Establishment of serological neutralizing tests using pseudotyped viruses for comprehensive detection of antibodies against all 18 lyssaviruses
Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system t...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 86; no. 1; pp. 128 - 134 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
01.01.2024
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine. |
---|---|
AbstractList | Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine. Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine. Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine.Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine. |
ArticleNumber | 23-0463 |
Author | INOUE, Yusuke NISHINO, Ayano ISHIJIMA, Keita HARADA, Michiko MAEDA, Ken YAMAMOTO, Tsukasa KURODA, Yudai KAKU, Yoshihiro VIRHUEZ-MENDOZA, Milagros MATSUU, Aya PARK, Eun-sil TATEMOTO, Kango INOUE, Satoshi |
Author_xml | – sequence: 1 fullname: INOUE, Yusuke organization: Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan – sequence: 2 fullname: KAKU, Yoshihiro organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 3 fullname: HARADA, Michiko organization: Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan – sequence: 4 fullname: ISHIJIMA, Keita organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 5 fullname: KURODA, Yudai organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 6 fullname: TATEMOTO, Kango organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 7 fullname: VIRHUEZ-MENDOZA, Milagros organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 8 fullname: NISHINO, Ayano organization: Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan – sequence: 9 fullname: YAMAMOTO, Tsukasa organization: Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan – sequence: 10 fullname: PARK, Eun-sil organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 11 fullname: INOUE, Satoshi organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 12 fullname: MATSUU, Aya organization: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 13 fullname: MAEDA, Ken organization: Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38092389$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1vEzEQhi1URNPCjTOyxIVDt_hjv3xCpSofUiUucLa89mziyGsH2xsp_An-cr1KiICLbWmeeWfG816hCx88IPSaklvKBHu_3U_plvGK1C1_hlaU113V1VxcoBURtK061pBLdJXSlhBG61a8QJe8J4LxXqzQ74eU1eBs2kzgMw4jThCDC2urlcMe5hyVs7-sX-MMKSc8p-W9SzCbkA87MHhv45wg4TFErMO0i7ABn-wesIEMOtvgF13lsx2CsYVUa2V9ylg5h2mP3SEldVJ5iZ6PyiV4dbqv0Y9PD9_vv1SP3z5_vb97rHRL-1zBaIgeOef9MNDWMG6aQZOBGqiNBkMbEKyh0LCaCaJZy7uG6Z4aM-p-HE3Dr9GHo-5uHiYoOX4ZVO6inVQ8yKCs_Dfi7Uauw15S0teib3lReHdSiOHnXP5GTjZpcE55CHOSpTATHSOdKOjb_9BtmKMv8xVqaU7UHSnUm79bOvfyZ1kFuDkCOoaUIoxnhBK5eEEuXpCMy8ULBf94xLdlxWs4wypmqx0c4b6VdDlOSeeg3qgowfMn-5HEzw |
Cites_doi | 10.1128/JVI.75.7.3268-3276.2001 10.1186/s12917-017-0948-0 10.1128/jvi.64.6.3087-3090.1990 10.3390/v6082974 10.1017/S0950268817001455 10.1099/jgv.0.001068 10.1080/22221751.2022.2078742 10.1016/S0140-6736(13)62707-5 10.3390/tropicalmed4010031 10.1099/0022-1317-64-4-843 10.1126/scitranslmed.ade9078 10.3390/v13091769 10.3201/eid2208.151986 10.3390/v13010069 10.1128/jvi.6.5.690-692.1970 10.1016/j.actatropica.2021.106254 10.1016/j.jviromet.2011.11.003 10.1016/j.virusres.2005.03.009 10.1099/jgv.0.000998 10.1007/978-1-59745-181-9_23 10.1128/JVI.01628-12 10.3201/eid1301.060810 10.3201/eid0204.960408 10.3390/biology12060878 10.3390/tropicalmed4010046 10.3201/eid2404.171696 10.3390/v13040576 10.1002/jmv.10481 10.4161/21645515.2014.972741 10.1371/journal.pntd.0000595 10.1016/j.vaccine.2018.06.061 10.1016/j.vaccine.2012.10.015 10.7861/clinmedicine.14-6-78 10.1016/j.micinf.2006.11.003 10.1099/vir.0.2008/000349-0 10.1038/s41467-020-14398-7 10.1038/nrdp.2017.91 10.3390/v13101979 10.7883/yoken.JJID.2023.400 10.15252/emmm.201505986 10.1016/j.jviromet.2009.04.037 10.1371/journal.pntd.0003709 10.3390/v13102064 10.1016/0378-1119(91)90434-D 10.1016/j.celrep.2020.107920 |
