Establishment of serological neutralizing tests using pseudotyped viruses for comprehensive detection of antibodies against all 18 lyssaviruses

Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system t...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 86; no. 1; pp. 128 - 134
Main Authors INOUE, Yusuke, KAKU, Yoshihiro, HARADA, Michiko, ISHIJIMA, Keita, KURODA, Yudai, TATEMOTO, Kango, VIRHUEZ-MENDOZA, Milagros, NISHINO, Ayano, YAMAMOTO, Tsukasa, PARK, Eun-sil, INOUE, Satoshi, MATSUU, Aya, MAEDA, Ken
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 01.01.2024
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine.
AbstractList Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine.
Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine.
Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine.Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine.
ArticleNumber 23-0463
Author INOUE, Yusuke
NISHINO, Ayano
ISHIJIMA, Keita
HARADA, Michiko
MAEDA, Ken
YAMAMOTO, Tsukasa
KURODA, Yudai
KAKU, Yoshihiro
VIRHUEZ-MENDOZA, Milagros
MATSUU, Aya
PARK, Eun-sil
TATEMOTO, Kango
INOUE, Satoshi
Author_xml – sequence: 1
  fullname: INOUE, Yusuke
  organization: Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
– sequence: 2
  fullname: KAKU, Yoshihiro
  organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 3
  fullname: HARADA, Michiko
  organization: Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
– sequence: 4
  fullname: ISHIJIMA, Keita
  organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 5
  fullname: KURODA, Yudai
  organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 6
  fullname: TATEMOTO, Kango
  organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 7
  fullname: VIRHUEZ-MENDOZA, Milagros
  organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 8
  fullname: NISHINO, Ayano
  organization: Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
– sequence: 9
  fullname: YAMAMOTO, Tsukasa
  organization: Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
– sequence: 10
  fullname: PARK, Eun-sil
  organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 11
  fullname: INOUE, Satoshi
  organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 12
  fullname: MATSUU, Aya
  organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 13
  fullname: MAEDA, Ken
  organization: Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38092389$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1vEzEQhi1URNPCjTOyxIVDt_hjv3xCpSofUiUucLa89mziyGsH2xsp_An-cr1KiICLbWmeeWfG816hCx88IPSaklvKBHu_3U_plvGK1C1_hlaU113V1VxcoBURtK061pBLdJXSlhBG61a8QJe8J4LxXqzQ74eU1eBs2kzgMw4jThCDC2urlcMe5hyVs7-sX-MMKSc8p-W9SzCbkA87MHhv45wg4TFErMO0i7ABn-wesIEMOtvgF13lsx2CsYVUa2V9ylg5h2mP3SEldVJ5iZ6PyiV4dbqv0Y9PD9_vv1SP3z5_vb97rHRL-1zBaIgeOef9MNDWMG6aQZOBGqiNBkMbEKyh0LCaCaJZy7uG6Z4aM-p-HE3Dr9GHo-5uHiYoOX4ZVO6inVQ8yKCs_Dfi7Uauw15S0teib3lReHdSiOHnXP5GTjZpcE55CHOSpTATHSOdKOjb_9BtmKMv8xVqaU7UHSnUm79bOvfyZ1kFuDkCOoaUIoxnhBK5eEEuXpCMy8ULBf94xLdlxWs4wypmqx0c4b6VdDlOSeeg3qgowfMn-5HEzw
Cites_doi 10.1128/JVI.75.7.3268-3276.2001
10.1186/s12917-017-0948-0
10.1128/jvi.64.6.3087-3090.1990
10.3390/v6082974
10.1017/S0950268817001455
10.1099/jgv.0.001068
10.1080/22221751.2022.2078742
10.1016/S0140-6736(13)62707-5
10.3390/tropicalmed4010031
10.1099/0022-1317-64-4-843
10.1126/scitranslmed.ade9078
10.3390/v13091769
10.3201/eid2208.151986
10.3390/v13010069
10.1128/jvi.6.5.690-692.1970
10.1016/j.actatropica.2021.106254
10.1016/j.jviromet.2011.11.003
10.1016/j.virusres.2005.03.009
10.1099/jgv.0.000998
10.1007/978-1-59745-181-9_23
10.1128/JVI.01628-12
10.3201/eid1301.060810
10.3201/eid0204.960408
10.3390/biology12060878
10.3390/tropicalmed4010046
10.3201/eid2404.171696
10.3390/v13040576
10.1002/jmv.10481
10.4161/21645515.2014.972741
10.1371/journal.pntd.0000595
10.1016/j.vaccine.2018.06.061
10.1016/j.vaccine.2012.10.015
10.7861/clinmedicine.14-6-78
10.1016/j.micinf.2006.11.003
10.1099/vir.0.2008/000349-0
10.1038/s41467-020-14398-7
10.1038/nrdp.2017.91
10.3390/v13101979
10.7883/yoken.JJID.2023.400
10.15252/emmm.201505986
10.1016/j.jviromet.2009.04.037
10.1371/journal.pntd.0003709
10.3390/v13102064
10.1016/0378-1119(91)90434-D
10.1016/j.celrep.2020.107920
ContentType Journal Article
Copyright 2024 by the Japanese Society of Veterinary Science
2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Japanese Society of Veterinary Science 2024
Copyright_xml – notice: 2024 by the Japanese Society of Veterinary Science
– notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Japanese Society of Veterinary Science 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.23-0463
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 134
ExternalDocumentID PMC10849863
38092389
10_1292_jvms_23_0463
article_jvms_86_1_86_23_0463_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
CITATION
OVT
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c618t-efd0cf3338bb16d23d5bc0b1de4dced15e9251e524290c263752c81ddfc8ffd53
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 18:35:23 EDT 2025
Fri Jul 11 06:57:48 EDT 2025
Mon Jun 30 04:45:11 EDT 2025
Thu Apr 03 07:02:23 EDT 2025
Tue Jul 01 00:31:12 EDT 2025
Thu Feb 01 14:11:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords rabies
vaccine
cross-reactivity
pseudotype
lyssavirus
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-efd0cf3338bb16d23d5bc0b1de4dced15e9251e524290c263752c81ddfc8ffd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.23-0463
PMID 38092389
PQID 2926379470
PQPubID 2028964
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849863
proquest_miscellaneous_2902972079
proquest_journals_2926379470
pubmed_primary_38092389
crossref_primary_10_1292_jvms_23_0463
jstage_primary_article_jvms_86_1_86_23_0463_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2024
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 1. Badrane H, Bahloul C, Perrin P, Tordo N. 2001. Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J Virol 75: 3268–3276.
20. Fooks AR, McElhinney LM, Pounder DJ, Finnegan CJ, Mansfield K, Johnson N, Brookes SM, Parsons G, White K, McIntyre PG, Nathwani D. 2003. Case report: isolation of a European bat lyssavirus type 2a from a fatal human case of rabies encephalitis. J Med Virol 71: 281–289.
35. Leopardi S, Barneschi E, Manna G, Zecchin B, Priori P, Drzewnioková P, Festa F, Lombardo A, Parca F, Scaravelli D, Maroni Ponti A, De Benedictis P. 2021. Spillover of West caucasian bat lyssavirus (WCBV) in a domestic cat and Westward expansion in the palearctic region. Viruses 13: 2064.
5. Cai M, Liu H, Jiang F, Sun Y, Wang W, An Y, Zhang M, Li X, Liu D, Li Y, Yu Y, Huang W, Wang Y. 2022. Analysis of the evolution, infectivity and antigenicity of circulating rabies virus strains. Emerg Microbes Infect 11: 1474–1487.
13. Evans JS, Selden D, Wu G, Wright E, Horton DL, Fooks AR, Banyard AC. 2018. Antigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssaviruses. J Gen Virol 99: 169–180.
11. De Benedictis P, Minola A, Rota Nodari E, Aiello R, Zecchin B, Salomoni A, Foglierini M, Agatic G, Vanzetta F, Lavenir R, Lepelletier A, Bentley E, Weiss R, Cattoli G, Capua I, Sallusto F, Wright E, Lanzavecchia A, Bourhy H, Corti D. 2016. Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis. EMBO Mol Med 8: 407–421.
31. Inoue Y, Kaku Y, Harada M, Ishijima K, Kuroda Y, Tatemoto K, Mendoza VM, Nishino A, Yamamoto T, Inoue S, Matsuu A, Maeda K. 2023. Cross-neutralization activities of antibodies against 18 lyssavirus glycoproteins. Jpn J Infect Dis (In press).
48. Wright E, Temperton NJ, Marston DA, McElhinney LM, Fooks AR, Weiss RA. 2008. Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison. J Gen Virol 89: 2204–2213.
12. Dietzschold B, Gore M, Casali P, Ueki Y, Rupprecht CE, Notkins AL, Koprowski H. 1990. Biological characterization of human monoclonal antibodies to rabies virus. J Virol 64: 3087–3090.
7. Ciconello FN, Katz ISS, Fernandes ER, Guedes F, Silva SR. 2022. A comparative review of serological assays for the detection of rabies virus-specific antibodies. Acta Trop 226: 106254.
19. Fooks AR, Cliquet F, Finke S, Freuling C, Hemachudha T, Mani RS, Müller T, Nadin-Davis S, Picard-Meyer E, Wilde H, Banyard AC. 2017. Rabies. Nat Rev Dis Primers 3: 17091.
28. Hellert J, Buchrieser J, Larrous F, Minola A, de Melo GD, Soriaga L, England P, Haouz A, Telenti A, Schwartz O, Corti D, Bourhy H, Rey FA. 2020. Structure of the prefusion-locking broadly neutralizing antibody RVC20 bound to the rabies virus glycoprotein. Nat Commun 11: 596.
14. Evans JS, Horton DL, Easton AJ, Fooks AR, Banyard AC. 2012. Rabies virus vaccines: is there a need for a pan-lyssavirus vaccine? Vaccine 30: 7447–7454.
16. Foggin CM. 1988. Rabies and Rabies-Related Viruses in Zimbabwe: Historical, Virological and Ecological Aspects. pp. 186–221. University of Zimbabwe, Harare.
24. Genus: Lyssavirus. ICTV. https://ictv.global/report/chapter/rhabdoviridae/rhabdoviridae/lyssavirus [accessed on November 10, 2023].
21. Fooks AR, Shipley R, Markotter W, Tordo N, Freuling CM, Müller T, McElhinney LM, Banyard AC, Rupprecht CE. 2021. Renewed public health threat from emerging lyssaviruses. Viruses 13: 1769.
4. Benkeser D, Montefiori DC, McDermott AB, Fong Y, Janes HE, Deng W, Zhou H, Houchens CR, Martins K, Jayashankar L, Castellino F, Flach B, Lin BC, O’Connell S, McDanal C, Eaton A, Sarzotti-Kelsoe M, Lu Y, Yu C, Borate B, van der Laan LWP, Hejazi NS, Kenny A, Carone M, Williamson BD, Garver J, Altonen E, Rudge T, Huynh C, Miller J, El Sahly HM, Baden LR, Frey S, Malkin E, Spector SA, Andrasik MP, Kublin JG, Corey L, Neuzil KM, Carpp LN, Pajon R, Follmann D, Donis RO, Koup RA, Gilbert PB. Immune Assays Moderna Inc. Coronavirus Vaccine Prevention Network (CoVPN)/Coronavirus Efficacy (COVE) United States Government (USG)/CoVPN Biostatistics Teams. 2023. Comparing antibody assays as correlates of protection against COVID-19 in the COVE mRNA-1273 vaccine efficacy trial. Sci Transl Med 15: eade9078.
26. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, Barrat J, Blanton JD, Briggs DJ, Cleaveland S, Costa P, Freuling CM, Hiby E, Knopf L, Leanes F, Meslin FX, Metlin A, Miranda ME, Müller T, Nel LH, Recuenco S, Rupprecht CE, Schumacher C, Taylor L, Vigilato MA, Zinsstag J, Dushoff J. Global Alliance for Rabies Control Partners for Rabies Prevention. 2015. Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis 9: e0003709.
46. Wise EL, Marston DA, Banyard AC, Goharriz H, Selden D, Maclaren N, Goddard T, Johnson N, McElhinney LM, Brouwer A, Aegerter JN, Smith GC, Horton DL, Breed AC, Fooks AR. 2017. Passive surveillance of United Kingdom bats for lyssaviruses (2005–2015). Epidemiol Infect 145: 2445–2457.
2. Banyard AC, Evans JS, Luo TR, Fooks AR. 2014. Lyssaviruses and bats: emergence and zoonotic threat. Viruses 6: 2974–2990.
47. World Health Organization. 2018. Rabies vaccines: WHO position paper, April 2018-recommendations. Vaccine 36: 5500–5503.
25. Gunawardena PS, Marston DA, Ellis RJ, Wise EL, Karawita AC, Breed AC, McElhinney LM, Johnson N, Banyard AC, Fooks AR. 2016. Lyssavirus in Indian flying foxes, Sri Lanka. Emerg Infect Dis 22: 1456–1459.
23. Fukushi S, Watanabe R, Taguchi F. 2008. Pseudotyped vesicular stomatitis virus for analysis of virus entry mediated by SARS coronavirus spike proteins. Methods Mol Biol 454: 331–338.
39. Moore SM, Hanlon CA. 2010. Rabies-specific antibodies: measuring surrogates of protection against a fatal disease. PLoS Negl Trop Dis 4: e595.
27. Hanlon CA, Kuzmin IV, Blanton JD, Weldon WC, Manangan JS, Rupprecht CE. 2005. Efficacy of rabies biologics against new lyssaviruses from Eurasia. Virus Res 111: 44–54.
38. Marston DA, Ellis RJ, Horton DL, Kuzmin IV, Wise EL, McElhinney LM, Banyard AC, Ngeleja C, Keyyu J, Cleaveland S, Lembo T, Rupprecht CE, Fooks AR. 2012. Complete genome sequence of Ikoma lyssavirus. J Virol 86: 10242–10243.
3. Banyard AC, Selden D, Wu G, Thorne L, Jennings D, Marston D, Finke S, Freuling CM, Müller T, Echevarría JE, Fooks AR. 2018. Isolation, antigenicity and immunogenicity of Lleida bat lyssavirus. J Gen Virol 99: 1590–1599.
15. Fisher CR, Lowe DE, Smith TG, Yang Y, Hutson CL, Wirblich C, Cingolani G, Schnell MJ. 2020. Lyssavirus Vaccine with a Chimeric Glycoprotein Protects across Phylogroups. Cell Rep 32: 107920.
18. Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. 2014. Current status of rabies and prospects for elimination. Lancet 384: 1389–1399.
10. Coertse J, Markotter W, le Roux K, Stewart D, Sabeta CT, Nel LH. 2017. New isolations of the rabies-related Mokola virus from South Africa. BMC Vet Res 13: 37.
9. Coertse J, Geldenhuys M, le Roux K, Markotter W. 2021. Lagos bat virus, an under-reported rabies-related lyssavirus. Viruses 13: 576.
42. Shepherd JG, Davis C, Streicker DG, Thomson EC. 2023. Emerging rhabdoviruses and human infection. Biology (Basel) 12: 878.
6. Calvelage S, Tammiranta N, Nokireki T, Gadd T, Eggerbauer E, Zaeck LM, Potratz M, Wylezich C, Höper D, Müller T, Finke S, Freuling CM. 2021. Genetic and antigenetic characterization of the novel kotalahti bat lyssavirus (KBLV). Viruses 13: 69.
32. Kaku Y, Noguchi A, Marsh GA, Barr JA, Okutani A, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A, Inoue S, Wang LF. 2012. Second generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: sensitive and high-throughput analysis utilizing secreted alkaline phosphatase. J Virol Methods 179: 226–232.
37. Mallewa M, Fooks AR, Banda D, Chikungwa P, Mankhambo L, Molyneux E, Molyneux ME, Solomon T. 2007. Rabies encephalitis in malaria-endemic area, Malawi, Africa. Emerg Infect Dis 13: 136–139.
45. Warrell MJ, Warrell DA. 2015. Rabies: the clinical features, management and prevention of the classic zoonosis. Clin Med (Lond) 15: 78–81.
22. Fraser GC, Hooper PT, Lunt RA, Gould AR, Gleeson LJ, Hyatt AD, Russell GM, Kattenbelt JA. 1996. Encephalitis caused by a Lyssavirus in fruit bats in Australia. Emerg Infect Dis 2: 327–331.
30. Hu SC, Hsu CL, Lee MS, Tu YC, Chang JC, Wu CH, Lee SH, Ting LJ, Tsai KR, Cheng MC, Tu WJ, Hsu WC. 2018. Lyssavirus in Japanese Pipistrelle, Taiwan. Emerg Infect Dis 24: 782–785.
41. Prada D, Boyd V, Baker M, Jackson B, O’Dea M. 2019. Insights into Australian bat lyssavirus in insectivorous bats of Western Australia. Trop Med Infect Dis 4: 46.
43. Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, Banyard AC. 2019. Bats and viruses: emergence of novel lyssaviruses and association of bats with viral zoonoses in the EU. Trop Med Infect Dis 4: 31.
8. Cleaveland S, Fèvre EM, Kaare M, Coleman PG. 2002. Estimating human rabies mortality in the United Republic of Tanzania from dog bite injuries. Bull World Health Organ 80: 304–310.
17. Folly AJ, Marston DA, Golding M, Shukla S, Wilkie R, Lean FZX, Núñez A, Worledge L, Aegerter J, Banyard AC, Fooks AR, Johnson N, McElhinney LM. 2021. Incursion of European bat lyssavirus 1 (EBLV-1) in serotine bats in the United Kingdom. Viruses 13: 1979.
34. Lafon M, Wiktor TJ, Macfarlan RI. 1983. Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. J Gen Virol 64: 843–851.
44. Shope RE, Murphy FA, Harrison AK, Causey OR, Kemp GE, Simpson DI, Moore DL. 1970. Two African viruses serologically and morphologically related to rabies virus. J Virol 6: 690–692.
29. Hotta K, Motoi Y, Okutani A, Kaku Y, Noguchi A, Inoue S, Yamada A. 2007. Role of GPI-anchored NCAM-120 in rabies virus infection. Microbes Infect 9: 167–174.
36. Malerczyk C, Freuling C, Gniel D, Giesen A, Selhorst T, Müller T. 2014. Cross-neutralization of antibodies induced
22
44
23
45
24
46
25
47
26
48
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: 14. Evans JS, Horton DL, Easton AJ, Fooks AR, Banyard AC. 2012. Rabies virus vaccines: is there a need for a pan-lyssavirus vaccine? Vaccine 30: 7447–7454.
– reference: 18. Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. 2014. Current status of rabies and prospects for elimination. Lancet 384: 1389–1399.
– reference: 35. Leopardi S, Barneschi E, Manna G, Zecchin B, Priori P, Drzewnioková P, Festa F, Lombardo A, Parca F, Scaravelli D, Maroni Ponti A, De Benedictis P. 2021. Spillover of West caucasian bat lyssavirus (WCBV) in a domestic cat and Westward expansion in the palearctic region. Viruses 13: 2064.
– reference: 25. Gunawardena PS, Marston DA, Ellis RJ, Wise EL, Karawita AC, Breed AC, McElhinney LM, Johnson N, Banyard AC, Fooks AR. 2016. Lyssavirus in Indian flying foxes, Sri Lanka. Emerg Infect Dis 22: 1456–1459.
– reference: 13. Evans JS, Selden D, Wu G, Wright E, Horton DL, Fooks AR, Banyard AC. 2018. Antigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssaviruses. J Gen Virol 99: 169–180.
– reference: 44. Shope RE, Murphy FA, Harrison AK, Causey OR, Kemp GE, Simpson DI, Moore DL. 1970. Two African viruses serologically and morphologically related to rabies virus. J Virol 6: 690–692.
– reference: 9. Coertse J, Geldenhuys M, le Roux K, Markotter W. 2021. Lagos bat virus, an under-reported rabies-related lyssavirus. Viruses 13: 576.
– reference: 12. Dietzschold B, Gore M, Casali P, Ueki Y, Rupprecht CE, Notkins AL, Koprowski H. 1990. Biological characterization of human monoclonal antibodies to rabies virus. J Virol 64: 3087–3090.
– reference: 31. Inoue Y, Kaku Y, Harada M, Ishijima K, Kuroda Y, Tatemoto K, Mendoza VM, Nishino A, Yamamoto T, Inoue S, Matsuu A, Maeda K. 2023. Cross-neutralization activities of antibodies against 18 lyssavirus glycoproteins. Jpn J Infect Dis (In press).
– reference: 34. Lafon M, Wiktor TJ, Macfarlan RI. 1983. Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. J Gen Virol 64: 843–851.
– reference: 28. Hellert J, Buchrieser J, Larrous F, Minola A, de Melo GD, Soriaga L, England P, Haouz A, Telenti A, Schwartz O, Corti D, Bourhy H, Rey FA. 2020. Structure of the prefusion-locking broadly neutralizing antibody RVC20 bound to the rabies virus glycoprotein. Nat Commun 11: 596.
– reference: 29. Hotta K, Motoi Y, Okutani A, Kaku Y, Noguchi A, Inoue S, Yamada A. 2007. Role of GPI-anchored NCAM-120 in rabies virus infection. Microbes Infect 9: 167–174.
– reference: 4. Benkeser D, Montefiori DC, McDermott AB, Fong Y, Janes HE, Deng W, Zhou H, Houchens CR, Martins K, Jayashankar L, Castellino F, Flach B, Lin BC, O’Connell S, McDanal C, Eaton A, Sarzotti-Kelsoe M, Lu Y, Yu C, Borate B, van der Laan LWP, Hejazi NS, Kenny A, Carone M, Williamson BD, Garver J, Altonen E, Rudge T, Huynh C, Miller J, El Sahly HM, Baden LR, Frey S, Malkin E, Spector SA, Andrasik MP, Kublin JG, Corey L, Neuzil KM, Carpp LN, Pajon R, Follmann D, Donis RO, Koup RA, Gilbert PB. Immune Assays Moderna Inc. Coronavirus Vaccine Prevention Network (CoVPN)/Coronavirus Efficacy (COVE) United States Government (USG)/CoVPN Biostatistics Teams. 2023. Comparing antibody assays as correlates of protection against COVID-19 in the COVE mRNA-1273 vaccine efficacy trial. Sci Transl Med 15: eade9078.
– reference: 6. Calvelage S, Tammiranta N, Nokireki T, Gadd T, Eggerbauer E, Zaeck LM, Potratz M, Wylezich C, Höper D, Müller T, Finke S, Freuling CM. 2021. Genetic and antigenetic characterization of the novel kotalahti bat lyssavirus (KBLV). Viruses 13: 69.
– reference: 15. Fisher CR, Lowe DE, Smith TG, Yang Y, Hutson CL, Wirblich C, Cingolani G, Schnell MJ. 2020. Lyssavirus Vaccine with a Chimeric Glycoprotein Protects across Phylogroups. Cell Rep 32: 107920.
– reference: 21. Fooks AR, Shipley R, Markotter W, Tordo N, Freuling CM, Müller T, McElhinney LM, Banyard AC, Rupprecht CE. 2021. Renewed public health threat from emerging lyssaviruses. Viruses 13: 1769.
– reference: 30. Hu SC, Hsu CL, Lee MS, Tu YC, Chang JC, Wu CH, Lee SH, Ting LJ, Tsai KR, Cheng MC, Tu WJ, Hsu WC. 2018. Lyssavirus in Japanese Pipistrelle, Taiwan. Emerg Infect Dis 24: 782–785.
– reference: 47. World Health Organization. 2018. Rabies vaccines: WHO position paper, April 2018-recommendations. Vaccine 36: 5500–5503.
– reference: 16. Foggin CM. 1988. Rabies and Rabies-Related Viruses in Zimbabwe: Historical, Virological and Ecological Aspects. pp. 186–221. University of Zimbabwe, Harare.
– reference: 5. Cai M, Liu H, Jiang F, Sun Y, Wang W, An Y, Zhang M, Li X, Liu D, Li Y, Yu Y, Huang W, Wang Y. 2022. Analysis of the evolution, infectivity and antigenicity of circulating rabies virus strains. Emerg Microbes Infect 11: 1474–1487.
– reference: 27. Hanlon CA, Kuzmin IV, Blanton JD, Weldon WC, Manangan JS, Rupprecht CE. 2005. Efficacy of rabies biologics against new lyssaviruses from Eurasia. Virus Res 111: 44–54.
– reference: 7. Ciconello FN, Katz ISS, Fernandes ER, Guedes F, Silva SR. 2022. A comparative review of serological assays for the detection of rabies virus-specific antibodies. Acta Trop 226: 106254.
– reference: 33. Kaku Y, Noguchi A, Marsh GA, McEachern JA, Okutani A, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A, Inoue S, Wang LF. 2009. A neutralization test for specific detection of Nipah virus antibodies using pseudotyped vesicular stomatitis virus expressing green fluorescent protein. J Virol Methods 160: 7–13.
– reference: 8. Cleaveland S, Fèvre EM, Kaare M, Coleman PG. 2002. Estimating human rabies mortality in the United Republic of Tanzania from dog bite injuries. Bull World Health Organ 80: 304–310.
– reference: 17. Folly AJ, Marston DA, Golding M, Shukla S, Wilkie R, Lean FZX, Núñez A, Worledge L, Aegerter J, Banyard AC, Fooks AR, Johnson N, McElhinney LM. 2021. Incursion of European bat lyssavirus 1 (EBLV-1) in serotine bats in the United Kingdom. Viruses 13: 1979.
– reference: 20. Fooks AR, McElhinney LM, Pounder DJ, Finnegan CJ, Mansfield K, Johnson N, Brookes SM, Parsons G, White K, McIntyre PG, Nathwani D. 2003. Case report: isolation of a European bat lyssavirus type 2a from a fatal human case of rabies encephalitis. J Med Virol 71: 281–289.
– reference: 10. Coertse J, Markotter W, le Roux K, Stewart D, Sabeta CT, Nel LH. 2017. New isolations of the rabies-related Mokola virus from South Africa. BMC Vet Res 13: 37.
– reference: 38. Marston DA, Ellis RJ, Horton DL, Kuzmin IV, Wise EL, McElhinney LM, Banyard AC, Ngeleja C, Keyyu J, Cleaveland S, Lembo T, Rupprecht CE, Fooks AR. 2012. Complete genome sequence of Ikoma lyssavirus. J Virol 86: 10242–10243.
– reference: 45. Warrell MJ, Warrell DA. 2015. Rabies: the clinical features, management and prevention of the classic zoonosis. Clin Med (Lond) 15: 78–81.
– reference: 40. Niwa H, Yamamura K, Miyazaki J. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193–199.
– reference: 41. Prada D, Boyd V, Baker M, Jackson B, O’Dea M. 2019. Insights into Australian bat lyssavirus in insectivorous bats of Western Australia. Trop Med Infect Dis 4: 46.
– reference: 11. De Benedictis P, Minola A, Rota Nodari E, Aiello R, Zecchin B, Salomoni A, Foglierini M, Agatic G, Vanzetta F, Lavenir R, Lepelletier A, Bentley E, Weiss R, Cattoli G, Capua I, Sallusto F, Wright E, Lanzavecchia A, Bourhy H, Corti D. 2016. Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis. EMBO Mol Med 8: 407–421.
– reference: 22. Fraser GC, Hooper PT, Lunt RA, Gould AR, Gleeson LJ, Hyatt AD, Russell GM, Kattenbelt JA. 1996. Encephalitis caused by a Lyssavirus in fruit bats in Australia. Emerg Infect Dis 2: 327–331.
– reference: 42. Shepherd JG, Davis C, Streicker DG, Thomson EC. 2023. Emerging rhabdoviruses and human infection. Biology (Basel) 12: 878.
– reference: 2. Banyard AC, Evans JS, Luo TR, Fooks AR. 2014. Lyssaviruses and bats: emergence and zoonotic threat. Viruses 6: 2974–2990.
– reference: 24. Genus: Lyssavirus. ICTV. https://ictv.global/report/chapter/rhabdoviridae/rhabdoviridae/lyssavirus [accessed on November 10, 2023].
– reference: 46. Wise EL, Marston DA, Banyard AC, Goharriz H, Selden D, Maclaren N, Goddard T, Johnson N, McElhinney LM, Brouwer A, Aegerter JN, Smith GC, Horton DL, Breed AC, Fooks AR. 2017. Passive surveillance of United Kingdom bats for lyssaviruses (2005–2015). Epidemiol Infect 145: 2445–2457.
– reference: 23. Fukushi S, Watanabe R, Taguchi F. 2008. Pseudotyped vesicular stomatitis virus for analysis of virus entry mediated by SARS coronavirus spike proteins. Methods Mol Biol 454: 331–338.
– reference: 19. Fooks AR, Cliquet F, Finke S, Freuling C, Hemachudha T, Mani RS, Müller T, Nadin-Davis S, Picard-Meyer E, Wilde H, Banyard AC. 2017. Rabies. Nat Rev Dis Primers 3: 17091.
– reference: 1. Badrane H, Bahloul C, Perrin P, Tordo N. 2001. Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J Virol 75: 3268–3276.
– reference: 26. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, Barrat J, Blanton JD, Briggs DJ, Cleaveland S, Costa P, Freuling CM, Hiby E, Knopf L, Leanes F, Meslin FX, Metlin A, Miranda ME, Müller T, Nel LH, Recuenco S, Rupprecht CE, Schumacher C, Taylor L, Vigilato MA, Zinsstag J, Dushoff J. Global Alliance for Rabies Control Partners for Rabies Prevention. 2015. Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis 9: e0003709.
– reference: 36. Malerczyk C, Freuling C, Gniel D, Giesen A, Selhorst T, Müller T. 2014. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species. Hum Vaccin Immunother 10: 2799–2804.
– reference: 39. Moore SM, Hanlon CA. 2010. Rabies-specific antibodies: measuring surrogates of protection against a fatal disease. PLoS Negl Trop Dis 4: e595.
– reference: 48. Wright E, Temperton NJ, Marston DA, McElhinney LM, Fooks AR, Weiss RA. 2008. Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison. J Gen Virol 89: 2204–2213.
– reference: 3. Banyard AC, Selden D, Wu G, Thorne L, Jennings D, Marston D, Finke S, Freuling CM, Müller T, Echevarría JE, Fooks AR. 2018. Isolation, antigenicity and immunogenicity of Lleida bat lyssavirus. J Gen Virol 99: 1590–1599.
– reference: 43. Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, Banyard AC. 2019. Bats and viruses: emergence of novel lyssaviruses and association of bats with viral zoonoses in the EU. Trop Med Infect Dis 4: 31.
– reference: 32. Kaku Y, Noguchi A, Marsh GA, Barr JA, Okutani A, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A, Inoue S, Wang LF. 2012. Second generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: sensitive and high-throughput analysis utilizing secreted alkaline phosphatase. J Virol Methods 179: 226–232.
– reference: 37. Mallewa M, Fooks AR, Banda D, Chikungwa P, Mankhambo L, Molyneux E, Molyneux ME, Solomon T. 2007. Rabies encephalitis in malaria-endemic area, Malawi, Africa. Emerg Infect Dis 13: 136–139.
– ident: 1
  doi: 10.1128/JVI.75.7.3268-3276.2001
– ident: 10
  doi: 10.1186/s12917-017-0948-0
– ident: 12
  doi: 10.1128/jvi.64.6.3087-3090.1990
– ident: 2
  doi: 10.3390/v6082974
– ident: 46
  doi: 10.1017/S0950268817001455
– ident: 3
  doi: 10.1099/jgv.0.001068
– ident: 5
  doi: 10.1080/22221751.2022.2078742
– ident: 18
  doi: 10.1016/S0140-6736(13)62707-5
– ident: 43
  doi: 10.3390/tropicalmed4010031
– ident: 34
  doi: 10.1099/0022-1317-64-4-843
– ident: 4
  doi: 10.1126/scitranslmed.ade9078
– ident: 16
– ident: 21
  doi: 10.3390/v13091769
– ident: 25
  doi: 10.3201/eid2208.151986
– ident: 6
  doi: 10.3390/v13010069
– ident: 44
  doi: 10.1128/jvi.6.5.690-692.1970
– ident: 7
  doi: 10.1016/j.actatropica.2021.106254
– ident: 24
– ident: 32
  doi: 10.1016/j.jviromet.2011.11.003
– ident: 27
  doi: 10.1016/j.virusres.2005.03.009
– ident: 13
  doi: 10.1099/jgv.0.000998
– ident: 23
  doi: 10.1007/978-1-59745-181-9_23
– ident: 38
  doi: 10.1128/JVI.01628-12
– ident: 37
  doi: 10.3201/eid1301.060810
– ident: 22
  doi: 10.3201/eid0204.960408
– ident: 42
  doi: 10.3390/biology12060878
– ident: 41
  doi: 10.3390/tropicalmed4010046
– ident: 30
  doi: 10.3201/eid2404.171696
– ident: 9
  doi: 10.3390/v13040576
– ident: 20
  doi: 10.1002/jmv.10481
– ident: 36
  doi: 10.4161/21645515.2014.972741
– ident: 39
  doi: 10.1371/journal.pntd.0000595
– ident: 47
  doi: 10.1016/j.vaccine.2018.06.061
– ident: 14
  doi: 10.1016/j.vaccine.2012.10.015
– ident: 45
  doi: 10.7861/clinmedicine.14-6-78
– ident: 29
  doi: 10.1016/j.micinf.2006.11.003
– ident: 48
  doi: 10.1099/vir.0.2008/000349-0
– ident: 28
  doi: 10.1038/s41467-020-14398-7
– ident: 19
  doi: 10.1038/nrdp.2017.91
– ident: 17
  doi: 10.3390/v13101979
– ident: 31
  doi: 10.7883/yoken.JJID.2023.400
– ident: 11
  doi: 10.15252/emmm.201505986
– ident: 33
  doi: 10.1016/j.jviromet.2009.04.037
– ident: 26
  doi: 10.1371/journal.pntd.0003709
– ident: 35
  doi: 10.3390/v13102064
– ident: 8
– ident: 40
  doi: 10.1016/0378-1119(91)90434-D
– ident: 15
  doi: 10.1016/j.celrep.2020.107920
SSID ssj0021469
Score 2.3551311
Snippet Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 128
SubjectTerms Animals
Antibodies
Antibodies, Neutralizing
Antibodies, Viral
Antisera
cross-reactivity
Glycoproteins
Lyssavirus
Neurological diseases
pseudotype
Rabbits
Rabies
Rabies - veterinary
Rabies Vaccines
Rabies virus
Stomatitis
vaccine
Vaccines
Viral Pseudotyping - veterinary
Virology
Zoonoses
Title Establishment of serological neutralizing tests using pseudotyped viruses for comprehensive detection of antibodies against all 18 lyssaviruses
URI https://www.jstage.jst.go.jp/article/jvms/86/1/86_23-0463/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/38092389
https://www.proquest.com/docview/2926379470
https://www.proquest.com/docview/2902972079
https://pubmed.ncbi.nlm.nih.gov/PMC10849863
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2024, Vol.86(1), pp.128-134
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZK4cClouW1UCojwTElsR3HFkIIVa0KaDmxqLcofm23WrLtJqkof4K_zExeYqveuOTiSWxnbM839ucZQt4Ew3Sw1kUMsEckZIgjsHJJlAqwNjaLfTB433n6TZ7OxJez9GyLDNlG-x9Y3enaYT6p2Xp5-Ovq5iNM-A9tbATN3l1c_6wOGUeWIr9H7oNNyjCXwVSM5wmYvbqLugcNysDq9xT4229vGKcHF4DP5v4u6HmbQfmPSTp5RHZ6LEk_dcrfJVu-3CN7P5Dg0t6ypdP-4Pwx-XMMtbQbTrgbSFeBwtAb1j1a-qbd8PgNdowC9qwrinz4Ob2sfANuK_iqjl4v1k3lKwoolyIRfe3PO_I7db5uCV0lfhc0tTAr5CbSYl4sAH3SYrmkiaLLm6oq-q88IbOT4-9Hp1GfiyGyMlF15IOLbeDg0BqTSMe4S42NTeK8gJ_gktRrQEo-BYuvY8skz1JmAQu7YFUILuVPyXa5Kv1zQoW0qpBeaamtSI1S0hSKm4xroZVTekLeDkrIL7uQGzm6KqCsHJWVM56jsibkfaehUaqfbJ2UknmCj156LMTbbLAkTMj-oNZ8GHU5VAEt1yKLJ-T1WAwTDk9RitKvGpTBfF8szqChz7pRMDaAqxgAM3ZBbYyPUQCDeW-WlIvzNqh3EivovuQv_qtXL8lDBqir2yPaJ9v1uvGvADXV5gD8hc9fD9pp8RfKfSDT
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishment+of+serological+neutralizing+tests+using+pseudotyped+viruses+for+comprehensive+detection+of+antibodies+against+all+18+lyssaviruses&rft.jtitle=Journal+of+Veterinary+Medical+Science&rft.au=INOUE%2C+Yusuke&rft.au=KAKU%2C+Yoshihiro&rft.au=HARADA%2C+Michiko&rft.au=ISHIJIMA%2C+Keita&rft.date=2024-01-01&rft.pub=JAPANESE+SOCIETY+OF+VETERINARY+SCIENCE&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=86&rft.issue=1&rft.spage=128&rft.epage=134&rft_id=info:doi/10.1292%2Fjvms.23-0463&rft.externalDocID=article_jvms_86_1_86_23_0463_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon