Ultra-Rapid Real-Time RT-PCR Method for Detecting Middle East Respiratory Syndrome Coronavirus Using a Mobile PCR Device, PCR1100
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time reverse transcription polymerase chain reaction (RT-PCR). Currently, two real-time RT-PCR assays targeting the upE and ORF1a regions of the MERS-C...
Saved in:
Published in | Japanese Journal of Infectious Diseases Vol. 73; no. 3; pp. 181 - 186 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
29.05.2020
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time reverse transcription polymerase chain reaction (RT-PCR). Currently, two real-time RT-PCR assays targeting the upE and ORF1a regions of the MERS-CoV genome are widely used, and these are the standard assays recommended by the World Health Organization (WHO). The MERS outbreaks to date suggest that rapid diagnosis and subsequent isolation of infected patients, particularly superspreaders, are critical for containment. However, conventional real-time RT-PCR assays require large laboratory instruments, and amplification takes approximately 2 h. These disadvantages limit rapid diagnosis. Here, an ultra-rapid real-time RT-PCR test was established comprising a multiplex assay for upE and ORF1a running on a mobile PCR1100 device. As few as five copies of the MERS-CoV RNA can be detected within 20 min using the standard WHO assays in the mobile PCR device, with the sensitivity and specificity being similar to those of a conventional real-time PCR instrument such as the LightCyler, thereby enabling timely intervention to control MERS-CoV infection. |
---|---|
AbstractList | Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time reverse transcription polymerase chain reaction (RT-PCR). Currently, two real-time RT-PCR assays targeting the upE and ORF1a regions of the MERS-CoV genome are widely used, and these are the standard assays recommended by the World Health Organization (WHO). The MERS outbreaks to date suggest that rapid diagnosis and subsequent isolation of infected patients, particularly superspreaders, are critical for containment. However, conventional real-time RT-PCR assays require large laboratory instruments, and amplification takes approximately 2 h. These disadvantages limit rapid diagnosis. Here, an ultra-rapid real-time RT-PCR test was established comprising a multiplex assay for upE and ORF1a running on a mobile PCR1100 device. As few as five copies of the MERS-CoV RNA can be detected within 20 min using the standard WHO assays in the mobile PCR device, with the sensitivity and specificity being similar to those of a conventional real-time PCR instrument such as the LightCyler, thereby enabling timely intervention to control MERS-CoV infection. Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time reverse transcription polymerase chain reaction (RT-PCR). Currently, two real-time RT-PCR assays targeting the upE and ORF1a regions of the MERS-CoV genome are widely used, and these are the standard assays recommended by the World Health Organization (WHO). The MERS outbreaks to date suggest that rapid diagnosis and subsequent isolation of infected patients, particularly superspreaders, are critical for containment. However, conventional real-time RT-PCR assays require large laboratory instruments, and amplification takes approximately 2 h. These disadvantages limit rapid diagnosis. Here, an ultra-rapid real-time RT-PCR test was established comprising a multiplex assay for upE and ORF1a running on a mobile PCR1100 device. As few as five copies of the MERS-CoV RNA can be detected within 20 min using the standard WHO assays in the mobile PCR device, with the sensitivity and specificity being similar to those of a conventional real-time PCR instrument such as the LightCyler, thereby enabling timely intervention to control MERS-CoV infection.Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time reverse transcription polymerase chain reaction (RT-PCR). Currently, two real-time RT-PCR assays targeting the upE and ORF1a regions of the MERS-CoV genome are widely used, and these are the standard assays recommended by the World Health Organization (WHO). The MERS outbreaks to date suggest that rapid diagnosis and subsequent isolation of infected patients, particularly superspreaders, are critical for containment. However, conventional real-time RT-PCR assays require large laboratory instruments, and amplification takes approximately 2 h. These disadvantages limit rapid diagnosis. Here, an ultra-rapid real-time RT-PCR test was established comprising a multiplex assay for upE and ORF1a running on a mobile PCR1100 device. As few as five copies of the MERS-CoV RNA can be detected within 20 min using the standard WHO assays in the mobile PCR device, with the sensitivity and specificity being similar to those of a conventional real-time PCR instrument such as the LightCyler, thereby enabling timely intervention to control MERS-CoV infection. |
Author | Matsuyama, Shutoku Shirato, Kazuya Nao, Naganori Kageyama, Tsutomu |
Author_xml | – sequence: 1 fullname: Shirato, Kazuya organization: Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases – sequence: 2 fullname: Nao, Naganori organization: Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases – sequence: 3 fullname: Matsuyama, Shutoku organization: Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases – sequence: 4 fullname: Kageyama, Tsutomu organization: Influenza Virus Research Center, National Institute of Infectious Diseases |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31875608$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv0zAYhi00xLbCL0BClrhwIOVznKTOEbUDOq0ClfZsOfaXzSWNO9ud1CP_HId2k9iBi_0dnueT_b6X5Kx3PRLylsF4IgT_dHC_sB9fX89n4xxYPS4AXpALJkSR5YJXZ2nmRZFVHIpzchnCBiAvSwavyDlnYlJWIC7I73UXvcqWamcNXaLqspXdIl2ush_TJV1gvHOGts7TGUbU0fa3dGGN6ZBeqRCTEXbWq-j8gf489Ma7JE-dd716sH4f6DoMiqIL19gkDUtn-GA1fhxmxgBek5et6gK-Od0jsv5ytZp-y26-f51PP99kumIiZgpQYwu14E2jm6quWdOiqVrFsAQBBor0NVCgFBS6MS2HtjZNzlme87IWmo_Ih-PenXf3ewxRbm3Q2HWqR7cPMuccJnVep2hH5P0zdOP2vk-vk3kBoiyrnEGi3p2ofbNFI3febpU_yMdwE1AfAe1dCB5bqW1U0bo-RW47yUAORcq_RcqhSDkUKVORyeXP3Mf1_7fmR2sTorrFJ0f5aHWHJ2fCJR-Of9wnRt8pL7HnfwCm2rvD |
CitedBy_id | crossref_primary_10_3389_fbioe_2022_895236 crossref_primary_10_22207_JPAM_16_4_02 crossref_primary_10_3390_pathogens10101237 crossref_primary_10_1016_j_foodcont_2023_110161 crossref_primary_10_1016_j_tele_2021_101765 crossref_primary_10_1016_j_imu_2021_100558 crossref_primary_10_1016_j_prp_2021_153565 crossref_primary_10_1111_febs_16409 crossref_primary_10_7883_yoken_JJID_2020_061 crossref_primary_10_7883_yoken_JJID_2020_182 crossref_primary_10_1016_j_diagmicrobio_2024_116214 crossref_primary_10_1016_j_jviromet_2023_114753 crossref_primary_10_1128_spectrum_00456_23 crossref_primary_10_2222_jsv_70_155 crossref_primary_10_1007_s00216_022_03904_z crossref_primary_10_1016_j_cpha_2023_03_002 crossref_primary_10_7883_yoken_JJID_2020_776 crossref_primary_10_1021_acs_jproteome_0c00771 crossref_primary_10_1186_s41182_023_00501_3 crossref_primary_10_7883_yoken_JJID_2020_324 crossref_primary_10_1111_asj_13763 |
Cites_doi | 10.1056/NEJMoa1306742 10.1016/S1473-3099(13)70154-3 10.3346/jkms.2017.32.5.744 10.1128/JVI.00676-08 10.3201/eid1002.030759 10.1186/1743-422X-11-139 10.1016/j.jtbi.2016.08.009 10.1371/journal.pone.0099782 10.2807/ese.17.49.20334-en 10.7883/yoken.67.469 10.2807/ese.17.39.20285-en 10.1016/j.phrp.2015.08.006 10.1186/s12879-017-2576-5 10.1016/j.virol.2017.11.012 10.1016/j.jcv.2014.07.002 10.1016/j.jviromet.2018.05.006 10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364 10.1099/vir.0.043117-0 10.1073/pnas.88.16.7276 10.1056/NEJMoa1401505 |
ContentType | Journal Article |
Copyright | 2020 Authors Copyright Japan Science and Technology Agency 2020 |
Copyright_xml | – notice: 2020 Authors – notice: Copyright Japan Science and Technology Agency 2020 |
DBID | AAYXX CITATION NPM 7QL 7T5 7T7 7TK 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
DOI | 10.7883/yoken.JJID.2019.400 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | PubMed Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1884-2836 |
EndPage | 186 |
ExternalDocumentID | 31875608 10_7883_yoken_JJID_2019_400 article_yoken_73_3_73_JJID_2019_400_article_char_en |
Genre | Journal Article |
GeographicLocations | Middle East |
GeographicLocations_xml | – name: Middle East |
GroupedDBID | --- .55 29J 2WC 53G 5GY ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL DIK DU5 E3Z EBS EJD F5P FRP GX1 JSF JSH KQ8 OK1 RJT RNS RZJ TR2 W2D X7M XSB AAYXX CITATION OVT NPM 7QL 7T5 7T7 7TK 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
ID | FETCH-LOGICAL-c618t-a0ecef0983bbcb6991bfed6fa1e5080d045100a0aa04cbdf30f9db231223598c3 |
ISSN | 1344-6304 1884-2836 |
IngestDate | Thu Jul 10 22:01:51 EDT 2025 Mon Jun 30 12:06:06 EDT 2025 Thu Jan 02 22:58:39 EST 2025 Tue Jul 01 03:55:15 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 Thu Aug 17 20:29:14 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | ultra-rapid real-time RT-PCR MERS coronavirus (MERS-CoV) Middle East Respiratory Syndrome (MERS) PCR1100 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c618t-a0ecef0983bbcb6991bfed6fa1e5080d045100a0aa04cbdf30f9db231223598c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/yoken/73/3/73_JJID.2019.400/_article/-char/en |
PMID | 31875608 |
PQID | 2408556210 |
PQPubID | 2048383 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2330792988 proquest_journals_2408556210 pubmed_primary_31875608 crossref_citationtrail_10_7883_yoken_JJID_2019_400 crossref_primary_10_7883_yoken_JJID_2019_400 jstage_primary_article_yoken_73_3_73_JJID_2019_400_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020/05/29 |
PublicationDateYYYYMMDD | 2020-05-29 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020/05/29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Japanese Journal of Infectious Diseases |
PublicationTitleAlternate | Jpn J Infect Dis |
PublicationYear | 2020 |
Publisher | National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee Japan Science and Technology Agency |
Publisher_xml | – name: National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee – name: Japan Science and Technology Agency |
References | 12. Shirato K, Kawase M, Watanabe O, et al. Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004-2008 depend on the S1 region sequence of the spike protein. J Gen Virol. 2012;93:1908-17. 2. Azhar EI, El-Kafrawy SA, Farraj SA, et al. Evidence for camelto-human transmission of MERS coronavirus. N Engl J Med. 2014;370:2499-505. 19. Drosten C, Seilmaier M, Corman VM, et al. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis. 2013;13:745-51. 11. Lee J, Chowell G, Jung E. A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: a retrospective analysis on control interventions and superspreading events. J Theor Biol. 2016;408:118-26. 15. Shirato K, Kawase M, Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology. 2018;517:9-15. 5. Shirato K, Yano T, Senba S, et al. Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virol J. 2014;11:139. 3. Corman V, Eckerle I, Bleicker T, et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 2012;17:20285. 14. Kaida A, Kubo H, Takakura K, et al. Associations between codetected respiratory viruses in children with acute respiratory infections. Jpn J Infect Dis. 2014;67:469-75. 1. Assiri A, McGeer A, Perl TM, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369:407-16. 16. Owusu M, Annan A, Corman VM, et al. Human coronaviruses associated with upper respiratory tract infections in three rural areas of Ghana. PLoS One. 2014;9:e99782. 20. Poissy J, Goffard A, Parmentier-Decrucq E, et al. Kinetics and pattern of viral excretion in biological specimens of two MERS CoV cases. J Clin Virol. 2014;61:275-8. 13. Shirogane Y, Takeda M, Iwasaki M, et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol. 2008;82:8942-6. 9. Lee JY, Kim YJ, Chung EH, et al. The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015. BMC Infect Dis. 2017;17:498. 18. Holland PM, Abramson RD, Watson R, et al. Detection of specific polymerase chain reaction product by utilizing the 5'--- 3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991;88:7276-80. 8. Korea Centers for Disease Control and, Prevention. Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015. Osong Public Health Res Perspect. 2015;6:269-78. 17. Emery SL, Erdman DD, Bowen MD, et al. Real-time reverse transcription-polymerase chain reaction assay for SARS associated coronavirus. Emerg Infect Dis. 2004;10:311-6. 4. Corman VM, Muller MA, Costabel U, et al. Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill. 2012;17:20334. 10. Kang CK, Song KH, Choe PG, et al. Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea. J Korean Med Sci. 2017;32:744-9. 6. Shirato K, Semba S, El-Kafrawy SA, et al. Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus. J Virol Methods. 2018;258:41-8. 21. Corman VM, Albarrak AM, Omrani AS, et al. Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection. Clin Infect Dis. 2016;62:477-83. 7. Abd El Wahed A, Patel P, Heidenreich D, et al. Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr. 2013;5. 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 21 |
References_xml | – reference: 10. Kang CK, Song KH, Choe PG, et al. Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea. J Korean Med Sci. 2017;32:744-9. – reference: 13. Shirogane Y, Takeda M, Iwasaki M, et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol. 2008;82:8942-6. – reference: 20. Poissy J, Goffard A, Parmentier-Decrucq E, et al. Kinetics and pattern of viral excretion in biological specimens of two MERS CoV cases. J Clin Virol. 2014;61:275-8. – reference: 3. Corman V, Eckerle I, Bleicker T, et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 2012;17:20285. – reference: 9. Lee JY, Kim YJ, Chung EH, et al. The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015. BMC Infect Dis. 2017;17:498. – reference: 11. Lee J, Chowell G, Jung E. A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: a retrospective analysis on control interventions and superspreading events. J Theor Biol. 2016;408:118-26. – reference: 12. Shirato K, Kawase M, Watanabe O, et al. Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004-2008 depend on the S1 region sequence of the spike protein. J Gen Virol. 2012;93:1908-17. – reference: 15. Shirato K, Kawase M, Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology. 2018;517:9-15. – reference: 18. Holland PM, Abramson RD, Watson R, et al. Detection of specific polymerase chain reaction product by utilizing the 5'--- 3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991;88:7276-80. – reference: 1. Assiri A, McGeer A, Perl TM, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369:407-16. – reference: 5. Shirato K, Yano T, Senba S, et al. Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virol J. 2014;11:139. – reference: 8. Korea Centers for Disease Control and, Prevention. Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015. Osong Public Health Res Perspect. 2015;6:269-78. – reference: 19. Drosten C, Seilmaier M, Corman VM, et al. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis. 2013;13:745-51. – reference: 7. Abd El Wahed A, Patel P, Heidenreich D, et al. Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr. 2013;5. – reference: 16. Owusu M, Annan A, Corman VM, et al. Human coronaviruses associated with upper respiratory tract infections in three rural areas of Ghana. PLoS One. 2014;9:e99782. – reference: 17. Emery SL, Erdman DD, Bowen MD, et al. Real-time reverse transcription-polymerase chain reaction assay for SARS associated coronavirus. Emerg Infect Dis. 2004;10:311-6. – reference: 6. Shirato K, Semba S, El-Kafrawy SA, et al. Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus. J Virol Methods. 2018;258:41-8. – reference: 21. Corman VM, Albarrak AM, Omrani AS, et al. Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection. Clin Infect Dis. 2016;62:477-83. – reference: 4. Corman VM, Muller MA, Costabel U, et al. Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill. 2012;17:20334. – reference: 14. Kaida A, Kubo H, Takakura K, et al. Associations between codetected respiratory viruses in children with acute respiratory infections. Jpn J Infect Dis. 2014;67:469-75. – reference: 2. Azhar EI, El-Kafrawy SA, Farraj SA, et al. Evidence for camelto-human transmission of MERS coronavirus. N Engl J Med. 2014;370:2499-505. – ident: 1 doi: 10.1056/NEJMoa1306742 – ident: 19 doi: 10.1016/S1473-3099(13)70154-3 – ident: 10 doi: 10.3346/jkms.2017.32.5.744 – ident: 13 doi: 10.1128/JVI.00676-08 – ident: 17 doi: 10.3201/eid1002.030759 – ident: 5 doi: 10.1186/1743-422X-11-139 – ident: 11 doi: 10.1016/j.jtbi.2016.08.009 – ident: 16 doi: 10.1371/journal.pone.0099782 – ident: 4 doi: 10.2807/ese.17.49.20334-en – ident: 14 doi: 10.7883/yoken.67.469 – ident: 3 doi: 10.2807/ese.17.39.20285-en – ident: 8 doi: 10.1016/j.phrp.2015.08.006 – ident: 9 doi: 10.1186/s12879-017-2576-5 – ident: 15 doi: 10.1016/j.virol.2017.11.012 – ident: 20 doi: 10.1016/j.jcv.2014.07.002 – ident: 6 doi: 10.1016/j.jviromet.2018.05.006 – ident: 7 doi: 10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364 – ident: 12 doi: 10.1099/vir.0.043117-0 – ident: 18 doi: 10.1073/pnas.88.16.7276 – ident: 21 – ident: 2 doi: 10.1056/NEJMoa1401505 |
SSID | ssj0025510 |
Score | 2.3518314 |
Snippet | Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 181 |
SubjectTerms | Assaying Containment Control equipment Coronaviruses Diagnosis Genetic screening Genomes MERS coronavirus (MERS-CoV) Middle East respiratory syndrome Middle East Respiratory Syndrome (MERS) PCR1100 Polymerase chain reaction Real time Respiratory diseases Reverse transcription Ribonucleic acid RNA ultra-rapid real-time RT-PCR |
Title | Ultra-Rapid Real-Time RT-PCR Method for Detecting Middle East Respiratory Syndrome Coronavirus Using a Mobile PCR Device, PCR1100 |
URI | https://www.jstage.jst.go.jp/article/yoken/73/3/73_JJID.2019.400/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/31875608 https://www.proquest.com/docview/2408556210 https://www.proquest.com/docview/2330792988 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Japanese Journal of Infectious Diseases, 2020/05/29, Vol.73(3), pp.181-186 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQIgXxOcoDGQk3rKUNEnT5HGsHaNaC2pTqW-RnThbWddObTJpe-N_4w_jznbdFI0JeIny4dhR7uf78J3vCPkgWizgeebZEW8yMFDamQ0nGGCThQ68w4XcC9MfBMdjvzdpTWq1n5WopbLgjfTm1n0l_0NVuAd0xV2y_0BZ0yncgHOgLxyBwnD8KxqPZ8WS2UN2OcVNhmxm44YOaxjb3w6HVl_WhpZhhB2BrgJcFOjL9Qiry1YYjbzxso904gLgD0vQza-my3JlqXACBvOeA--wsNOOuNJl4uEK88BtKbcgeLGg5XY6ChXsBd1pX5BR4kdncnQV03FTXhsBMWCnbL5YToH1LzYr5sUKmlxIXXd0VhaL89IIC-CJ60fxCh5dlNXFDFf64d0Ny5Tfabgaeg42DgbrQG5GrfBqz_ftwFPVixtC3QtD3waNKagyeFUrRQPZq3DrpqoW87sUaYchZrO4XpyLeaPX-9LBCMCo4et_upWze_A1ORqfnCRxdxLfI_ddMFawjsbniQk0AptN5cRYf67KfYWDfLxliC396MF3MBFOxZ-tH6kFxU_IY22-0AOFxaekJubPyMO-DtB4Tn5UIEkNJKmCJFWQpABJaiBJFSQpQpJWIEnXkKQVSFIJScqogiTFThUk96kG5AsyPurGh8e2rvJhp0EzLGzmiFTkThR6nKc8AHuF5yILctYUYDw4GSZAchzmMOb4Kc9yz8mjjINZAoptKwpT7yXZmS_m4hWhYIxkKbTP3Lzl-ywDNuTmTh5kPMo8Efl14q7_bZLqFPhYiWWWgCmMBEkkQRIkSIIESYAgdbJvXrpUGWDubv5JEc001uxBN257iYeHrZdMG9xqCZytTvbWBE_0lF0lMhkhmCtNGOO9eQzSAF18ML1hJieuBzIbLJ4wrJNdBRTzHSC922DfhK_v7vwNebSZmXtkp1iW4i0o3gV_J3H9CwQx3Us |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Rapid+Real-Time+RT-PCR+Method+for+Detecting+Middle+East+Respiratory+Syndrome+Coronavirus+Using+a+Mobile+PCR+Device%2C+PCR1100&rft.jtitle=Japanese+journal+of+infectious+diseases&rft.au=Shirato%2C+Kazuya&rft.au=Naganori+Nao&rft.au=Matsuyama%2C+Shutoku&rft.au=Kageyama%2C+Tsutomu&rft.date=2020-05-29&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1344-6304&rft.eissn=1884-2836&rft.volume=73&rft.issue=3&rft.spage=181&rft_id=info:doi/10.7883%2Fyoken.JJID.2019.400&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-6304&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-6304&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-6304&client=summon |