ContentType | Journal Article |
Copyright | 2024 by the Japanese Society of Veterinary Science 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 The Japanese Society of Veterinary Science 2024 |
Copyright_xml | – notice: 2024 by the Japanese Society of Veterinary Science – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 The Japanese Society of Veterinary Science 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.23-0463 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 134 |
ExternalDocumentID | PMC10849863 38092389 10_1292_jvms_23_0463 article_jvms_86_1_86_23_0463_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c618t-efd0cf3338bb16d23d5bc0b1de4dced15e9251e524290c263752c81ddfc8ffd53 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 18:35:23 EDT 2025 Fri Jul 11 06:57:48 EDT 2025 Mon Jun 30 04:45:11 EDT 2025 Thu Apr 03 07:02:23 EDT 2025 Tue Jul 01 00:31:12 EDT 2025 Thu Feb 01 14:11:35 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | rabies vaccine cross-reactivity pseudotype lyssavirus |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c618t-efd0cf3338bb16d23d5bc0b1de4dced15e9251e524290c263752c81ddfc8ffd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.23-0463 |
PMID | 38092389 |
PQID | 2926379470 |
PQPubID | 2028964 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849863 proquest_miscellaneous_2902972079 proquest_journals_2926379470 pubmed_primary_38092389 crossref_primary_10_1292_jvms_23_0463 jstage_primary_article_jvms_86_1_86_23_0463_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2024 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 1. Badrane H, Bahloul C, Perrin P, Tordo N. 2001. Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J Virol 75: 3268–3276. 20. Fooks AR, McElhinney LM, Pounder DJ, Finnegan CJ, Mansfield K, Johnson N, Brookes SM, Parsons G, White K, McIntyre PG, Nathwani D. 2003. Case report: isolation of a European bat lyssavirus type 2a from a fatal human case of rabies encephalitis. J Med Virol 71: 281–289. 35. Leopardi S, Barneschi E, Manna G, Zecchin B, Priori P, Drzewnioková P, Festa F, Lombardo A, Parca F, Scaravelli D, Maroni Ponti A, De Benedictis P. 2021. Spillover of West caucasian bat lyssavirus (WCBV) in a domestic cat and Westward expansion in the palearctic region. Viruses 13: 2064. 5. Cai M, Liu H, Jiang F, Sun Y, Wang W, An Y, Zhang M, Li X, Liu D, Li Y, Yu Y, Huang W, Wang Y. 2022. Analysis of the evolution, infectivity and antigenicity of circulating rabies virus strains. Emerg Microbes Infect 11: 1474–1487. 13. Evans JS, Selden D, Wu G, Wright E, Horton DL, Fooks AR, Banyard AC. 2018. Antigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssaviruses. J Gen Virol 99: 169–180. 11. De Benedictis P, Minola A, Rota Nodari E, Aiello R, Zecchin B, Salomoni A, Foglierini M, Agatic G, Vanzetta F, Lavenir R, Lepelletier A, Bentley E, Weiss R, Cattoli G, Capua I, Sallusto F, Wright E, Lanzavecchia A, Bourhy H, Corti D. 2016. Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis. EMBO Mol Med 8: 407–421. 31. Inoue Y, Kaku Y, Harada M, Ishijima K, Kuroda Y, Tatemoto K, Mendoza VM, Nishino A, Yamamoto T, Inoue S, Matsuu A, Maeda K. 2023. Cross-neutralization activities of antibodies against 18 lyssavirus glycoproteins. Jpn J Infect Dis (In press). 48. Wright E, Temperton NJ, Marston DA, McElhinney LM, Fooks AR, Weiss RA. 2008. Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison. J Gen Virol 89: 2204–2213. 12. Dietzschold B, Gore M, Casali P, Ueki Y, Rupprecht CE, Notkins AL, Koprowski H. 1990. Biological characterization of human monoclonal antibodies to rabies virus. J Virol 64: 3087–3090. 7. Ciconello FN, Katz ISS, Fernandes ER, Guedes F, Silva SR. 2022. A comparative review of serological assays for the detection of rabies virus-specific antibodies. Acta Trop 226: 106254. 19. Fooks AR, Cliquet F, Finke S, Freuling C, Hemachudha T, Mani RS, Müller T, Nadin-Davis S, Picard-Meyer E, Wilde H, Banyard AC. 2017. Rabies. Nat Rev Dis Primers 3: 17091. 28. Hellert J, Buchrieser J, Larrous F, Minola A, de Melo GD, Soriaga L, England P, Haouz A, Telenti A, Schwartz O, Corti D, Bourhy H, Rey FA. 2020. Structure of the prefusion-locking broadly neutralizing antibody RVC20 bound to the rabies virus glycoprotein. Nat Commun 11: 596. 14. Evans JS, Horton DL, Easton AJ, Fooks AR, Banyard AC. 2012. Rabies virus vaccines: is there a need for a pan-lyssavirus vaccine? Vaccine 30: 7447–7454. 16. Foggin CM. 1988. Rabies and Rabies-Related Viruses in Zimbabwe: Historical, Virological and Ecological Aspects. pp. 186–221. University of Zimbabwe, Harare. 24. Genus: Lyssavirus. ICTV. https://ictv.global/report/chapter/rhabdoviridae/rhabdoviridae/lyssavirus [accessed on November 10, 2023]. 21. Fooks AR, Shipley R, Markotter W, Tordo N, Freuling CM, Müller T, McElhinney LM, Banyard AC, Rupprecht CE. 2021. Renewed public health threat from emerging lyssaviruses. Viruses 13: 1769. 4. Benkeser D, Montefiori DC, McDermott AB, Fong Y, Janes HE, Deng W, Zhou H, Houchens CR, Martins K, Jayashankar L, Castellino F, Flach B, Lin BC, O’Connell S, McDanal C, Eaton A, Sarzotti-Kelsoe M, Lu Y, Yu C, Borate B, van der Laan LWP, Hejazi NS, Kenny A, Carone M, Williamson BD, Garver J, Altonen E, Rudge T, Huynh C, Miller J, El Sahly HM, Baden LR, Frey S, Malkin E, Spector SA, Andrasik MP, Kublin JG, Corey L, Neuzil KM, Carpp LN, Pajon R, Follmann D, Donis RO, Koup RA, Gilbert PB. Immune Assays Moderna Inc. Coronavirus Vaccine Prevention Network (CoVPN)/Coronavirus Efficacy (COVE) United States Government (USG)/CoVPN Biostatistics Teams. 2023. Comparing antibody assays as correlates of protection against COVID-19 in the COVE mRNA-1273 vaccine efficacy trial. Sci Transl Med 15: eade9078. 26. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, Barrat J, Blanton JD, Briggs DJ, Cleaveland S, Costa P, Freuling CM, Hiby E, Knopf L, Leanes F, Meslin FX, Metlin A, Miranda ME, Müller T, Nel LH, Recuenco S, Rupprecht CE, Schumacher C, Taylor L, Vigilato MA, Zinsstag J, Dushoff J. Global Alliance for Rabies Control Partners for Rabies Prevention. 2015. Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis 9: e0003709. 46. Wise EL, Marston DA, Banyard AC, Goharriz H, Selden D, Maclaren N, Goddard T, Johnson N, McElhinney LM, Brouwer A, Aegerter JN, Smith GC, Horton DL, Breed AC, Fooks AR. 2017. Passive surveillance of United Kingdom bats for lyssaviruses (2005–2015). Epidemiol Infect 145: 2445–2457. 2. Banyard AC, Evans JS, Luo TR, Fooks AR. 2014. Lyssaviruses and bats: emergence and zoonotic threat. Viruses 6: 2974–2990. 47. World Health Organization. 2018. Rabies vaccines: WHO position paper, April 2018-recommendations. Vaccine 36: 5500–5503. 25. Gunawardena PS, Marston DA, Ellis RJ, Wise EL, Karawita AC, Breed AC, McElhinney LM, Johnson N, Banyard AC, Fooks AR. 2016. Lyssavirus in Indian flying foxes, Sri Lanka. Emerg Infect Dis 22: 1456–1459. 23. Fukushi S, Watanabe R, Taguchi F. 2008. Pseudotyped vesicular stomatitis virus for analysis of virus entry mediated by SARS coronavirus spike proteins. Methods Mol Biol 454: 331–338. 39. Moore SM, Hanlon CA. 2010. Rabies-specific antibodies: measuring surrogates of protection against a fatal disease. PLoS Negl Trop Dis 4: e595. 27. Hanlon CA, Kuzmin IV, Blanton JD, Weldon WC, Manangan JS, Rupprecht CE. 2005. Efficacy of rabies biologics against new lyssaviruses from Eurasia. Virus Res 111: 44–54. 38. Marston DA, Ellis RJ, Horton DL, Kuzmin IV, Wise EL, McElhinney LM, Banyard AC, Ngeleja C, Keyyu J, Cleaveland S, Lembo T, Rupprecht CE, Fooks AR. 2012. Complete genome sequence of Ikoma lyssavirus. J Virol 86: 10242–10243. 3. Banyard AC, Selden D, Wu G, Thorne L, Jennings D, Marston D, Finke S, Freuling CM, Müller T, Echevarría JE, Fooks AR. 2018. Isolation, antigenicity and immunogenicity of Lleida bat lyssavirus. J Gen Virol 99: 1590–1599. 15. Fisher CR, Lowe DE, Smith TG, Yang Y, Hutson CL, Wirblich C, Cingolani G, Schnell MJ. 2020. Lyssavirus Vaccine with a Chimeric Glycoprotein Protects across Phylogroups. Cell Rep 32: 107920. 18. Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. 2014. Current status of rabies and prospects for elimination. Lancet 384: 1389–1399. 10. Coertse J, Markotter W, le Roux K, Stewart D, Sabeta CT, Nel LH. 2017. New isolations of the rabies-related Mokola virus from South Africa. BMC Vet Res 13: 37. 9. Coertse J, Geldenhuys M, le Roux K, Markotter W. 2021. Lagos bat virus, an under-reported rabies-related lyssavirus. Viruses 13: 576. 42. Shepherd JG, Davis C, Streicker DG, Thomson EC. 2023. Emerging rhabdoviruses and human infection. Biology (Basel) 12: 878. 6. Calvelage S, Tammiranta N, Nokireki T, Gadd T, Eggerbauer E, Zaeck LM, Potratz M, Wylezich C, Höper D, Müller T, Finke S, Freuling CM. 2021. Genetic and antigenetic characterization of the novel kotalahti bat lyssavirus (KBLV). Viruses 13: 69. 32. Kaku Y, Noguchi A, Marsh GA, Barr JA, Okutani A, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A, Inoue S, Wang LF. 2012. Second generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: sensitive and high-throughput analysis utilizing secreted alkaline phosphatase. J Virol Methods 179: 226–232. 37. Mallewa M, Fooks AR, Banda D, Chikungwa P, Mankhambo L, Molyneux E, Molyneux ME, Solomon T. 2007. Rabies encephalitis in malaria-endemic area, Malawi, Africa. Emerg Infect Dis 13: 136–139. 45. Warrell MJ, Warrell DA. 2015. Rabies: the clinical features, management and prevention of the classic zoonosis. Clin Med (Lond) 15: 78–81. 22. Fraser GC, Hooper PT, Lunt RA, Gould AR, Gleeson LJ, Hyatt AD, Russell GM, Kattenbelt JA. 1996. Encephalitis caused by a Lyssavirus in fruit bats in Australia. Emerg Infect Dis 2: 327–331. 30. Hu SC, Hsu CL, Lee MS, Tu YC, Chang JC, Wu CH, Lee SH, Ting LJ, Tsai KR, Cheng MC, Tu WJ, Hsu WC. 2018. Lyssavirus in Japanese Pipistrelle, Taiwan. Emerg Infect Dis 24: 782–785. 41. Prada D, Boyd V, Baker M, Jackson B, O’Dea M. 2019. Insights into Australian bat lyssavirus in insectivorous bats of Western Australia. Trop Med Infect Dis 4: 46. 43. Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, Banyard AC. 2019. Bats and viruses: emergence of novel lyssaviruses and association of bats with viral zoonoses in the EU. Trop Med Infect Dis 4: 31. 8. Cleaveland S, Fèvre EM, Kaare M, Coleman PG. 2002. Estimating human rabies mortality in the United Republic of Tanzania from dog bite injuries. Bull World Health Organ 80: 304–310. 17. Folly AJ, Marston DA, Golding M, Shukla S, Wilkie R, Lean FZX, Núñez A, Worledge L, Aegerter J, Banyard AC, Fooks AR, Johnson N, McElhinney LM. 2021. Incursion of European bat lyssavirus 1 (EBLV-1) in serotine bats in the United Kingdom. Viruses 13: 1979. 34. Lafon M, Wiktor TJ, Macfarlan RI. 1983. Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. J Gen Virol 64: 843–851. 44. Shope RE, Murphy FA, Harrison AK, Causey OR, Kemp GE, Simpson DI, Moore DL. 1970. Two African viruses serologically and morphologically related to rabies virus. J Virol 6: 690–692. 29. Hotta K, Motoi Y, Okutani A, Kaku Y, Noguchi A, Inoue S, Yamada A. 2007. Role of GPI-anchored NCAM-120 in rabies virus infection. Microbes Infect 9: 167–174. 36. Malerczyk C, Freuling C, Gniel D, Giesen A, Selhorst T, Müller T. 2014. Cross-neutralization of antibodies induced 22 44 23 45 24 46 25 47 26 48 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: 14. Evans JS, Horton DL, Easton AJ, Fooks AR, Banyard AC. 2012. Rabies virus vaccines: is there a need for a pan-lyssavirus vaccine? Vaccine 30: 7447–7454. – reference: 18. Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. 2014. Current status of rabies and prospects for elimination. Lancet 384: 1389–1399. – reference: 35. Leopardi S, Barneschi E, Manna G, Zecchin B, Priori P, Drzewnioková P, Festa F, Lombardo A, Parca F, Scaravelli D, Maroni Ponti A, De Benedictis P. 2021. Spillover of West caucasian bat lyssavirus (WCBV) in a domestic cat and Westward expansion in the palearctic region. Viruses 13: 2064. – reference: 25. Gunawardena PS, Marston DA, Ellis RJ, Wise EL, Karawita AC, Breed AC, McElhinney LM, Johnson N, Banyard AC, Fooks AR. 2016. Lyssavirus in Indian flying foxes, Sri Lanka. Emerg Infect Dis 22: 1456–1459. – reference: 13. Evans JS, Selden D, Wu G, Wright E, Horton DL, Fooks AR, Banyard AC. 2018. Antigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssaviruses. J Gen Virol 99: 169–180. – reference: 44. Shope RE, Murphy FA, Harrison AK, Causey OR, Kemp GE, Simpson DI, Moore DL. 1970. Two African viruses serologically and morphologically related to rabies virus. J Virol 6: 690–692. – reference: 9. Coertse J, Geldenhuys M, le Roux K, Markotter W. 2021. Lagos bat virus, an under-reported rabies-related lyssavirus. Viruses 13: 576. – reference: 12. Dietzschold B, Gore M, Casali P, Ueki Y, Rupprecht CE, Notkins AL, Koprowski H. 1990. Biological characterization of human monoclonal antibodies to rabies virus. J Virol 64: 3087–3090. – reference: 31. Inoue Y, Kaku Y, Harada M, Ishijima K, Kuroda Y, Tatemoto K, Mendoza VM, Nishino A, Yamamoto T, Inoue S, Matsuu A, Maeda K. 2023. Cross-neutralization activities of antibodies against 18 lyssavirus glycoproteins. Jpn J Infect Dis (In press). – reference: 34. Lafon M, Wiktor TJ, Macfarlan RI. 1983. Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. J Gen Virol 64: 843–851. – reference: 28. Hellert J, Buchrieser J, Larrous F, Minola A, de Melo GD, Soriaga L, England P, Haouz A, Telenti A, Schwartz O, Corti D, Bourhy H, Rey FA. 2020. Structure of the prefusion-locking broadly neutralizing antibody RVC20 bound to the rabies virus glycoprotein. Nat Commun 11: 596. – reference: 29. Hotta K, Motoi Y, Okutani A, Kaku Y, Noguchi A, Inoue S, Yamada A. 2007. Role of GPI-anchored NCAM-120 in rabies virus infection. Microbes Infect 9: 167–174. – reference: 4. Benkeser D, Montefiori DC, McDermott AB, Fong Y, Janes HE, Deng W, Zhou H, Houchens CR, Martins K, Jayashankar L, Castellino F, Flach B, Lin BC, O’Connell S, McDanal C, Eaton A, Sarzotti-Kelsoe M, Lu Y, Yu C, Borate B, van der Laan LWP, Hejazi NS, Kenny A, Carone M, Williamson BD, Garver J, Altonen E, Rudge T, Huynh C, Miller J, El Sahly HM, Baden LR, Frey S, Malkin E, Spector SA, Andrasik MP, Kublin JG, Corey L, Neuzil KM, Carpp LN, Pajon R, Follmann D, Donis RO, Koup RA, Gilbert PB. Immune Assays Moderna Inc. Coronavirus Vaccine Prevention Network (CoVPN)/Coronavirus Efficacy (COVE) United States Government (USG)/CoVPN Biostatistics Teams. 2023. Comparing antibody assays as correlates of protection against COVID-19 in the COVE mRNA-1273 vaccine efficacy trial. Sci Transl Med 15: eade9078. – reference: 6. Calvelage S, Tammiranta N, Nokireki T, Gadd T, Eggerbauer E, Zaeck LM, Potratz M, Wylezich C, Höper D, Müller T, Finke S, Freuling CM. 2021. Genetic and antigenetic characterization of the novel kotalahti bat lyssavirus (KBLV). Viruses 13: 69. – reference: 15. Fisher CR, Lowe DE, Smith TG, Yang Y, Hutson CL, Wirblich C, Cingolani G, Schnell MJ. 2020. Lyssavirus Vaccine with a Chimeric Glycoprotein Protects across Phylogroups. Cell Rep 32: 107920. – reference: 21. Fooks AR, Shipley R, Markotter W, Tordo N, Freuling CM, Müller T, McElhinney LM, Banyard AC, Rupprecht CE. 2021. Renewed public health threat from emerging lyssaviruses. Viruses 13: 1769. – reference: 30. Hu SC, Hsu CL, Lee MS, Tu YC, Chang JC, Wu CH, Lee SH, Ting LJ, Tsai KR, Cheng MC, Tu WJ, Hsu WC. 2018. Lyssavirus in Japanese Pipistrelle, Taiwan. Emerg Infect Dis 24: 782–785. – reference: 47. World Health Organization. 2018. Rabies vaccines: WHO position paper, April 2018-recommendations. Vaccine 36: 5500–5503. – reference: 16. Foggin CM. 1988. Rabies and Rabies-Related Viruses in Zimbabwe: Historical, Virological and Ecological Aspects. pp. 186–221. University of Zimbabwe, Harare. – reference: 5. Cai M, Liu H, Jiang F, Sun Y, Wang W, An Y, Zhang M, Li X, Liu D, Li Y, Yu Y, Huang W, Wang Y. 2022. Analysis of the evolution, infectivity and antigenicity of circulating rabies virus strains. Emerg Microbes Infect 11: 1474–1487. – reference: 27. Hanlon CA, Kuzmin IV, Blanton JD, Weldon WC, Manangan JS, Rupprecht CE. 2005. Efficacy of rabies biologics against new lyssaviruses from Eurasia. Virus Res 111: 44–54. – reference: 7. Ciconello FN, Katz ISS, Fernandes ER, Guedes F, Silva SR. 2022. A comparative review of serological assays for the detection of rabies virus-specific antibodies. Acta Trop 226: 106254. – reference: 33. Kaku Y, Noguchi A, Marsh GA, McEachern JA, Okutani A, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A, Inoue S, Wang LF. 2009. A neutralization test for specific detection of Nipah virus antibodies using pseudotyped vesicular stomatitis virus expressing green fluorescent protein. J Virol Methods 160: 7–13. – reference: 8. Cleaveland S, Fèvre EM, Kaare M, Coleman PG. 2002. Estimating human rabies mortality in the United Republic of Tanzania from dog bite injuries. Bull World Health Organ 80: 304–310. – reference: 17. Folly AJ, Marston DA, Golding M, Shukla S, Wilkie R, Lean FZX, Núñez A, Worledge L, Aegerter J, Banyard AC, Fooks AR, Johnson N, McElhinney LM. 2021. Incursion of European bat lyssavirus 1 (EBLV-1) in serotine bats in the United Kingdom. Viruses 13: 1979. – reference: 20. Fooks AR, McElhinney LM, Pounder DJ, Finnegan CJ, Mansfield K, Johnson N, Brookes SM, Parsons G, White K, McIntyre PG, Nathwani D. 2003. Case report: isolation of a European bat lyssavirus type 2a from a fatal human case of rabies encephalitis. J Med Virol 71: 281–289. – reference: 10. Coertse J, Markotter W, le Roux K, Stewart D, Sabeta CT, Nel LH. 2017. New isolations of the rabies-related Mokola virus from South Africa. BMC Vet Res 13: 37. – reference: 38. Marston DA, Ellis RJ, Horton DL, Kuzmin IV, Wise EL, McElhinney LM, Banyard AC, Ngeleja C, Keyyu J, Cleaveland S, Lembo T, Rupprecht CE, Fooks AR. 2012. Complete genome sequence of Ikoma lyssavirus. J Virol 86: 10242–10243. – reference: 45. Warrell MJ, Warrell DA. 2015. Rabies: the clinical features, management and prevention of the classic zoonosis. Clin Med (Lond) 15: 78–81. – reference: 40. Niwa H, Yamamura K, Miyazaki J. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193–199. – reference: 41. Prada D, Boyd V, Baker M, Jackson B, O’Dea M. 2019. Insights into Australian bat lyssavirus in insectivorous bats of Western Australia. Trop Med Infect Dis 4: 46. – reference: 11. De Benedictis P, Minola A, Rota Nodari E, Aiello R, Zecchin B, Salomoni A, Foglierini M, Agatic G, Vanzetta F, Lavenir R, Lepelletier A, Bentley E, Weiss R, Cattoli G, Capua I, Sallusto F, Wright E, Lanzavecchia A, Bourhy H, Corti D. 2016. Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis. EMBO Mol Med 8: 407–421. – reference: 22. Fraser GC, Hooper PT, Lunt RA, Gould AR, Gleeson LJ, Hyatt AD, Russell GM, Kattenbelt JA. 1996. Encephalitis caused by a Lyssavirus in fruit bats in Australia. Emerg Infect Dis 2: 327–331. – reference: 42. Shepherd JG, Davis C, Streicker DG, Thomson EC. 2023. Emerging rhabdoviruses and human infection. Biology (Basel) 12: 878. – reference: 2. Banyard AC, Evans JS, Luo TR, Fooks AR. 2014. Lyssaviruses and bats: emergence and zoonotic threat. Viruses 6: 2974–2990. – reference: 24. Genus: Lyssavirus. ICTV. https://ictv.global/report/chapter/rhabdoviridae/rhabdoviridae/lyssavirus [accessed on November 10, 2023]. – reference: 46. Wise EL, Marston DA, Banyard AC, Goharriz H, Selden D, Maclaren N, Goddard T, Johnson N, McElhinney LM, Brouwer A, Aegerter JN, Smith GC, Horton DL, Breed AC, Fooks AR. 2017. Passive surveillance of United Kingdom bats for lyssaviruses (2005–2015). Epidemiol Infect 145: 2445–2457. – reference: 23. Fukushi S, Watanabe R, Taguchi F. 2008. Pseudotyped vesicular stomatitis virus for analysis of virus entry mediated by SARS coronavirus spike proteins. Methods Mol Biol 454: 331–338. – reference: 19. Fooks AR, Cliquet F, Finke S, Freuling C, Hemachudha T, Mani RS, Müller T, Nadin-Davis S, Picard-Meyer E, Wilde H, Banyard AC. 2017. Rabies. Nat Rev Dis Primers 3: 17091. – reference: 1. Badrane H, Bahloul C, Perrin P, Tordo N. 2001. Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J Virol 75: 3268–3276. – reference: 26. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, Barrat J, Blanton JD, Briggs DJ, Cleaveland S, Costa P, Freuling CM, Hiby E, Knopf L, Leanes F, Meslin FX, Metlin A, Miranda ME, Müller T, Nel LH, Recuenco S, Rupprecht CE, Schumacher C, Taylor L, Vigilato MA, Zinsstag J, Dushoff J. Global Alliance for Rabies Control Partners for Rabies Prevention. 2015. Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis 9: e0003709. – reference: 36. Malerczyk C, Freuling C, Gniel D, Giesen A, Selhorst T, Müller T. 2014. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species. Hum Vaccin Immunother 10: 2799–2804. – reference: 39. Moore SM, Hanlon CA. 2010. Rabies-specific antibodies: measuring surrogates of protection against a fatal disease. PLoS Negl Trop Dis 4: e595. – reference: 48. Wright E, Temperton NJ, Marston DA, McElhinney LM, Fooks AR, Weiss RA. 2008. Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison. J Gen Virol 89: 2204–2213. – reference: 3. Banyard AC, Selden D, Wu G, Thorne L, Jennings D, Marston D, Finke S, Freuling CM, Müller T, Echevarría JE, Fooks AR. 2018. Isolation, antigenicity and immunogenicity of Lleida bat lyssavirus. J Gen Virol 99: 1590–1599. – reference: 43. Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, Banyard AC. 2019. Bats and viruses: emergence of novel lyssaviruses and association of bats with viral zoonoses in the EU. Trop Med Infect Dis 4: 31. – reference: 32. Kaku Y, Noguchi A, Marsh GA, Barr JA, Okutani A, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A, Inoue S, Wang LF. 2012. Second generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: sensitive and high-throughput analysis utilizing secreted alkaline phosphatase. J Virol Methods 179: 226–232. – reference: 37. Mallewa M, Fooks AR, Banda D, Chikungwa P, Mankhambo L, Molyneux E, Molyneux ME, Solomon T. 2007. Rabies encephalitis in malaria-endemic area, Malawi, Africa. Emerg Infect Dis 13: 136–139. – ident: 1 doi: 10.1128/JVI.75.7.3268-3276.2001 – ident: 10 doi: 10.1186/s12917-017-0948-0 – ident: 12 doi: 10.1128/jvi.64.6.3087-3090.1990 – ident: 2 doi: 10.3390/v6082974 – ident: 46 doi: 10.1017/S0950268817001455 – ident: 3 doi: 10.1099/jgv.0.001068 – ident: 5 doi: 10.1080/22221751.2022.2078742 – ident: 18 doi: 10.1016/S0140-6736(13)62707-5 – ident: 43 doi: 10.3390/tropicalmed4010031 – ident: 34 doi: 10.1099/0022-1317-64-4-843 – ident: 4 doi: 10.1126/scitranslmed.ade9078 – ident: 16 – ident: 21 doi: 10.3390/v13091769 – ident: 25 doi: 10.3201/eid2208.151986 – ident: 6 doi: 10.3390/v13010069 – ident: 44 doi: 10.1128/jvi.6.5.690-692.1970 – ident: 7 doi: 10.1016/j.actatropica.2021.106254 – ident: 24 – ident: 32 doi: 10.1016/j.jviromet.2011.11.003 – ident: 27 doi: 10.1016/j.virusres.2005.03.009 – ident: 13 doi: 10.1099/jgv.0.000998 – ident: 23 doi: 10.1007/978-1-59745-181-9_23 – ident: 38 doi: 10.1128/JVI.01628-12 – ident: 37 doi: 10.3201/eid1301.060810 – ident: 22 doi: 10.3201/eid0204.960408 – ident: 42 doi: 10.3390/biology12060878 – ident: 41 doi: 10.3390/tropicalmed4010046 – ident: 30 doi: 10.3201/eid2404.171696 – ident: 9 doi: 10.3390/v13040576 – ident: 20 doi: 10.1002/jmv.10481 – ident: 36 doi: 10.4161/21645515.2014.972741 – ident: 39 doi: 10.1371/journal.pntd.0000595 – ident: 47 doi: 10.1016/j.vaccine.2018.06.061 – ident: 14 doi: 10.1016/j.vaccine.2012.10.015 – ident: 45 doi: 10.7861/clinmedicine.14-6-78 – ident: 29 doi: 10.1016/j.micinf.2006.11.003 – ident: 48 doi: 10.1099/vir.0.2008/000349-0 – ident: 28 doi: 10.1038/s41467-020-14398-7 – ident: 19 doi: 10.1038/nrdp.2017.91 – ident: 17 doi: 10.3390/v13101979 – ident: 31 doi: 10.7883/yoken.JJID.2023.400 – ident: 11 doi: 10.15252/emmm.201505986 – ident: 33 doi: 10.1016/j.jviromet.2009.04.037 – ident: 26 doi: 10.1371/journal.pntd.0003709 – ident: 35 doi: 10.3390/v13102064 – ident: 8 – ident: 40 doi: 10.1016/0378-1119(91)90434-D – ident: 15 doi: 10.1016/j.celrep.2020.107920 |
SSID | ssj0021469 |
Score | 2.3551311 |
Snippet | Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 128 |
SubjectTerms | Animals Antibodies Antibodies, Neutralizing Antibodies, Viral Antisera cross-reactivity Glycoproteins Lyssavirus Neurological diseases pseudotype Rabbits Rabies Rabies - veterinary Rabies Vaccines Rabies virus Stomatitis vaccine Vaccines Viral Pseudotyping - veterinary Virology Zoonoses |
Title | Establishment of serological neutralizing tests using pseudotyped viruses for comprehensive detection of antibodies against all 18 lyssaviruses |
URI | https://www.jstage.jst.go.jp/article/jvms/86/1/86_23-0463/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/38092389 https://www.proquest.com/docview/2926379470 https://www.proquest.com/docview/2902972079 https://pubmed.ncbi.nlm.nih.gov/PMC10849863 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2024, Vol.86(1), pp.128-134 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZK4cClouW1UCojwTElsR3HFkIIVa0KaDmxqLcofm23WrLtJqkof4K_zExeYqveuOTiSWxnbM839ucZQt4Ew3Sw1kUMsEckZIgjsHJJlAqwNjaLfTB433n6TZ7OxJez9GyLDNlG-x9Y3enaYT6p2Xp5-Ovq5iNM-A9tbATN3l1c_6wOGUeWIr9H7oNNyjCXwVSM5wmYvbqLugcNysDq9xT4229vGKcHF4DP5v4u6HmbQfmPSTp5RHZ6LEk_dcrfJVu-3CN7P5Dg0t6ypdP-4Pwx-XMMtbQbTrgbSFeBwtAb1j1a-qbd8PgNdowC9qwrinz4Ob2sfANuK_iqjl4v1k3lKwoolyIRfe3PO_I7db5uCV0lfhc0tTAr5CbSYl4sAH3SYrmkiaLLm6oq-q88IbOT4-9Hp1GfiyGyMlF15IOLbeDg0BqTSMe4S42NTeK8gJ_gktRrQEo-BYuvY8skz1JmAQu7YFUILuVPyXa5Kv1zQoW0qpBeaamtSI1S0hSKm4xroZVTekLeDkrIL7uQGzm6KqCsHJWVM56jsibkfaehUaqfbJ2UknmCj156LMTbbLAkTMj-oNZ8GHU5VAEt1yKLJ-T1WAwTDk9RitKvGpTBfF8szqChz7pRMDaAqxgAM3ZBbYyPUQCDeW-WlIvzNqh3EivovuQv_qtXL8lDBqir2yPaJ9v1uvGvADXV5gD8hc9fD9pp8RfKfSDT |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishment+of+serological+neutralizing+tests+using+pseudotyped+viruses+for+comprehensive+detection+of+antibodies+against+all+18+lyssaviruses&rft.jtitle=Journal+of+Veterinary+Medical+Science&rft.au=INOUE%2C+Yusuke&rft.au=KAKU%2C+Yoshihiro&rft.au=HARADA%2C+Michiko&rft.au=ISHIJIMA%2C+Keita&rft.date=2024-01-01&rft.pub=JAPANESE+SOCIETY+OF+VETERINARY+SCIENCE&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=86&rft.issue=1&rft.spage=128&rft.epage=134&rft_id=info:doi/10.1292%2Fjvms.23-0463&rft.externalDocID=article_jvms_86_1_86_23_0463_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |