Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms

While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 74; no. 23; pp. 7329 - 7337
Main Authors Marsili, Enrico, Rollefson, Janet B, Baron, Daniel B, Hozalski, Raymond M, Bond, Daniel R
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.12.2008
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities.
AbstractList While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities.
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AEM .asm.org, visit: AEM       
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 km) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities.
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities.
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 microm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities.While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 microm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities.
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 microm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities.
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 ...m) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. (ProQuest: ... denotes formulae/symbols omitted.)
Author Rollefson, Janet B
Baron, Daniel B
Hozalski, Raymond M
Bond, Daniel R
Marsili, Enrico
AuthorAffiliation BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, 1 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, 2 Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota 55455, 3 Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455 4
AuthorAffiliation_xml – name: BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, 1 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, 2 Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota 55455, 3 Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455 4
Author_xml – sequence: 1
  fullname: Marsili, Enrico
– sequence: 2
  fullname: Rollefson, Janet B
– sequence: 3
  fullname: Baron, Daniel B
– sequence: 4
  fullname: Hozalski, Raymond M
– sequence: 5
  fullname: Bond, Daniel R
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20911655$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18849456$$D View this record in MEDLINE/PubMed
BookMark eNqFkstv1DAQxiNURLeFG2eIkOBEytiJE5sD0rIsD6kVBwpXa-K1N66SuLW9oOWvx9t9CCqkXuzD_Oab13eSHY1u1Fn2lMAZIZS_mc4vzgBI0xTAH2QTAoIXrCzro2wCIERBaQXH2UkIVwBQQc0fZceE80pUrJ5k7sIq71qLff7eOmP7If_h-ojDoKNfv80_WK9VzOd9er1TnR6sSuysQ48qam9_Y7RuzJ3JZxixX0er9vRCF9MYMSUt9uLhcfbQYB_0k91_ml1-nF_OPhfnXz99mU3PC1UTHouWaTSsZLylujaC1lDqitDGUM5FjS1yQQ1A2yphKoKkXbQgKuApQls05Wn2bit7vWoHvVB6jB57ee3tgH4tHVr5b2S0nVy6n5IyQQVAEni1E_DuZqVDlIMNSvc9jtqtgqwFB5pK3gtWnFBRAr0XpIRBQ5hI4Is74JVb-TFtS1JgghMiNmrP_h7wMNn-sgl4uQMwpIsZj6Oy4cCl3gmpGUsc3XLJBiF4baSy8famaS-2lwTkxmYy2Uze2kwCT0mv7yQd6v8f303U2WX3KzlKYhgk6kE2laSlbEq6Gfv5FjLoJC59avb7NwqkBMJqyjgt_wCRSOiF
CODEN AEMIDF
CitedBy_id crossref_primary_10_3390_app12010275
crossref_primary_10_1002_bit_26246
crossref_primary_10_1038_s41564_022_01159_z
crossref_primary_10_1039_c2ee22330a
crossref_primary_10_1016_j_jpowsour_2016_11_115
crossref_primary_10_1016_j_electacta_2024_145020
crossref_primary_10_1016_j_watres_2024_122104
crossref_primary_10_1021_jp507898x
crossref_primary_10_1016_j_scitotenv_2023_169766
crossref_primary_10_1039_C4RA13345E
crossref_primary_10_1039_C8RA03846E
crossref_primary_10_1016_j_copbio_2011_01_009
crossref_primary_10_1016_j_bioelechem_2022_108101
crossref_primary_10_1038_s41598_019_39267_2
crossref_primary_10_1016_j_scitotenv_2020_140138
crossref_primary_10_1002_adfm_201101946
crossref_primary_10_1016_j_electacta_2014_12_152
crossref_primary_10_1016_j_jece_2016_04_025
crossref_primary_10_1155_2012_298739
crossref_primary_10_1016_j_jclepro_2020_124084
crossref_primary_10_1039_C5RA15676A
crossref_primary_10_1016_j_aca_2018_10_059
crossref_primary_10_1016_j_jelechem_2017_06_003
crossref_primary_10_1039_D0TA08574J
crossref_primary_10_1016_j_isci_2021_102068
crossref_primary_10_1016_j_biotechadv_2013_05_001
crossref_primary_10_1016_j_ijhydene_2020_06_086
crossref_primary_10_1016_j_rineng_2023_101385
crossref_primary_10_1016_j_cej_2022_135748
crossref_primary_10_1016_j_bios_2018_08_045
crossref_primary_10_1016_j_bioelechem_2016_02_010
crossref_primary_10_1021_es900204j
crossref_primary_10_1016_j_fmre_2021_07_009
crossref_primary_10_1088_1361_6528_ab6ab5
crossref_primary_10_1128_mBio_00420_12
crossref_primary_10_1039_D3RA02174B
crossref_primary_10_1002_anie_201701964
crossref_primary_10_1016_j_electacta_2019_03_085
crossref_primary_10_1128_mBio_00626_17
crossref_primary_10_1002_elan_200800007
crossref_primary_10_1080_02648725_2023_2197715
crossref_primary_10_1021_sc400330r
crossref_primary_10_1039_c3ee42329h
crossref_primary_10_1002_er_4351
crossref_primary_10_1016_j_electacta_2011_05_111
crossref_primary_10_1016_j_jelechem_2018_08_003
crossref_primary_10_1039_C4CP03197K
crossref_primary_10_1128_JB_00340_17
crossref_primary_10_1007_s44246_024_00119_y
crossref_primary_10_1016_j_electacta_2016_07_122
crossref_primary_10_1074_jbc_M109_043455
crossref_primary_10_1002_bit_26928
crossref_primary_10_1016_j_cej_2021_134369
crossref_primary_10_1021_la2047036
crossref_primary_10_1039_C6RA24835G
crossref_primary_10_1016_j_biortech_2013_09_069
crossref_primary_10_1016_j_jelechem_2018_09_041
crossref_primary_10_1021_es400321c
crossref_primary_10_1016_j_biortech_2012_12_091
crossref_primary_10_1016_j_egyr_2019_08_007
crossref_primary_10_1149_2_001401jes
crossref_primary_10_1016_j_bbabio_2015_06_005
crossref_primary_10_1371_journal_pone_0169955
crossref_primary_10_1002_elan_201400578
crossref_primary_10_1002_celc_201402036
crossref_primary_10_4491_eer_2023_657
crossref_primary_10_1016_j_ijhydene_2012_11_147
crossref_primary_10_1021_acssuschemeng_2c04399
crossref_primary_10_1021_acsnano_6b02629
crossref_primary_10_1002_adma_201908178
crossref_primary_10_3390_en13030574
crossref_primary_10_1016_j_biortech_2013_01_036
crossref_primary_10_3390_en12101968
crossref_primary_10_1149_2_0611412jes
crossref_primary_10_1016_j_bioelechem_2015_03_003
crossref_primary_10_1039_C9SE00026G
crossref_primary_10_3182_20100707_3_BE_2012_0050
crossref_primary_10_3389_fenrg_2019_00002
crossref_primary_10_1016_j_ijhydene_2011_05_148
crossref_primary_10_1016_j_bios_2013_06_051
crossref_primary_10_1128_mBio_02034_14
crossref_primary_10_1016_j_psep_2022_03_039
crossref_primary_10_1371_journal_pone_0063129
crossref_primary_10_5004_dwt_2019_23711
crossref_primary_10_1016_j_envres_2020_110498
crossref_primary_10_1093_molbev_msad161
crossref_primary_10_1111_mmi_14801
crossref_primary_10_1016_j_chempr_2017_01_001
crossref_primary_10_1016_j_biortech_2018_04_089
crossref_primary_10_1007_s42452_020_2081_0
crossref_primary_10_1016_j_bioelechem_2018_01_005
crossref_primary_10_1002_bit_24779
crossref_primary_10_1016_j_bios_2013_05_015
crossref_primary_10_1002_cssc_201300605
crossref_primary_10_3389_fmicb_2015_00575
crossref_primary_10_1016_j_bioelechem_2015_03_011
crossref_primary_10_1371_journal_pone_0104336
crossref_primary_10_1016_j_biortech_2018_03_049
crossref_primary_10_1038_srep11094
crossref_primary_10_1016_j_bioelechem_2015_03_010
crossref_primary_10_1007_s11665_024_10084_7
crossref_primary_10_1080_07388551_2019_1662367
crossref_primary_10_3390_en11071822
crossref_primary_10_1002_cphc_201100246
crossref_primary_10_1016_j_bbabio_2018_07_007
crossref_primary_10_1016_j_electacta_2016_07_100
crossref_primary_10_1021_acsabm_1c00362
crossref_primary_10_1021_acsami_1c20445
crossref_primary_10_1016_j_biortech_2024_131491
crossref_primary_10_1016_j_microc_2024_111026
crossref_primary_10_1021_acsami_6b09907
crossref_primary_10_7554_eLife_81551
crossref_primary_10_1016_j_bioelechem_2016_02_003
crossref_primary_10_1042_BCJ20210365
crossref_primary_10_1128_AEM_01460_12
crossref_primary_10_1016_j_electacta_2021_139305
crossref_primary_10_1146_annurev_micro_092611_150104
crossref_primary_10_1021_es201737g
crossref_primary_10_1007_s12274_019_2438_0
crossref_primary_10_1016_j_biteb_2022_100974
crossref_primary_10_1149_1945_7111_aba931
crossref_primary_10_1016_j_jpowsour_2017_03_033
crossref_primary_10_1039_c0ee00242a
crossref_primary_10_1371_journal_pone_0091732
crossref_primary_10_1042_BCJ20160932
crossref_primary_10_1016_j_bioelechem_2019_107395
crossref_primary_10_1039_c1ee02229f
crossref_primary_10_1039_c3cp54045f
crossref_primary_10_2139_ssrn_4096053
crossref_primary_10_1002_celc_201600853
crossref_primary_10_3389_fenrg_2019_00103
crossref_primary_10_1038_s41586_018_0498_z
crossref_primary_10_1002_cssc_201100714
crossref_primary_10_20964_2020_08_71
crossref_primary_10_1016_j_bioelechem_2015_08_003
crossref_primary_10_1016_j_copbio_2025_103291
crossref_primary_10_1016_j_jece_2022_107505
crossref_primary_10_1039_C5RA04120A
crossref_primary_10_1002_jctb_7397
crossref_primary_10_1016_j_jelechem_2022_116649
crossref_primary_10_1002_adfm_200902428
crossref_primary_10_1016_j_electacta_2015_12_069
crossref_primary_10_1016_j_scitotenv_2022_153123
crossref_primary_10_1016_j_scitotenv_2023_168347
crossref_primary_10_1128_AEM_02425_09
crossref_primary_10_1016_j_jpowsour_2017_03_147
crossref_primary_10_1016_j_bioelechem_2021_108011
crossref_primary_10_1016_j_bios_2010_07_037
crossref_primary_10_1039_D3CS00756A
crossref_primary_10_1007_s00253_010_2903_x
crossref_primary_10_1016_j_biortech_2012_09_008
crossref_primary_10_1016_j_scitotenv_2023_163698
crossref_primary_10_1128_mBio_02448_18
crossref_primary_10_1007_s00449_014_1239_9
crossref_primary_10_1039_c2cp42571h
crossref_primary_10_1016_j_electacta_2021_138757
crossref_primary_10_3389_fenrg_2014_00034
crossref_primary_10_1007_s00449_018_1989_x
crossref_primary_10_1016_j_bioelechem_2024_108707
crossref_primary_10_1002_bit_25253
crossref_primary_10_1039_c1ee01477c
crossref_primary_10_1128_JB_01092_10
crossref_primary_10_1042_EBC20200178
crossref_primary_10_1128_aem_00795_24
crossref_primary_10_1016_j_eaef_2019_01_004
crossref_primary_10_3390_toxics12030173
crossref_primary_10_1016_j_jpowsour_2017_03_133
crossref_primary_10_1016_j_biortech_2017_03_127
crossref_primary_10_1016_j_abb_2022_109220
crossref_primary_10_1039_C1EE01469B
crossref_primary_10_1016_j_bioelechem_2011_12_002
crossref_primary_10_1002_cssc_201100737
crossref_primary_10_1111_j_1574_6976_2009_00191_x
crossref_primary_10_1016_j_bioelechem_2021_107989
crossref_primary_10_1002_cssc_201100734
crossref_primary_10_1016_S1452_3981_23_16929_X
crossref_primary_10_1002_cssc_201100733
crossref_primary_10_1016_j_bios_2018_02_030
crossref_primary_10_1021_acsbiomaterials_4c01183
crossref_primary_10_1021_es404690q
crossref_primary_10_1039_C6LC00077K
crossref_primary_10_1515_corrrev_2019_0108
crossref_primary_10_1016_j_electacta_2010_12_025
crossref_primary_10_1039_C5RA24718G
crossref_primary_10_1371_journal_pone_0016649
crossref_primary_10_1007_s12666_016_0899_3
crossref_primary_10_1016_j_bioelechem_2022_108210
crossref_primary_10_1016_j_cartre_2021_100116
crossref_primary_10_1016_j_chemosphere_2016_12_061
crossref_primary_10_1016_j_jwpe_2021_102459
crossref_primary_10_1371_journal_ppat_1005846
crossref_primary_10_1039_D0DT01272F
crossref_primary_10_1002_cben_201900023
crossref_primary_10_1016_j_chemosphere_2016_06_072
crossref_primary_10_1021_es4030113
crossref_primary_10_1016_j_biortech_2011_11_095
crossref_primary_10_1002_cssc_201100748
crossref_primary_10_1038_s41598_025_86702_8
crossref_primary_10_1021_es200834b
crossref_primary_10_1016_j_synthmet_2019_03_027
crossref_primary_10_1021_acssensors_6b00571
crossref_primary_10_1111_gbi_12420
crossref_primary_10_1016_j_cej_2023_141742
crossref_primary_10_1016_j_electacta_2011_07_001
crossref_primary_10_1002_cctc_202401102
crossref_primary_10_1016_j_cej_2013_06_044
crossref_primary_10_1039_C9RA02343G
crossref_primary_10_1128_AEM_01605_09
crossref_primary_10_1016_j_jpowsour_2008_12_144
crossref_primary_10_1021_acssynbio_2c00024
crossref_primary_10_1016_j_cej_2017_09_132
crossref_primary_10_1016_j_electacta_2021_137992
crossref_primary_10_1016_j_elecom_2012_06_013
crossref_primary_10_1039_C5EE01498K
crossref_primary_10_1111_febs_13269
crossref_primary_10_4155_bfs_10_25
crossref_primary_10_1016_j_jpowsour_2014_03_071
crossref_primary_10_1002_adbi_201800303
crossref_primary_10_1016_j_isci_2025_111869
crossref_primary_10_1002_ange_202305189
crossref_primary_10_1016_j_jece_2021_106338
crossref_primary_10_1093_jambio_lxac044
crossref_primary_10_1021_acssensors_8b00401
crossref_primary_10_1039_C8RA00951A
crossref_primary_10_1039_b823237g
crossref_primary_10_1039_C8RA05715J
crossref_primary_10_1007_s11663_021_02267_7
crossref_primary_10_1016_j_biortech_2019_01_097
crossref_primary_10_1016_j_envres_2021_111572
crossref_primary_10_1016_j_jece_2017_07_014
crossref_primary_10_1111_j_1758_2229_2010_00210_x
crossref_primary_10_1039_C9CS00496C
crossref_primary_10_1590_0104_6632_20170341s20150377
crossref_primary_10_3390_nano6090174
crossref_primary_10_1016_j_elecom_2013_04_013
crossref_primary_10_1016_j_bioelechem_2019_02_006
crossref_primary_10_1016_j_mib_2010_02_002
crossref_primary_10_1002_mds3_10013
crossref_primary_10_1021_es2020007
crossref_primary_10_1002_gch2_201800084
crossref_primary_10_1016_j_biotechadv_2022_108011
crossref_primary_10_1042_BCJ20180457
crossref_primary_10_1073_pnas_1912498116
crossref_primary_10_1021_am506360x
crossref_primary_10_1016_j_bioelechem_2020_107632
crossref_primary_10_1002_cssc_201402589
crossref_primary_10_1016_j_ijhydene_2020_06_134
crossref_primary_10_1016_j_ibiod_2014_05_007
crossref_primary_10_1039_c0ee00447b
crossref_primary_10_1016_j_bbabio_2018_05_007
crossref_primary_10_1016_j_ibiod_2019_104746
crossref_primary_10_2139_ssrn_4120225
crossref_primary_10_1039_c003342a
crossref_primary_10_1038_s41396_018_0212_z
crossref_primary_10_1016_j_jelechem_2016_03_044
crossref_primary_10_1016_j_tim_2011_05_001
crossref_primary_10_1016_j_electacta_2017_09_085
crossref_primary_10_1128_JB_00057_09
crossref_primary_10_1039_D4RA03906H
crossref_primary_10_1002_slct_201901982
crossref_primary_10_1002_cssc_201100777
crossref_primary_10_1016_j_est_2021_102610
crossref_primary_10_1002_celc_202100914
crossref_primary_10_1128_aem_00044_24
crossref_primary_10_1128_AEM_01760_09
crossref_primary_10_1016_j_electacta_2022_141071
crossref_primary_10_1109_JSEN_2015_2504495
crossref_primary_10_1016_j_chemosphere_2020_128539
crossref_primary_10_1002_elan_201800895
crossref_primary_10_1039_c2ee03374g
crossref_primary_10_1002_bit_25105
crossref_primary_10_1089_ast_2021_0104
crossref_primary_10_1016_j_electacta_2019_134838
crossref_primary_10_1007_s10967_019_06753_w
crossref_primary_10_1039_c1ee02511b
crossref_primary_10_1007_s12566_012_0033_x
crossref_primary_10_1128_IAI_00182_17
crossref_primary_10_1007_s42243_024_01213_6
crossref_primary_10_1021_acs_est_3c04771
crossref_primary_10_2116_analsci_33_883
crossref_primary_10_1016_j_biortech_2020_124291
crossref_primary_10_1016_j_jpowsour_2017_02_086
crossref_primary_10_1021_acs_est_5b00175
crossref_primary_10_1016_j_watres_2017_08_059
crossref_primary_10_1002_ange_201701964
crossref_primary_10_1002_cite_201800214
crossref_primary_10_1016_j_fuel_2024_132059
crossref_primary_10_1016_j_procbio_2021_01_003
crossref_primary_10_1128_mBio_00144_13
crossref_primary_10_1016_j_jclepro_2020_121446
crossref_primary_10_1039_C6EE01699E
crossref_primary_10_1016_j_ab_2012_10_016
crossref_primary_10_1016_j_ijhydene_2014_03_203
crossref_primary_10_1021_acssuschemeng_9b05420
crossref_primary_10_1016_j_electacta_2024_143967
crossref_primary_10_1016_j_biortech_2021_125893
crossref_primary_10_2139_ssrn_4060136
crossref_primary_10_1021_es101013e
crossref_primary_10_1016_j_biortech_2011_01_059
crossref_primary_10_5796_electrochemistry_83_600
crossref_primary_10_1016_j_electacta_2011_02_073
crossref_primary_10_1007_s11581_023_04956_6
crossref_primary_10_3389_fmicb_2022_973501
crossref_primary_10_1016_j_electacta_2018_02_113
crossref_primary_10_1007_s00253_010_3013_5
crossref_primary_10_1016_j_ese_2023_100375
crossref_primary_10_1016_j_elecom_2013_05_013
crossref_primary_10_1021_acs_biochem_8b00324
crossref_primary_10_5012_bkcs_2012_33_10_3349
crossref_primary_10_1039_C5GC00310E
crossref_primary_10_3389_fmicb_2015_00111
crossref_primary_10_1016_j_bioelechem_2018_03_015
crossref_primary_10_1038_srep38690
crossref_primary_10_1080_15567036_2016_1271839
crossref_primary_10_1016_j_electacta_2024_144800
crossref_primary_10_1002_bit_23348
crossref_primary_10_1039_c2ee21594b
crossref_primary_10_1002_celc_202000117
crossref_primary_10_1016_j_scitotenv_2019_07_104
crossref_primary_10_1109_JSTQE_2015_2477054
crossref_primary_10_1021_es504882f
crossref_primary_10_1039_c2ee22429a
crossref_primary_10_1002_jctb_6347
crossref_primary_10_1016_j_biosx_2023_100370
crossref_primary_10_1007_s11356_024_33612_3
crossref_primary_10_1016_j_jelechem_2020_114119
crossref_primary_10_1128_AEM_01967_15
crossref_primary_10_1039_c2ee02672d
crossref_primary_10_1039_C5RA16459A
crossref_primary_10_1039_C6CP04509J
crossref_primary_10_1002_anie_202305189
crossref_primary_10_1016_j_biortech_2016_04_136
crossref_primary_10_1016_j_cej_2020_127652
crossref_primary_10_1128_mBio_00190_10
crossref_primary_10_1021_acs_langmuir_5b02953
crossref_primary_10_1016_j_biortech_2015_07_025
crossref_primary_10_1016_S1452_3981_23_14264_7
crossref_primary_10_3390_microorganisms12081645
crossref_primary_10_1016_j_wasman_2015_06_001
crossref_primary_10_1021_es902165y
crossref_primary_10_1039_C4CP01023J
crossref_primary_10_1016_j_bioelechem_2023_108480
crossref_primary_10_1039_c2ee03056j
crossref_primary_10_1002_asia_201100740
crossref_primary_10_1016_j_watres_2020_116284
crossref_primary_10_1128_AEM_00201_21
crossref_primary_10_1016_j_bioelechem_2012_05_002
crossref_primary_10_1016_j_matdes_2019_108256
crossref_primary_10_1111_j_1751_7915_2011_00302_x
crossref_primary_10_1016_j_chemosphere_2021_131489
crossref_primary_10_1016_j_scitotenv_2022_155926
crossref_primary_10_1038_ismej_2016_146
crossref_primary_10_1134_S0003683817090034
crossref_primary_10_1051_matecconf_20166204002
crossref_primary_10_1016_j_electacta_2017_03_186
crossref_primary_10_1016_j_jelechem_2017_09_004
crossref_primary_10_7554_eLife_43959
crossref_primary_10_1016_j_bioelechem_2019_107401
crossref_primary_10_1016_j_colsurfb_2010_10_015
crossref_primary_10_1016_j_electacta_2015_10_051
crossref_primary_10_1021_la9047853
crossref_primary_10_3389_fmicb_2016_00913
crossref_primary_10_3390_en13143521
crossref_primary_10_1111_1751_7915_13309
crossref_primary_10_1016_j_coelec_2017_09_003
crossref_primary_10_1016_j_biotechadv_2023_108175
crossref_primary_10_1016_j_mseb_2020_114613
crossref_primary_10_4491_eer_2024_135
crossref_primary_10_1080_08927014_2012_710324
crossref_primary_10_1016_j_bios_2011_06_045
crossref_primary_10_1016_j_ijhydene_2016_04_163
Cites_doi 10.1111/j.1574-6968.2007.00915.x
10.1016/j.cbpa.2005.02.011
10.1021/es0502876
10.1016/S0022-0728(99)00174-6
10.1128/JB.187.13.4505-4513.2005
10.1016/j.jelechem.2005.02.009
10.1039/cs9972600169
10.1038/nature03661
10.1016/j.jpowsour.2007.06.220
10.1016/j.copbio.2007.03.007
10.1128/AEM.70.10.6023-6030.2004
10.1074/jbc.M200495200
10.1023/A:1013786328075
10.1016/S0022-0728(00)00280-1
10.1021/es034923g
10.1007/s00775-007-0278-y
10.1016/j.bbapap.2006.04.017
10.1002/bit.21671
10.1021/jp981023r
10.1016/S0032-9592(03)00203-6
10.1073/pnas.0710525105
10.1021/jp0718698
10.1021/es048563o
10.1021/la700406q
10.1039/b001665i
10.1016/j.procbio.2004.06.068
10.1128/AEM.70.2.921-928.2004
10.1021/bi035869j
10.1016/S0022-0728(03)00080-9
10.1002/bit.260431118
10.1128/AEM.66.4.1292-1297.2000
10.1128/AEM.01387-07
10.1016/S0006-3495(00)76658-6
10.1039/b000946f
10.1038/nbt867
10.1016/S0956-5663(02)00110-0
10.1128/AEM.01444-06
10.1039/AN9931800973
10.1021/ja993174t
10.1111/j.1462-2920.2006.01065.x
10.1128/JB.187.17.5918-5926.2005
10.1128/AEM.71.4.2186-2189.2005
10.1016/j.corsci.2004.11.013
10.1016/j.electacta.2005.02.139
10.1128/AEM.70.9.5373-5382.2004
10.1021/es048386r
10.1016/S0925-4005(03)00628-2
10.1016/j.bbrc.2004.10.188
10.1016/j.bios.2006.10.028
10.1016/j.jinorgbio.2007.07.020
10.1128/AEM.70.9.5183-5189.2004
10.1128/AEM.71.12.8634-8641.2005
10.1016/j.corsci.2007.03.034
10.1128/AEM.69.3.1548-1555.2003
10.1002/1521-4109(200207)14:13<913::AID-ELAN913>3.0.CO;2-N
10.1080/08927010601053541
10.1016/S0141-0229(01)00478-1
10.1021/es060394f
10.1093/jexbot/51.353.2095
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright American Society for Microbiology Dec 2008
Copyright © 2008, American Society for Microbiology
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright American Society for Microbiology Dec 2008
– notice: Copyright © 2008, American Society for Microbiology
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7S9
L.6
7X8
5PM
DOI 10.1128/AEM.00177-08
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

Engineering Research Database

MEDLINE - Academic
AGRICOLA
CrossRef
MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1098-5336
1098-6596
EndPage 7337
ExternalDocumentID PMC2592900
1607280941
18849456
20911655
10_1128_AEM_00177_08
aem_74_23_7329
US201301562582
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
85S
AAZTW
ABOGM
ABPPZ
ABPTK
ABTAH
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AFFNX
AFMIJ
AFRAH
AGCDD
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F20
F5P
FBQ
GX1
HYE
HZ~
H~9
K-O
KQ8
L7B
MVM
NEJ
O9-
OHT
OK1
P2P
PQQKQ
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UCJ
UHB
VH1
W8F
WH7
WHG
WOQ
X6Y
X7M
XFK
XJT
YV5
ZA5
ZCG
ZGI
ZXP
ZY4
~02
~KM
AAGFI
AAYXX
ADUKH
ADXHL
AGVNZ
CITATION
H13
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
FRP
HH5
LSO
W2D
~A~
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c618t-b5eaf5358b2e6f92603e4127f28896aba892f00bbc9f41a1bdb09408aba2baf3
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 14:09:37 EDT 2025
Fri Jul 11 03:21:16 EDT 2025
Fri Jul 11 02:26:38 EDT 2025
Fri Jul 11 07:16:32 EDT 2025
Mon Jun 30 10:41:14 EDT 2025
Mon Jul 21 06:06:10 EDT 2025
Mon Jul 21 09:15:57 EDT 2025
Thu Apr 24 22:59:08 EDT 2025
Tue Jul 01 00:46:56 EDT 2025
Wed May 18 15:27:55 EDT 2016
Wed Dec 27 19:06:14 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Characterization
Electrodes
Biofilm
Electrochemistry
Voltammetry
Microorganism
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c618t-b5eaf5358b2e6f92603e4127f28896aba892f00bbc9f41a1bdb09408aba2baf3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Corresponding author. Mailing address: BioTechnology Institute, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Ave., St. Paul, MN 55108. Phone: (612) 624-8619. Fax: (612) 625-1700. E-mail: dbond@umn.edu
OpenAccessLink http://doi.org/10.1128/AEM.00177-08
PMID 18849456
PQID 205981192
PQPubID 42251
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2592900
pubmed_primary_18849456
pascalfrancis_primary_20911655
crossref_primary_10_1128_AEM_00177_08
proquest_journals_205981192
crossref_citationtrail_10_1128_AEM_00177_08
highwire_asm_aem_74_23_7329
proquest_miscellaneous_48129302
proquest_miscellaneous_21507159
fao_agris_US201301562582
proquest_miscellaneous_69802094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-01
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2008
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References e_1_3_2_26_2
e_1_3_2_49_2
(e_1_3_2_4_2) 2002; 5
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
(e_1_3_2_69_2) 2007; 17
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
(e_1_3_2_28_2) 2003; 47
(e_1_3_2_19_2) 2006; 16
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
(e_1_3_2_14_2) 1996; 3
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
(e_1_3_2_16_2) 2008
17178571 - Biofouling. 2006;22(5-6):383-90
11197490 - Faraday Discuss. 2000;(116):47-65; discussion 67-75
16958761 - Environ Microbiol. 2006 Oct;8(10):1805-15
11141183 - J Exp Bot. 2000 Dec;51(353):2095-107
12620842 - Appl Environ Microbiol. 2003 Mar;69(3):1548-55
17447803 - Langmuir. 2007 May 22;23(11):6459-66
17129722 - Biosens Bioelectron. 2007 May 15;22(11):2604-10
18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23
17701062 - J Biol Inorg Chem. 2007 Sep;12(7):1083-94
15968061 - J Bacteriol. 2005 Jul;187(13):4505-13
16999091 - Environ Sci Technol. 2006 Sep 1;40(17):5212-7
17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64
15926596 - Environ Sci Technol. 2005 May 1;39(9):3401-8
15555587 - Biochem Biophys Res Commun. 2004 Dec 24;325(4):1433-7
11197477 - Faraday Discuss. 2000;(116):155-69; discussion 171-90
16082955 - Environ Sci Technol. 2005 Jul 15;39(14):5262-7
12604249 - Biosens Bioelectron. 2003 Apr;18(4):327-34
18051361 - J Microbiol Biotechnol. 2007 Jan;17(1):110-5
14766572 - Appl Environ Microbiol. 2004 Feb;70(2):921-8
17399977 - Curr Opin Biotechnol. 2007 Jun;18(3):228-34
10653813 - Biophys J. 2000 Feb;78(2):1001-9
14730985 - Biochemistry. 2004 Jan 27;43(3):799-807
15812057 - Appl Environ Microbiol. 2005 Apr;71(4):2186-9
12701906 - Water Sci Technol. 2003;47(5):51-6
15973408 - Nature. 2005 Jun 23;435(7045):1098-101
16797259 - Biochim Biophys Acta. 2006 Jul;1764(7):1198-206
15345398 - Appl Environ Microbiol. 2004 Sep;70(9):5183-9
11970951 - J Biol Chem. 2002 Jun 28;277(26):23374-81
15112835 - Environ Sci Technol. 2004 Apr 1;38(7):2281-5
16332857 - Appl Environ Microbiol. 2005 Dec;71(12):8634-41
18615526 - Biotechnol Bioeng. 1994 May;43(11):1131-8
17986080 - FEMS Microbiol Lett. 2007 Dec;277(1):21-7
17765315 - J Inorg Biochem. 2007 Nov;101(11-12):1760-7
15345423 - Appl Environ Microbiol. 2004 Sep;70(9):5373-82
16047807 - Environ Sci Technol. 2005 Jun 15;39(12):4666-71
16109933 - J Bacteriol. 2005 Sep;187(17):5918-26
16936064 - Appl Environ Microbiol. 2006 Nov;72(11):7345-8
17929324 - Biotechnol Bioeng. 2008 Apr 1;99(5):1065-73
8214607 - Analyst. 1993 Aug;118(8):973-8
12960964 - Nat Biotechnol. 2003 Oct;21(10):1229-32
15466546 - Appl Environ Microbiol. 2004 Oct;70(10):6023-30
10742202 - Appl Environ Microbiol. 2000 Apr;66(4):1292-7
15811794 - Curr Opin Chem Biol. 2005 Apr;9(2):110-7
18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73
References_xml – ident: e_1_3_2_55_2
  doi: 10.1111/j.1574-6968.2007.00915.x
– ident: e_1_3_2_6_2
  doi: 10.1016/j.cbpa.2005.02.011
– ident: e_1_3_2_32_2
  doi: 10.1021/es0502876
– ident: e_1_3_2_41_2
  doi: 10.1016/S0022-0728(99)00174-6
– ident: e_1_3_2_39_2
  doi: 10.1128/JB.187.13.4505-4513.2005
– ident: e_1_3_2_47_2
  doi: 10.1016/j.jelechem.2005.02.009
– ident: e_1_3_2_8_2
  doi: 10.1039/cs9972600169
– ident: e_1_3_2_58_2
  doi: 10.1038/nature03661
– volume: 5
  start-page: 661
  year: 2002
  ident: e_1_3_2_4_2
  publication-title: J. Chem. Soc. Dalton Trans.
– ident: e_1_3_2_26_2
  doi: 10.1016/j.jpowsour.2007.06.220
– ident: e_1_3_2_50_2
  doi: 10.1016/j.copbio.2007.03.007
– volume: 3
  start-page: 287
  year: 1996
  ident: e_1_3_2_14_2
  publication-title: Experimental techniques in bioelectrochemistry
– ident: e_1_3_2_36_2
  doi: 10.1128/AEM.70.10.6023-6030.2004
– ident: e_1_3_2_3_2
  doi: 10.1074/jbc.M200495200
– ident: e_1_3_2_5_2
  doi: 10.1023/A:1013786328075
– ident: e_1_3_2_62_2
  doi: 10.1016/S0022-0728(00)00280-1
– ident: e_1_3_2_44_2
  doi: 10.1021/es034923g
– ident: e_1_3_2_11_2
– volume: 16
  start-page: 163
  year: 2006
  ident: e_1_3_2_19_2
  publication-title: J. Microbiol. Biotechnol.
– ident: e_1_3_2_31_2
  doi: 10.1007/s00775-007-0278-y
– ident: e_1_3_2_24_2
  doi: 10.1016/j.bbapap.2006.04.017
– ident: e_1_3_2_63_2
  doi: 10.1002/bit.21671
– ident: e_1_3_2_34_2
  doi: 10.1021/jp981023r
– ident: e_1_3_2_38_2
  doi: 10.1016/S0032-9592(03)00203-6
– ident: e_1_3_2_48_2
  doi: 10.1073/pnas.0710525105
– ident: e_1_3_2_68_2
  doi: 10.1021/jp0718698
– ident: e_1_3_2_56_2
  doi: 10.1021/es048563o
– volume: 17
  start-page: 110
  year: 2007
  ident: e_1_3_2_69_2
  publication-title: J. Microbiol. Biotechnol.
– ident: e_1_3_2_15_2
  doi: 10.1021/la700406q
– ident: e_1_3_2_18_2
  doi: 10.1039/b001665i
– ident: e_1_3_2_29_2
  doi: 10.1016/j.procbio.2004.06.068
– ident: e_1_3_2_35_2
  doi: 10.1128/AEM.70.2.921-928.2004
– ident: e_1_3_2_25_2
  doi: 10.1021/bi035869j
– volume: 47
  start-page: 51
  year: 2003
  ident: e_1_3_2_28_2
  publication-title: Water Sci. Technol.
– ident: e_1_3_2_45_2
  doi: 10.1016/S0022-0728(03)00080-9
– ident: e_1_3_2_23_2
  doi: 10.1002/bit.260431118
– ident: e_1_3_2_51_2
  doi: 10.1128/AEM.66.4.1292-1297.2000
– ident: e_1_3_2_65_2
  doi: 10.1128/AEM.01387-07
– ident: e_1_3_2_17_2
  doi: 10.1016/S0006-3495(00)76658-6
– ident: e_1_3_2_2_2
  doi: 10.1039/b000946f
– ident: e_1_3_2_20_2
  doi: 10.1038/nbt867
– ident: e_1_3_2_30_2
  doi: 10.1016/S0956-5663(02)00110-0
– ident: e_1_3_2_59_2
  doi: 10.1128/AEM.01444-06
– ident: e_1_3_2_7_2
  doi: 10.1039/AN9931800973
– ident: e_1_3_2_21_2
  doi: 10.1021/ja993174t
– ident: e_1_3_2_37_2
  doi: 10.1111/j.1462-2920.2006.01065.x
– ident: e_1_3_2_42_2
  doi: 10.1128/JB.187.17.5918-5926.2005
– ident: e_1_3_2_13_2
  doi: 10.1128/AEM.71.4.2186-2189.2005
– ident: e_1_3_2_43_2
  doi: 10.1016/j.corsci.2004.11.013
– ident: e_1_3_2_9_2
  doi: 10.1016/j.electacta.2005.02.139
– ident: e_1_3_2_57_2
  doi: 10.1128/AEM.70.9.5373-5382.2004
– ident: e_1_3_2_61_2
  doi: 10.1021/es048386r
– ident: e_1_3_2_27_2
  doi: 10.1016/S0925-4005(03)00628-2
– ident: e_1_3_2_66_2
  doi: 10.1016/j.bbrc.2004.10.188
– ident: e_1_3_2_67_2
– ident: e_1_3_2_54_2
  doi: 10.1016/j.bios.2006.10.028
– ident: e_1_3_2_64_2
  doi: 10.1016/j.jinorgbio.2007.07.020
– ident: e_1_3_2_22_2
  doi: 10.1128/AEM.70.9.5183-5189.2004
– ident: e_1_3_2_49_2
  doi: 10.1128/AEM.71.12.8634-8641.2005
– ident: e_1_3_2_52_2
  doi: 10.1016/j.corsci.2007.03.034
– ident: e_1_3_2_12_2
  doi: 10.1128/AEM.69.3.1548-1555.2003
– ident: e_1_3_2_46_2
  doi: 10.1002/1521-4109(200207)14:13<913::AID-ELAN913>3.0.CO;2-N
– ident: e_1_3_2_53_2
  doi: 10.1080/08927010601053541
– ident: e_1_3_2_10_2
– ident: e_1_3_2_40_2
  doi: 10.1016/S0141-0229(01)00478-1
– start-page: 91
  year: 2008
  ident: e_1_3_2_16_2
  publication-title: Bioinorganic electrochemistry.
– ident: e_1_3_2_33_2
  doi: 10.1021/es060394f
– ident: e_1_3_2_60_2
  doi: 10.1093/jexbot/51.353.2095
– reference: 17129722 - Biosens Bioelectron. 2007 May 15;22(11):2604-10
– reference: 11141183 - J Exp Bot. 2000 Dec;51(353):2095-107
– reference: 15466546 - Appl Environ Microbiol. 2004 Oct;70(10):6023-30
– reference: 11970951 - J Biol Chem. 2002 Jun 28;277(26):23374-81
– reference: 15926596 - Environ Sci Technol. 2005 May 1;39(9):3401-8
– reference: 15345423 - Appl Environ Microbiol. 2004 Sep;70(9):5373-82
– reference: 17986080 - FEMS Microbiol Lett. 2007 Dec;277(1):21-7
– reference: 16958761 - Environ Microbiol. 2006 Oct;8(10):1805-15
– reference: 16999091 - Environ Sci Technol. 2006 Sep 1;40(17):5212-7
– reference: 16082955 - Environ Sci Technol. 2005 Jul 15;39(14):5262-7
– reference: 17399977 - Curr Opin Biotechnol. 2007 Jun;18(3):228-34
– reference: 16797259 - Biochim Biophys Acta. 2006 Jul;1764(7):1198-206
– reference: 15112835 - Environ Sci Technol. 2004 Apr 1;38(7):2281-5
– reference: 15811794 - Curr Opin Chem Biol. 2005 Apr;9(2):110-7
– reference: 17178571 - Biofouling. 2006;22(5-6):383-90
– reference: 14766572 - Appl Environ Microbiol. 2004 Feb;70(2):921-8
– reference: 17447803 - Langmuir. 2007 May 22;23(11):6459-66
– reference: 15973408 - Nature. 2005 Jun 23;435(7045):1098-101
– reference: 12701906 - Water Sci Technol. 2003;47(5):51-6
– reference: 15968061 - J Bacteriol. 2005 Jul;187(13):4505-13
– reference: 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23
– reference: 17701062 - J Biol Inorg Chem. 2007 Sep;12(7):1083-94
– reference: 15812057 - Appl Environ Microbiol. 2005 Apr;71(4):2186-9
– reference: 12604249 - Biosens Bioelectron. 2003 Apr;18(4):327-34
– reference: 14730985 - Biochemistry. 2004 Jan 27;43(3):799-807
– reference: 10653813 - Biophys J. 2000 Feb;78(2):1001-9
– reference: 15345398 - Appl Environ Microbiol. 2004 Sep;70(9):5183-9
– reference: 15555587 - Biochem Biophys Res Commun. 2004 Dec 24;325(4):1433-7
– reference: 16332857 - Appl Environ Microbiol. 2005 Dec;71(12):8634-41
– reference: 12620842 - Appl Environ Microbiol. 2003 Mar;69(3):1548-55
– reference: 16047807 - Environ Sci Technol. 2005 Jun 15;39(12):4666-71
– reference: 12960964 - Nat Biotechnol. 2003 Oct;21(10):1229-32
– reference: 18051361 - J Microbiol Biotechnol. 2007 Jan;17(1):110-5
– reference: 10742202 - Appl Environ Microbiol. 2000 Apr;66(4):1292-7
– reference: 17929324 - Biotechnol Bioeng. 2008 Apr 1;99(5):1065-73
– reference: 17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64
– reference: 16109933 - J Bacteriol. 2005 Sep;187(17):5918-26
– reference: 18615526 - Biotechnol Bioeng. 1994 May;43(11):1131-8
– reference: 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73
– reference: 11197490 - Faraday Discuss. 2000;(116):47-65; discussion 67-75
– reference: 16936064 - Appl Environ Microbiol. 2006 Nov;72(11):7345-8
– reference: 17765315 - J Inorg Biochem. 2007 Nov;101(11-12):1760-7
– reference: 11197477 - Faraday Discuss. 2000;(116):155-69; discussion 171-90
– reference: 8214607 - Analyst. 1993 Aug;118(8):973-8
SSID ssj0004068
ssj0006590
Score 2.4762337
Snippet While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for...
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7329
SubjectTerms anaerobic digesters
bacteria
biofilm
Biofilms
Biofilms - growth & development
Biological and medical sciences
Bioreactors
carbon
Carbon - metabolism
Cell growth
Cells
dielectric spectroscopy
Electricity
Electrocatalysis
Electrochemistry
Electrodes
Electrodes - microbiology
Electron transfer
Enzymes
Fundamental and applied biological sciences. Psychology
Geobacter - growth & development
Geobacter - metabolism
Geobacter sulfurreducens
immobilized enzymes
Microbiology
Physiology and Biotechnology
quantitative analysis
Studies
Voltammetry
Title Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms
URI http://aem.asm.org/content/74/23/7329.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18849456
https://www.proquest.com/docview/205981192
https://www.proquest.com/docview/21507159
https://www.proquest.com/docview/48129302
https://www.proquest.com/docview/69802094
https://pubmed.ncbi.nlm.nih.gov/PMC2592900
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQQ8ICgfC4ORB3iawhLny-atmzptrF2ltkMTL5adOFBpbac1fej-O_4zznGcpN3G10vUxq6T5n4539l3v0Pog5BRrKogOWkiMyeAKcjhggKWo1Bw1w9kTFQ2cu8sOj4PvlyEFxsbPxtRS4tcfEpu7swr-R-pwjmQq8qS_QfJVoPCCfgM8oUjSBiOfyXj3rigUYKnfDBWpbcne19nl7lai86vl4WzrzXaXkcXu0kMO8BhRdN8U5mMh2ohZ6n4W8veqXTaea4In1Mz_rxpyxoDVi29N_LlVDrKuKZ3qiTaHgxPuieF7p2C8p1VWz39brdzNOyf6aDdqczrStAH7YE-rzPh64bj_rd2d3haDDfgy4nKwumtrGCQ9WgQszXVjFPtrd9oqb8pdZQR0tTfuspPiVPsN7Rx7JerKbL8qvllbs8aWGVCtDs9tS8Vx45L6tnRRASsTZpVKCMGg8uLwnATPcDgqRRe_clpnZrrRsQQoaobN7kXmOw3r7diFW1mfNbgq1bhunwO4Mh0qZW7fKH1kN6GjTR6hp6Wzo3d1kh9jjbktIUe6nKnyxZ6ZLLg5y30pEGE-QJdVUi2S6TZDSTbn22NY3sNx_Y6ju1ZZlc4tm_j2Iw-f4lGR53R4bFT1gJxksgjuSNCybPQD4nAMsooeOG-DDwcZ5gQGnHBCcWZ6wqR0CzwuCdSoZghCbRgwTP_FdqazqZyG9kplYnLSSoljED8mGYJyECmbhb4MZG-hfaMKFhS8uSrci2XrPCXMWEgOFYIjrnEQh-r3leaH-aeftsgVca_w9TNzodYBQx4avGBYAvtGFEzPp8wLicsDhj2mcKvhXZXpF9dxQAPfm7gwErdNIfGkBIPvDcLva9aYeJQu4HwIs8W0KVwBUN6f4-AKGfA_c0YESXgbtLAQq81_OpnQEhAwTmzULwCzKqDorVfbZmOfxT09jgEl8113_zpj--gx7U2eYu28uuFfAceQi52i3fwF3dWE-8
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+Biofilm+Voltammetry+%3A+Direct+Electrochemical+Characterization+of+Catalytic+Electrode-Attached+Biofilms&rft.jtitle=Applied+and+environmental+microbiology&rft.au=MARSILI%2C+Enrico&rft.au=ROLLEFSON%2C+Janet+B&rft.au=BARON%2C+Daniel+B&rft.au=HOZALSKI%2C+Raymond+M&rft.date=2008-12-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.volume=74&rft.issue=23&rft.spage=7329&rft.epage=7337&rft_id=info:doi/10.1128%2FAEM.00177-08&rft.externalDBID=n%2Fa&rft.externalDocID=20911655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon