_55_1
  doi: 10.1046/j.0016-8025.2001.00799.x
– ident: e_1_2_6_30_1
  doi: 10.1093/biomet/76.2.297
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1365-3040.1997.00075.x
– ident: e_1_2_6_37_1
  doi: 10.1016/j.tplants.2009.12.006
– ident: e_1_2_6_38_1
  doi: 10.1104/pp.126.3.993
– ident: e_1_2_6_23_1
  doi: 10.1126/science.1150195
– ident: e_1_2_6_25_1
  doi: 10.5194/acp-6-3181-2006
– ident: e_1_2_6_18_1
  doi: 10.1029/2004JD005229
– ident: e_1_2_6_56_1
  doi: 10.1093/jxb/ert318
– ident: e_1_2_6_42_1
  doi: 10.1029/2000GL011583
– ident: e_1_2_6_54_1
  doi: 10.1093/treephys/19.7.453
– ident: e_1_2_6_3_1
  doi: 10.1016/j.agrformet.2003.09.002
– ident: e_1_2_6_12_1
  doi: 10.1007/s00265-010-1029-6
– ident: e_1_2_6_26_1
  doi: 10.5194/gmd-5-1471-2012
– volume: 115
  start-page: 1413
  year: 1997
  ident: e_1_2_6_53_1
  article-title: Isoprene increases thermotolerance of isoprene‐emitting species
  publication-title: Plant Physiology
  doi: 10.1104/pp.115.4.1413
  contributor:
    fullname: Singsass EL
– ident: e_1_2_6_46_1
  doi: 10.1093/treephys/18.7.441
– ident: e_1_2_6_48_1
  doi: 10.1093/pcp/pcm104
– ident: e_1_2_6_14_1
  doi: 10.1016/j.tplants.2014.01.009
– ident: e_1_2_6_15_1
  doi: 10.5194/acp-6-2273-2006
– ident: e_1_2_6_51_1
  doi: 10.1111/pce.12289
– ident: e_1_2_6_19_1
  doi: 10.1016/S1352-2310(00)00407-6
– ident: e_1_2_6_50_1
  doi: 10.1007/BF00320984
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-313X.2007.03157.x
– ident: e_1_2_6_35_1
  doi: 10.1126/science.1141486
– ident: e_1_2_6_20_1
– ident: e_1_2_6_2_1
  doi: 10.1104/pp.010909
– ident: e_1_2_6_52_1
  doi: 10.1038/374769a0
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-3040.2004.01177.x
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1365-3040.2003.01155.x
– ident: e_1_2_6_5_1
  doi: 10.5194/acp-11-8037-2011
– ident: e_1_2_6_21_1
  doi: 10.1029/98JD02708
– volume: 3
  start-page: 525
  year: 2010
  ident: e_1_2_6_4_1
  article-title: Terrestrial biogeochemical feedbacks in the climate system
  publication-title: Nature
  contributor:
    fullname: Arneth A
– ident: e_1_2_6_27_1
  doi: 10.1104/pp.105.1.279
– ident: e_1_2_6_34_1
  doi: 10.1890/08-0330.1
– ident: e_1_2_6_7_1
– ident: e_1_2_6_10_1
  doi: 10.1051/forest:2006042
– ident: e_1_2_6_28_1
  doi: 10.1093/treephys/16.1-2.25
– ident: e_1_2_6_47_1
  doi: 10.1038/nature01312
– start-page: 3
  volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_6_31_1
  contributor:
    fullname: IPCC
– start-page: 5
  volume-title: The effect of drought stress on carbon assimilation and isoprene emission capacities of oak species in urban and rural areas of Texas
  year: 2011
  ident: e_1_2_6_6_1
  contributor:
    fullname: Barta C
– ident: e_1_2_6_43_1
  doi: 10.1016/j.atmosenv.2013.11.055
– ident: e_1_2_6_8_1
– ident: e_1_2_6_29_1
  doi: 10.1007/s004420050709
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1365-3040.2004.01314.x
– ident: e_1_2_6_57_1
– volume-title: Model Selection and Multimodel Inference: A Practical Information‐Theoretical Approach
  year: 2002
  ident: e_1_2_6_11_1
  contributor:
    fullname: Burnham KP
– ident: e_1_2_6_33_1
  doi: 10.1023/A:1006127516791
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1365-3040.2008.01893.x
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1469-8137.2012.04204.x
– ident: e_1_2_6_41_1
  doi: 10.1111/pce.12015
– ident: e_1_2_6_60_1
  doi: 10.1104/pp.111.182519
– ident: e_1_2_6_13_1
  doi: 10.1016/j.tplants.2014.11.001
SSID ssj0003206
Score 2.4221604
Snippet Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured...
Abstract Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we...
SourceID proquest
crossref
pubmed
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 4221
SubjectTerms Agriculture
biosphere-atmosphere interactions
Butadienes - metabolism
Carbon dioxide
Cities
Climate Change
Environment
environmental factors
gas exchange
Greenhouse gases
growing season
heat tolerance
Hemiterpenes - metabolism
Hot Temperature
isoprene
leaves
Liquidambar - metabolism
Liquidambar styraciflua
Pentanes - metabolism
Photosynthesis
physiological response
Plant Leaves - metabolism
post oak
Quercus - metabolism
Quercus stellata
spring
stomatal conductance
summer
sweet gum
temperature
Texas
Trees
Trees - metabolism
Urban areas
VOC
volatile organic compound
Title Photosynthesis and isoprene emission from trees along an urban–rural gradient in Texas
URI https://api.istex.fr/ark:/67375/WNG-1DF40R0V-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13010
https://www.ncbi.nlm.nih.gov/pubmed/26111255
https://www.proquest.com/docview/1721885357
https://search.proquest.com/docview/1722424174
https://search.proquest.com/docview/1727696204
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qQfDFj9PaaJVVpPiSskl284FPeu21CC3S9vQehGU32ZxHSyLJHbQ--T_4H_qXOLO5S62oiC8hH7OwmZ2Z_GYzHwAv4hwtr4mEz00e-qIMhK9TLekQlmnMbaYpG_nwKD4Yi7cTOVmDV6tcmK4-RL_hRprh7DUpuDbtT0o-zQ21MnbpVUGUUDjX7vFV6agodH01g0gKNDVBtKwqRFE8_chr36Ibpa4RoRJzL34HN6-jV_f5Gd2Bj6uJd1EnZzuLudnJv_xS0_E_3-wu3F7CUva6k6N7sGarAdzsGlVeDmBj7yofDsmWBqEdgHeIoLtuHBnbZsPzGSJgd3UfJu8-1fO6vawQY7azlumqYLO2dkU0GbWZo406RvktjH6NI8F5XU2RjC0ao6vvX781VBOETRsXljZns4qd2gvdPoDxaO90eOAvGzn4eUyp6oWJTCJEUsaRCLVJUxtmXOZUGl6mJkt5gZJijE6FLLMS7xYhlzoKyjwsuMVRG7Be1ZXdBKYjntlY6IDrQOAS64yX2qKXaI0sRK49eL5aUvW5q9ehVn4O8lU5vnqwiYut9BTtqBqfhLTrQ6Xuwyz0YNtJQD9YN2cU-5ZI9eFoXwW7I8GP-Xt14sHWSkTUUu1bRf50igBIJh486x8jQ-kvjK5svXA0lJKDnuBfaZI4o1YBHjzsxK-fELq8iJGl9OClE6I_v6baH75xJ4_-nfQx3CJ2dNmWW7A-bxb2CcKuuXnq9OsH7UQl3Q
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIgQXHoFSQ4EFoYpLqrW964fEBdKmAZoItUnJBa12_QhRKxvZidRy4j_wD_klzKyTlCJAiEvk2LOSPTsz_ma98w3A8yDByGt80eYm8doid0VbR1rSj5dHAc9iTdXI_UHQG4m3Yzleg5fLWpiGH2K14EaeYeM1OTgtSP_k5ZPEUC9jqq-6iu7uU-OG3cML8ijfs501XV8KDDauv-AVon08q6GX3kZXcl0iRiX1nv0OcF7Gr_YF1L0FH5e33uw7OdmZz8xO8uUXVsf_fbbbcHOBTNmrxpTuwFpWtOBa06vyvAUbexclcSi2iAl1C5w-4u6ysmJsm3VOpwiC7b-7MH7_qZyV9XmBMLOe1kwXKZvWpeXRZNRpjtbqGJW4MPo6jgKnZTFBMTavjC6-f_1WES0Im1R2Z9qMTQs2zM50fQ9G3b1hp9de9HJoJwFVq6fGN6EQYR74wtMmijIv5jIhdngZmTjiKRqLMToSMo9zPJt6XGrfzRMv5RmO2oD1oiyyTWDa53EWCO1y7QqcYx3zXGeYKGZGpiLRDjxbzqn63FB2qGWqg3pVVq8ObOJsKz3BUKpGRx4t_BDbvRd7DmxbE1gN1tUJbX8Lpfow2FfublfwQ36sjhzYWtqIWnh-rSiljhADydCBp6vLqFD6EKOLrJxbGarKwWTwrzJhEFO3AAfuN_a3uiHMehEmS-nAC2tFf35Mtd95bQ8e_LvoE7jeG_YP1MGbwbuHcINU0xRfbsH6rJpnjxCFzcxj62w_AC1QKfU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NIRAvAwpjGQMMQhMvnZzEThPxBN268WfVtK3QByTLTpxSbUqmpJU2nvgOfEM-CXdO2zEECPFSpclZSs53l985vt8BPI9SjLwmFG1u0qAtcl-0dawl_QR5HHGbaKpG3u9HewPxdiiHS_ByXgvT8EMsFtzIM1y8Jgc_y_KfnHyUGmplTOVV10WEyJcQ0eEld1QYuMaafigFxho_nNEK0TaexdArL6NruS4RopJ2z3-HN6_CV_f-6d2GT_M7b7adnGxNJ2Yr_fILqeN_PtodWJnhUvaqMaS7sGSLFtxoOlVetGB157IgDsVmEaFugbePqLusnBjbZN3TMUJg9-8eDA8-l5OyvigQZNbjmukiY-O6dCyajPrM0UodowIXRt_GUeC0LEYoxqaV0cX3r98qIgVho8rtS5uwccGO7bmu78Ogt3Pc3WvPOjm004hq1TMTmo4QnTwKRaBNHNsg4TIlbngZmyTmGZqKMToWMk9yPJsFXOrQz9Mg4xZHrcJyURZ2DZgOeWIjoX2ufYFTrBOea4tpojUyE6n24Nl8StVZQ9ih5okO6lU5vXqwhpOt9AgDqRocBbTsQ1z3QRJ4sOksYDFYVye0-a0j1cf-rvK3e4If8g_qyIONuYmomd_XihLqGBGQ7HjwdHEZFUqfYXRhy6mToZocTAX_KtOJEuoV4MGDxvwWN4Q5L4JkKT144Yzoz4-pdruv3cH6v4s-gZsH2z31_k3_3UO4RZppKi83YHlSTe0jhGAT89i52g-LGSik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photosynthesis+and+isoprene+emission+from+trees+along+an+urban%E2%80%93rural+gradient+in+Texas&rft.jtitle=Global+change+biology&rft.au=Lahr%2C+Eleanor+C&rft.au=Schade%2C+Gunnar+W&rft.au=Crossett%2C+Caitlin+C&rft.au=Watson%2C+Matthew+R&rft.date=2015-11-01&rft.pub=Blackwell+Science&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=21&rft.issue=11&rft.spage=4221&rft.epage=4236&rft_id=info:doi/10.1111%2Fgcb.13010&rft.externalDocID=US201500212292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon