Structurally constrained effective brain connectivity

•A method to combine structural and functional connectivity by using an autoregressive model is proposed.•The autoregressive model is constrained by structural connectivity defining coefficients for Granger causality.•The usefulness of the generated effective connections is tested on simulations, gr...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 239; p. 118288
Main Authors Crimi, Alessandro, Dodero, Luca, Sambataro, Fabio, Murino, Vittorio, Sona, Diego
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.10.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A method to combine structural and functional connectivity by using an autoregressive model is proposed.•The autoregressive model is constrained by structural connectivity defining coefficients for Granger causality.•The usefulness of the generated effective connections is tested on simulations, ground-truth default mode network experiments, a classification and clustering task.•The method can be used for direct and indirect connections, and with raw and deconvoluted BOLD signal. The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal. The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task.
AbstractList The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal. The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task.The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal. The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task.
The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal.The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task.
•A method to combine structural and functional connectivity by using an autoregressive model is proposed.•The autoregressive model is constrained by structural connectivity defining coefficients for Granger causality.•The usefulness of the generated effective connections is tested on simulations, ground-truth default mode network experiments, a classification and clustering task.•The method can be used for direct and indirect connections, and with raw and deconvoluted BOLD signal. The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal. The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task.
ArticleNumber 118288
Author Murino, Vittorio
Sona, Diego
Sambataro, Fabio
Dodero, Luca
Crimi, Alessandro
Author_xml – sequence: 1
  givenname: Alessandro
  surname: Crimi
  fullname: Crimi, Alessandro
  email: diego.sona@iit.it
  organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, via Enrico Melen 83, Genova 16152, Italy
– sequence: 2
  givenname: Luca
  surname: Dodero
  fullname: Dodero, Luca
  organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, via Enrico Melen 83, Genova 16152, Italy
– sequence: 3
  givenname: Fabio
  surname: Sambataro
  fullname: Sambataro, Fabio
  organization: Department of Neuroscience, University of Padova, via Belzoni, 160, 35121 Padova, Italy
– sequence: 4
  givenname: Vittorio
  surname: Murino
  fullname: Murino, Vittorio
  organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, via Enrico Melen 83, Genova 16152, Italy
– sequence: 5
  givenname: Diego
  surname: Sona
  fullname: Sona, Diego
  organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, via Enrico Melen 83, Genova 16152, Italy
BookMark eNqNkU-P1SAUxYkZE2eefoeXuHHTJ7TQwsaoE_9MMokLdU3o7WVCZWAEOsn79tKpxuStHhvI4dxfcs-5IhchBiRkz-iBUda_nQ8BlxTdvbnDQ0tbdmBMtlI-I5eMKtEoMbQX61t0jWRMvSBXOc-UUsW4vCTie0kLlCUZ7497iCGXZFzAaY_WIhT3iPtxVda_8CS4cnxJnlvjM776e-_Iz8-fflx_bW6_fbm5_nDbQM9kaRAlHSc-GQuT7bjtUYK0tJfccjOonhtqOIwcB6y-YYRJcBSqBTrKfgLoduRm407RzPoh1S3TUUfj9JMQ0502qTjwqBUfWiZUxwdmeYc4UhSoRjsMltmunh15s7EeUvy9YC763mVA703AuGTdCt4NVHBFq_X1iXWOSwp10-oSQgnJW1Vd7zYXpJhzQqvBFVNcDGuEXjOq14b0rP83pNeG9NZQBcgTwL8Nzxj9uI1iTf_RYdIZHAbAyaVaUo3HnQN5fwIB74ID43_h8TzEH1mcym0
CitedBy_id crossref_primary_10_1002_hbm_26155
crossref_primary_10_1038_s41583_024_00881_3
crossref_primary_10_3389_fnins_2024_1423014
crossref_primary_10_1038_s41598_023_30579_y
crossref_primary_10_1109_TNNLS_2022_3202535
crossref_primary_10_1016_j_jpsychires_2024_09_023
crossref_primary_10_1016_j_neubiorev_2022_105021
crossref_primary_10_1093_cercor_bhad380
crossref_primary_10_1162_netn_a_00218
crossref_primary_10_1016_j_neuroimage_2023_120211
crossref_primary_10_1109_ACCESS_2023_3277731
crossref_primary_10_1038_s42003_024_06119_3
crossref_primary_10_1109_ACCESS_2025_3529179
crossref_primary_10_1016_j_neuroimage_2023_120337
crossref_primary_10_1371_journal_pone_0289406
crossref_primary_10_1093_cercor_bhac432
crossref_primary_10_1016_j_neuroimage_2024_120722
crossref_primary_10_1109_TBME_2022_3231627
Cites_doi 10.1016/j.neuroimage.2008.02.020
10.3389/fpsyt.2013.00047
10.1016/j.mri.2003.08.026
10.1016/j.physrep.2009.11.002
10.1016/j.neuroimage.2010.11.007
10.1016/j.brainres.2008.12.076
10.1038/s41467-019-12765-7
10.1038/s41598-017-18769-x
10.1016/j.neuroimage.2015.04.050
10.1016/j.physrep.2013.08.002
10.1093/cercor/bhr099
10.1371/journal.pbio.0060159
10.1089/brain.2013.0156
10.1016/j.neuroimage.2012.02.001
10.1002/hbm.22185
10.1002/ana.24533
10.1038/nrm2281
10.3389/fninf.2014.00008
10.1038/sdata.2017.10
10.1089/brain.2011.0008
10.1007/s00429-017-1539-3
10.1016/j.neuroimage.2011.03.058
10.1073/pnas.0135058100
10.1002/mrm.27146
10.1016/j.neuroimage.2013.10.046
10.1016/j.nicl.2012.11.006
10.1038/nature13186
10.1016/j.sbi.2005.04.003
10.1016/j.neuroimage.2010.08.063
10.1038/s41562-017-0260-9
10.3389/fnins.2012.00152
10.1016/j.jtbi.2010.05.026
10.1080/01621459.1984.10477110
10.1016/j.neuroimage.2014.11.027
10.1038/nrn893
10.1038/s41598-019-44909-6
10.3389/fnins.2010.00200
10.1016/j.neuroimage.2013.09.075
10.3389/fninf.2014.00064
10.1162/NETN_a_00015
10.1016/j.conb.2012.11.010
10.1016/j.pneurobio.2010.11.005
10.1016/j.neuroimage.2011.10.018
10.1038/s41593-019-0510-4
10.1016/j.nicl.2018.01.014
10.1109/TAC.1974.1100705
10.1098/rstb.2005.1654
10.1073/pnas.0800005105
10.1073/pnas.1018985108
10.1016/j.neuroimage.2020.117653
10.1103/PhysRevE.85.011912
10.1016/j.nicl.2018.11.005
10.1001/jamapsychiatry.2017.3610
10.1016/j.neuroimage.2016.11.052
10.1523/JNEUROSCI.1453-11.2011
10.1016/j.neuroimage.2008.01.044
10.1016/j.neuroimage.2017.10.029
10.1016/j.media.2013.01.003
10.1016/j.dcn.2015.01.011
10.1016/j.neuron.2015.05.035
10.1016/j.neuroimage.2007.06.003
10.1371/journal.pcbi.1003441
10.1016/j.neuron.2011.09.006
10.1109/TMI.2013.2276916
10.1073/pnas.1704663114
10.1038/ncomms11254
ContentType Journal Article
Copyright 2021
Copyright Elsevier Limited Oct 1, 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Limited Oct 1, 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2021.118288
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ
DatabaseTitle CrossRef
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



ProQuest One Psychology
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_94721593471f43eeb0e5e9bf77f1f333
10_1016_j_neuroimage_2021_118288
S1053811921005644
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c618t-ee80bd4dafcdf34f6e8c8f0684f4a7964a0a4cb4e7e0bd7bcd54e592c0b86dcc3
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:29:06 EDT 2025
Fri Jul 11 13:19:40 EDT 2025
Wed Aug 13 07:16:40 EDT 2025
Tue Jul 01 03:02:19 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Fri Feb 23 02:43:57 EST 2024
Tue Aug 26 20:02:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords fMRI
Granger
Tractography
DWI
Diffusion MRI
Connectome
Autism spectrum disorder
Effective connectivity
DCM
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-ee80bd4dafcdf34f6e8c8f0684f4a7964a0a4cb4e7e0bd7bcd54e592c0b86dcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/94721593471f43eeb0e5e9bf77f1f333
PQID 2555958429
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_94721593471f43eeb0e5e9bf77f1f333
proquest_miscellaneous_2543705490
proquest_journals_2555958429
crossref_citationtrail_10_1016_j_neuroimage_2021_118288
crossref_primary_10_1016_j_neuroimage_2021_118288
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118288
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118288
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Murphy, Fox (bib0046) 2017; 154
Fukushima, Betzel, He, van den Heuvel, Zuo, Sporns (bib0022) 2018; 223
Daunizeau, Adam, Rigoux (bib0010) 2014; 10
Zhang, Savadjiev, Cai, Song, Rathi, Tunç, Parker, Kapur, Schultz, Makris (bib0076) 2018; 172
Goldenberg, Galván (bib0026) 2015; 12
Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bib0064) 2012; 22
Goebel, Roebroeck, Kim, Formisano (bib0025) 2003; 21
Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bib0030) 2008; 6
Hahn, Skeide, Mantini, Ganzetti, Destexhe, Friederici, Deco (bib0031) 2019; 9
Mišić, Betzel, Nematzadeh, Goni, Griffa, Hagmann, Flammini, Ahn, Sporns (bib0045) 2015; 86
Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bib0065) 2011; 54
Deshpande, Hu, Stilla, Sathian (bib0013) 2008; 40
Yeo, Krienen, Chee, Buckner (bib0074) 2014; 88
Mastrovito, Hanson, Hanson (bib0042) 2018; 18
Chen, Liu, Zhao, Zhang, Li, Li, Zhang, Kuang, Guo, Tsien (bib0006) 2015; 115
Liao, Ding, Marinazzo (bib0039) 2011; 54
Power, Barnes, Snyder, Schlaggar, Petersen (bib0053) 2012; 59
Preti, Van De Ville (bib0054) 2019; 10
Greicius, Krasnow, Reiss, Menon (bib0029) 2003; 100
Noonan, Haist, Müller (bib0048) 2009; 1262
Razi, Kahan, Rees, Friston (bib0057) 2015; 106
Drysdale, Huber, Robinson, Aquino (bib0016) 2010; 265
Friston, Moran, Seth (bib0020) 2013; 23
Meunier, Lambiotte, Bullmore (bib0044) 2010; 4
Sheikhattar, Miran, Liu, Fritz, Shamma, Kanold, Babadi (bib0063) 2018
Friston (bib0021) 2011; 1
Razi, Seghier, Zhou, McColgan, Zeidman, Park, Sporns, Rees, Friston (bib0058) 2017; 1
Dhamala, Rangarajan, Ding (bib0014) 2008; 41
Deligianni, Varoquaux, Thirion, Sharp, Ledig, Leech, Rueckert (bib0011) 2013; 32
Nooner (bib0049) 2012; 6
Hampel, Wilcock, Andrieu, Aisen, Blennow, Broich, Carrillo, Fox, Frisoni, Isaac (bib0032) 2011; 95
Fishman, Datko, Cabrera, Carper, Müller (bib0018) 2015; 78
Garyfallidis, Brett, Amirbekian, Rokem, Van Der Walt, Descoteaux, Nimmo-Smith, Contributors (bib0023) 2014; 8
Demertzi, Tagliazucchi, Dehaene, Deco, Barttfeld, Raimondo, Martial, Fernandez-Espejo, Rohaut, Voss (bib0012) 2019; 5
Passingham, Stephan, Kötter (bib0051) 2002; 3
Chicharro, Panzeri (bib0007) 2014; 8
Geweke (bib0024) 1984; 79
Adams, Stephan, Brown, Frith, Friston (bib0001) 2013; 4
Li, Xue, Ellmore, Frye, Wong (bib0038) 2014; 35
Crimi, Dodero, Murino, Sona (bib0009) 2017
Sridharan, Levitin, Menon (bib0066) 2008; 105
Malliaros, Vazirgiannis (bib0041) 2013; 533
Rangaprakash, Wu, Marinazzo, Hu, Deshpande (bib0056) 2018; 80
Di Martino, O’connor, Chen, Alaerts, Anderson, Assaf, Balsters, Baxter, Beggiato, Bernaerts (bib0015) 2017; 4
Saad (bib0062) 2013; 3
Lee, Redfern, Orengo (bib0037) 2007; 8
Granger (bib0028) 1969
Bielczyk, Uithol, van Mourik, Anderson, Glennon, Buitelaar (bib0005) 2018
Zalesky, Fornito, Bullmore (bib0075) 2012; 60
Medaglia, Huang, Karuza, Kelkar, Thompson-Schill, Ribeiro, Bassett (bib0043) 2018; 2
Valdes-Sosa, Roebroeck, Daunizeau, Friston (bib0069) 2011; 58
Valdés-Sosa, Sánchez-Bornot, Lage-Castellanos, Vega-Hernández, Bosch-Bayard, Melie-García, Canales-Rodríguez (bib0070) 2005; 360
Becker, Pequito, Pappas, Miller, Grafton, Bassett, Preciado (bib0004) 2018; 8
Luppi, Carhart-Harris, Roseman, Pappas, Menon, Stamatakis (bib0040) 2021; 227
Yahata, Morimoto, Hashimoto, Lisi, Shibata, Kawakubo (bib0073) 2016; 7
Akaike (bib0002) 1974; 19
Hermundstad, Bassett, Brown, Aminoff, Clewett, Freeman, Frithsen, Johnson, Tipper, Miller (bib0034) 2013
Hearne, Dean, Robinson, Richards, Mattingley, Cocchi (bib0033) 2019; 21
Tyszka, Kennedy, Adolphs, Paul (bib0068) 2011; 31
Etkin (bib0017) 2018; 75
Robinson (bib0060) 2012; 85
Crimi, Dodero, Murino, Sona (bib0008) 2016
Ng, Varoquaux, Poline, Thirion (bib0047) 2012
Stokes, Purdon (bib0067) 2017; 114
Bassett, Wymbs, Porter, Mucha, Carlson, Grafton (bib0003) 2011; 108
Watson, Laskowski, Thornton (bib0071) 2005; 15
Reid, Headley, Mill, Sanchez-Romero, Uddin, Marinazzo, Lurie, Valdés-Sosa, Hanson, Biswal (bib0059) 2019
Hinne, Ambrogioni, Janssen, Heskes, van Gerven (bib0035) 2014; 86
Fortunato (bib0019) 2010; 486
Oh, Harris, Ng, Winslow, Cain, Mihalas, Wang, Lau, Kuan, Henry (bib0050) 2014; 508
Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar (bib0052) 2011; 72
Rudie, Brown, Beck-Pancer, Hernandez, Dennis, Thompson, Bookheimer, Dapretto (bib0061) 2013; 2
Gordon, Laumann, Adeyemo, Huckins, Kelley, Petersen (bib0027) 2014
Jirsa, Sporns, Breakspear, Deco, McIntosh (bib0036) 2010; 148
Rajapakse, Zhou (bib0055) 2007; 37
Wu, Liao, Stramaglia, Ding, Chen, Marinazzo (bib0072) 2013; 17
Jirsa (10.1016/j.neuroimage.2021.118288_bib0036) 2010; 148
Garyfallidis (10.1016/j.neuroimage.2021.118288_bib0023) 2014; 8
Lee (10.1016/j.neuroimage.2021.118288_bib0037) 2007; 8
Adams (10.1016/j.neuroimage.2021.118288_bib0001) 2013; 4
Medaglia (10.1016/j.neuroimage.2021.118288_bib0043) 2018; 2
Malliaros (10.1016/j.neuroimage.2021.118288_bib0041) 2013; 533
Friston (10.1016/j.neuroimage.2021.118288_bib0020) 2013; 23
Friston (10.1016/j.neuroimage.2021.118288_bib0021) 2011; 1
Sheikhattar (10.1016/j.neuroimage.2021.118288_bib0063) 2018
Hagmann (10.1016/j.neuroimage.2021.118288_bib0030) 2008; 6
Yahata (10.1016/j.neuroimage.2021.118288_bib0073) 2016; 7
Bassett (10.1016/j.neuroimage.2021.118288_bib0003) 2011; 108
Razi (10.1016/j.neuroimage.2021.118288_bib0058) 2017; 1
Hermundstad (10.1016/j.neuroimage.2021.118288_bib0034) 2013
Zhang (10.1016/j.neuroimage.2021.118288_bib0076) 2018; 172
Hahn (10.1016/j.neuroimage.2021.118288_bib0031) 2019; 9
Deshpande (10.1016/j.neuroimage.2021.118288_bib0013) 2008; 40
Goebel (10.1016/j.neuroimage.2021.118288_bib0025) 2003; 21
Daunizeau (10.1016/j.neuroimage.2021.118288_bib0010) 2014; 10
Noonan (10.1016/j.neuroimage.2021.118288_bib0048) 2009; 1262
Crimi (10.1016/j.neuroimage.2021.118288_bib0008) 2016
Wu (10.1016/j.neuroimage.2021.118288_bib0072) 2013; 17
Valdes-Sosa (10.1016/j.neuroimage.2021.118288_bib0069) 2011; 58
Watson (10.1016/j.neuroimage.2021.118288_bib0071) 2005; 15
Bielczyk (10.1016/j.neuroimage.2021.118288_bib0005) 2018
Smith (10.1016/j.neuroimage.2021.118288_bib0065) 2011; 54
Becker (10.1016/j.neuroimage.2021.118288_bib0004) 2018; 8
Tyszka (10.1016/j.neuroimage.2021.118288_bib0068) 2011; 31
Valdés-Sosa (10.1016/j.neuroimage.2021.118288_bib0070) 2005; 360
Hampel (10.1016/j.neuroimage.2021.118288_bib0032) 2011; 95
Nooner (10.1016/j.neuroimage.2021.118288_bib0049) 2012; 6
Robinson (10.1016/j.neuroimage.2021.118288_bib0060) 2012; 85
Drysdale (10.1016/j.neuroimage.2021.118288_bib0016) 2010; 265
Gordon (10.1016/j.neuroimage.2021.118288_bib0027) 2014
Mišić (10.1016/j.neuroimage.2021.118288_bib0045) 2015; 86
Crimi (10.1016/j.neuroimage.2021.118288_bib0009) 2017
Deligianni (10.1016/j.neuroimage.2021.118288_bib0011) 2013; 32
Yeo (10.1016/j.neuroimage.2021.118288_bib0074) 2014; 88
Granger (10.1016/j.neuroimage.2021.118288_bib0028) 1969
Chen (10.1016/j.neuroimage.2021.118288_bib0006) 2015; 115
Fortunato (10.1016/j.neuroimage.2021.118288_bib0019) 2010; 486
Hinne (10.1016/j.neuroimage.2021.118288_bib0035) 2014; 86
Geweke (10.1016/j.neuroimage.2021.118288_bib0024) 1984; 79
Luppi (10.1016/j.neuroimage.2021.118288_bib0040) 2021; 227
Power (10.1016/j.neuroimage.2021.118288_bib0053) 2012; 59
Dhamala (10.1016/j.neuroimage.2021.118288_bib0014) 2008; 41
Meunier (10.1016/j.neuroimage.2021.118288_bib0044) 2010; 4
Shirer (10.1016/j.neuroimage.2021.118288_bib0064) 2012; 22
Saad (10.1016/j.neuroimage.2021.118288_bib0062) 2013; 3
Greicius (10.1016/j.neuroimage.2021.118288_bib0029) 2003; 100
Reid (10.1016/j.neuroimage.2021.118288_bib0059) 2019
Stokes (10.1016/j.neuroimage.2021.118288_bib0067) 2017; 114
Oh (10.1016/j.neuroimage.2021.118288_bib0050) 2014; 508
Preti (10.1016/j.neuroimage.2021.118288_bib0054) 2019; 10
Demertzi (10.1016/j.neuroimage.2021.118288_bib0012) 2019; 5
Rajapakse (10.1016/j.neuroimage.2021.118288_bib0055) 2007; 37
Chicharro (10.1016/j.neuroimage.2021.118288_bib0007) 2014; 8
Passingham (10.1016/j.neuroimage.2021.118288_bib0051) 2002; 3
Akaike (10.1016/j.neuroimage.2021.118288_bib0002) 1974; 19
Zalesky (10.1016/j.neuroimage.2021.118288_bib0075) 2012; 60
Rudie (10.1016/j.neuroimage.2021.118288_bib0061) 2013; 2
Power (10.1016/j.neuroimage.2021.118288_bib0052) 2011; 72
Liao (10.1016/j.neuroimage.2021.118288_bib0039) 2011; 54
Etkin (10.1016/j.neuroimage.2021.118288_bib0017) 2018; 75
Goldenberg (10.1016/j.neuroimage.2021.118288_bib0026) 2015; 12
Rangaprakash (10.1016/j.neuroimage.2021.118288_bib0056) 2018; 80
Hearne (10.1016/j.neuroimage.2021.118288_bib0033) 2019; 21
Li (10.1016/j.neuroimage.2021.118288_bib0038) 2014; 35
Fukushima (10.1016/j.neuroimage.2021.118288_bib0022) 2018; 223
Ng (10.1016/j.neuroimage.2021.118288_bib0047) 2012
Sridharan (10.1016/j.neuroimage.2021.118288_bib0066) 2008; 105
Razi (10.1016/j.neuroimage.2021.118288_bib0057) 2015; 106
Di Martino (10.1016/j.neuroimage.2021.118288_bib0015) 2017; 4
Fishman (10.1016/j.neuroimage.2021.118288_bib0018) 2015; 78
Mastrovito (10.1016/j.neuroimage.2021.118288_bib0042) 2018; 18
Murphy (10.1016/j.neuroimage.2021.118288_bib0046) 2017; 154
References_xml – start-page: 140
  year: 2016
  end-page: 147
  ident: bib0008
  article-title: Effective brain connectivity through a constrained autoregressive model
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 227
  start-page: 117653
  year: 2021
  ident: bib0040
  article-title: LSD alters dynamic integration and segregation in the human brain
  publication-title: Neuroimage
– volume: 12
  start-page: 155
  year: 2015
  end-page: 164
  ident: bib0026
  article-title: The use of functional and effective connectivity techniques to understand the developing brain
  publication-title: Dev. Cognit. Neurosci.
– volume: 4
  start-page: 200
  year: 2010
  ident: bib0044
  article-title: Modular and hierarchically modular organization of brain networks
  publication-title: Front. Neurosci.
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bib0053
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
– volume: 115
  start-page: 202
  year: 2015
  end-page: 213
  ident: bib0006
  article-title: Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data
  publication-title: Neuroimage
– volume: 85
  start-page: 011912
  year: 2012
  ident: bib0060
  article-title: Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory
  publication-title: Phys. Rev. E
– volume: 105
  start-page: 12569
  year: 2008
  end-page: 12574
  ident: bib0066
  article-title: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 5
  start-page: eaat7603
  year: 2019
  ident: bib0012
  article-title: et al.,. Human consciousness is supported by dynamic complex patterns of brain signal coordination.Sci
  publication-title: Adv
– volume: 8
  start-page: 995
  year: 2007
  end-page: 1005
  ident: bib0037
  article-title: Predicting protein function from sequence and structure
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 360
  start-page: 969
  year: 2005
  end-page: 981
  ident: bib0070
  article-title: Estimating brain functional connectivity with sparse multivariate autoregression
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
– volume: 4
  start-page: 170010
  year: 2017
  ident: bib0015
  article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II
  publication-title: Sci. Data
– year: 2017
  ident: bib0009
  article-title: Case-control discrimination through effective brain connectivity
  publication-title: Proceedings of the IEEE 14th International Symposium on Biomedical Imaging (ISBI)
– volume: 1
  start-page: 13
  year: 2011
  end-page: 36
  ident: bib0021
  article-title: Functional and effective connectivity: a review
  publication-title: Brain Connect.
– volume: 172
  start-page: 826
  year: 2018
  end-page: 837
  ident: bib0076
  article-title: Whole brain white matter connectivity analysis using machine learning: an application to autism
  publication-title: Neuroimage
– volume: 18
  start-page: 367
  year: 2018
  end-page: 376
  ident: bib0042
  article-title: Differences in atypical resting-state effective connectivity distinguish autism from Schizophrenia
  publication-title: NeuroImage Clin.
– volume: 265
  start-page: 524
  year: 2010
  end-page: 534
  ident: bib0016
  article-title: Spatio-temporal bold dynamics from a poroelastic hemodynamic model
  publication-title: J. Theor. Biol.
– volume: 32
  start-page: 2200
  year: 2013
  end-page: 2214
  ident: bib0011
  article-title: A framework for inter-subject prediction of functional connectivity from structural networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 40
  start-page: 1807
  year: 2008
  end-page: 1814
  ident: bib0013
  article-title: Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data
  publication-title: Neuroimage
– volume: 533
  start-page: 95
  year: 2013
  end-page: 142
  ident: bib0041
  article-title: Clustering and community detection in directed networks: a survey
  publication-title: Phys. Rep.
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  ident: bib0029
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci.
– volume: 2
  start-page: 156
  year: 2018
  end-page: 164
  ident: bib0043
  article-title: Functional alignment with anatomical networks is associated with cognitive flexibility
  publication-title: Nat. Hum. Behav.
– volume: 75
  start-page: 3
  year: 2018
  end-page: 4
  ident: bib0017
  article-title: Addressing the causality gap in human psychiatric neuroscience
  publication-title: JAMA Psychiatry
– volume: 21
  start-page: 101595
  year: 2019
  ident: bib0033
  article-title: Increased cognitive complexity reveals abnormal brain network activity in individuals with corpus callosum dysgenesis
  publication-title: NeuroImage Clin.
– volume: 88
  start-page: 212
  year: 2014
  end-page: 227
  ident: bib0074
  article-title: Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex
  publication-title: Neuroimage
– start-page: 424
  year: 1969
  end-page: 438
  ident: bib0028
  article-title: Investigating causal relations by econometric models and cross-spectral methods
  publication-title: Econom. J. Econom. Soc.
– volume: 86
  start-page: 1518
  year: 2015
  end-page: 1529
  ident: bib0045
  article-title: Cooperative and competitive spreading dynamics on the human connectome
  publication-title: Neuron
– volume: 58
  start-page: 339
  year: 2011
  end-page: 361
  ident: bib0069
  article-title: Effective connectivity: influence, causality and biophysical modeling
  publication-title: Neuroimage
– volume: 23
  start-page: 172
  year: 2013
  end-page: 178
  ident: bib0020
  article-title: Analysing connectivity with Granger causality and dynamic causal modelling
  publication-title: Curr. Opin. Neurobiol.
– volume: 79
  start-page: 907
  year: 1984
  end-page: 915
  ident: bib0024
  article-title: Measures of conditional linear dependence and feedback between time series.
  publication-title: J. Am. Stat. Assoc.
– volume: 1262
  start-page: 48
  year: 2009
  end-page: 63
  ident: bib0048
  article-title: Aberrant functional connectivity in autism: evidence from low-frequency BOLD signal fluctuations
  publication-title: Brain Res.
– volume: 154
  start-page: 169
  year: 2017
  end-page: 173
  ident: bib0046
  article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI
  publication-title: Neuroimage
– volume: 6
  start-page: 152
  year: 2012
  ident: bib0049
  article-title: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry
  publication-title: Front. Neurosci.
– volume: 60
  start-page: 2096
  year: 2012
  end-page: 2106
  ident: bib0075
  article-title: On the use of correlation as a measure of network connectivity
  publication-title: Neuroimage
– volume: 35
  start-page: 396
  year: 2014
  end-page: 413
  ident: bib0038
  article-title: Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders
  publication-title: Hum. Brain Mapp.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib0031
  article-title: A new computational approach to estimate whole-brain effective connectivity from functional and structural MRI, applied to language development
  publication-title: Sci. Rep.
– volume: 7
  year: 2016
  ident: bib0073
  article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder
  publication-title: Nat. Commun.
– volume: 114
  start-page: E7063
  year: 2017
  end-page: E7072
  ident: bib0067
  article-title: A study of problems encountered in Granger causality analysis from a neuroscience perspective
  publication-title: Proc. Natl. Acad. Sci.
– volume: 21
  start-page: 1251
  year: 2003
  end-page: 1261
  ident: bib0025
  article-title: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping
  publication-title: Magn. Reson. Imaging
– year: 2019
  ident: bib0059
  article-title: Advancing functional connectivity research from association to causation
  publication-title: Nat. Neurosci.
– volume: 3
  start-page: 606
  year: 2002
  end-page: 616
  ident: bib0051
  article-title: The anatomical basis of functional localization in the cortex
  publication-title: Nat. Rev. Neurosci.
– volume: 223
  start-page: 1091
  year: 2018
  end-page: 1106
  ident: bib0022
  article-title: Structure–function relationships during segregated and integrated network states of human brain functional connectivity
  publication-title: Brain Struct. Funct.
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: bib0002
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
– volume: 37
  start-page: 749
  year: 2007
  end-page: 760
  ident: bib0055
  article-title: Learning effective brain connectivity with dynamic Bayesian networks
  publication-title: Neuroimage
– start-page: bhu239
  year: 2014
  ident: bib0027
  article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations
  publication-title: Cerebral Cortex
– volume: 6
  start-page: e159
  year: 2008
  ident: bib0030
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
– start-page: 201219562
  year: 2013
  ident: bib0034
  article-title: Structural foundations of resting-state and task-based functional connectivity in the human brain
  publication-title: Proc. Natl. Acad. Sci.
– volume: 54
  start-page: 2683
  year: 2011
  end-page: 2694
  ident: bib0039
  article-title: Small-world directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI
  publication-title: Neuroimage
– volume: 1
  start-page: 222
  year: 2017
  end-page: 241
  ident: bib0058
  article-title: Large-scale DCMs for resting-state fMRI
  publication-title: Netw. Neurosci.
– volume: 41
  start-page: 354
  year: 2008
  end-page: 362
  ident: bib0014
  article-title: Analyzing information flow in brain networks with nonparametric Granger causality
  publication-title: Neuroimage
– volume: 80
  start-page: 1697
  year: 2018
  end-page: 1713
  ident: bib0056
  article-title: Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity
  publication-title: Magn. Reson. Med.
– volume: 8
  year: 2014
  ident: bib0023
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front. Neuroinform.
– volume: 54
  start-page: 875
  year: 2011
  end-page: 891
  ident: bib0065
  article-title: Network modelling methods for fMRI
  publication-title: Neuroimage
– volume: 486
  start-page: 75
  year: 2010
  end-page: 174
  ident: bib0019
  article-title: Community detection in graphs
  publication-title: Phys. Rep.
– start-page: 707
  year: 2012
  end-page: 714
  ident: bib0047
  article-title: A novel sparse graphical approach for multimodal brain connectivity inference
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: bib0052
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– volume: 2
  start-page: 79
  year: 2013
  end-page: 94
  ident: bib0061
  article-title: Altered functional and structural brain network organization in autism
  publication-title: NeuroImage Clin.
– volume: 86
  start-page: 294
  year: 2014
  end-page: 305
  ident: bib0035
  article-title: Structurally-informed Bayesian functional connectivity analysis
  publication-title: Neuroimage
– volume: 148
  start-page: 189
  year: 2010
  end-page: 205
  ident: bib0036
  article-title: Towards the virtual brain: network modeling of the intact and the damaged brain
  publication-title: Arch. Ital. Biol.
– start-page: 1
  year: 2018
  end-page: 37
  ident: bib0005
  article-title: Disentangling casual webs in the brain using functional magnetic resonance imaging: a review of current approaches
  publication-title: Network Neurosci.
– volume: 31
  start-page: 15154
  year: 2011
  end-page: 15162
  ident: bib0068
  article-title: Intact bilateral resting-state networks in the absence of the corpus callosum
  publication-title: J. Neurosci.
– volume: 8
  start-page: 1411
  year: 2018
  ident: bib0004
  article-title: Spectral mapping of brain functional connectivity from diffusion imaging
  publication-title: Sci. Rep.
– volume: 78
  start-page: 958
  year: 2015
  end-page: 969
  ident: bib0018
  article-title: Reduced integration and differentiation of the imitation network in autism: a combined functional connectivity magnetic resonance imaging and diffusion-weighted imaging study
  publication-title: Ann. Neurol.
– volume: 108
  start-page: 7641
  year: 2011
  end-page: 7646
  ident: bib0003
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: Proc. Natl. Acad. Sci.
– volume: 508
  start-page: 207
  year: 2014
  end-page: 214
  ident: bib0050
  article-title: A mesoscale connectome of the mouse brain
  publication-title: Nature
– volume: 10
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib0054
  article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans
  publication-title: Nat. Commun.
– volume: 17
  start-page: 365
  year: 2013
  end-page: 374
  ident: bib0072
  article-title: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data
  publication-title: Med. Image Anal.
– volume: 106
  start-page: 1
  year: 2015
  end-page: 14
  ident: bib0057
  article-title: Construct validation of a DCM for resting state fMRI
  publication-title: Neuroimage
– volume: 4
  start-page: 47
  year: 2013
  ident: bib0001
  article-title: The computational anatomy of psychosis
  publication-title: Front. Psychiatry
– volume: 95
  start-page: 579
  year: 2011
  end-page: 593
  ident: bib0032
  article-title: Biomarkers for Alzheimer’s disease therapeutic trials
  publication-title: Prog. Neurobiol.
– volume: 8
  start-page: 64
  year: 2014
  ident: bib0007
  article-title: Algorithms of causal inference for the analysis of effective connectivity among brain regions
  publication-title: Front. Neuroinform.
– start-page: 201718154
  year: 2018
  ident: bib0063
  article-title: Extracting neuronal functional network dynamics via adaptive Granger causality analysis
  publication-title: Proc. Natl. Acad. Sci.
– volume: 22
  start-page: 158
  year: 2012
  end-page: 165
  ident: bib0064
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cerebral Cortex
– volume: 3
  start-page: 339
  year: 2013
  end-page: 352
  ident: bib0062
  article-title: Correcting brain-wide correlation differences in resting-state fMRI
  publication-title: Brain Connect.
– volume: 15
  start-page: 275
  year: 2005
  end-page: 284
  ident: bib0071
  article-title: Predicting protein function from sequence and structural data
  publication-title: Curr. Opin. Struct. Biol.
– volume: 10
  start-page: e1003441
  year: 2014
  ident: bib0010
  article-title: VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data
  publication-title: PLoS Comput. Biol.
– volume: 41
  start-page: 354
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118288_bib0014
  article-title: Analyzing information flow in brain networks with nonparametric Granger causality
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.020
– volume: 4
  start-page: 47
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118288_bib0001
  article-title: The computational anatomy of psychosis
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2013.00047
– volume: 21
  start-page: 1251
  issue: 10
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118288_bib0025
  article-title: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2003.08.026
– volume: 486
  start-page: 75
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118288_bib0019
  article-title: Community detection in graphs
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.11.002
– start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118288_bib0005
  article-title: Disentangling casual webs in the brain using functional magnetic resonance imaging: a review of current approaches
  publication-title: Network Neurosci.
– volume: 54
  start-page: 2683
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118288_bib0039
  article-title: Small-world directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.007
– volume: 1262
  start-page: 48
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118288_bib0048
  article-title: Aberrant functional connectivity in autism: evidence from low-frequency BOLD signal fluctuations
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.12.076
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118288_bib0054
  article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12765-7
– volume: 8
  start-page: 1411
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118288_bib0004
  article-title: Spectral mapping of brain functional connectivity from diffusion imaging
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18769-x
– volume: 115
  start-page: 202
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118288_bib0006
  article-title: Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.050
– volume: 533
  start-page: 95
  issue: 4
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118288_bib0041
  article-title: Clustering and community detection in directed networks: a survey
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2013.08.002
– volume: 22
  start-page: 158
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118288_bib0064
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhr099
– volume: 6
  start-page: e159
  issue: 7
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118288_bib0030
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060159
– volume: 3
  start-page: 339
  issue: 4
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118288_bib0062
  article-title: Correcting brain-wide correlation differences in resting-state fMRI
  publication-title: Brain Connect.
  doi: 10.1089/brain.2013.0156
– start-page: 201219562
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118288_bib0034
  article-title: Structural foundations of resting-state and task-based functional connectivity in the human brain
  publication-title: Proc. Natl. Acad. Sci.
– volume: 148
  start-page: 189
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118288_bib0036
  article-title: Towards the virtual brain: network modeling of the intact and the damaged brain
  publication-title: Arch. Ital. Biol.
– volume: 60
  start-page: 2096
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118288_bib0075
  article-title: On the use of correlation as a measure of network connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.001
– volume: 35
  start-page: 396
  issue: 2
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118288_bib0038
  article-title: Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22185
– volume: 78
  start-page: 958
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118288_bib0018
  article-title: Reduced integration and differentiation of the imitation network in autism: a combined functional connectivity magnetic resonance imaging and diffusion-weighted imaging study
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24533
– volume: 8
  start-page: 995
  issue: 12
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118288_bib0037
  article-title: Predicting protein function from sequence and structure
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2281
– volume: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118288_bib0023
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2014.00008
– start-page: 707
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118288_bib0047
  article-title: A novel sparse graphical approach for multimodal brain connectivity inference
– volume: 4
  start-page: 170010
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118288_bib0015
  article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.10
– volume: 1
  start-page: 13
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118288_bib0021
  article-title: Functional and effective connectivity: a review
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0008
– volume: 223
  start-page: 1091
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118288_bib0022
  article-title: Structure–function relationships during segregated and integrated network states of human brain functional connectivity
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-017-1539-3
– volume: 58
  start-page: 339
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118288_bib0069
  article-title: Effective connectivity: influence, causality and biophysical modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.058
– volume: 100
  start-page: 253
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118288_bib0029
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0135058100
– volume: 80
  start-page: 1697
  issue: 4
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118288_bib0056
  article-title: Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27146
– volume: 88
  start-page: 212
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118288_bib0074
  article-title: Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.046
– volume: 5
  start-page: eaat7603
  issue: 2
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118288_bib0012
  article-title: et al.,. Human consciousness is supported by dynamic complex patterns of brain signal coordination.Sci
  publication-title: Adv
– start-page: 140
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118288_bib0008
  article-title: Effective brain connectivity through a constrained autoregressive model
– volume: 2
  start-page: 79
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118288_bib0061
  article-title: Altered functional and structural brain network organization in autism
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2012.11.006
– volume: 508
  start-page: 207
  issue: 7495
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118288_bib0050
  article-title: A mesoscale connectome of the mouse brain
  publication-title: Nature
  doi: 10.1038/nature13186
– volume: 15
  start-page: 275
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118288_bib0071
  article-title: Predicting protein function from sequence and structural data
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2005.04.003
– volume: 54
  start-page: 875
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118288_bib0065
  article-title: Network modelling methods for fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
– volume: 2
  start-page: 156
  issue: 2
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118288_bib0043
  article-title: Functional alignment with anatomical networks is associated with cognitive flexibility
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-017-0260-9
– volume: 6
  start-page: 152
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118288_bib0049
  article-title: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00152
– volume: 265
  start-page: 524
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118288_bib0016
  article-title: Spatio-temporal bold dynamics from a poroelastic hemodynamic model
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.05.026
– volume: 79
  start-page: 907
  year: 1984
  ident: 10.1016/j.neuroimage.2021.118288_bib0024
  article-title: Measures of conditional linear dependence and feedback between time series.
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1984.10477110
– volume: 106
  start-page: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118288_bib0057
  article-title: Construct validation of a DCM for resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.027
– volume: 3
  start-page: 606
  issue: 8
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118288_bib0051
  article-title: The anatomical basis of functional localization in the cortex
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn893
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118288_bib0031
  article-title: A new computational approach to estimate whole-brain effective connectivity from functional and structural MRI, applied to language development
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44909-6
– volume: 4
  start-page: 200
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118288_bib0044
  article-title: Modular and hierarchically modular organization of brain networks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2010.00200
– volume: 86
  start-page: 294
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118288_bib0035
  article-title: Structurally-informed Bayesian functional connectivity analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.09.075
– volume: 8
  start-page: 64
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118288_bib0007
  article-title: Algorithms of causal inference for the analysis of effective connectivity among brain regions
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2014.00064
– volume: 1
  start-page: 222
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118288_bib0058
  article-title: Large-scale DCMs for resting-state fMRI
  publication-title: Netw. Neurosci.
  doi: 10.1162/NETN_a_00015
– volume: 23
  start-page: 172
  issue: 2
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118288_bib0020
  article-title: Analysing connectivity with Granger causality and dynamic causal modelling
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2012.11.010
– volume: 95
  start-page: 579
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118288_bib0032
  article-title: Biomarkers for Alzheimer’s disease therapeutic trials
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2010.11.005
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118288_bib0053
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– year: 2019
  ident: 10.1016/j.neuroimage.2021.118288_bib0059
  article-title: Advancing functional connectivity research from association to causation
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0510-4
– volume: 18
  start-page: 367
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118288_bib0042
  article-title: Differences in atypical resting-state effective connectivity distinguish autism from Schizophrenia
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2018.01.014
– volume: 19
  start-page: 716
  year: 1974
  ident: 10.1016/j.neuroimage.2021.118288_bib0002
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– volume: 360
  start-page: 969
  issue: 1457
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118288_bib0070
  article-title: Estimating brain functional connectivity with sparse multivariate autoregression
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2005.1654
– volume: 105
  start-page: 12569
  issue: 34
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118288_bib0066
  article-title: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0800005105
– volume: 108
  start-page: 7641
  issue: 18
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118288_bib0003
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1018985108
– start-page: 424
  year: 1969
  ident: 10.1016/j.neuroimage.2021.118288_bib0028
  article-title: Investigating causal relations by econometric models and cross-spectral methods
  publication-title: Econom. J. Econom. Soc.
– year: 2017
  ident: 10.1016/j.neuroimage.2021.118288_bib0009
  article-title: Case-control discrimination through effective brain connectivity
– volume: 227
  start-page: 117653
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118288_bib0040
  article-title: LSD alters dynamic integration and segregation in the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117653
– volume: 85
  start-page: 011912
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118288_bib0060
  article-title: Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.011912
– volume: 21
  start-page: 101595
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118288_bib0033
  article-title: Increased cognitive complexity reveals abnormal brain network activity in individuals with corpus callosum dysgenesis
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2018.11.005
– volume: 75
  start-page: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118288_bib0017
  article-title: Addressing the causality gap in human psychiatric neuroscience
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2017.3610
– volume: 154
  start-page: 169
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118288_bib0046
  article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.052
– volume: 31
  start-page: 15154
  issue: 42
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118288_bib0068
  article-title: Intact bilateral resting-state networks in the absence of the corpus callosum
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1453-11.2011
– start-page: bhu239
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118288_bib0027
  article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations
  publication-title: Cerebral Cortex
– volume: 40
  start-page: 1807
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118288_bib0013
  article-title: Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.01.044
– volume: 172
  start-page: 826
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118288_bib0076
  article-title: Whole brain white matter connectivity analysis using machine learning: an application to autism
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.10.029
– volume: 17
  start-page: 365
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118288_bib0072
  article-title: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.01.003
– start-page: 201718154
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118288_bib0063
  article-title: Extracting neuronal functional network dynamics via adaptive Granger causality analysis
  publication-title: Proc. Natl. Acad. Sci.
– volume: 12
  start-page: 155
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118288_bib0026
  article-title: The use of functional and effective connectivity techniques to understand the developing brain
  publication-title: Dev. Cognit. Neurosci.
  doi: 10.1016/j.dcn.2015.01.011
– volume: 86
  start-page: 1518
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118288_bib0045
  article-title: Cooperative and competitive spreading dynamics on the human connectome
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.05.035
– volume: 37
  start-page: 749
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118288_bib0055
  article-title: Learning effective brain connectivity with dynamic Bayesian networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.06.003
– volume: 10
  start-page: e1003441
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118288_bib0010
  article-title: VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003441
– volume: 72
  start-page: 665
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118288_bib0052
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 32
  start-page: 2200
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118288_bib0011
  article-title: A framework for inter-subject prediction of functional connectivity from structural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2276916
– volume: 114
  start-page: E7063
  issue: 34
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118288_bib0067
  article-title: A study of problems encountered in Granger causality analysis from a neuroscience perspective
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1704663114
– volume: 7
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118288_bib0073
  article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11254
SSID ssj0009148
Score 2.4945776
Snippet •A method to combine structural and functional connectivity by using an autoregressive model is proposed.•The autoregressive model is constrained by structural...
The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118288
SubjectTerms Autism
Autism spectrum disorder
Brain
Causality
Connectome
DCM
Diffusion MRI
DWI
Effective connectivity
fMRI
Granger
Influence
Nervous system
Neural networks
Neurosciences
Structure-function relationships
Tractography
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BaxUxEA6lh-JFtCo-rfIEr9u3eUk2CZ60WIqgl1roLWySGXlS95XaHnrxtzuTzb5HPT3wuLOZZZidzHwhky9CvJdL61Bl36DtUqNN1k1EyA10kE3nTGpjYfv81p1d6C-X5nJPnExnYbitsub-MaeXbF0li-rNxfVqtTgnZEDlhvm8mM9SMyeo1paj_PjPts3DSz0ehzOq4dG1m2fs8SqckatfNHNppbiUx4y2yx0s2xJVmPwfVKp_cnYpRKdPxOOKIOcfRyOfij0YDsXB17pH_kyY80IJy3QaV_fzxPiPr4GAPB97Nyi9zSNL-N1QBITEn4uL08_fT86aejlCkzrpbhsA18asc48po9LYgUsO285p1D2fL-3bXqeowQKNszFlo8H4JTnfdTkl9ULsD-sBXpI_QGG2GZCxRZTZ5YQuoTUgeyUTzoSd_BFSZQ5ny6_C1CL2M2w9GdiTYfTkTMiN5vXInrGDzid2-WY8818XwfrmR6gBELymlavxikoragUQWzDgI1qLEpVSM-GnHxamI6aUFOlDqx0M-LDRfRCKO2ofTfERajr4HWjdZjxBvaWfiXeb1zSReXemH2B9x2O0sgSgffvqvwx4LR7x09hweCT2KebgDQGn2_i2zIy_Lj4Zww
  priority: 102
  providerName: Elsevier
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NjxQhECW6JsaL8TOOrmZMvKLNAA3Eg1HjZmOiF91kbqSBKrNmt2d114P_3iqanokezFyBojsFVD2geCXEC7VyHnUJEl2fpbHFyIRQJPRQbO9t7lJl-_zcH5-Yj2u7bgduly2scraJ1VCXTeYz8lcEfW0gb7kKby5-SM4axberLYXGdXGDqcs4pMut3Y50V5npKZzV0lODFskzxXdVvsjTc1q1tEtcqZeMtGv-lZ17qiz-f3mpf-x1dUJHd8Tthh6Xb6fhviuuwXhP3PzU7sfvC_ul0sEylcbZ72Vm7McpIKAsp7gNMm3LxCVcN9YCQuEPxMnRh6_vj2VLjCBzr_yVBPBdKqYMmAtqgz347LHrvUEz8NvSoRtMTgYcUDuXcrEGbFiR4n1fctYPxcG4GeER6QM0FlcAGVckVXzJ6DM6C2rQKuNCuFkfMTfWcP7zsziHh32PO01G1mScNLkQait5MTFn7CHzjlW-bc_c17Vg8_NbbEspBkO7Vhs0uVU0GiB1YCEkdA4Vaq0XIswDFufnpWQQqaPTPX7g9Va2QZAJWuwpfTjPj9hMwWXcTdyFeL6tpkXMNzPDCJtf3MZoR-A5dI__38UTcYu_N0UTHooDmlTwlFDRVXpWp_4fNeoOow
  priority: 102
  providerName: ProQuest
Title Structurally constrained effective brain connectivity
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921005644
https://dx.doi.org/10.1016/j.neuroimage.2021.118288
https://www.proquest.com/docview/2555958429
https://www.proquest.com/docview/2543705490
https://doaj.org/article/94721593471f43eeb0e5e9bf77f1f333
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA-thdKL2A9x_Vi20OvYySaZJHhSUbYtXUpbYW9hkrwHio6CevDSv70vycxae-keepmBfAzhl3kvv0defmHsA59qgyLaCnUTKqmirDxCrKCBqBqjQu2z2ue8mZ3Jzwu1-OOqr5QTVuSBC3AfraQYRVlBThSlAPA1KLAetUaOQmSdT1rzhmBqkNsllt_n7ZRsrqwOeX5FNkox4ZTvJ16db1t5XIyyZv-TNekv75yXnNMNtt5zxclhGeNr9gy6N-zl1343_C1TP7L4axLOuHyYhMT00oUPECclS4Mc2cSnklTX5QLi3O_Y2enJz-NZ1V-DUIWGm7sKwNQ-ythiiCgkNmCCwboxEmWbTpK2dSuDl6CB2mkfopKg7JRgNk0MQWyyte66gy3CAwRGHQETi_A8mhjQBNQKeCt4wBHTAx4u9BrhaeSXbkgGu3CPSLqEpCtIjhhf9rwpOhkr9DlKkC_bJ6XrXEDz7_r5d_-a_xGzw4S54TApuT_60PkKAzhY9u0JRyESK_beHf4P1xv-raMITVkidVM7Yu-X1WSyaR-m7eD6PrWRQhNVtvX2_0Bgh71KoyoZhrtsjX492COmdOfH7Pn-L05PvdBj9uLw05fZnN5HJ_Nv38fZYH4D3nUZsw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLbKVgIuiKfYUmCQ4DgwmSSTRAghCq22tF0haKXe0knioKJ2ttAi1D_Fb8SZx67ggPbSaxJnIie2P08cG-A5K5WOPJg8qsrnQgaRu4ghxwqDrLT0hWuzfU6ryYH4eCgPV-D38BYmhVUOOrFV1GHm0z_yVwR9pSFrWZq3Z9_zVDUq3a4OJTS6Y7GDl7_IZTt_s_2B9vdFWW5t7r-f5H1VgdxXTF_kiLpwQYQ6-hC5iBVqr2NRaRFFnR5m1kUtvBOokMYp54MUKE1Jq9ZV8J7TvNdgVXByZUawurE5_fR5keaXie7xneS5Zsz0sUNdRFmbofL4lPQE-aUle5mwfVvxZWEQ27oBf9nFfyxEa_a2bsOtHq9m77oDdgdWsLkL1_f6G_l7IL-0CWhT8o6Ty8wntJmKTmDIukgRUqaZSy2pr2kbCPffh4MrYdoDGDWzBh8SP5DHoALGhGQcCzr4qH1UElnNmY9jUAM_rO_zlKeVn9ghIO2bXXDSJk7ajpNjYHPKsy5XxxI0G4nl8_Ep23bbMPvx1fbCa40gP1kaToY8Co7oCpRoXFQqssg5H4MZNswOD1pJBdNEx0ss4PWctgc9HZhZknp9OB-2Vz7ndiEqY3g27ya1ke6C6gZnP9MYwRXBdVOs_X-Kp3Bjsr-3a3e3pzuP4Gb6dhfLuA4jOmD4mDDZhXvSC0IGR1cte38AutBQHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiKdYKBAkOIbGsR3bQggBZdVSqJCg0t5MbI9RUcn2hVD_Gr-OGSfZFRzQXnr1K8l4Hp_jeTD2lNfaJBFtmXQTSqmiLH2CWEIDUTVGhcrnbJ_7zc6BfD9TszX2e4yFIbfKUSdmRR3ngf6RbyH0VRatZW230uAW8Wl7-ur4pKQKUnTTOpbT6FlkDy5-4fHt7OXuNu71s7qevvvydqccKgyUoeHmvAQwlY8ytinEJGRqwASTqsbIJFsK0myrVgYvQQOO0z5EJUHZGr_ANDEEgeteYVe1UJxkTM_0MuEvl30YnhKl4dwOXkS9b1nOVXn4AzUGnlBr_pxQfq79sjSNuYLAXxbyH1uRDeD0Brs-INfidc9qN9kadLfYxsfhbv42U59zKlpK43F0UQTCnVR-AmLR-4ygWi08tVBflxvwBHCHHVwKye6y9W7ewT2kB4gUdYREmMbzaGJIJiStgLeChzRheqSHC0PGcnrzIze6pn13S0o6oqTrKTlhfDHzuM_ascKcN0TyxXjKu50b5qff3CDGzko8MSsr0KQnKQB8BQqsT1onnoQQE2bHDXNjaCsqY1zocIUXeLGYO8CfHtasOHtz5A83qKEztxSaCXuy6EYFQrdCbQfznzRGCo3A3Vb3_7_EY7aBEuc-7O7vPWDX6NG9U-MmW0f-gocIzs79oywFBft62WL3B10cUu4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structurally+constrained+effective+brain+connectivity&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Alessandro+Crimi&rft.au=Luca+Dodero&rft.au=Fabio+Sambataro&rft.au=Vittorio+Murino&rft.date=2021-10-01&rft.pub=Elsevier&rft.eissn=1095-9572&rft.volume=239&rft.spage=118288&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118288&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_94721593471f43eeb0e5e9bf77f1f333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon