Ultra-Rapid Real-Time RT-PCR Method for Detecting Middle East Respiratory Syndrome Coronavirus Using a Mobile PCR Device, PCR1100

Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time reverse transcription polymerase chain reaction (RT-PCR). Currently, two real-time RT-PCR assays targeting the upE and ORF1a regions of the MERS-C...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Infectious Diseases Vol. 73; no. 3; pp. 181 - 186
Main Authors Shirato, Kazuya, Nao, Naganori, Matsuyama, Shutoku, Kageyama, Tsutomu
Format Journal Article
LanguageEnglish
Published Japan National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee 29.05.2020
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time reverse transcription polymerase chain reaction (RT-PCR). Currently, two real-time RT-PCR assays targeting the upE and ORF1a regions of the MERS-CoV genome are widely used, and these are the standard assays recommended by the World Health Organization (WHO). The MERS outbreaks to date suggest that rapid diagnosis and subsequent isolation of infected patients, particularly superspreaders, are critical for containment. However, conventional real-time RT-PCR assays require large laboratory instruments, and amplification takes approximately 2 h. These disadvantages limit rapid diagnosis. Here, an ultra-rapid real-time RT-PCR test was established comprising a multiplex assay for upE and ORF1a running on a mobile PCR1100 device. As few as five copies of the MERS-CoV RNA can be detected within 20 min using the standard WHO assays in the mobile PCR device, with the sensitivity and specificity being similar to those of a conventional real-time PCR instrument such as the LightCyler, thereby enabling timely intervention to control MERS-CoV infection.
AbstractList Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time reverse transcription polymerase chain reaction (RT-PCR). Currently, two real-time RT-PCR assays targeting the upE and ORF1a regions of the MERS-CoV genome are widely used, and these are the standard assays recommended by the World Health Organization (WHO). The MERS outbreaks to date suggest that rapid diagnosis and subsequent isolation of infected patients, particularly superspreaders, are critical for containment. However, conventional real-time RT-PCR assays require large laboratory instruments, and amplification takes approximately 2 h. These disadvantages limit rapid diagnosis. Here, an ultra-rapid real-time RT-PCR test was established comprising a multiplex assay for upE and ORF1a running on a mobile PCR1100 device. As few as five copies of the MERS-CoV RNA can be detected within 20 min using the standard WHO assays in the mobile PCR device, with the sensitivity and specificity being similar to those of a conventional real-time PCR instrument such as the LightCyler, thereby enabling timely intervention to control MERS-CoV infection.
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time reverse transcription polymerase chain reaction (RT-PCR). Currently, two real-time RT-PCR assays targeting the upE and ORF1a regions of the MERS-CoV genome are widely used, and these are the standard assays recommended by the World Health Organization (WHO). The MERS outbreaks to date suggest that rapid diagnosis and subsequent isolation of infected patients, particularly superspreaders, are critical for containment. However, conventional real-time RT-PCR assays require large laboratory instruments, and amplification takes approximately 2 h. These disadvantages limit rapid diagnosis. Here, an ultra-rapid real-time RT-PCR test was established comprising a multiplex assay for upE and ORF1a running on a mobile PCR1100 device. As few as five copies of the MERS-CoV RNA can be detected within 20 min using the standard WHO assays in the mobile PCR device, with the sensitivity and specificity being similar to those of a conventional real-time PCR instrument such as the LightCyler, thereby enabling timely intervention to control MERS-CoV infection.Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time reverse transcription polymerase chain reaction (RT-PCR). Currently, two real-time RT-PCR assays targeting the upE and ORF1a regions of the MERS-CoV genome are widely used, and these are the standard assays recommended by the World Health Organization (WHO). The MERS outbreaks to date suggest that rapid diagnosis and subsequent isolation of infected patients, particularly superspreaders, are critical for containment. However, conventional real-time RT-PCR assays require large laboratory instruments, and amplification takes approximately 2 h. These disadvantages limit rapid diagnosis. Here, an ultra-rapid real-time RT-PCR test was established comprising a multiplex assay for upE and ORF1a running on a mobile PCR1100 device. As few as five copies of the MERS-CoV RNA can be detected within 20 min using the standard WHO assays in the mobile PCR device, with the sensitivity and specificity being similar to those of a conventional real-time PCR instrument such as the LightCyler, thereby enabling timely intervention to control MERS-CoV infection.
Author Matsuyama, Shutoku
Shirato, Kazuya
Nao, Naganori
Kageyama, Tsutomu
Author_xml – sequence: 1
  fullname: Shirato, Kazuya
  organization: Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases
– sequence: 2
  fullname: Nao, Naganori
  organization: Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases
– sequence: 3
  fullname: Matsuyama, Shutoku
  organization: Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases
– sequence: 4
  fullname: Kageyama, Tsutomu
  organization: Influenza Virus Research Center, National Institute of Infectious Diseases
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31875608$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv0zAYhi00xLbCL0BClrhwIOVznKTOEbUDOq0ClfZsOfaXzSWNO9ud1CP_HId2k9iBi_0dnueT_b6X5Kx3PRLylsF4IgT_dHC_sB9fX89n4xxYPS4AXpALJkSR5YJXZ2nmRZFVHIpzchnCBiAvSwavyDlnYlJWIC7I73UXvcqWamcNXaLqspXdIl2ush_TJV1gvHOGts7TGUbU0fa3dGGN6ZBeqRCTEXbWq-j8gf489Ma7JE-dd716sH4f6DoMiqIL19gkDUtn-GA1fhxmxgBek5et6gK-Od0jsv5ytZp-y26-f51PP99kumIiZgpQYwu14E2jm6quWdOiqVrFsAQBBor0NVCgFBS6MS2HtjZNzlme87IWmo_Ih-PenXf3ewxRbm3Q2HWqR7cPMuccJnVep2hH5P0zdOP2vk-vk3kBoiyrnEGi3p2ofbNFI3febpU_yMdwE1AfAe1dCB5bqW1U0bo-RW47yUAORcq_RcqhSDkUKVORyeXP3Mf1_7fmR2sTorrFJ0f5aHWHJ2fCJR-Of9wnRt8pL7HnfwCm2rvD
CitedBy_id crossref_primary_10_3389_fbioe_2022_895236
crossref_primary_10_22207_JPAM_16_4_02
crossref_primary_10_3390_pathogens10101237
crossref_primary_10_1016_j_foodcont_2023_110161
crossref_primary_10_1016_j_tele_2021_101765
crossref_primary_10_1016_j_imu_2021_100558
crossref_primary_10_1016_j_prp_2021_153565
crossref_primary_10_1111_febs_16409
crossref_primary_10_7883_yoken_JJID_2020_061
crossref_primary_10_7883_yoken_JJID_2020_182
crossref_primary_10_1016_j_diagmicrobio_2024_116214
crossref_primary_10_1016_j_jviromet_2023_114753
crossref_primary_10_1128_spectrum_00456_23
crossref_primary_10_2222_jsv_70_155
crossref_primary_10_1007_s00216_022_03904_z
crossref_primary_10_1016_j_cpha_2023_03_002
crossref_primary_10_7883_yoken_JJID_2020_776
crossref_primary_10_1021_acs_jproteome_0c00771
crossref_primary_10_1186_s41182_023_00501_3
crossref_primary_10_7883_yoken_JJID_2020_324
crossref_primary_10_1111_asj_13763
Cites_doi 10.1056/NEJMoa1306742
10.1016/S1473-3099(13)70154-3
10.3346/jkms.2017.32.5.744
10.1128/JVI.00676-08
10.3201/eid1002.030759
10.1186/1743-422X-11-139
10.1016/j.jtbi.2016.08.009
10.1371/journal.pone.0099782
10.2807/ese.17.49.20334-en
10.7883/yoken.67.469
10.2807/ese.17.39.20285-en
10.1016/j.phrp.2015.08.006
10.1186/s12879-017-2576-5
10.1016/j.virol.2017.11.012
10.1016/j.jcv.2014.07.002
10.1016/j.jviromet.2018.05.006
10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364
10.1099/vir.0.043117-0
10.1073/pnas.88.16.7276
10.1056/NEJMoa1401505
ContentType Journal Article
Copyright 2020 Authors
Copyright Japan Science and Technology Agency 2020
Copyright_xml – notice: 2020 Authors
– notice: Copyright Japan Science and Technology Agency 2020
DBID AAYXX
CITATION
NPM
7QL
7T5
7T7
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
DOI 10.7883/yoken.JJID.2019.400
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
Virology and AIDS Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1884-2836
EndPage 186
ExternalDocumentID 31875608
10_7883_yoken_JJID_2019_400
article_yoken_73_3_73_JJID_2019_400_article_char_en
Genre Journal Article
GeographicLocations Middle East
GeographicLocations_xml – name: Middle East
GroupedDBID ---
.55
29J
2WC
53G
5GY
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
JSF
JSH
KQ8
OK1
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
AAYXX
CITATION
OVT
NPM
7QL
7T5
7T7
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
ID FETCH-LOGICAL-c618t-a0ecef0983bbcb6991bfed6fa1e5080d045100a0aa04cbdf30f9db231223598c3
ISSN 1344-6304
1884-2836
IngestDate Thu Jul 10 22:01:51 EDT 2025
Mon Jun 30 12:06:06 EDT 2025
Thu Jan 02 22:58:39 EST 2025
Tue Jul 01 03:55:15 EDT 2025
Thu Apr 24 23:11:56 EDT 2025
Thu Aug 17 20:29:14 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ultra-rapid real-time RT-PCR
MERS coronavirus (MERS-CoV)
Middle East Respiratory Syndrome (MERS)
PCR1100
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c618t-a0ecef0983bbcb6991bfed6fa1e5080d045100a0aa04cbdf30f9db231223598c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/yoken/73/3/73_JJID.2019.400/_article/-char/en
PMID 31875608
PQID 2408556210
PQPubID 2048383
PageCount 6
ParticipantIDs proquest_miscellaneous_2330792988
proquest_journals_2408556210
pubmed_primary_31875608
crossref_citationtrail_10_7883_yoken_JJID_2019_400
crossref_primary_10_7883_yoken_JJID_2019_400
jstage_primary_article_yoken_73_3_73_JJID_2019_400_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020/05/29
PublicationDateYYYYMMDD 2020-05-29
PublicationDate_xml – month: 05
  year: 2020
  text: 2020/05/29
  day: 29
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Japanese Journal of Infectious Diseases
PublicationTitleAlternate Jpn J Infect Dis
PublicationYear 2020
Publisher National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
Japan Science and Technology Agency
Publisher_xml – name: National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
– name: Japan Science and Technology Agency
References 12. Shirato K, Kawase M, Watanabe O, et al. Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004-2008 depend on the S1 region sequence of the spike protein. J Gen Virol. 2012;93:1908-17.
2. Azhar EI, El-Kafrawy SA, Farraj SA, et al. Evidence for camelto-human transmission of MERS coronavirus. N Engl J Med. 2014;370:2499-505.
19. Drosten C, Seilmaier M, Corman VM, et al. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis. 2013;13:745-51.
11. Lee J, Chowell G, Jung E. A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: a retrospective analysis on control interventions and superspreading events. J Theor Biol. 2016;408:118-26.
15. Shirato K, Kawase M, Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology. 2018;517:9-15.
5. Shirato K, Yano T, Senba S, et al. Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virol J. 2014;11:139.
3. Corman V, Eckerle I, Bleicker T, et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 2012;17:20285.
14. Kaida A, Kubo H, Takakura K, et al. Associations between codetected respiratory viruses in children with acute respiratory infections. Jpn J Infect Dis. 2014;67:469-75.
1. Assiri A, McGeer A, Perl TM, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369:407-16.
16. Owusu M, Annan A, Corman VM, et al. Human coronaviruses associated with upper respiratory tract infections in three rural areas of Ghana. PLoS One. 2014;9:e99782.
20. Poissy J, Goffard A, Parmentier-Decrucq E, et al. Kinetics and pattern of viral excretion in biological specimens of two MERS CoV cases. J Clin Virol. 2014;61:275-8.
13. Shirogane Y, Takeda M, Iwasaki M, et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol. 2008;82:8942-6.
9. Lee JY, Kim YJ, Chung EH, et al. The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015. BMC Infect Dis. 2017;17:498.
18. Holland PM, Abramson RD, Watson R, et al. Detection of specific polymerase chain reaction product by utilizing the 5'--- 3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991;88:7276-80.
8. Korea Centers for Disease Control and, Prevention. Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015. Osong Public Health Res Perspect. 2015;6:269-78.
17. Emery SL, Erdman DD, Bowen MD, et al. Real-time reverse transcription-polymerase chain reaction assay for SARS associated coronavirus. Emerg Infect Dis. 2004;10:311-6.
4. Corman VM, Muller MA, Costabel U, et al. Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill. 2012;17:20334.
10. Kang CK, Song KH, Choe PG, et al. Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea. J Korean Med Sci. 2017;32:744-9.
6. Shirato K, Semba S, El-Kafrawy SA, et al. Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus. J Virol Methods. 2018;258:41-8.
21. Corman VM, Albarrak AM, Omrani AS, et al. Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection. Clin Infect Dis. 2016;62:477-83.
7. Abd El Wahed A, Patel P, Heidenreich D, et al. Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr. 2013;5.
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: 10. Kang CK, Song KH, Choe PG, et al. Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea. J Korean Med Sci. 2017;32:744-9.
– reference: 13. Shirogane Y, Takeda M, Iwasaki M, et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol. 2008;82:8942-6.
– reference: 20. Poissy J, Goffard A, Parmentier-Decrucq E, et al. Kinetics and pattern of viral excretion in biological specimens of two MERS CoV cases. J Clin Virol. 2014;61:275-8.
– reference: 3. Corman V, Eckerle I, Bleicker T, et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 2012;17:20285.
– reference: 9. Lee JY, Kim YJ, Chung EH, et al. The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015. BMC Infect Dis. 2017;17:498.
– reference: 11. Lee J, Chowell G, Jung E. A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: a retrospective analysis on control interventions and superspreading events. J Theor Biol. 2016;408:118-26.
– reference: 12. Shirato K, Kawase M, Watanabe O, et al. Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004-2008 depend on the S1 region sequence of the spike protein. J Gen Virol. 2012;93:1908-17.
– reference: 15. Shirato K, Kawase M, Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology. 2018;517:9-15.
– reference: 18. Holland PM, Abramson RD, Watson R, et al. Detection of specific polymerase chain reaction product by utilizing the 5'--- 3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991;88:7276-80.
– reference: 1. Assiri A, McGeer A, Perl TM, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369:407-16.
– reference: 5. Shirato K, Yano T, Senba S, et al. Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virol J. 2014;11:139.
– reference: 8. Korea Centers for Disease Control and, Prevention. Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015. Osong Public Health Res Perspect. 2015;6:269-78.
– reference: 19. Drosten C, Seilmaier M, Corman VM, et al. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis. 2013;13:745-51.
– reference: 7. Abd El Wahed A, Patel P, Heidenreich D, et al. Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr. 2013;5.
– reference: 16. Owusu M, Annan A, Corman VM, et al. Human coronaviruses associated with upper respiratory tract infections in three rural areas of Ghana. PLoS One. 2014;9:e99782.
– reference: 17. Emery SL, Erdman DD, Bowen MD, et al. Real-time reverse transcription-polymerase chain reaction assay for SARS associated coronavirus. Emerg Infect Dis. 2004;10:311-6.
– reference: 6. Shirato K, Semba S, El-Kafrawy SA, et al. Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus. J Virol Methods. 2018;258:41-8.
– reference: 21. Corman VM, Albarrak AM, Omrani AS, et al. Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection. Clin Infect Dis. 2016;62:477-83.
– reference: 4. Corman VM, Muller MA, Costabel U, et al. Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill. 2012;17:20334.
– reference: 14. Kaida A, Kubo H, Takakura K, et al. Associations between codetected respiratory viruses in children with acute respiratory infections. Jpn J Infect Dis. 2014;67:469-75.
– reference: 2. Azhar EI, El-Kafrawy SA, Farraj SA, et al. Evidence for camelto-human transmission of MERS coronavirus. N Engl J Med. 2014;370:2499-505.
– ident: 1
  doi: 10.1056/NEJMoa1306742
– ident: 19
  doi: 10.1016/S1473-3099(13)70154-3
– ident: 10
  doi: 10.3346/jkms.2017.32.5.744
– ident: 13
  doi: 10.1128/JVI.00676-08
– ident: 17
  doi: 10.3201/eid1002.030759
– ident: 5
  doi: 10.1186/1743-422X-11-139
– ident: 11
  doi: 10.1016/j.jtbi.2016.08.009
– ident: 16
  doi: 10.1371/journal.pone.0099782
– ident: 4
  doi: 10.2807/ese.17.49.20334-en
– ident: 14
  doi: 10.7883/yoken.67.469
– ident: 3
  doi: 10.2807/ese.17.39.20285-en
– ident: 8
  doi: 10.1016/j.phrp.2015.08.006
– ident: 9
  doi: 10.1186/s12879-017-2576-5
– ident: 15
  doi: 10.1016/j.virol.2017.11.012
– ident: 20
  doi: 10.1016/j.jcv.2014.07.002
– ident: 6
  doi: 10.1016/j.jviromet.2018.05.006
– ident: 7
  doi: 10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364
– ident: 12
  doi: 10.1099/vir.0.043117-0
– ident: 18
  doi: 10.1073/pnas.88.16.7276
– ident: 21
– ident: 2
  doi: 10.1056/NEJMoa1401505
SSID ssj0025510
Score 2.3518314
Snippet Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 181
SubjectTerms Assaying
Containment
Control equipment
Coronaviruses
Diagnosis
Genetic screening
Genomes
MERS coronavirus (MERS-CoV)
Middle East respiratory syndrome
Middle East Respiratory Syndrome (MERS)
PCR1100
Polymerase chain reaction
Real time
Respiratory diseases
Reverse transcription
Ribonucleic acid
RNA
ultra-rapid real-time RT-PCR
Title Ultra-Rapid Real-Time RT-PCR Method for Detecting Middle East Respiratory Syndrome Coronavirus Using a Mobile PCR Device, PCR1100
URI https://www.jstage.jst.go.jp/article/yoken/73/3/73_JJID.2019.400/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/31875608
https://www.proquest.com/docview/2408556210
https://www.proquest.com/docview/2330792988
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Japanese Journal of Infectious Diseases, 2020/05/29, Vol.73(3), pp.181-186
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQIgXxOcoDGQk3rKUNEnT5HGsHaNaC2pTqW-RnThbWddObTJpe-N_4w_jznbdFI0JeIny4dhR7uf78J3vCPkgWizgeebZEW8yMFDamQ0nGGCThQ68w4XcC9MfBMdjvzdpTWq1n5WopbLgjfTm1n0l_0NVuAd0xV2y_0BZ0yncgHOgLxyBwnD8KxqPZ8WS2UN2OcVNhmxm44YOaxjb3w6HVl_WhpZhhB2BrgJcFOjL9Qiry1YYjbzxso904gLgD0vQza-my3JlqXACBvOeA--wsNOOuNJl4uEK88BtKbcgeLGg5XY6ChXsBd1pX5BR4kdncnQV03FTXhsBMWCnbL5YToH1LzYr5sUKmlxIXXd0VhaL89IIC-CJ60fxCh5dlNXFDFf64d0Ny5Tfabgaeg42DgbrQG5GrfBqz_ftwFPVixtC3QtD3waNKagyeFUrRQPZq3DrpqoW87sUaYchZrO4XpyLeaPX-9LBCMCo4et_upWze_A1ORqfnCRxdxLfI_ddMFawjsbniQk0AptN5cRYf67KfYWDfLxliC396MF3MBFOxZ-tH6kFxU_IY22-0AOFxaekJubPyMO-DtB4Tn5UIEkNJKmCJFWQpABJaiBJFSQpQpJWIEnXkKQVSFIJScqogiTFThUk96kG5AsyPurGh8e2rvJhp0EzLGzmiFTkThR6nKc8AHuF5yILctYUYDw4GSZAchzmMOb4Kc9yz8mjjINZAoptKwpT7yXZmS_m4hWhYIxkKbTP3Lzl-ywDNuTmTh5kPMo8Efl14q7_bZLqFPhYiWWWgCmMBEkkQRIkSIIESYAgdbJvXrpUGWDubv5JEc001uxBN257iYeHrZdMG9xqCZytTvbWBE_0lF0lMhkhmCtNGOO9eQzSAF18ML1hJieuBzIbLJ4wrJNdBRTzHSC922DfhK_v7vwNebSZmXtkp1iW4i0o3gV_J3H9CwQx3Us
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Rapid+Real-Time+RT-PCR+Method+for+Detecting+Middle+East+Respiratory+Syndrome+Coronavirus+Using+a+Mobile+PCR+Device%2C+PCR1100&rft.jtitle=Japanese+journal+of+infectious+diseases&rft.au=Shirato%2C+Kazuya&rft.au=Naganori+Nao&rft.au=Matsuyama%2C+Shutoku&rft.au=Kageyama%2C+Tsutomu&rft.date=2020-05-29&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1344-6304&rft.eissn=1884-2836&rft.volume=73&rft.issue=3&rft.spage=181&rft_id=info:doi/10.7883%2Fyoken.JJID.2019.400&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-6304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-6304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-6304&client=summon