Structurally constrained effective brain connectivity
•A method to combine structural and functional connectivity by using an autoregressive model is proposed.•The autoregressive model is constrained by structural connectivity defining coefficients for Granger causality.•The usefulness of the generated effective connections is tested on simulations, gr...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 239; p. 118288 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.10.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A method to combine structural and functional connectivity by using an autoregressive model is proposed.•The autoregressive model is constrained by structural connectivity defining coefficients for Granger causality.•The usefulness of the generated effective connections is tested on simulations, ground-truth default mode network experiments, a classification and clustering task.•The method can be used for direct and indirect connections, and with raw and deconvoluted BOLD signal.
The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal.
The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task. |
---|---|
AbstractList | The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal. The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task.The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal. The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task. The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal.The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task. •A method to combine structural and functional connectivity by using an autoregressive model is proposed.•The autoregressive model is constrained by structural connectivity defining coefficients for Granger causality.•The usefulness of the generated effective connections is tested on simulations, ground-truth default mode network experiments, a classification and clustering task.•The method can be used for direct and indirect connections, and with raw and deconvoluted BOLD signal. The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal. The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task. |
ArticleNumber | 118288 |
Author | Murino, Vittorio Sona, Diego Sambataro, Fabio Dodero, Luca Crimi, Alessandro |
Author_xml | – sequence: 1 givenname: Alessandro surname: Crimi fullname: Crimi, Alessandro email: diego.sona@iit.it organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, via Enrico Melen 83, Genova 16152, Italy – sequence: 2 givenname: Luca surname: Dodero fullname: Dodero, Luca organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, via Enrico Melen 83, Genova 16152, Italy – sequence: 3 givenname: Fabio surname: Sambataro fullname: Sambataro, Fabio organization: Department of Neuroscience, University of Padova, via Belzoni, 160, 35121 Padova, Italy – sequence: 4 givenname: Vittorio surname: Murino fullname: Murino, Vittorio organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, via Enrico Melen 83, Genova 16152, Italy – sequence: 5 givenname: Diego surname: Sona fullname: Sona, Diego organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, via Enrico Melen 83, Genova 16152, Italy |
BookMark | eNqNkU-P1SAUxYkZE2eefoeXuHHTJ7TQwsaoE_9MMokLdU3o7WVCZWAEOsn79tKpxuStHhvI4dxfcs-5IhchBiRkz-iBUda_nQ8BlxTdvbnDQ0tbdmBMtlI-I5eMKtEoMbQX61t0jWRMvSBXOc-UUsW4vCTie0kLlCUZ7497iCGXZFzAaY_WIhT3iPtxVda_8CS4cnxJnlvjM776e-_Iz8-fflx_bW6_fbm5_nDbQM9kaRAlHSc-GQuT7bjtUYK0tJfccjOonhtqOIwcB6y-YYRJcBSqBTrKfgLoduRm407RzPoh1S3TUUfj9JMQ0502qTjwqBUfWiZUxwdmeYc4UhSoRjsMltmunh15s7EeUvy9YC763mVA703AuGTdCt4NVHBFq_X1iXWOSwp10-oSQgnJW1Vd7zYXpJhzQqvBFVNcDGuEXjOq14b0rP83pNeG9NZQBcgTwL8Nzxj9uI1iTf_RYdIZHAbAyaVaUo3HnQN5fwIB74ID43_h8TzEH1mcym0 |
CitedBy_id | crossref_primary_10_1002_hbm_26155 crossref_primary_10_1038_s41583_024_00881_3 crossref_primary_10_3389_fnins_2024_1423014 crossref_primary_10_1038_s41598_023_30579_y crossref_primary_10_1109_TNNLS_2022_3202535 crossref_primary_10_1016_j_jpsychires_2024_09_023 crossref_primary_10_1016_j_neubiorev_2022_105021 crossref_primary_10_1093_cercor_bhad380 crossref_primary_10_1162_netn_a_00218 crossref_primary_10_1016_j_neuroimage_2023_120211 crossref_primary_10_1109_ACCESS_2023_3277731 crossref_primary_10_1038_s42003_024_06119_3 crossref_primary_10_1109_ACCESS_2025_3529179 crossref_primary_10_1016_j_neuroimage_2023_120337 crossref_primary_10_1371_journal_pone_0289406 crossref_primary_10_1093_cercor_bhac432 crossref_primary_10_1016_j_neuroimage_2024_120722 crossref_primary_10_1109_TBME_2022_3231627 |
Cites_doi | 10.1016/j.neuroimage.2008.02.020 10.3389/fpsyt.2013.00047 10.1016/j.mri.2003.08.026 10.1016/j.physrep.2009.11.002 10.1016/j.neuroimage.2010.11.007 10.1016/j.brainres.2008.12.076 10.1038/s41467-019-12765-7 10.1038/s41598-017-18769-x 10.1016/j.neuroimage.2015.04.050 10.1016/j.physrep.2013.08.002 10.1093/cercor/bhr099 10.1371/journal.pbio.0060159 10.1089/brain.2013.0156 10.1016/j.neuroimage.2012.02.001 10.1002/hbm.22185 10.1002/ana.24533 10.1038/nrm2281 10.3389/fninf.2014.00008 10.1038/sdata.2017.10 10.1089/brain.2011.0008 10.1007/s00429-017-1539-3 10.1016/j.neuroimage.2011.03.058 10.1073/pnas.0135058100 10.1002/mrm.27146 10.1016/j.neuroimage.2013.10.046 10.1016/j.nicl.2012.11.006 10.1038/nature13186 10.1016/j.sbi.2005.04.003 10.1016/j.neuroimage.2010.08.063 10.1038/s41562-017-0260-9 10.3389/fnins.2012.00152 10.1016/j.jtbi.2010.05.026 10.1080/01621459.1984.10477110 10.1016/j.neuroimage.2014.11.027 10.1038/nrn893 10.1038/s41598-019-44909-6 10.3389/fnins.2010.00200 10.1016/j.neuroimage.2013.09.075 10.3389/fninf.2014.00064 10.1162/NETN_a_00015 10.1016/j.conb.2012.11.010 10.1016/j.pneurobio.2010.11.005 10.1016/j.neuroimage.2011.10.018 10.1038/s41593-019-0510-4 10.1016/j.nicl.2018.01.014 10.1109/TAC.1974.1100705 10.1098/rstb.2005.1654 10.1073/pnas.0800005105 10.1073/pnas.1018985108 10.1016/j.neuroimage.2020.117653 10.1103/PhysRevE.85.011912 10.1016/j.nicl.2018.11.005 10.1001/jamapsychiatry.2017.3610 10.1016/j.neuroimage.2016.11.052 10.1523/JNEUROSCI.1453-11.2011 10.1016/j.neuroimage.2008.01.044 10.1016/j.neuroimage.2017.10.029 10.1016/j.media.2013.01.003 10.1016/j.dcn.2015.01.011 10.1016/j.neuron.2015.05.035 10.1016/j.neuroimage.2007.06.003 10.1371/journal.pcbi.1003441 10.1016/j.neuron.2011.09.006 10.1109/TMI.2013.2276916 10.1073/pnas.1704663114 10.1038/ncomms11254 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier Limited Oct 1, 2021 Copyright © 2021. Published by Elsevier Inc. |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier Limited Oct 1, 2021 – notice: Copyright © 2021. Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2021.118288 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ |
DatabaseTitle | CrossRef ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_94721593471f43eeb0e5e9bf77f1f333 10_1016_j_neuroimage_2021_118288 S1053811921005644 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c618t-ee80bd4dafcdf34f6e8c8f0684f4a7964a0a4cb4e7e0bd7bcd54e592c0b86dcc3 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:29:06 EDT 2025 Fri Jul 11 13:19:40 EDT 2025 Wed Aug 13 07:16:40 EDT 2025 Tue Jul 01 03:02:19 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Fri Feb 23 02:43:57 EST 2024 Tue Aug 26 20:02:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | fMRI Granger Tractography DWI Diffusion MRI Connectome Autism spectrum disorder Effective connectivity DCM |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c618t-ee80bd4dafcdf34f6e8c8f0684f4a7964a0a4cb4e7e0bd7bcd54e592c0b86dcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/94721593471f43eeb0e5e9bf77f1f333 |
PQID | 2555958429 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_94721593471f43eeb0e5e9bf77f1f333 proquest_miscellaneous_2543705490 proquest_journals_2555958429 crossref_citationtrail_10_1016_j_neuroimage_2021_118288 crossref_primary_10_1016_j_neuroimage_2021_118288 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118288 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118288 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 2021-10-00 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Murphy, Fox (bib0046) 2017; 154 Fukushima, Betzel, He, van den Heuvel, Zuo, Sporns (bib0022) 2018; 223 Daunizeau, Adam, Rigoux (bib0010) 2014; 10 Zhang, Savadjiev, Cai, Song, Rathi, Tunç, Parker, Kapur, Schultz, Makris (bib0076) 2018; 172 Goldenberg, Galván (bib0026) 2015; 12 Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bib0064) 2012; 22 Goebel, Roebroeck, Kim, Formisano (bib0025) 2003; 21 Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bib0030) 2008; 6 Hahn, Skeide, Mantini, Ganzetti, Destexhe, Friederici, Deco (bib0031) 2019; 9 Mišić, Betzel, Nematzadeh, Goni, Griffa, Hagmann, Flammini, Ahn, Sporns (bib0045) 2015; 86 Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bib0065) 2011; 54 Deshpande, Hu, Stilla, Sathian (bib0013) 2008; 40 Yeo, Krienen, Chee, Buckner (bib0074) 2014; 88 Mastrovito, Hanson, Hanson (bib0042) 2018; 18 Chen, Liu, Zhao, Zhang, Li, Li, Zhang, Kuang, Guo, Tsien (bib0006) 2015; 115 Liao, Ding, Marinazzo (bib0039) 2011; 54 Power, Barnes, Snyder, Schlaggar, Petersen (bib0053) 2012; 59 Preti, Van De Ville (bib0054) 2019; 10 Greicius, Krasnow, Reiss, Menon (bib0029) 2003; 100 Noonan, Haist, Müller (bib0048) 2009; 1262 Razi, Kahan, Rees, Friston (bib0057) 2015; 106 Drysdale, Huber, Robinson, Aquino (bib0016) 2010; 265 Friston, Moran, Seth (bib0020) 2013; 23 Meunier, Lambiotte, Bullmore (bib0044) 2010; 4 Sheikhattar, Miran, Liu, Fritz, Shamma, Kanold, Babadi (bib0063) 2018 Friston (bib0021) 2011; 1 Razi, Seghier, Zhou, McColgan, Zeidman, Park, Sporns, Rees, Friston (bib0058) 2017; 1 Dhamala, Rangarajan, Ding (bib0014) 2008; 41 Deligianni, Varoquaux, Thirion, Sharp, Ledig, Leech, Rueckert (bib0011) 2013; 32 Nooner (bib0049) 2012; 6 Hampel, Wilcock, Andrieu, Aisen, Blennow, Broich, Carrillo, Fox, Frisoni, Isaac (bib0032) 2011; 95 Fishman, Datko, Cabrera, Carper, Müller (bib0018) 2015; 78 Garyfallidis, Brett, Amirbekian, Rokem, Van Der Walt, Descoteaux, Nimmo-Smith, Contributors (bib0023) 2014; 8 Demertzi, Tagliazucchi, Dehaene, Deco, Barttfeld, Raimondo, Martial, Fernandez-Espejo, Rohaut, Voss (bib0012) 2019; 5 Passingham, Stephan, Kötter (bib0051) 2002; 3 Chicharro, Panzeri (bib0007) 2014; 8 Geweke (bib0024) 1984; 79 Adams, Stephan, Brown, Frith, Friston (bib0001) 2013; 4 Li, Xue, Ellmore, Frye, Wong (bib0038) 2014; 35 Crimi, Dodero, Murino, Sona (bib0009) 2017 Sridharan, Levitin, Menon (bib0066) 2008; 105 Malliaros, Vazirgiannis (bib0041) 2013; 533 Rangaprakash, Wu, Marinazzo, Hu, Deshpande (bib0056) 2018; 80 Di Martino, O’connor, Chen, Alaerts, Anderson, Assaf, Balsters, Baxter, Beggiato, Bernaerts (bib0015) 2017; 4 Saad (bib0062) 2013; 3 Lee, Redfern, Orengo (bib0037) 2007; 8 Granger (bib0028) 1969 Bielczyk, Uithol, van Mourik, Anderson, Glennon, Buitelaar (bib0005) 2018 Zalesky, Fornito, Bullmore (bib0075) 2012; 60 Medaglia, Huang, Karuza, Kelkar, Thompson-Schill, Ribeiro, Bassett (bib0043) 2018; 2 Valdes-Sosa, Roebroeck, Daunizeau, Friston (bib0069) 2011; 58 Valdés-Sosa, Sánchez-Bornot, Lage-Castellanos, Vega-Hernández, Bosch-Bayard, Melie-García, Canales-Rodríguez (bib0070) 2005; 360 Becker, Pequito, Pappas, Miller, Grafton, Bassett, Preciado (bib0004) 2018; 8 Luppi, Carhart-Harris, Roseman, Pappas, Menon, Stamatakis (bib0040) 2021; 227 Yahata, Morimoto, Hashimoto, Lisi, Shibata, Kawakubo (bib0073) 2016; 7 Akaike (bib0002) 1974; 19 Hermundstad, Bassett, Brown, Aminoff, Clewett, Freeman, Frithsen, Johnson, Tipper, Miller (bib0034) 2013 Hearne, Dean, Robinson, Richards, Mattingley, Cocchi (bib0033) 2019; 21 Tyszka, Kennedy, Adolphs, Paul (bib0068) 2011; 31 Etkin (bib0017) 2018; 75 Robinson (bib0060) 2012; 85 Crimi, Dodero, Murino, Sona (bib0008) 2016 Ng, Varoquaux, Poline, Thirion (bib0047) 2012 Stokes, Purdon (bib0067) 2017; 114 Bassett, Wymbs, Porter, Mucha, Carlson, Grafton (bib0003) 2011; 108 Watson, Laskowski, Thornton (bib0071) 2005; 15 Reid, Headley, Mill, Sanchez-Romero, Uddin, Marinazzo, Lurie, Valdés-Sosa, Hanson, Biswal (bib0059) 2019 Hinne, Ambrogioni, Janssen, Heskes, van Gerven (bib0035) 2014; 86 Fortunato (bib0019) 2010; 486 Oh, Harris, Ng, Winslow, Cain, Mihalas, Wang, Lau, Kuan, Henry (bib0050) 2014; 508 Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar (bib0052) 2011; 72 Rudie, Brown, Beck-Pancer, Hernandez, Dennis, Thompson, Bookheimer, Dapretto (bib0061) 2013; 2 Gordon, Laumann, Adeyemo, Huckins, Kelley, Petersen (bib0027) 2014 Jirsa, Sporns, Breakspear, Deco, McIntosh (bib0036) 2010; 148 Rajapakse, Zhou (bib0055) 2007; 37 Wu, Liao, Stramaglia, Ding, Chen, Marinazzo (bib0072) 2013; 17 Jirsa (10.1016/j.neuroimage.2021.118288_bib0036) 2010; 148 Garyfallidis (10.1016/j.neuroimage.2021.118288_bib0023) 2014; 8 Lee (10.1016/j.neuroimage.2021.118288_bib0037) 2007; 8 Adams (10.1016/j.neuroimage.2021.118288_bib0001) 2013; 4 Medaglia (10.1016/j.neuroimage.2021.118288_bib0043) 2018; 2 Malliaros (10.1016/j.neuroimage.2021.118288_bib0041) 2013; 533 Friston (10.1016/j.neuroimage.2021.118288_bib0020) 2013; 23 Friston (10.1016/j.neuroimage.2021.118288_bib0021) 2011; 1 Sheikhattar (10.1016/j.neuroimage.2021.118288_bib0063) 2018 Hagmann (10.1016/j.neuroimage.2021.118288_bib0030) 2008; 6 Yahata (10.1016/j.neuroimage.2021.118288_bib0073) 2016; 7 Bassett (10.1016/j.neuroimage.2021.118288_bib0003) 2011; 108 Razi (10.1016/j.neuroimage.2021.118288_bib0058) 2017; 1 Hermundstad (10.1016/j.neuroimage.2021.118288_bib0034) 2013 Zhang (10.1016/j.neuroimage.2021.118288_bib0076) 2018; 172 Hahn (10.1016/j.neuroimage.2021.118288_bib0031) 2019; 9 Deshpande (10.1016/j.neuroimage.2021.118288_bib0013) 2008; 40 Goebel (10.1016/j.neuroimage.2021.118288_bib0025) 2003; 21 Daunizeau (10.1016/j.neuroimage.2021.118288_bib0010) 2014; 10 Noonan (10.1016/j.neuroimage.2021.118288_bib0048) 2009; 1262 Crimi (10.1016/j.neuroimage.2021.118288_bib0008) 2016 Wu (10.1016/j.neuroimage.2021.118288_bib0072) 2013; 17 Valdes-Sosa (10.1016/j.neuroimage.2021.118288_bib0069) 2011; 58 Watson (10.1016/j.neuroimage.2021.118288_bib0071) 2005; 15 Bielczyk (10.1016/j.neuroimage.2021.118288_bib0005) 2018 Smith (10.1016/j.neuroimage.2021.118288_bib0065) 2011; 54 Becker (10.1016/j.neuroimage.2021.118288_bib0004) 2018; 8 Tyszka (10.1016/j.neuroimage.2021.118288_bib0068) 2011; 31 Valdés-Sosa (10.1016/j.neuroimage.2021.118288_bib0070) 2005; 360 Hampel (10.1016/j.neuroimage.2021.118288_bib0032) 2011; 95 Nooner (10.1016/j.neuroimage.2021.118288_bib0049) 2012; 6 Robinson (10.1016/j.neuroimage.2021.118288_bib0060) 2012; 85 Drysdale (10.1016/j.neuroimage.2021.118288_bib0016) 2010; 265 Gordon (10.1016/j.neuroimage.2021.118288_bib0027) 2014 Mišić (10.1016/j.neuroimage.2021.118288_bib0045) 2015; 86 Crimi (10.1016/j.neuroimage.2021.118288_bib0009) 2017 Deligianni (10.1016/j.neuroimage.2021.118288_bib0011) 2013; 32 Yeo (10.1016/j.neuroimage.2021.118288_bib0074) 2014; 88 Granger (10.1016/j.neuroimage.2021.118288_bib0028) 1969 Chen (10.1016/j.neuroimage.2021.118288_bib0006) 2015; 115 Fortunato (10.1016/j.neuroimage.2021.118288_bib0019) 2010; 486 Hinne (10.1016/j.neuroimage.2021.118288_bib0035) 2014; 86 Geweke (10.1016/j.neuroimage.2021.118288_bib0024) 1984; 79 Luppi (10.1016/j.neuroimage.2021.118288_bib0040) 2021; 227 Power (10.1016/j.neuroimage.2021.118288_bib0053) 2012; 59 Dhamala (10.1016/j.neuroimage.2021.118288_bib0014) 2008; 41 Meunier (10.1016/j.neuroimage.2021.118288_bib0044) 2010; 4 Shirer (10.1016/j.neuroimage.2021.118288_bib0064) 2012; 22 Saad (10.1016/j.neuroimage.2021.118288_bib0062) 2013; 3 Greicius (10.1016/j.neuroimage.2021.118288_bib0029) 2003; 100 Reid (10.1016/j.neuroimage.2021.118288_bib0059) 2019 Stokes (10.1016/j.neuroimage.2021.118288_bib0067) 2017; 114 Oh (10.1016/j.neuroimage.2021.118288_bib0050) 2014; 508 Preti (10.1016/j.neuroimage.2021.118288_bib0054) 2019; 10 Demertzi (10.1016/j.neuroimage.2021.118288_bib0012) 2019; 5 Rajapakse (10.1016/j.neuroimage.2021.118288_bib0055) 2007; 37 Chicharro (10.1016/j.neuroimage.2021.118288_bib0007) 2014; 8 Passingham (10.1016/j.neuroimage.2021.118288_bib0051) 2002; 3 Akaike (10.1016/j.neuroimage.2021.118288_bib0002) 1974; 19 Zalesky (10.1016/j.neuroimage.2021.118288_bib0075) 2012; 60 Rudie (10.1016/j.neuroimage.2021.118288_bib0061) 2013; 2 Power (10.1016/j.neuroimage.2021.118288_bib0052) 2011; 72 Liao (10.1016/j.neuroimage.2021.118288_bib0039) 2011; 54 Etkin (10.1016/j.neuroimage.2021.118288_bib0017) 2018; 75 Goldenberg (10.1016/j.neuroimage.2021.118288_bib0026) 2015; 12 Rangaprakash (10.1016/j.neuroimage.2021.118288_bib0056) 2018; 80 Hearne (10.1016/j.neuroimage.2021.118288_bib0033) 2019; 21 Li (10.1016/j.neuroimage.2021.118288_bib0038) 2014; 35 Fukushima (10.1016/j.neuroimage.2021.118288_bib0022) 2018; 223 Ng (10.1016/j.neuroimage.2021.118288_bib0047) 2012 Sridharan (10.1016/j.neuroimage.2021.118288_bib0066) 2008; 105 Razi (10.1016/j.neuroimage.2021.118288_bib0057) 2015; 106 Di Martino (10.1016/j.neuroimage.2021.118288_bib0015) 2017; 4 Fishman (10.1016/j.neuroimage.2021.118288_bib0018) 2015; 78 Mastrovito (10.1016/j.neuroimage.2021.118288_bib0042) 2018; 18 Murphy (10.1016/j.neuroimage.2021.118288_bib0046) 2017; 154 |
References_xml | – start-page: 140 year: 2016 end-page: 147 ident: bib0008 article-title: Effective brain connectivity through a constrained autoregressive model publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 227 start-page: 117653 year: 2021 ident: bib0040 article-title: LSD alters dynamic integration and segregation in the human brain publication-title: Neuroimage – volume: 12 start-page: 155 year: 2015 end-page: 164 ident: bib0026 article-title: The use of functional and effective connectivity techniques to understand the developing brain publication-title: Dev. Cognit. Neurosci. – volume: 4 start-page: 200 year: 2010 ident: bib0044 article-title: Modular and hierarchically modular organization of brain networks publication-title: Front. Neurosci. – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bib0053 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage – volume: 115 start-page: 202 year: 2015 end-page: 213 ident: bib0006 article-title: Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data publication-title: Neuroimage – volume: 85 start-page: 011912 year: 2012 ident: bib0060 article-title: Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory publication-title: Phys. Rev. E – volume: 105 start-page: 12569 year: 2008 end-page: 12574 ident: bib0066 article-title: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks publication-title: Proc. Natl. Acad. Sci. – volume: 5 start-page: eaat7603 year: 2019 ident: bib0012 article-title: et al.,. Human consciousness is supported by dynamic complex patterns of brain signal coordination.Sci publication-title: Adv – volume: 8 start-page: 995 year: 2007 end-page: 1005 ident: bib0037 article-title: Predicting protein function from sequence and structure publication-title: Nat. Rev. Mol. Cell Biol. – volume: 360 start-page: 969 year: 2005 end-page: 981 ident: bib0070 article-title: Estimating brain functional connectivity with sparse multivariate autoregression publication-title: Philos. Trans. R. Soc. B Biol. Sci. – volume: 4 start-page: 170010 year: 2017 ident: bib0015 article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II publication-title: Sci. Data – year: 2017 ident: bib0009 article-title: Case-control discrimination through effective brain connectivity publication-title: Proceedings of the IEEE 14th International Symposium on Biomedical Imaging (ISBI) – volume: 1 start-page: 13 year: 2011 end-page: 36 ident: bib0021 article-title: Functional and effective connectivity: a review publication-title: Brain Connect. – volume: 172 start-page: 826 year: 2018 end-page: 837 ident: bib0076 article-title: Whole brain white matter connectivity analysis using machine learning: an application to autism publication-title: Neuroimage – volume: 18 start-page: 367 year: 2018 end-page: 376 ident: bib0042 article-title: Differences in atypical resting-state effective connectivity distinguish autism from Schizophrenia publication-title: NeuroImage Clin. – volume: 265 start-page: 524 year: 2010 end-page: 534 ident: bib0016 article-title: Spatio-temporal bold dynamics from a poroelastic hemodynamic model publication-title: J. Theor. Biol. – volume: 32 start-page: 2200 year: 2013 end-page: 2214 ident: bib0011 article-title: A framework for inter-subject prediction of functional connectivity from structural networks publication-title: IEEE Trans. Med. Imaging – volume: 40 start-page: 1807 year: 2008 end-page: 1814 ident: bib0013 article-title: Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data publication-title: Neuroimage – volume: 533 start-page: 95 year: 2013 end-page: 142 ident: bib0041 article-title: Clustering and community detection in directed networks: a survey publication-title: Phys. Rep. – volume: 100 start-page: 253 year: 2003 end-page: 258 ident: bib0029 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. – volume: 2 start-page: 156 year: 2018 end-page: 164 ident: bib0043 article-title: Functional alignment with anatomical networks is associated with cognitive flexibility publication-title: Nat. Hum. Behav. – volume: 75 start-page: 3 year: 2018 end-page: 4 ident: bib0017 article-title: Addressing the causality gap in human psychiatric neuroscience publication-title: JAMA Psychiatry – volume: 21 start-page: 101595 year: 2019 ident: bib0033 article-title: Increased cognitive complexity reveals abnormal brain network activity in individuals with corpus callosum dysgenesis publication-title: NeuroImage Clin. – volume: 88 start-page: 212 year: 2014 end-page: 227 ident: bib0074 article-title: Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex publication-title: Neuroimage – start-page: 424 year: 1969 end-page: 438 ident: bib0028 article-title: Investigating causal relations by econometric models and cross-spectral methods publication-title: Econom. J. Econom. Soc. – volume: 86 start-page: 1518 year: 2015 end-page: 1529 ident: bib0045 article-title: Cooperative and competitive spreading dynamics on the human connectome publication-title: Neuron – volume: 58 start-page: 339 year: 2011 end-page: 361 ident: bib0069 article-title: Effective connectivity: influence, causality and biophysical modeling publication-title: Neuroimage – volume: 23 start-page: 172 year: 2013 end-page: 178 ident: bib0020 article-title: Analysing connectivity with Granger causality and dynamic causal modelling publication-title: Curr. Opin. Neurobiol. – volume: 79 start-page: 907 year: 1984 end-page: 915 ident: bib0024 article-title: Measures of conditional linear dependence and feedback between time series. publication-title: J. Am. Stat. Assoc. – volume: 1262 start-page: 48 year: 2009 end-page: 63 ident: bib0048 article-title: Aberrant functional connectivity in autism: evidence from low-frequency BOLD signal fluctuations publication-title: Brain Res. – volume: 154 start-page: 169 year: 2017 end-page: 173 ident: bib0046 article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI publication-title: Neuroimage – volume: 6 start-page: 152 year: 2012 ident: bib0049 article-title: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry publication-title: Front. Neurosci. – volume: 60 start-page: 2096 year: 2012 end-page: 2106 ident: bib0075 article-title: On the use of correlation as a measure of network connectivity publication-title: Neuroimage – volume: 35 start-page: 396 year: 2014 end-page: 413 ident: bib0038 article-title: Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders publication-title: Hum. Brain Mapp. – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: bib0031 article-title: A new computational approach to estimate whole-brain effective connectivity from functional and structural MRI, applied to language development publication-title: Sci. Rep. – volume: 7 year: 2016 ident: bib0073 article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder publication-title: Nat. Commun. – volume: 114 start-page: E7063 year: 2017 end-page: E7072 ident: bib0067 article-title: A study of problems encountered in Granger causality analysis from a neuroscience perspective publication-title: Proc. Natl. Acad. Sci. – volume: 21 start-page: 1251 year: 2003 end-page: 1261 ident: bib0025 article-title: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping publication-title: Magn. Reson. Imaging – year: 2019 ident: bib0059 article-title: Advancing functional connectivity research from association to causation publication-title: Nat. Neurosci. – volume: 3 start-page: 606 year: 2002 end-page: 616 ident: bib0051 article-title: The anatomical basis of functional localization in the cortex publication-title: Nat. Rev. Neurosci. – volume: 223 start-page: 1091 year: 2018 end-page: 1106 ident: bib0022 article-title: Structure–function relationships during segregated and integrated network states of human brain functional connectivity publication-title: Brain Struct. Funct. – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: bib0002 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control – volume: 37 start-page: 749 year: 2007 end-page: 760 ident: bib0055 article-title: Learning effective brain connectivity with dynamic Bayesian networks publication-title: Neuroimage – start-page: bhu239 year: 2014 ident: bib0027 article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations publication-title: Cerebral Cortex – volume: 6 start-page: e159 year: 2008 ident: bib0030 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. – start-page: 201219562 year: 2013 ident: bib0034 article-title: Structural foundations of resting-state and task-based functional connectivity in the human brain publication-title: Proc. Natl. Acad. Sci. – volume: 54 start-page: 2683 year: 2011 end-page: 2694 ident: bib0039 article-title: Small-world directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI publication-title: Neuroimage – volume: 1 start-page: 222 year: 2017 end-page: 241 ident: bib0058 article-title: Large-scale DCMs for resting-state fMRI publication-title: Netw. Neurosci. – volume: 41 start-page: 354 year: 2008 end-page: 362 ident: bib0014 article-title: Analyzing information flow in brain networks with nonparametric Granger causality publication-title: Neuroimage – volume: 80 start-page: 1697 year: 2018 end-page: 1713 ident: bib0056 article-title: Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity publication-title: Magn. Reson. Med. – volume: 8 year: 2014 ident: bib0023 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front. Neuroinform. – volume: 54 start-page: 875 year: 2011 end-page: 891 ident: bib0065 article-title: Network modelling methods for fMRI publication-title: Neuroimage – volume: 486 start-page: 75 year: 2010 end-page: 174 ident: bib0019 article-title: Community detection in graphs publication-title: Phys. Rep. – start-page: 707 year: 2012 end-page: 714 ident: bib0047 article-title: A novel sparse graphical approach for multimodal brain connectivity inference publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012 – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: bib0052 article-title: Functional network organization of the human brain publication-title: Neuron – volume: 2 start-page: 79 year: 2013 end-page: 94 ident: bib0061 article-title: Altered functional and structural brain network organization in autism publication-title: NeuroImage Clin. – volume: 86 start-page: 294 year: 2014 end-page: 305 ident: bib0035 article-title: Structurally-informed Bayesian functional connectivity analysis publication-title: Neuroimage – volume: 148 start-page: 189 year: 2010 end-page: 205 ident: bib0036 article-title: Towards the virtual brain: network modeling of the intact and the damaged brain publication-title: Arch. Ital. Biol. – start-page: 1 year: 2018 end-page: 37 ident: bib0005 article-title: Disentangling casual webs in the brain using functional magnetic resonance imaging: a review of current approaches publication-title: Network Neurosci. – volume: 31 start-page: 15154 year: 2011 end-page: 15162 ident: bib0068 article-title: Intact bilateral resting-state networks in the absence of the corpus callosum publication-title: J. Neurosci. – volume: 8 start-page: 1411 year: 2018 ident: bib0004 article-title: Spectral mapping of brain functional connectivity from diffusion imaging publication-title: Sci. Rep. – volume: 78 start-page: 958 year: 2015 end-page: 969 ident: bib0018 article-title: Reduced integration and differentiation of the imitation network in autism: a combined functional connectivity magnetic resonance imaging and diffusion-weighted imaging study publication-title: Ann. Neurol. – volume: 108 start-page: 7641 year: 2011 end-page: 7646 ident: bib0003 article-title: Dynamic reconfiguration of human brain networks during learning publication-title: Proc. Natl. Acad. Sci. – volume: 508 start-page: 207 year: 2014 end-page: 214 ident: bib0050 article-title: A mesoscale connectome of the mouse brain publication-title: Nature – volume: 10 start-page: 1 year: 2019 end-page: 7 ident: bib0054 article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans publication-title: Nat. Commun. – volume: 17 start-page: 365 year: 2013 end-page: 374 ident: bib0072 article-title: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data publication-title: Med. Image Anal. – volume: 106 start-page: 1 year: 2015 end-page: 14 ident: bib0057 article-title: Construct validation of a DCM for resting state fMRI publication-title: Neuroimage – volume: 4 start-page: 47 year: 2013 ident: bib0001 article-title: The computational anatomy of psychosis publication-title: Front. Psychiatry – volume: 95 start-page: 579 year: 2011 end-page: 593 ident: bib0032 article-title: Biomarkers for Alzheimer’s disease therapeutic trials publication-title: Prog. Neurobiol. – volume: 8 start-page: 64 year: 2014 ident: bib0007 article-title: Algorithms of causal inference for the analysis of effective connectivity among brain regions publication-title: Front. Neuroinform. – start-page: 201718154 year: 2018 ident: bib0063 article-title: Extracting neuronal functional network dynamics via adaptive Granger causality analysis publication-title: Proc. Natl. Acad. Sci. – volume: 22 start-page: 158 year: 2012 end-page: 165 ident: bib0064 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cerebral Cortex – volume: 3 start-page: 339 year: 2013 end-page: 352 ident: bib0062 article-title: Correcting brain-wide correlation differences in resting-state fMRI publication-title: Brain Connect. – volume: 15 start-page: 275 year: 2005 end-page: 284 ident: bib0071 article-title: Predicting protein function from sequence and structural data publication-title: Curr. Opin. Struct. Biol. – volume: 10 start-page: e1003441 year: 2014 ident: bib0010 article-title: VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data publication-title: PLoS Comput. Biol. – volume: 41 start-page: 354 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2021.118288_bib0014 article-title: Analyzing information flow in brain networks with nonparametric Granger causality publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.020 – volume: 4 start-page: 47 year: 2013 ident: 10.1016/j.neuroimage.2021.118288_bib0001 article-title: The computational anatomy of psychosis publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2013.00047 – volume: 21 start-page: 1251 issue: 10 year: 2003 ident: 10.1016/j.neuroimage.2021.118288_bib0025 article-title: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2003.08.026 – volume: 486 start-page: 75 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2021.118288_bib0019 article-title: Community detection in graphs publication-title: Phys. Rep. doi: 10.1016/j.physrep.2009.11.002 – start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118288_bib0005 article-title: Disentangling casual webs in the brain using functional magnetic resonance imaging: a review of current approaches publication-title: Network Neurosci. – volume: 54 start-page: 2683 year: 2011 ident: 10.1016/j.neuroimage.2021.118288_bib0039 article-title: Small-world directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.007 – volume: 1262 start-page: 48 year: 2009 ident: 10.1016/j.neuroimage.2021.118288_bib0048 article-title: Aberrant functional connectivity in autism: evidence from low-frequency BOLD signal fluctuations publication-title: Brain Res. doi: 10.1016/j.brainres.2008.12.076 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118288_bib0054 article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans publication-title: Nat. Commun. doi: 10.1038/s41467-019-12765-7 – volume: 8 start-page: 1411 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118288_bib0004 article-title: Spectral mapping of brain functional connectivity from diffusion imaging publication-title: Sci. Rep. doi: 10.1038/s41598-017-18769-x – volume: 115 start-page: 202 year: 2015 ident: 10.1016/j.neuroimage.2021.118288_bib0006 article-title: Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.04.050 – volume: 533 start-page: 95 issue: 4 year: 2013 ident: 10.1016/j.neuroimage.2021.118288_bib0041 article-title: Clustering and community detection in directed networks: a survey publication-title: Phys. Rep. doi: 10.1016/j.physrep.2013.08.002 – volume: 22 start-page: 158 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2021.118288_bib0064 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cerebral Cortex doi: 10.1093/cercor/bhr099 – volume: 6 start-page: e159 issue: 7 year: 2008 ident: 10.1016/j.neuroimage.2021.118288_bib0030 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060159 – volume: 3 start-page: 339 issue: 4 year: 2013 ident: 10.1016/j.neuroimage.2021.118288_bib0062 article-title: Correcting brain-wide correlation differences in resting-state fMRI publication-title: Brain Connect. doi: 10.1089/brain.2013.0156 – start-page: 201219562 year: 2013 ident: 10.1016/j.neuroimage.2021.118288_bib0034 article-title: Structural foundations of resting-state and task-based functional connectivity in the human brain publication-title: Proc. Natl. Acad. Sci. – volume: 148 start-page: 189 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2021.118288_bib0036 article-title: Towards the virtual brain: network modeling of the intact and the damaged brain publication-title: Arch. Ital. Biol. – volume: 60 start-page: 2096 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2021.118288_bib0075 article-title: On the use of correlation as a measure of network connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.001 – volume: 35 start-page: 396 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2021.118288_bib0038 article-title: Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22185 – volume: 78 start-page: 958 issue: 6 year: 2015 ident: 10.1016/j.neuroimage.2021.118288_bib0018 article-title: Reduced integration and differentiation of the imitation network in autism: a combined functional connectivity magnetic resonance imaging and diffusion-weighted imaging study publication-title: Ann. Neurol. doi: 10.1002/ana.24533 – volume: 8 start-page: 995 issue: 12 year: 2007 ident: 10.1016/j.neuroimage.2021.118288_bib0037 article-title: Predicting protein function from sequence and structure publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2281 – volume: 8 year: 2014 ident: 10.1016/j.neuroimage.2021.118288_bib0023 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00008 – start-page: 707 year: 2012 ident: 10.1016/j.neuroimage.2021.118288_bib0047 article-title: A novel sparse graphical approach for multimodal brain connectivity inference – volume: 4 start-page: 170010 year: 2017 ident: 10.1016/j.neuroimage.2021.118288_bib0015 article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II publication-title: Sci. Data doi: 10.1038/sdata.2017.10 – volume: 1 start-page: 13 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2021.118288_bib0021 article-title: Functional and effective connectivity: a review publication-title: Brain Connect. doi: 10.1089/brain.2011.0008 – volume: 223 start-page: 1091 year: 2018 ident: 10.1016/j.neuroimage.2021.118288_bib0022 article-title: Structure–function relationships during segregated and integrated network states of human brain functional connectivity publication-title: Brain Struct. Funct. doi: 10.1007/s00429-017-1539-3 – volume: 58 start-page: 339 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2021.118288_bib0069 article-title: Effective connectivity: influence, causality and biophysical modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.058 – volume: 100 start-page: 253 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2021.118288_bib0029 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0135058100 – volume: 80 start-page: 1697 issue: 4 year: 2018 ident: 10.1016/j.neuroimage.2021.118288_bib0056 article-title: Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27146 – volume: 88 start-page: 212 year: 2014 ident: 10.1016/j.neuroimage.2021.118288_bib0074 article-title: Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.046 – volume: 5 start-page: eaat7603 issue: 2 year: 2019 ident: 10.1016/j.neuroimage.2021.118288_bib0012 article-title: et al.,. Human consciousness is supported by dynamic complex patterns of brain signal coordination.Sci publication-title: Adv – start-page: 140 year: 2016 ident: 10.1016/j.neuroimage.2021.118288_bib0008 article-title: Effective brain connectivity through a constrained autoregressive model – volume: 2 start-page: 79 year: 2013 ident: 10.1016/j.neuroimage.2021.118288_bib0061 article-title: Altered functional and structural brain network organization in autism publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2012.11.006 – volume: 508 start-page: 207 issue: 7495 year: 2014 ident: 10.1016/j.neuroimage.2021.118288_bib0050 article-title: A mesoscale connectome of the mouse brain publication-title: Nature doi: 10.1038/nature13186 – volume: 15 start-page: 275 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2021.118288_bib0071 article-title: Predicting protein function from sequence and structural data publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2005.04.003 – volume: 54 start-page: 875 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2021.118288_bib0065 article-title: Network modelling methods for fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.063 – volume: 2 start-page: 156 issue: 2 year: 2018 ident: 10.1016/j.neuroimage.2021.118288_bib0043 article-title: Functional alignment with anatomical networks is associated with cognitive flexibility publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-017-0260-9 – volume: 6 start-page: 152 year: 2012 ident: 10.1016/j.neuroimage.2021.118288_bib0049 article-title: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00152 – volume: 265 start-page: 524 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2021.118288_bib0016 article-title: Spatio-temporal bold dynamics from a poroelastic hemodynamic model publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2010.05.026 – volume: 79 start-page: 907 year: 1984 ident: 10.1016/j.neuroimage.2021.118288_bib0024 article-title: Measures of conditional linear dependence and feedback between time series. publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1984.10477110 – volume: 106 start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2021.118288_bib0057 article-title: Construct validation of a DCM for resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.027 – volume: 3 start-page: 606 issue: 8 year: 2002 ident: 10.1016/j.neuroimage.2021.118288_bib0051 article-title: The anatomical basis of functional localization in the cortex publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn893 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118288_bib0031 article-title: A new computational approach to estimate whole-brain effective connectivity from functional and structural MRI, applied to language development publication-title: Sci. Rep. doi: 10.1038/s41598-019-44909-6 – volume: 4 start-page: 200 year: 2010 ident: 10.1016/j.neuroimage.2021.118288_bib0044 article-title: Modular and hierarchically modular organization of brain networks publication-title: Front. Neurosci. doi: 10.3389/fnins.2010.00200 – volume: 86 start-page: 294 year: 2014 ident: 10.1016/j.neuroimage.2021.118288_bib0035 article-title: Structurally-informed Bayesian functional connectivity analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.09.075 – volume: 8 start-page: 64 year: 2014 ident: 10.1016/j.neuroimage.2021.118288_bib0007 article-title: Algorithms of causal inference for the analysis of effective connectivity among brain regions publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00064 – volume: 1 start-page: 222 issue: 3 year: 2017 ident: 10.1016/j.neuroimage.2021.118288_bib0058 article-title: Large-scale DCMs for resting-state fMRI publication-title: Netw. Neurosci. doi: 10.1162/NETN_a_00015 – volume: 23 start-page: 172 issue: 2 year: 2013 ident: 10.1016/j.neuroimage.2021.118288_bib0020 article-title: Analysing connectivity with Granger causality and dynamic causal modelling publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2012.11.010 – volume: 95 start-page: 579 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2021.118288_bib0032 article-title: Biomarkers for Alzheimer’s disease therapeutic trials publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2010.11.005 – volume: 59 start-page: 2142 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2021.118288_bib0053 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – year: 2019 ident: 10.1016/j.neuroimage.2021.118288_bib0059 article-title: Advancing functional connectivity research from association to causation publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0510-4 – volume: 18 start-page: 367 year: 2018 ident: 10.1016/j.neuroimage.2021.118288_bib0042 article-title: Differences in atypical resting-state effective connectivity distinguish autism from Schizophrenia publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2018.01.014 – volume: 19 start-page: 716 year: 1974 ident: 10.1016/j.neuroimage.2021.118288_bib0002 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1974.1100705 – volume: 360 start-page: 969 issue: 1457 year: 2005 ident: 10.1016/j.neuroimage.2021.118288_bib0070 article-title: Estimating brain functional connectivity with sparse multivariate autoregression publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2005.1654 – volume: 105 start-page: 12569 issue: 34 year: 2008 ident: 10.1016/j.neuroimage.2021.118288_bib0066 article-title: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0800005105 – volume: 108 start-page: 7641 issue: 18 year: 2011 ident: 10.1016/j.neuroimage.2021.118288_bib0003 article-title: Dynamic reconfiguration of human brain networks during learning publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1018985108 – start-page: 424 year: 1969 ident: 10.1016/j.neuroimage.2021.118288_bib0028 article-title: Investigating causal relations by econometric models and cross-spectral methods publication-title: Econom. J. Econom. Soc. – year: 2017 ident: 10.1016/j.neuroimage.2021.118288_bib0009 article-title: Case-control discrimination through effective brain connectivity – volume: 227 start-page: 117653 year: 2021 ident: 10.1016/j.neuroimage.2021.118288_bib0040 article-title: LSD alters dynamic integration and segregation in the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117653 – volume: 85 start-page: 011912 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2021.118288_bib0060 article-title: Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.011912 – volume: 21 start-page: 101595 year: 2019 ident: 10.1016/j.neuroimage.2021.118288_bib0033 article-title: Increased cognitive complexity reveals abnormal brain network activity in individuals with corpus callosum dysgenesis publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2018.11.005 – volume: 75 start-page: 3 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118288_bib0017 article-title: Addressing the causality gap in human psychiatric neuroscience publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2017.3610 – volume: 154 start-page: 169 year: 2017 ident: 10.1016/j.neuroimage.2021.118288_bib0046 article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.052 – volume: 31 start-page: 15154 issue: 42 year: 2011 ident: 10.1016/j.neuroimage.2021.118288_bib0068 article-title: Intact bilateral resting-state networks in the absence of the corpus callosum publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1453-11.2011 – start-page: bhu239 year: 2014 ident: 10.1016/j.neuroimage.2021.118288_bib0027 article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations publication-title: Cerebral Cortex – volume: 40 start-page: 1807 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2021.118288_bib0013 article-title: Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.01.044 – volume: 172 start-page: 826 year: 2018 ident: 10.1016/j.neuroimage.2021.118288_bib0076 article-title: Whole brain white matter connectivity analysis using machine learning: an application to autism publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.029 – volume: 17 start-page: 365 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2021.118288_bib0072 article-title: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.01.003 – start-page: 201718154 year: 2018 ident: 10.1016/j.neuroimage.2021.118288_bib0063 article-title: Extracting neuronal functional network dynamics via adaptive Granger causality analysis publication-title: Proc. Natl. Acad. Sci. – volume: 12 start-page: 155 year: 2015 ident: 10.1016/j.neuroimage.2021.118288_bib0026 article-title: The use of functional and effective connectivity techniques to understand the developing brain publication-title: Dev. Cognit. Neurosci. doi: 10.1016/j.dcn.2015.01.011 – volume: 86 start-page: 1518 issue: 6 year: 2015 ident: 10.1016/j.neuroimage.2021.118288_bib0045 article-title: Cooperative and competitive spreading dynamics on the human connectome publication-title: Neuron doi: 10.1016/j.neuron.2015.05.035 – volume: 37 start-page: 749 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2021.118288_bib0055 article-title: Learning effective brain connectivity with dynamic Bayesian networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.06.003 – volume: 10 start-page: e1003441 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2021.118288_bib0010 article-title: VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003441 – volume: 72 start-page: 665 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2021.118288_bib0052 article-title: Functional network organization of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 32 start-page: 2200 year: 2013 ident: 10.1016/j.neuroimage.2021.118288_bib0011 article-title: A framework for inter-subject prediction of functional connectivity from structural networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2276916 – volume: 114 start-page: E7063 issue: 34 year: 2017 ident: 10.1016/j.neuroimage.2021.118288_bib0067 article-title: A study of problems encountered in Granger causality analysis from a neuroscience perspective publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1704663114 – volume: 7 year: 2016 ident: 10.1016/j.neuroimage.2021.118288_bib0073 article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder publication-title: Nat. Commun. doi: 10.1038/ncomms11254 |
SSID | ssj0009148 |
Score | 2.4945776 |
Snippet | •A method to combine structural and functional connectivity by using an autoregressive model is proposed.•The autoregressive model is constrained by structural... The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118288 |
SubjectTerms | Autism Autism spectrum disorder Brain Causality Connectome DCM Diffusion MRI DWI Effective connectivity fMRI Granger Influence Nervous system Neural networks Neurosciences Structure-function relationships Tractography |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BaxUxEA6lh-JFtCo-rfIEr9u3eUk2CZ60WIqgl1roLWySGXlS95XaHnrxtzuTzb5HPT3wuLOZZZidzHwhky9CvJdL61Bl36DtUqNN1k1EyA10kE3nTGpjYfv81p1d6C-X5nJPnExnYbitsub-MaeXbF0li-rNxfVqtTgnZEDlhvm8mM9SMyeo1paj_PjPts3DSz0ehzOq4dG1m2fs8SqckatfNHNppbiUx4y2yx0s2xJVmPwfVKp_cnYpRKdPxOOKIOcfRyOfij0YDsXB17pH_kyY80IJy3QaV_fzxPiPr4GAPB97Nyi9zSNL-N1QBITEn4uL08_fT86aejlCkzrpbhsA18asc48po9LYgUsO285p1D2fL-3bXqeowQKNszFlo8H4JTnfdTkl9ULsD-sBXpI_QGG2GZCxRZTZ5YQuoTUgeyUTzoSd_BFSZQ5ny6_C1CL2M2w9GdiTYfTkTMiN5vXInrGDzid2-WY8818XwfrmR6gBELymlavxikoragUQWzDgI1qLEpVSM-GnHxamI6aUFOlDqx0M-LDRfRCKO2ofTfERajr4HWjdZjxBvaWfiXeb1zSReXemH2B9x2O0sgSgffvqvwx4LR7x09hweCT2KebgDQGn2_i2zIy_Lj4Zww priority: 102 providerName: Elsevier – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NjxQhECW6JsaL8TOOrmZMvKLNAA3Eg1HjZmOiF91kbqSBKrNmt2d114P_3iqanokezFyBojsFVD2geCXEC7VyHnUJEl2fpbHFyIRQJPRQbO9t7lJl-_zcH5-Yj2u7bgduly2scraJ1VCXTeYz8lcEfW0gb7kKby5-SM4axberLYXGdXGDqcs4pMut3Y50V5npKZzV0lODFskzxXdVvsjTc1q1tEtcqZeMtGv-lZ17qiz-f3mpf-x1dUJHd8Tthh6Xb6fhviuuwXhP3PzU7sfvC_ul0sEylcbZ72Vm7McpIKAsp7gNMm3LxCVcN9YCQuEPxMnRh6_vj2VLjCBzr_yVBPBdKqYMmAtqgz347LHrvUEz8NvSoRtMTgYcUDuXcrEGbFiR4n1fctYPxcG4GeER6QM0FlcAGVckVXzJ6DM6C2rQKuNCuFkfMTfWcP7zsziHh32PO01G1mScNLkQait5MTFn7CHzjlW-bc_c17Vg8_NbbEspBkO7Vhs0uVU0GiB1YCEkdA4Vaq0XIswDFufnpWQQqaPTPX7g9Va2QZAJWuwpfTjPj9hMwWXcTdyFeL6tpkXMNzPDCJtf3MZoR-A5dI__38UTcYu_N0UTHooDmlTwlFDRVXpWp_4fNeoOow priority: 102 providerName: ProQuest |
Title | Structurally constrained effective brain connectivity |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921005644 https://dx.doi.org/10.1016/j.neuroimage.2021.118288 https://www.proquest.com/docview/2555958429 https://www.proquest.com/docview/2543705490 https://doaj.org/article/94721593471f43eeb0e5e9bf77f1f333 |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA-thdKL2A9x_Vi20OvYySaZJHhSUbYtXUpbYW9hkrwHio6CevDSv70vycxae-keepmBfAzhl3kvv0defmHsA59qgyLaCnUTKqmirDxCrKCBqBqjQu2z2ue8mZ3Jzwu1-OOqr5QTVuSBC3AfraQYRVlBThSlAPA1KLAetUaOQmSdT1rzhmBqkNsllt_n7ZRsrqwOeX5FNkox4ZTvJ16db1t5XIyyZv-TNekv75yXnNMNtt5zxclhGeNr9gy6N-zl1343_C1TP7L4axLOuHyYhMT00oUPECclS4Mc2cSnklTX5QLi3O_Y2enJz-NZ1V-DUIWGm7sKwNQ-ythiiCgkNmCCwboxEmWbTpK2dSuDl6CB2mkfopKg7JRgNk0MQWyyte66gy3CAwRGHQETi_A8mhjQBNQKeCt4wBHTAx4u9BrhaeSXbkgGu3CPSLqEpCtIjhhf9rwpOhkr9DlKkC_bJ6XrXEDz7_r5d_-a_xGzw4S54TApuT_60PkKAzhY9u0JRyESK_beHf4P1xv-raMITVkidVM7Yu-X1WSyaR-m7eD6PrWRQhNVtvX2_0Bgh71KoyoZhrtsjX492COmdOfH7Pn-L05PvdBj9uLw05fZnN5HJ_Nv38fZYH4D3nUZsw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLbKVgIuiKfYUmCQ4DgwmSSTRAghCq22tF0haKXe0knioKJ2ttAi1D_Fb8SZx67ggPbSaxJnIie2P08cG-A5K5WOPJg8qsrnQgaRu4ghxwqDrLT0hWuzfU6ryYH4eCgPV-D38BYmhVUOOrFV1GHm0z_yVwR9pSFrWZq3Z9_zVDUq3a4OJTS6Y7GDl7_IZTt_s_2B9vdFWW5t7r-f5H1VgdxXTF_kiLpwQYQ6-hC5iBVqr2NRaRFFnR5m1kUtvBOokMYp54MUKE1Jq9ZV8J7TvNdgVXByZUawurE5_fR5keaXie7xneS5Zsz0sUNdRFmbofL4lPQE-aUle5mwfVvxZWEQ27oBf9nFfyxEa_a2bsOtHq9m77oDdgdWsLkL1_f6G_l7IL-0CWhT8o6Ty8wntJmKTmDIukgRUqaZSy2pr2kbCPffh4MrYdoDGDWzBh8SP5DHoALGhGQcCzr4qH1UElnNmY9jUAM_rO_zlKeVn9ghIO2bXXDSJk7ajpNjYHPKsy5XxxI0G4nl8_Ep23bbMPvx1fbCa40gP1kaToY8Co7oCpRoXFQqssg5H4MZNswOD1pJBdNEx0ss4PWctgc9HZhZknp9OB-2Vz7ndiEqY3g27ya1ke6C6gZnP9MYwRXBdVOs_X-Kp3Bjsr-3a3e3pzuP4Gb6dhfLuA4jOmD4mDDZhXvSC0IGR1cte38AutBQHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiKdYKBAkOIbGsR3bQggBZdVSqJCg0t5MbI9RUcn2hVD_Gr-OGSfZFRzQXnr1K8l4Hp_jeTD2lNfaJBFtmXQTSqmiLH2CWEIDUTVGhcrnbJ_7zc6BfD9TszX2e4yFIbfKUSdmRR3ngf6RbyH0VRatZW230uAW8Wl7-ur4pKQKUnTTOpbT6FlkDy5-4fHt7OXuNu71s7qevvvydqccKgyUoeHmvAQwlY8ytinEJGRqwASTqsbIJFsK0myrVgYvQQOO0z5EJUHZGr_ANDEEgeteYVe1UJxkTM_0MuEvl30YnhKl4dwOXkS9b1nOVXn4AzUGnlBr_pxQfq79sjSNuYLAXxbyH1uRDeD0Brs-INfidc9qN9kadLfYxsfhbv42U59zKlpK43F0UQTCnVR-AmLR-4ygWi08tVBflxvwBHCHHVwKye6y9W7ewT2kB4gUdYREmMbzaGJIJiStgLeChzRheqSHC0PGcnrzIze6pn13S0o6oqTrKTlhfDHzuM_ascKcN0TyxXjKu50b5qff3CDGzko8MSsr0KQnKQB8BQqsT1onnoQQE2bHDXNjaCsqY1zocIUXeLGYO8CfHtasOHtz5A83qKEztxSaCXuy6EYFQrdCbQfznzRGCo3A3Vb3_7_EY7aBEuc-7O7vPWDX6NG9U-MmW0f-gocIzs79oywFBft62WL3B10cUu4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structurally+constrained+effective+brain+connectivity&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Alessandro+Crimi&rft.au=Luca+Dodero&rft.au=Fabio+Sambataro&rft.au=Vittorio+Murino&rft.date=2021-10-01&rft.pub=Elsevier&rft.eissn=1095-9572&rft.volume=239&rft.spage=118288&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118288&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_94721593471f43eeb0e5e9bf77f1f333 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |