Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 74; no. 23; pp. 7329 - 7337 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.12.2008
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. |
---|---|
AbstractList | While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm)
Geobacter sulfurreducens
biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: AEM While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 km) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 microm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities.While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 microm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 microm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 ...m) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Rollefson, Janet B Baron, Daniel B Hozalski, Raymond M Bond, Daniel R Marsili, Enrico |
AuthorAffiliation | BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, 1 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, 2 Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota 55455, 3 Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455 4 |
AuthorAffiliation_xml | – name: BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, 1 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, 2 Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota 55455, 3 Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455 4 |
Author_xml | – sequence: 1 fullname: Marsili, Enrico – sequence: 2 fullname: Rollefson, Janet B – sequence: 3 fullname: Baron, Daniel B – sequence: 4 fullname: Hozalski, Raymond M – sequence: 5 fullname: Bond, Daniel R |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20911655$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18849456$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstv1DAQxiNURLeFG2eIkOBEytiJE5sD0rIsD6kVBwpXa-K1N66SuLW9oOWvx9t9CCqkXuzD_Oab13eSHY1u1Fn2lMAZIZS_mc4vzgBI0xTAH2QTAoIXrCzro2wCIERBaQXH2UkIVwBQQc0fZceE80pUrJ5k7sIq71qLff7eOmP7If_h-ojDoKNfv80_WK9VzOd9er1TnR6sSuysQ48qam9_Y7RuzJ3JZxixX0er9vRCF9MYMSUt9uLhcfbQYB_0k91_ml1-nF_OPhfnXz99mU3PC1UTHouWaTSsZLylujaC1lDqitDGUM5FjS1yQQ1A2yphKoKkXbQgKuApQls05Wn2bit7vWoHvVB6jB57ee3tgH4tHVr5b2S0nVy6n5IyQQVAEni1E_DuZqVDlIMNSvc9jtqtgqwFB5pK3gtWnFBRAr0XpIRBQ5hI4Is74JVb-TFtS1JgghMiNmrP_h7wMNn-sgl4uQMwpIsZj6Oy4cCl3gmpGUsc3XLJBiF4baSy8famaS-2lwTkxmYy2Uze2kwCT0mv7yQd6v8f303U2WX3KzlKYhgk6kE2laSlbEq6Gfv5FjLoJC59avb7NwqkBMJqyjgt_wCRSOiF |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_3390_app12010275 crossref_primary_10_1002_bit_26246 crossref_primary_10_1038_s41564_022_01159_z crossref_primary_10_1039_c2ee22330a crossref_primary_10_1016_j_jpowsour_2016_11_115 crossref_primary_10_1016_j_electacta_2024_145020 crossref_primary_10_1016_j_watres_2024_122104 crossref_primary_10_1021_jp507898x crossref_primary_10_1016_j_scitotenv_2023_169766 crossref_primary_10_1039_C4RA13345E crossref_primary_10_1039_C8RA03846E crossref_primary_10_1016_j_copbio_2011_01_009 crossref_primary_10_1016_j_bioelechem_2022_108101 crossref_primary_10_1038_s41598_019_39267_2 crossref_primary_10_1016_j_scitotenv_2020_140138 crossref_primary_10_1002_adfm_201101946 crossref_primary_10_1016_j_electacta_2014_12_152 crossref_primary_10_1016_j_jece_2016_04_025 crossref_primary_10_1155_2012_298739 crossref_primary_10_1016_j_jclepro_2020_124084 crossref_primary_10_1039_C5RA15676A crossref_primary_10_1016_j_aca_2018_10_059 crossref_primary_10_1016_j_jelechem_2017_06_003 crossref_primary_10_1039_D0TA08574J crossref_primary_10_1016_j_isci_2021_102068 crossref_primary_10_1016_j_biotechadv_2013_05_001 crossref_primary_10_1016_j_ijhydene_2020_06_086 crossref_primary_10_1016_j_rineng_2023_101385 crossref_primary_10_1016_j_cej_2022_135748 crossref_primary_10_1016_j_bios_2018_08_045 crossref_primary_10_1016_j_bioelechem_2016_02_010 crossref_primary_10_1021_es900204j crossref_primary_10_1016_j_fmre_2021_07_009 crossref_primary_10_1088_1361_6528_ab6ab5 crossref_primary_10_1128_mBio_00420_12 crossref_primary_10_1039_D3RA02174B crossref_primary_10_1002_anie_201701964 crossref_primary_10_1016_j_electacta_2019_03_085 crossref_primary_10_1128_mBio_00626_17 crossref_primary_10_1002_elan_200800007 crossref_primary_10_1080_02648725_2023_2197715 crossref_primary_10_1021_sc400330r crossref_primary_10_1039_c3ee42329h crossref_primary_10_1002_er_4351 crossref_primary_10_1016_j_electacta_2011_05_111 crossref_primary_10_1016_j_jelechem_2018_08_003 crossref_primary_10_1039_C4CP03197K crossref_primary_10_1128_JB_00340_17 crossref_primary_10_1007_s44246_024_00119_y crossref_primary_10_1016_j_electacta_2016_07_122 crossref_primary_10_1074_jbc_M109_043455 crossref_primary_10_1002_bit_26928 crossref_primary_10_1016_j_cej_2021_134369 crossref_primary_10_1021_la2047036 crossref_primary_10_1039_C6RA24835G crossref_primary_10_1016_j_biortech_2013_09_069 crossref_primary_10_1016_j_jelechem_2018_09_041 crossref_primary_10_1021_es400321c crossref_primary_10_1016_j_biortech_2012_12_091 crossref_primary_10_1016_j_egyr_2019_08_007 crossref_primary_10_1149_2_001401jes crossref_primary_10_1016_j_bbabio_2015_06_005 crossref_primary_10_1371_journal_pone_0169955 crossref_primary_10_1002_elan_201400578 crossref_primary_10_1002_celc_201402036 crossref_primary_10_4491_eer_2023_657 crossref_primary_10_1016_j_ijhydene_2012_11_147 crossref_primary_10_1021_acssuschemeng_2c04399 crossref_primary_10_1021_acsnano_6b02629 crossref_primary_10_1002_adma_201908178 crossref_primary_10_3390_en13030574 crossref_primary_10_1016_j_biortech_2013_01_036 crossref_primary_10_3390_en12101968 crossref_primary_10_1149_2_0611412jes crossref_primary_10_1016_j_bioelechem_2015_03_003 crossref_primary_10_1039_C9SE00026G crossref_primary_10_3182_20100707_3_BE_2012_0050 crossref_primary_10_3389_fenrg_2019_00002 crossref_primary_10_1016_j_ijhydene_2011_05_148 crossref_primary_10_1016_j_bios_2013_06_051 crossref_primary_10_1128_mBio_02034_14 crossref_primary_10_1016_j_psep_2022_03_039 crossref_primary_10_1371_journal_pone_0063129 crossref_primary_10_5004_dwt_2019_23711 crossref_primary_10_1016_j_envres_2020_110498 crossref_primary_10_1093_molbev_msad161 crossref_primary_10_1111_mmi_14801 crossref_primary_10_1016_j_chempr_2017_01_001 crossref_primary_10_1016_j_biortech_2018_04_089 crossref_primary_10_1007_s42452_020_2081_0 crossref_primary_10_1016_j_bioelechem_2018_01_005 crossref_primary_10_1002_bit_24779 crossref_primary_10_1016_j_bios_2013_05_015 crossref_primary_10_1002_cssc_201300605 crossref_primary_10_3389_fmicb_2015_00575 crossref_primary_10_1016_j_bioelechem_2015_03_011 crossref_primary_10_1371_journal_pone_0104336 crossref_primary_10_1016_j_biortech_2018_03_049 crossref_primary_10_1038_srep11094 crossref_primary_10_1016_j_bioelechem_2015_03_010 crossref_primary_10_1007_s11665_024_10084_7 crossref_primary_10_1080_07388551_2019_1662367 crossref_primary_10_3390_en11071822 crossref_primary_10_1002_cphc_201100246 crossref_primary_10_1016_j_bbabio_2018_07_007 crossref_primary_10_1016_j_electacta_2016_07_100 crossref_primary_10_1021_acsabm_1c00362 crossref_primary_10_1021_acsami_1c20445 crossref_primary_10_1016_j_biortech_2024_131491 crossref_primary_10_1016_j_microc_2024_111026 crossref_primary_10_1021_acsami_6b09907 crossref_primary_10_7554_eLife_81551 crossref_primary_10_1016_j_bioelechem_2016_02_003 crossref_primary_10_1042_BCJ20210365 crossref_primary_10_1128_AEM_01460_12 crossref_primary_10_1016_j_electacta_2021_139305 crossref_primary_10_1146_annurev_micro_092611_150104 crossref_primary_10_1021_es201737g crossref_primary_10_1007_s12274_019_2438_0 crossref_primary_10_1016_j_biteb_2022_100974 crossref_primary_10_1149_1945_7111_aba931 crossref_primary_10_1016_j_jpowsour_2017_03_033 crossref_primary_10_1039_c0ee00242a crossref_primary_10_1371_journal_pone_0091732 crossref_primary_10_1042_BCJ20160932 crossref_primary_10_1016_j_bioelechem_2019_107395 crossref_primary_10_1039_c1ee02229f crossref_primary_10_1039_c3cp54045f crossref_primary_10_2139_ssrn_4096053 crossref_primary_10_1002_celc_201600853 crossref_primary_10_3389_fenrg_2019_00103 crossref_primary_10_1038_s41586_018_0498_z crossref_primary_10_1002_cssc_201100714 crossref_primary_10_20964_2020_08_71 crossref_primary_10_1016_j_bioelechem_2015_08_003 crossref_primary_10_1016_j_copbio_2025_103291 crossref_primary_10_1016_j_jece_2022_107505 crossref_primary_10_1039_C5RA04120A crossref_primary_10_1002_jctb_7397 crossref_primary_10_1016_j_jelechem_2022_116649 crossref_primary_10_1002_adfm_200902428 crossref_primary_10_1016_j_electacta_2015_12_069 crossref_primary_10_1016_j_scitotenv_2022_153123 crossref_primary_10_1016_j_scitotenv_2023_168347 crossref_primary_10_1128_AEM_02425_09 crossref_primary_10_1016_j_jpowsour_2017_03_147 crossref_primary_10_1016_j_bioelechem_2021_108011 crossref_primary_10_1016_j_bios_2010_07_037 crossref_primary_10_1039_D3CS00756A crossref_primary_10_1007_s00253_010_2903_x crossref_primary_10_1016_j_biortech_2012_09_008 crossref_primary_10_1016_j_scitotenv_2023_163698 crossref_primary_10_1128_mBio_02448_18 crossref_primary_10_1007_s00449_014_1239_9 crossref_primary_10_1039_c2cp42571h crossref_primary_10_1016_j_electacta_2021_138757 crossref_primary_10_3389_fenrg_2014_00034 crossref_primary_10_1007_s00449_018_1989_x crossref_primary_10_1016_j_bioelechem_2024_108707 crossref_primary_10_1002_bit_25253 crossref_primary_10_1039_c1ee01477c crossref_primary_10_1128_JB_01092_10 crossref_primary_10_1042_EBC20200178 crossref_primary_10_1128_aem_00795_24 crossref_primary_10_1016_j_eaef_2019_01_004 crossref_primary_10_3390_toxics12030173 crossref_primary_10_1016_j_jpowsour_2017_03_133 crossref_primary_10_1016_j_biortech_2017_03_127 crossref_primary_10_1016_j_abb_2022_109220 crossref_primary_10_1039_C1EE01469B crossref_primary_10_1016_j_bioelechem_2011_12_002 crossref_primary_10_1002_cssc_201100737 crossref_primary_10_1111_j_1574_6976_2009_00191_x crossref_primary_10_1016_j_bioelechem_2021_107989 crossref_primary_10_1002_cssc_201100734 crossref_primary_10_1016_S1452_3981_23_16929_X crossref_primary_10_1002_cssc_201100733 crossref_primary_10_1016_j_bios_2018_02_030 crossref_primary_10_1021_acsbiomaterials_4c01183 crossref_primary_10_1021_es404690q crossref_primary_10_1039_C6LC00077K crossref_primary_10_1515_corrrev_2019_0108 crossref_primary_10_1016_j_electacta_2010_12_025 crossref_primary_10_1039_C5RA24718G crossref_primary_10_1371_journal_pone_0016649 crossref_primary_10_1007_s12666_016_0899_3 crossref_primary_10_1016_j_bioelechem_2022_108210 crossref_primary_10_1016_j_cartre_2021_100116 crossref_primary_10_1016_j_chemosphere_2016_12_061 crossref_primary_10_1016_j_jwpe_2021_102459 crossref_primary_10_1371_journal_ppat_1005846 crossref_primary_10_1039_D0DT01272F crossref_primary_10_1002_cben_201900023 crossref_primary_10_1016_j_chemosphere_2016_06_072 crossref_primary_10_1021_es4030113 crossref_primary_10_1016_j_biortech_2011_11_095 crossref_primary_10_1002_cssc_201100748 crossref_primary_10_1038_s41598_025_86702_8 crossref_primary_10_1021_es200834b crossref_primary_10_1016_j_synthmet_2019_03_027 crossref_primary_10_1021_acssensors_6b00571 crossref_primary_10_1111_gbi_12420 crossref_primary_10_1016_j_cej_2023_141742 crossref_primary_10_1016_j_electacta_2011_07_001 crossref_primary_10_1002_cctc_202401102 crossref_primary_10_1016_j_cej_2013_06_044 crossref_primary_10_1039_C9RA02343G crossref_primary_10_1128_AEM_01605_09 crossref_primary_10_1016_j_jpowsour_2008_12_144 crossref_primary_10_1021_acssynbio_2c00024 crossref_primary_10_1016_j_cej_2017_09_132 crossref_primary_10_1016_j_electacta_2021_137992 crossref_primary_10_1016_j_elecom_2012_06_013 crossref_primary_10_1039_C5EE01498K crossref_primary_10_1111_febs_13269 crossref_primary_10_4155_bfs_10_25 crossref_primary_10_1016_j_jpowsour_2014_03_071 crossref_primary_10_1002_adbi_201800303 crossref_primary_10_1016_j_isci_2025_111869 crossref_primary_10_1002_ange_202305189 crossref_primary_10_1016_j_jece_2021_106338 crossref_primary_10_1093_jambio_lxac044 crossref_primary_10_1021_acssensors_8b00401 crossref_primary_10_1039_C8RA00951A crossref_primary_10_1039_b823237g crossref_primary_10_1039_C8RA05715J crossref_primary_10_1007_s11663_021_02267_7 crossref_primary_10_1016_j_biortech_2019_01_097 crossref_primary_10_1016_j_envres_2021_111572 crossref_primary_10_1016_j_jece_2017_07_014 crossref_primary_10_1111_j_1758_2229_2010_00210_x crossref_primary_10_1039_C9CS00496C crossref_primary_10_1590_0104_6632_20170341s20150377 crossref_primary_10_3390_nano6090174 crossref_primary_10_1016_j_elecom_2013_04_013 crossref_primary_10_1016_j_bioelechem_2019_02_006 crossref_primary_10_1016_j_mib_2010_02_002 crossref_primary_10_1002_mds3_10013 crossref_primary_10_1021_es2020007 crossref_primary_10_1002_gch2_201800084 crossref_primary_10_1016_j_biotechadv_2022_108011 crossref_primary_10_1042_BCJ20180457 crossref_primary_10_1073_pnas_1912498116 crossref_primary_10_1021_am506360x crossref_primary_10_1016_j_bioelechem_2020_107632 crossref_primary_10_1002_cssc_201402589 crossref_primary_10_1016_j_ijhydene_2020_06_134 crossref_primary_10_1016_j_ibiod_2014_05_007 crossref_primary_10_1039_c0ee00447b crossref_primary_10_1016_j_bbabio_2018_05_007 crossref_primary_10_1016_j_ibiod_2019_104746 crossref_primary_10_2139_ssrn_4120225 crossref_primary_10_1039_c003342a crossref_primary_10_1038_s41396_018_0212_z crossref_primary_10_1016_j_jelechem_2016_03_044 crossref_primary_10_1016_j_tim_2011_05_001 crossref_primary_10_1016_j_electacta_2017_09_085 crossref_primary_10_1128_JB_00057_09 crossref_primary_10_1039_D4RA03906H crossref_primary_10_1002_slct_201901982 crossref_primary_10_1002_cssc_201100777 crossref_primary_10_1016_j_est_2021_102610 crossref_primary_10_1002_celc_202100914 crossref_primary_10_1128_aem_00044_24 crossref_primary_10_1128_AEM_01760_09 crossref_primary_10_1016_j_electacta_2022_141071 crossref_primary_10_1109_JSEN_2015_2504495 crossref_primary_10_1016_j_chemosphere_2020_128539 crossref_primary_10_1002_elan_201800895 crossref_primary_10_1039_c2ee03374g crossref_primary_10_1002_bit_25105 crossref_primary_10_1089_ast_2021_0104 crossref_primary_10_1016_j_electacta_2019_134838 crossref_primary_10_1007_s10967_019_06753_w crossref_primary_10_1039_c1ee02511b crossref_primary_10_1007_s12566_012_0033_x crossref_primary_10_1128_IAI_00182_17 crossref_primary_10_1007_s42243_024_01213_6 crossref_primary_10_1021_acs_est_3c04771 crossref_primary_10_2116_analsci_33_883 crossref_primary_10_1016_j_biortech_2020_124291 crossref_primary_10_1016_j_jpowsour_2017_02_086 crossref_primary_10_1021_acs_est_5b00175 crossref_primary_10_1016_j_watres_2017_08_059 crossref_primary_10_1002_ange_201701964 crossref_primary_10_1002_cite_201800214 crossref_primary_10_1016_j_fuel_2024_132059 crossref_primary_10_1016_j_procbio_2021_01_003 crossref_primary_10_1128_mBio_00144_13 crossref_primary_10_1016_j_jclepro_2020_121446 crossref_primary_10_1039_C6EE01699E crossref_primary_10_1016_j_ab_2012_10_016 crossref_primary_10_1016_j_ijhydene_2014_03_203 crossref_primary_10_1021_acssuschemeng_9b05420 crossref_primary_10_1016_j_electacta_2024_143967 crossref_primary_10_1016_j_biortech_2021_125893 crossref_primary_10_2139_ssrn_4060136 crossref_primary_10_1021_es101013e crossref_primary_10_1016_j_biortech_2011_01_059 crossref_primary_10_5796_electrochemistry_83_600 crossref_primary_10_1016_j_electacta_2011_02_073 crossref_primary_10_1007_s11581_023_04956_6 crossref_primary_10_3389_fmicb_2022_973501 crossref_primary_10_1016_j_electacta_2018_02_113 crossref_primary_10_1007_s00253_010_3013_5 crossref_primary_10_1016_j_ese_2023_100375 crossref_primary_10_1016_j_elecom_2013_05_013 crossref_primary_10_1021_acs_biochem_8b00324 crossref_primary_10_5012_bkcs_2012_33_10_3349 crossref_primary_10_1039_C5GC00310E crossref_primary_10_3389_fmicb_2015_00111 crossref_primary_10_1016_j_bioelechem_2018_03_015 crossref_primary_10_1038_srep38690 crossref_primary_10_1080_15567036_2016_1271839 crossref_primary_10_1016_j_electacta_2024_144800 crossref_primary_10_1002_bit_23348 crossref_primary_10_1039_c2ee21594b crossref_primary_10_1002_celc_202000117 crossref_primary_10_1016_j_scitotenv_2019_07_104 crossref_primary_10_1109_JSTQE_2015_2477054 crossref_primary_10_1021_es504882f crossref_primary_10_1039_c2ee22429a crossref_primary_10_1002_jctb_6347 crossref_primary_10_1016_j_biosx_2023_100370 crossref_primary_10_1007_s11356_024_33612_3 crossref_primary_10_1016_j_jelechem_2020_114119 crossref_primary_10_1128_AEM_01967_15 crossref_primary_10_1039_c2ee02672d crossref_primary_10_1039_C5RA16459A crossref_primary_10_1039_C6CP04509J crossref_primary_10_1002_anie_202305189 crossref_primary_10_1016_j_biortech_2016_04_136 crossref_primary_10_1016_j_cej_2020_127652 crossref_primary_10_1128_mBio_00190_10 crossref_primary_10_1021_acs_langmuir_5b02953 crossref_primary_10_1016_j_biortech_2015_07_025 crossref_primary_10_1016_S1452_3981_23_14264_7 crossref_primary_10_3390_microorganisms12081645 crossref_primary_10_1016_j_wasman_2015_06_001 crossref_primary_10_1021_es902165y crossref_primary_10_1039_C4CP01023J crossref_primary_10_1016_j_bioelechem_2023_108480 crossref_primary_10_1039_c2ee03056j crossref_primary_10_1002_asia_201100740 crossref_primary_10_1016_j_watres_2020_116284 crossref_primary_10_1128_AEM_00201_21 crossref_primary_10_1016_j_bioelechem_2012_05_002 crossref_primary_10_1016_j_matdes_2019_108256 crossref_primary_10_1111_j_1751_7915_2011_00302_x crossref_primary_10_1016_j_chemosphere_2021_131489 crossref_primary_10_1016_j_scitotenv_2022_155926 crossref_primary_10_1038_ismej_2016_146 crossref_primary_10_1134_S0003683817090034 crossref_primary_10_1051_matecconf_20166204002 crossref_primary_10_1016_j_electacta_2017_03_186 crossref_primary_10_1016_j_jelechem_2017_09_004 crossref_primary_10_7554_eLife_43959 crossref_primary_10_1016_j_bioelechem_2019_107401 crossref_primary_10_1016_j_colsurfb_2010_10_015 crossref_primary_10_1016_j_electacta_2015_10_051 crossref_primary_10_1021_la9047853 crossref_primary_10_3389_fmicb_2016_00913 crossref_primary_10_3390_en13143521 crossref_primary_10_1111_1751_7915_13309 crossref_primary_10_1016_j_coelec_2017_09_003 crossref_primary_10_1016_j_biotechadv_2023_108175 crossref_primary_10_1016_j_mseb_2020_114613 crossref_primary_10_4491_eer_2024_135 crossref_primary_10_1080_08927014_2012_710324 crossref_primary_10_1016_j_bios_2011_06_045 crossref_primary_10_1016_j_ijhydene_2016_04_163 |
Cites_doi | 10.1111/j.1574-6968.2007.00915.x 10.1016/j.cbpa.2005.02.011 10.1021/es0502876 10.1016/S0022-0728(99)00174-6 10.1128/JB.187.13.4505-4513.2005 10.1016/j.jelechem.2005.02.009 10.1039/cs9972600169 10.1038/nature03661 10.1016/j.jpowsour.2007.06.220 10.1016/j.copbio.2007.03.007 10.1128/AEM.70.10.6023-6030.2004 10.1074/jbc.M200495200 10.1023/A:1013786328075 10.1016/S0022-0728(00)00280-1 10.1021/es034923g 10.1007/s00775-007-0278-y 10.1016/j.bbapap.2006.04.017 10.1002/bit.21671 10.1021/jp981023r 10.1016/S0032-9592(03)00203-6 10.1073/pnas.0710525105 10.1021/jp0718698 10.1021/es048563o 10.1021/la700406q 10.1039/b001665i 10.1016/j.procbio.2004.06.068 10.1128/AEM.70.2.921-928.2004 10.1021/bi035869j 10.1016/S0022-0728(03)00080-9 10.1002/bit.260431118 10.1128/AEM.66.4.1292-1297.2000 10.1128/AEM.01387-07 10.1016/S0006-3495(00)76658-6 10.1039/b000946f 10.1038/nbt867 10.1016/S0956-5663(02)00110-0 10.1128/AEM.01444-06 10.1039/AN9931800973 10.1021/ja993174t 10.1111/j.1462-2920.2006.01065.x 10.1128/JB.187.17.5918-5926.2005 10.1128/AEM.71.4.2186-2189.2005 10.1016/j.corsci.2004.11.013 10.1016/j.electacta.2005.02.139 10.1128/AEM.70.9.5373-5382.2004 10.1021/es048386r 10.1016/S0925-4005(03)00628-2 10.1016/j.bbrc.2004.10.188 10.1016/j.bios.2006.10.028 10.1016/j.jinorgbio.2007.07.020 10.1128/AEM.70.9.5183-5189.2004 10.1128/AEM.71.12.8634-8641.2005 10.1016/j.corsci.2007.03.034 10.1128/AEM.69.3.1548-1555.2003 10.1002/1521-4109(200207)14:13<913::AID-ELAN913>3.0.CO;2-N 10.1080/08927010601053541 10.1016/S0141-0229(01)00478-1 10.1021/es060394f 10.1093/jexbot/51.353.2095 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS Copyright American Society for Microbiology Dec 2008 Copyright © 2008, American Society for Microbiology |
Copyright_xml | – notice: 2009 INIST-CNRS – notice: Copyright American Society for Microbiology Dec 2008 – notice: Copyright © 2008, American Society for Microbiology |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM |
DOI | 10.1128/AEM.00177-08 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic AGRICOLA CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1098-5336 1098-6596 |
EndPage | 7337 |
ExternalDocumentID | PMC2592900 1607280941 18849456 20911655 10_1128_AEM_00177_08 aem_74_23_7329 US201301562582 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 85S AAZTW ABOGM ABPPZ ABPTK ABTAH ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV AENEX AFFNX AFMIJ AFRAH AGCDD AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CS3 D0L DIK E.- E3Z EBS EJD F20 F5P FBQ GX1 HYE HZ~ H~9 K-O KQ8 L7B MVM NEJ O9- OHT OK1 P2P PQQKQ RHF RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UCJ UHB VH1 W8F WH7 WHG WOQ X6Y X7M XFK XJT YV5 ZA5 ZCG ZGI ZXP ZY4 ~02 ~KM AAGFI AAYXX ADUKH ADXHL AGVNZ CITATION H13 IQODW CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI FRP HH5 LSO W2D ~A~ 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c618t-b5eaf5358b2e6f92603e4127f28896aba892f00bbc9f41a1bdb09408aba2baf3 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 14:09:37 EDT 2025 Fri Jul 11 03:21:16 EDT 2025 Fri Jul 11 02:26:38 EDT 2025 Fri Jul 11 07:16:32 EDT 2025 Mon Jun 30 10:41:14 EDT 2025 Mon Jul 21 06:06:10 EDT 2025 Mon Jul 21 09:15:57 EDT 2025 Thu Apr 24 22:59:08 EDT 2025 Tue Jul 01 00:46:56 EDT 2025 Wed May 18 15:27:55 EDT 2016 Wed Dec 27 19:06:14 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Characterization Electrodes Biofilm Electrochemistry Voltammetry Microorganism |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c618t-b5eaf5358b2e6f92603e4127f28896aba892f00bbc9f41a1bdb09408aba2baf3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Corresponding author. Mailing address: BioTechnology Institute, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Ave., St. Paul, MN 55108. Phone: (612) 624-8619. Fax: (612) 625-1700. E-mail: dbond@umn.edu |
OpenAccessLink | http://doi.org/10.1128/AEM.00177-08 |
PMID | 18849456 |
PQID | 205981192 |
PQPubID | 42251 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2592900 pubmed_primary_18849456 pascalfrancis_primary_20911655 crossref_primary_10_1128_AEM_00177_08 proquest_journals_205981192 crossref_citationtrail_10_1128_AEM_00177_08 highwire_asm_aem_74_23_7329 proquest_miscellaneous_48129302 proquest_miscellaneous_21507159 fao_agris_US201301562582 proquest_miscellaneous_69802094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-12-01 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2008 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | e_1_3_2_26_2 e_1_3_2_49_2 (e_1_3_2_4_2) 2002; 5 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 (e_1_3_2_69_2) 2007; 17 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 (e_1_3_2_28_2) 2003; 47 (e_1_3_2_19_2) 2006; 16 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 (e_1_3_2_14_2) 1996; 3 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 (e_1_3_2_16_2) 2008 17178571 - Biofouling. 2006;22(5-6):383-90 11197490 - Faraday Discuss. 2000;(116):47-65; discussion 67-75 16958761 - Environ Microbiol. 2006 Oct;8(10):1805-15 11141183 - J Exp Bot. 2000 Dec;51(353):2095-107 12620842 - Appl Environ Microbiol. 2003 Mar;69(3):1548-55 17447803 - Langmuir. 2007 May 22;23(11):6459-66 17129722 - Biosens Bioelectron. 2007 May 15;22(11):2604-10 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23 17701062 - J Biol Inorg Chem. 2007 Sep;12(7):1083-94 15968061 - J Bacteriol. 2005 Jul;187(13):4505-13 16999091 - Environ Sci Technol. 2006 Sep 1;40(17):5212-7 17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64 15926596 - Environ Sci Technol. 2005 May 1;39(9):3401-8 15555587 - Biochem Biophys Res Commun. 2004 Dec 24;325(4):1433-7 11197477 - Faraday Discuss. 2000;(116):155-69; discussion 171-90 16082955 - Environ Sci Technol. 2005 Jul 15;39(14):5262-7 12604249 - Biosens Bioelectron. 2003 Apr;18(4):327-34 18051361 - J Microbiol Biotechnol. 2007 Jan;17(1):110-5 14766572 - Appl Environ Microbiol. 2004 Feb;70(2):921-8 17399977 - Curr Opin Biotechnol. 2007 Jun;18(3):228-34 10653813 - Biophys J. 2000 Feb;78(2):1001-9 14730985 - Biochemistry. 2004 Jan 27;43(3):799-807 15812057 - Appl Environ Microbiol. 2005 Apr;71(4):2186-9 12701906 - Water Sci Technol. 2003;47(5):51-6 15973408 - Nature. 2005 Jun 23;435(7045):1098-101 16797259 - Biochim Biophys Acta. 2006 Jul;1764(7):1198-206 15345398 - Appl Environ Microbiol. 2004 Sep;70(9):5183-9 11970951 - J Biol Chem. 2002 Jun 28;277(26):23374-81 15112835 - Environ Sci Technol. 2004 Apr 1;38(7):2281-5 16332857 - Appl Environ Microbiol. 2005 Dec;71(12):8634-41 18615526 - Biotechnol Bioeng. 1994 May;43(11):1131-8 17986080 - FEMS Microbiol Lett. 2007 Dec;277(1):21-7 17765315 - J Inorg Biochem. 2007 Nov;101(11-12):1760-7 15345423 - Appl Environ Microbiol. 2004 Sep;70(9):5373-82 16047807 - Environ Sci Technol. 2005 Jun 15;39(12):4666-71 16109933 - J Bacteriol. 2005 Sep;187(17):5918-26 16936064 - Appl Environ Microbiol. 2006 Nov;72(11):7345-8 17929324 - Biotechnol Bioeng. 2008 Apr 1;99(5):1065-73 8214607 - Analyst. 1993 Aug;118(8):973-8 12960964 - Nat Biotechnol. 2003 Oct;21(10):1229-32 15466546 - Appl Environ Microbiol. 2004 Oct;70(10):6023-30 10742202 - Appl Environ Microbiol. 2000 Apr;66(4):1292-7 15811794 - Curr Opin Chem Biol. 2005 Apr;9(2):110-7 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73 |
References_xml | – ident: e_1_3_2_55_2 doi: 10.1111/j.1574-6968.2007.00915.x – ident: e_1_3_2_6_2 doi: 10.1016/j.cbpa.2005.02.011 – ident: e_1_3_2_32_2 doi: 10.1021/es0502876 – ident: e_1_3_2_41_2 doi: 10.1016/S0022-0728(99)00174-6 – ident: e_1_3_2_39_2 doi: 10.1128/JB.187.13.4505-4513.2005 – ident: e_1_3_2_47_2 doi: 10.1016/j.jelechem.2005.02.009 – ident: e_1_3_2_8_2 doi: 10.1039/cs9972600169 – ident: e_1_3_2_58_2 doi: 10.1038/nature03661 – volume: 5 start-page: 661 year: 2002 ident: e_1_3_2_4_2 publication-title: J. Chem. Soc. Dalton Trans. – ident: e_1_3_2_26_2 doi: 10.1016/j.jpowsour.2007.06.220 – ident: e_1_3_2_50_2 doi: 10.1016/j.copbio.2007.03.007 – volume: 3 start-page: 287 year: 1996 ident: e_1_3_2_14_2 publication-title: Experimental techniques in bioelectrochemistry – ident: e_1_3_2_36_2 doi: 10.1128/AEM.70.10.6023-6030.2004 – ident: e_1_3_2_3_2 doi: 10.1074/jbc.M200495200 – ident: e_1_3_2_5_2 doi: 10.1023/A:1013786328075 – ident: e_1_3_2_62_2 doi: 10.1016/S0022-0728(00)00280-1 – ident: e_1_3_2_44_2 doi: 10.1021/es034923g – ident: e_1_3_2_11_2 – volume: 16 start-page: 163 year: 2006 ident: e_1_3_2_19_2 publication-title: J. Microbiol. Biotechnol. – ident: e_1_3_2_31_2 doi: 10.1007/s00775-007-0278-y – ident: e_1_3_2_24_2 doi: 10.1016/j.bbapap.2006.04.017 – ident: e_1_3_2_63_2 doi: 10.1002/bit.21671 – ident: e_1_3_2_34_2 doi: 10.1021/jp981023r – ident: e_1_3_2_38_2 doi: 10.1016/S0032-9592(03)00203-6 – ident: e_1_3_2_48_2 doi: 10.1073/pnas.0710525105 – ident: e_1_3_2_68_2 doi: 10.1021/jp0718698 – ident: e_1_3_2_56_2 doi: 10.1021/es048563o – volume: 17 start-page: 110 year: 2007 ident: e_1_3_2_69_2 publication-title: J. Microbiol. Biotechnol. – ident: e_1_3_2_15_2 doi: 10.1021/la700406q – ident: e_1_3_2_18_2 doi: 10.1039/b001665i – ident: e_1_3_2_29_2 doi: 10.1016/j.procbio.2004.06.068 – ident: e_1_3_2_35_2 doi: 10.1128/AEM.70.2.921-928.2004 – ident: e_1_3_2_25_2 doi: 10.1021/bi035869j – volume: 47 start-page: 51 year: 2003 ident: e_1_3_2_28_2 publication-title: Water Sci. Technol. – ident: e_1_3_2_45_2 doi: 10.1016/S0022-0728(03)00080-9 – ident: e_1_3_2_23_2 doi: 10.1002/bit.260431118 – ident: e_1_3_2_51_2 doi: 10.1128/AEM.66.4.1292-1297.2000 – ident: e_1_3_2_65_2 doi: 10.1128/AEM.01387-07 – ident: e_1_3_2_17_2 doi: 10.1016/S0006-3495(00)76658-6 – ident: e_1_3_2_2_2 doi: 10.1039/b000946f – ident: e_1_3_2_20_2 doi: 10.1038/nbt867 – ident: e_1_3_2_30_2 doi: 10.1016/S0956-5663(02)00110-0 – ident: e_1_3_2_59_2 doi: 10.1128/AEM.01444-06 – ident: e_1_3_2_7_2 doi: 10.1039/AN9931800973 – ident: e_1_3_2_21_2 doi: 10.1021/ja993174t – ident: e_1_3_2_37_2 doi: 10.1111/j.1462-2920.2006.01065.x – ident: e_1_3_2_42_2 doi: 10.1128/JB.187.17.5918-5926.2005 – ident: e_1_3_2_13_2 doi: 10.1128/AEM.71.4.2186-2189.2005 – ident: e_1_3_2_43_2 doi: 10.1016/j.corsci.2004.11.013 – ident: e_1_3_2_9_2 doi: 10.1016/j.electacta.2005.02.139 – ident: e_1_3_2_57_2 doi: 10.1128/AEM.70.9.5373-5382.2004 – ident: e_1_3_2_61_2 doi: 10.1021/es048386r – ident: e_1_3_2_27_2 doi: 10.1016/S0925-4005(03)00628-2 – ident: e_1_3_2_66_2 doi: 10.1016/j.bbrc.2004.10.188 – ident: e_1_3_2_67_2 – ident: e_1_3_2_54_2 doi: 10.1016/j.bios.2006.10.028 – ident: e_1_3_2_64_2 doi: 10.1016/j.jinorgbio.2007.07.020 – ident: e_1_3_2_22_2 doi: 10.1128/AEM.70.9.5183-5189.2004 – ident: e_1_3_2_49_2 doi: 10.1128/AEM.71.12.8634-8641.2005 – ident: e_1_3_2_52_2 doi: 10.1016/j.corsci.2007.03.034 – ident: e_1_3_2_12_2 doi: 10.1128/AEM.69.3.1548-1555.2003 – ident: e_1_3_2_46_2 doi: 10.1002/1521-4109(200207)14:13<913::AID-ELAN913>3.0.CO;2-N – ident: e_1_3_2_53_2 doi: 10.1080/08927010601053541 – ident: e_1_3_2_10_2 – ident: e_1_3_2_40_2 doi: 10.1016/S0141-0229(01)00478-1 – start-page: 91 year: 2008 ident: e_1_3_2_16_2 publication-title: Bioinorganic electrochemistry. – ident: e_1_3_2_33_2 doi: 10.1021/es060394f – ident: e_1_3_2_60_2 doi: 10.1093/jexbot/51.353.2095 – reference: 17129722 - Biosens Bioelectron. 2007 May 15;22(11):2604-10 – reference: 11141183 - J Exp Bot. 2000 Dec;51(353):2095-107 – reference: 15466546 - Appl Environ Microbiol. 2004 Oct;70(10):6023-30 – reference: 11970951 - J Biol Chem. 2002 Jun 28;277(26):23374-81 – reference: 15926596 - Environ Sci Technol. 2005 May 1;39(9):3401-8 – reference: 15345423 - Appl Environ Microbiol. 2004 Sep;70(9):5373-82 – reference: 17986080 - FEMS Microbiol Lett. 2007 Dec;277(1):21-7 – reference: 16958761 - Environ Microbiol. 2006 Oct;8(10):1805-15 – reference: 16999091 - Environ Sci Technol. 2006 Sep 1;40(17):5212-7 – reference: 16082955 - Environ Sci Technol. 2005 Jul 15;39(14):5262-7 – reference: 17399977 - Curr Opin Biotechnol. 2007 Jun;18(3):228-34 – reference: 16797259 - Biochim Biophys Acta. 2006 Jul;1764(7):1198-206 – reference: 15112835 - Environ Sci Technol. 2004 Apr 1;38(7):2281-5 – reference: 15811794 - Curr Opin Chem Biol. 2005 Apr;9(2):110-7 – reference: 17178571 - Biofouling. 2006;22(5-6):383-90 – reference: 14766572 - Appl Environ Microbiol. 2004 Feb;70(2):921-8 – reference: 17447803 - Langmuir. 2007 May 22;23(11):6459-66 – reference: 15973408 - Nature. 2005 Jun 23;435(7045):1098-101 – reference: 12701906 - Water Sci Technol. 2003;47(5):51-6 – reference: 15968061 - J Bacteriol. 2005 Jul;187(13):4505-13 – reference: 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23 – reference: 17701062 - J Biol Inorg Chem. 2007 Sep;12(7):1083-94 – reference: 15812057 - Appl Environ Microbiol. 2005 Apr;71(4):2186-9 – reference: 12604249 - Biosens Bioelectron. 2003 Apr;18(4):327-34 – reference: 14730985 - Biochemistry. 2004 Jan 27;43(3):799-807 – reference: 10653813 - Biophys J. 2000 Feb;78(2):1001-9 – reference: 15345398 - Appl Environ Microbiol. 2004 Sep;70(9):5183-9 – reference: 15555587 - Biochem Biophys Res Commun. 2004 Dec 24;325(4):1433-7 – reference: 16332857 - Appl Environ Microbiol. 2005 Dec;71(12):8634-41 – reference: 12620842 - Appl Environ Microbiol. 2003 Mar;69(3):1548-55 – reference: 16047807 - Environ Sci Technol. 2005 Jun 15;39(12):4666-71 – reference: 12960964 - Nat Biotechnol. 2003 Oct;21(10):1229-32 – reference: 18051361 - J Microbiol Biotechnol. 2007 Jan;17(1):110-5 – reference: 10742202 - Appl Environ Microbiol. 2000 Apr;66(4):1292-7 – reference: 17929324 - Biotechnol Bioeng. 2008 Apr 1;99(5):1065-73 – reference: 17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64 – reference: 16109933 - J Bacteriol. 2005 Sep;187(17):5918-26 – reference: 18615526 - Biotechnol Bioeng. 1994 May;43(11):1131-8 – reference: 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73 – reference: 11197490 - Faraday Discuss. 2000;(116):47-65; discussion 67-75 – reference: 16936064 - Appl Environ Microbiol. 2006 Nov;72(11):7345-8 – reference: 17765315 - J Inorg Biochem. 2007 Nov;101(11-12):1760-7 – reference: 11197477 - Faraday Discuss. 2000;(116):155-69; discussion 171-90 – reference: 8214607 - Analyst. 1993 Aug;118(8):973-8 |
SSID | ssj0004068 ssj0006590 |
Score | 2.4762337 |
Snippet | While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for... Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7329 |
SubjectTerms | anaerobic digesters bacteria biofilm Biofilms Biofilms - growth & development Biological and medical sciences Bioreactors carbon Carbon - metabolism Cell growth Cells dielectric spectroscopy Electricity Electrocatalysis Electrochemistry Electrodes Electrodes - microbiology Electron transfer Enzymes Fundamental and applied biological sciences. Psychology Geobacter - growth & development Geobacter - metabolism Geobacter sulfurreducens immobilized enzymes Microbiology Physiology and Biotechnology quantitative analysis Studies Voltammetry |
Title | Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms |
URI | http://aem.asm.org/content/74/23/7329.abstract https://www.ncbi.nlm.nih.gov/pubmed/18849456 https://www.proquest.com/docview/205981192 https://www.proquest.com/docview/21507159 https://www.proquest.com/docview/48129302 https://www.proquest.com/docview/69802094 https://pubmed.ncbi.nlm.nih.gov/PMC2592900 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQQ8ICgfC4ORB3iawhLny-atmzptrF2ltkMTL5adOFBpbac1fej-O_4zznGcpN3G10vUxq6T5n4539l3v0Pog5BRrKogOWkiMyeAKcjhggKWo1Bw1w9kTFQ2cu8sOj4PvlyEFxsbPxtRS4tcfEpu7swr-R-pwjmQq8qS_QfJVoPCCfgM8oUjSBiOfyXj3rigUYKnfDBWpbcne19nl7lai86vl4WzrzXaXkcXu0kMO8BhRdN8U5mMh2ohZ6n4W8veqXTaea4In1Mz_rxpyxoDVi29N_LlVDrKuKZ3qiTaHgxPuieF7p2C8p1VWz39brdzNOyf6aDdqczrStAH7YE-rzPh64bj_rd2d3haDDfgy4nKwumtrGCQ9WgQszXVjFPtrd9oqb8pdZQR0tTfuspPiVPsN7Rx7JerKbL8qvllbs8aWGVCtDs9tS8Vx45L6tnRRASsTZpVKCMGg8uLwnATPcDgqRRe_clpnZrrRsQQoaobN7kXmOw3r7diFW1mfNbgq1bhunwO4Mh0qZW7fKH1kN6GjTR6hp6Wzo3d1kh9jjbktIUe6nKnyxZ6ZLLg5y30pEGE-QJdVUi2S6TZDSTbn22NY3sNx_Y6ju1ZZlc4tm_j2Iw-f4lGR53R4bFT1gJxksgjuSNCybPQD4nAMsooeOG-DDwcZ5gQGnHBCcWZ6wqR0CzwuCdSoZghCbRgwTP_FdqazqZyG9kplYnLSSoljED8mGYJyECmbhb4MZG-hfaMKFhS8uSrci2XrPCXMWEgOFYIjrnEQh-r3leaH-aeftsgVca_w9TNzodYBQx4avGBYAvtGFEzPp8wLicsDhj2mcKvhXZXpF9dxQAPfm7gwErdNIfGkBIPvDcLva9aYeJQu4HwIs8W0KVwBUN6f4-AKGfA_c0YESXgbtLAQq81_OpnQEhAwTmzULwCzKqDorVfbZmOfxT09jgEl8113_zpj--gx7U2eYu28uuFfAceQi52i3fwF3dWE-8 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+Biofilm+Voltammetry+%3A+Direct+Electrochemical+Characterization+of+Catalytic+Electrode-Attached+Biofilms&rft.jtitle=Applied+and+environmental+microbiology&rft.au=MARSILI%2C+Enrico&rft.au=ROLLEFSON%2C+Janet+B&rft.au=BARON%2C+Daniel+B&rft.au=HOZALSKI%2C+Raymond+M&rft.date=2008-12-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.volume=74&rft.issue=23&rft.spage=7329&rft.epage=7337&rft_id=info:doi/10.1128%2FAEM.00177-08&rft.externalDBID=n%2Fa&rft.externalDocID=20911655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |