Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1

Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain mi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 21; pp. 7534 - 7539
Main Authors Jang, Saebyeol, Kelley, Keith W, Johnson, Rodney W
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 27.05.2008
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-κB and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-κB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IκB-α but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo, mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation.
AbstractList Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-...B and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-...B DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of I...B-α but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo, mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation. (ProQuest: ... denotes formulae/symbols omitted.)
Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF- Kappa B and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF- Kappa B DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of I Kappa B- alpha but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo, mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation.
Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-κB and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-κB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IκB-α but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo , mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation. cytokines flavonoids MAPK brain neuroinflammation
Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-κB and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-κB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IκB-α but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo, mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation.
Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-kappaB and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-kappaB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IkappaB-alpha but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo, mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation.
Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-κB and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-κB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IκB-α but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo , mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation.
Author Jang, Saebyeol
Johnson, Rodney W
Kelley, Keith W
Author_xml – sequence: 1
  fullname: Jang, Saebyeol
– sequence: 2
  fullname: Kelley, Keith W
– sequence: 3
  fullname: Johnson, Rodney W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18490655$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1vEzEQxS1URNPCmROw4oC4bDv-9l6QqoqPQgRI0LPldbyJo4292LsV-e9xSNQABw6WNZrfPM3z8xk6CTE4hJ5iuMAg6eUQTL4ABUQJjoE_QDMMDa4Fa-AEzQCIrBUj7BSd5bwGgIYreIROsSqA4HyGuvk0utj7UCW3mKzL1c28FtWQYqlGH0NVWhtvU1z23lTtttQr3_rRh2X18fOnaljFXE7a9uY3bsKiMmXybl_Grrr6WuPH6GFn-uyeHO5zdPvu7ffrD_X8y_ub66t5bQVWY61aaqUtGwNnbWepFEYysuCt44S2IAlrFkRKAdZZqhpJMFUWKHaUdxYTSs_Rm73uMLUbt7AujMn0ekh-Y9JWR-P1353gV3oZ7zShjRCKF4FXB4EUf0wuj3rjs3V9b4KLU9YEpKIMQwFf_gOu45RCMVcYXNRAkAJd7qHyfjkn191vgkHvAtS7APUxwDLx_E8DR_6QWAFeH4Dd5FGOa4K15JTpbur70f0cC_ri_2ghnu2JdR5jukcIZ4IISo8KnYnaLJPP-vbbzl75SQCMYfoLWcnDFQ
CitedBy_id crossref_primary_10_1002_cbdv_202300561
crossref_primary_10_1016_j_ijbiomac_2021_10_065
crossref_primary_10_1155_2020_1842347
crossref_primary_10_1016_j_anifeedsci_2021_114826
crossref_primary_10_1016_j_clinthera_2014_05_005
crossref_primary_10_4103_1673_5374_373680
crossref_primary_10_3390_ijms20153611
crossref_primary_10_1016_j_intimp_2011_03_012
crossref_primary_10_1016_j_jneuroim_2014_12_003
crossref_primary_10_1038_s41583_023_00769_8
crossref_primary_10_1097_JCP_0000000000000084
crossref_primary_10_1016_j_neuint_2023_105604
crossref_primary_10_1111_j_1753_4887_2010_00320_x
crossref_primary_10_1016_j_neurobiolaging_2015_10_021
crossref_primary_10_1002_acn3_51631
crossref_primary_10_1002_ptr_5141
crossref_primary_10_1038_srep17645
crossref_primary_10_2174_1573407214666180703130525
crossref_primary_10_1016_j_exger_2015_11_004
crossref_primary_10_1158_1940_6207_CAPR_08_0086
crossref_primary_10_1002_biof_1908
crossref_primary_10_12717_DR_2013_17_1_037
crossref_primary_10_1016_j_abb_2009_10_003
crossref_primary_10_1371_journal_pone_0027915
crossref_primary_10_4049_jimmunol_1602016
crossref_primary_10_1007_s00109_011_0741_7
crossref_primary_10_1016_j_intimp_2023_110520
crossref_primary_10_1016_j_aca_2013_01_065
crossref_primary_10_1016_j_neulet_2015_10_022
crossref_primary_10_1016_j_neuroscience_2009_04_014
crossref_primary_10_3390_molecules14093486
crossref_primary_10_1371_journal_pone_0104321
crossref_primary_10_5012_bkcs_2012_33_9_2907
crossref_primary_10_1021_tx200140s
crossref_primary_10_3892_etm_2014_1564
crossref_primary_10_1016_j_heliyon_2024_e27365
crossref_primary_10_1111_j_1476_5381_2011_01389_x
crossref_primary_10_1155_2011_323171
crossref_primary_10_1007_s12031_010_9454_6
crossref_primary_10_1017_S0007114510003910
crossref_primary_10_1016_j_jff_2017_08_023
crossref_primary_10_1016_j_mam_2011_10_016
crossref_primary_10_1007_s12017_016_8430_x
crossref_primary_10_30699_jambs_30_e56821
crossref_primary_10_3945_an_114_007500
crossref_primary_10_1016_j_apsb_2024_05_002
crossref_primary_10_1002_elan_201900066
crossref_primary_10_1177_039463201002300406
crossref_primary_10_3390_molecules16043152
crossref_primary_10_1016_j_neubiorev_2019_05_010
crossref_primary_10_1016_j_jnutbio_2019_108222
crossref_primary_10_1016_j_nurt_2010_07_005
crossref_primary_10_1124_jpet_118_250845
crossref_primary_10_1016_j_mad_2021_111559
crossref_primary_10_1097_JCP_0000000000000504
crossref_primary_10_3390_ijerph18052483
crossref_primary_10_1016_j_biopha_2017_01_152
crossref_primary_10_1111_j_1745_4514_2011_00609_x
crossref_primary_10_1097_JCP_0b013e318239c190
crossref_primary_10_1016_j_tifs_2020_09_023
crossref_primary_10_3109_10715762_2013_795649
crossref_primary_10_1080_1744666X_2019_1596800
crossref_primary_10_3390_cells12050688
crossref_primary_10_1007_s12640_021_00443_w
crossref_primary_10_1111_jphp_12116
crossref_primary_10_1080_10408390903584094
crossref_primary_10_1016_j_bbi_2014_09_022
crossref_primary_10_1016_j_neuint_2015_11_001
crossref_primary_10_1016_j_ejphar_2015_03_086
crossref_primary_10_1007_s00394_019_02128_9
crossref_primary_10_1017_S0007114510003934
crossref_primary_10_1159_000343769
crossref_primary_10_1177_0394632017707610
crossref_primary_10_1016_j_biopha_2018_10_086
crossref_primary_10_5352_JLS_2009_19_4_514
crossref_primary_10_1002_biof_1714
crossref_primary_10_3389_fnagi_2019_00155
crossref_primary_10_1007_s00011_014_0738_0
crossref_primary_10_1177_039463201202500201
crossref_primary_10_11620_IJOB_2020_45_2_33
crossref_primary_10_1155_2018_4934592
crossref_primary_10_3390_ijms23062914
crossref_primary_10_3390_ijms17091420
crossref_primary_10_1016_j_jneuroim_2009_09_004
crossref_primary_10_1016_j_bbi_2009_06_152
crossref_primary_10_1016_j_neuint_2023_105486
crossref_primary_10_3390_ijms22169061
crossref_primary_10_1007_s11010_022_04504_2
crossref_primary_10_1016_j_jep_2017_12_002
crossref_primary_10_1007_s43440_024_00610_8
crossref_primary_10_3390_ph16070941
crossref_primary_10_3389_fphar_2020_583777
crossref_primary_10_3390_ijms241512081
crossref_primary_10_1007_s00044_012_0449_4
crossref_primary_10_1166_jbn_2021_3101
crossref_primary_10_1016_j_bbrc_2016_11_101
crossref_primary_10_1186_1471_2431_12_89
crossref_primary_10_1038_s41598_017_18909_3
crossref_primary_10_1021_acschemneuro_3c00092
crossref_primary_10_3390_plants10081708
crossref_primary_10_1155_2023_8883860
crossref_primary_10_1016_j_pbb_2014_09_005
crossref_primary_10_1017_S0007114520003591
crossref_primary_10_3390_nu14061155
crossref_primary_10_1073_pnas_1604992113
crossref_primary_10_1016_j_ejmech_2017_09_001
crossref_primary_10_1016_j_freeradbiomed_2011_09_010
crossref_primary_10_1021_cb300634b
crossref_primary_10_1007_s12035_018_1420_2
crossref_primary_10_6116_kjh_2015_30_4_81
crossref_primary_10_1007_s13659_014_0005_7
crossref_primary_10_1186_s12974_023_02904_9
crossref_primary_10_1007_s10068_012_0037_x
crossref_primary_10_1158_0008_5472_CAN_08_2506
crossref_primary_10_1155_2020_9358080
crossref_primary_10_1155_2013_726954
crossref_primary_10_3892_or_2012_1914
crossref_primary_10_1074_jbc_M112_445429
crossref_primary_10_1016_j_jnutbio_2010_01_011
crossref_primary_10_1155_2021_8819245
crossref_primary_10_1038_onc_2014_413
crossref_primary_10_3233_JAD_190240
crossref_primary_10_3390_molecules26071820
crossref_primary_10_1016_j_bcp_2011_07_086
crossref_primary_10_1186_s12979_023_00341_z
crossref_primary_10_3390_molecules22060951
crossref_primary_10_1002_mnfr_201300445
crossref_primary_10_1007_s11064_010_0151_1
crossref_primary_10_1073_pnas_1120251109
crossref_primary_10_1186_1742_2094_8_54
crossref_primary_10_1017_S0029665110000054
crossref_primary_10_1124_jpet_114_222505
crossref_primary_10_1016_j_neuint_2012_06_009
crossref_primary_10_1016_j_phanu_2020_100176
crossref_primary_10_1016_j_autrev_2013_02_006
crossref_primary_10_1016_j_febslet_2009_10_045
crossref_primary_10_1016_j_spen_2020_100836
crossref_primary_10_3390_ijms25052651
crossref_primary_10_1016_j_antiviral_2016_05_007
crossref_primary_10_1007_s10803_010_1171_z
crossref_primary_10_1016_j_biocel_2015_06_017
crossref_primary_10_1016_j_neuroscience_2011_04_005
crossref_primary_10_1186_s12974_015_0388_3
crossref_primary_10_1002_jcp_22489
crossref_primary_10_1016_j_exger_2017_05_014
crossref_primary_10_1152_ajpgi_90434_2008
crossref_primary_10_1016_j_jneuroim_2018_09_002
crossref_primary_10_1016_S0084_3954_09_79460_6
crossref_primary_10_1016_j_foodchem_2011_07_024
crossref_primary_10_2174_1871527318666190319141835
crossref_primary_10_3390_foods12081682
crossref_primary_10_1089_adt_2018_848
crossref_primary_10_1007_s12035_021_02696_0
crossref_primary_10_2174_1389557522666220309140855
crossref_primary_10_3390_medicina59091584
crossref_primary_10_1016_j_jff_2024_106198
crossref_primary_10_1016_j_ajpath_2019_01_012
crossref_primary_10_1515_jbcpp_2020_0255
crossref_primary_10_1016_j_bbadis_2010_12_014
crossref_primary_10_1254_jphs_10060FP
crossref_primary_10_1016_j_jep_2013_08_058
crossref_primary_10_4049_jimmunol_1402077
crossref_primary_10_1016_j_ejphar_2022_174884
crossref_primary_10_1089_jmf_2012_0196
crossref_primary_10_1124_mol_110_064535
crossref_primary_10_3389_fphar_2022_897966
crossref_primary_10_4162_nrp_2013_7_6_423
crossref_primary_10_1089_rej_2015_1708
crossref_primary_10_3390_antiox12020427
crossref_primary_10_1039_c0fo00103a
crossref_primary_10_1186_s12974_016_0650_3
crossref_primary_10_1080_01480545_2018_1504961
crossref_primary_10_1080_07853890_2024_2308077
crossref_primary_10_1002_jms_4209
crossref_primary_10_1007_s00592_016_0842_4
crossref_primary_10_1111_jphp_12160
crossref_primary_10_1039_C4FO00144C
crossref_primary_10_1016_j_fct_2013_12_017
crossref_primary_10_1016_j_mam_2017_11_003
crossref_primary_10_1016_j_pscia_2023_100021
crossref_primary_10_1016_j_bbi_2013_10_022
crossref_primary_10_1016_j_intimp_2013_06_032
crossref_primary_10_1016_j_jfca_2011_04_007
crossref_primary_10_1016_j_bbadis_2010_12_017
crossref_primary_10_1080_22311866_2024_2351023
crossref_primary_10_1016_j_yexcr_2012_08_008
crossref_primary_10_3390_nu12030811
crossref_primary_10_6000_1929_5634_2015_04_03_4
crossref_primary_10_1002_biof_1726
crossref_primary_10_1016_j_jnutbio_2011_06_013
crossref_primary_10_2174_1871527319666200613223018
crossref_primary_10_1021_acssynbio_8b00326
crossref_primary_10_3233_JAD_150765
crossref_primary_10_1016_j_phymed_2023_154889
crossref_primary_10_1016_j_mcn_2014_05_004
crossref_primary_10_1016_j_phymed_2024_155611
crossref_primary_10_1186_s12974_014_0168_5
crossref_primary_10_1007_s12031_018_1094_2
crossref_primary_10_3892_etm_2016_3854
crossref_primary_10_3177_jnsv_61_188
crossref_primary_10_1016_j_bbrc_2017_06_140
crossref_primary_10_1016_j_ejphar_2011_06_047
crossref_primary_10_3109_13880209_2014_892515
crossref_primary_10_1039_C4RA03038A
crossref_primary_10_1007_s12272_010_1117_1
crossref_primary_10_1007_s12013_014_9872_0
crossref_primary_10_1080_1744666X_2023_2200936
crossref_primary_10_1007_s12263_009_0136_3
crossref_primary_10_1186_s41232_016_0031_4
crossref_primary_10_1016_j_heliyon_2023_e16930
crossref_primary_10_1002_jbt_23619
crossref_primary_10_1016_j_seppur_2014_08_022
crossref_primary_10_1186_s12974_023_02946_z
crossref_primary_10_1016_j_clinthera_2013_04_009
crossref_primary_10_1007_s11064_018_2608_6
crossref_primary_10_1016_j_intimp_2019_04_019
crossref_primary_10_1111_j_1471_4159_2010_06783_x
crossref_primary_10_1186_s12974_023_02801_1
crossref_primary_10_1007_s10753_010_9271_7
crossref_primary_10_1016_j_jaci_2014_10_032
crossref_primary_10_3233_BPL_200098
crossref_primary_10_1038_tp_2015_142
crossref_primary_10_3892_ol_2017_6643
crossref_primary_10_1007_s12017_010_8112_z
crossref_primary_10_1039_D0FO01030H
crossref_primary_10_3945_jn_110_123273
crossref_primary_10_1186_1742_2094_9_172
crossref_primary_10_1016_j_ntt_2017_11_002
crossref_primary_10_1111_j_1753_4887_2010_00336_x
crossref_primary_10_2174_1389557519666190617150051
crossref_primary_10_1016_j_lfs_2020_117990
crossref_primary_10_1016_j_brainres_2010_11_069
crossref_primary_10_1016_j_tiv_2011_05_009
crossref_primary_10_1007_s00281_009_0180_5
crossref_primary_10_1016_j_molstruc_2019_07_056
crossref_primary_10_5114_reum_2015_53998
crossref_primary_10_1007_s11064_009_0043_4
crossref_primary_10_1016_j_prmcm_2024_100475
crossref_primary_10_3390_jpm11090860
crossref_primary_10_1038_tp_2016_77
crossref_primary_10_1002_ptr_6942
crossref_primary_10_1016_j_jep_2012_05_048
crossref_primary_10_1038_ijo_2009_296
crossref_primary_10_3892_ijo_2018_4633
crossref_primary_10_1186_1742_2094_7_3
crossref_primary_10_1016_j_clinthera_2013_07_419
crossref_primary_10_1517_14656560903107789
crossref_primary_10_1097_FJC_0000000000000380
crossref_primary_10_1038_ijo_2010_272
crossref_primary_10_1097_NT_0000000000000683
crossref_primary_10_1002_mnfr_201300830
crossref_primary_10_1016_j_intimp_2018_06_004
crossref_primary_10_3390_pharmaceutics14010116
crossref_primary_10_1016_j_freeradbiomed_2014_03_009
crossref_primary_10_1021_jm901773d
crossref_primary_10_1016_j_jep_2020_112687
crossref_primary_10_1016_j_molliq_2021_117895
crossref_primary_10_2174_0113816128287109240321074628
crossref_primary_10_1097_j_pain_0000000000001681
Cites_doi 10.1073/pnas.96.8.4668
10.1074/jbc.274.40.28823
10.1016/j.bbamcr.2006.12.009
10.1128/mcb.14.7.4443-4454.1994
10.1093/jn/136.3.664
10.1002/1098-2744(200011)29:3<159::AID-MC5>3.0.CO;2-W
10.1016/j.freeradbiomed.2003.11.023
10.1016/S0006-2952(03)00465-9
10.1016/S0169-328X(97)00235-0
10.1016/j.tiv.2008.01.008
10.1016/S1043-6618(03)00225-1
10.2174/138161207780858384
10.1084/jem.20040819
10.1016/S0165-5728(01)00316-2
10.1016/j.neurobiolaging.2006.11.002
10.1038/nri2015
10.1111/j.1365-2567.2005.02156.x
10.1146/annurev.nutr.22.111401.144957
10.1006/clin.1996.0172
10.1016/j.bcp.2006.07.016
10.1016/S0896-6273(03)00355-6
10.1023/A:1007614613771
10.1096/fj.00-0339com
10.1007/978-0-387-34817-9_13
10.1096/fj.05-3776fje
10.1523/JNEUROSCI.3376-06.2006
10.1016/j.neurobiolaging.2005.03.010
10.1523/JNEUROSCI.0914-07.2007
10.1016/j.jneuroim.2003.12.017
10.1093/gerona/57.5.M326
10.1016/j.jneuroim.2005.08.003
10.1016/j.bbi.2007.08.014
10.1016/j.bbi.2006.09.006
10.1159/000049025
10.1016/S0014-5793(98)01304-0
10.1016/S0169-328X(00)00042-5
10.1016/j.abb.2006.09.003
10.1002/glia.20173
10.1002/j.1460-2075.1993.tb06066.x
10.1093/ajcn/76.3.560
10.1016/S0898-6568(00)00149-2
10.1038/nrc1189
10.1016/j.neulet.2004.02.041
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences May 27, 2008
2008 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences May 27, 2008
– notice: 2008 by The National Academy of Sciences of the USA
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.0802865105
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList Virology and AIDS Abstracts
Neurosciences Abstracts


MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 7539
ExternalDocumentID 1487601231
10_1073_pnas_0802865105
18490655
105_21_7534
25462633
US201300900441
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG016710
– fundername: NIMH NIH HHS
  grantid: MH069148
– fundername: NIA NIH HHS
  grantid: AG023580
– fundername: NIMH NIH HHS
  grantid: R01 MH069148
– fundername: NIA NIH HHS
  grantid: AG029573
– fundername: NIA NIH HHS
  grantid: AG16710
– fundername: NIA NIH HHS
  grantid: R01 AG023580
– fundername: NIA NIH HHS
  grantid: R01 AG029573
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c618t-8b3c7c842054bfc376a742d5be523b07249d27760cec38972138c031e35fc1233
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:22:11 EDT 2024
Fri Oct 25 03:31:53 EDT 2024
Thu Oct 10 17:04:52 EDT 2024
Thu Nov 21 21:02:06 EST 2024
Mon Nov 04 07:35:47 EST 2024
Wed Nov 11 00:29:26 EST 2020
Thu May 30 08:52:56 EDT 2019
Fri Feb 02 07:05:54 EST 2024
Wed Dec 27 19:14:24 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-8b3c7c842054bfc376a742d5be523b07249d27760cec38972138c031e35fc1233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Communicated by David H. Baker, University of Illinois at Urbana–Champaign, Urbana, IL, March 25, 2008
Author contributions: S.J., K.W.K., and R.W.J. designed research; S.J. performed research; S.J. analyzed data; and S.J. and R.W.J. wrote the paper.
OpenAccessLink https://europepmc.org/articles/pmc2396685?pdf=render
PMID 18490655
PQID 201396062
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_25462633
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2396685
pubmed_primary_18490655
pnas_primary_105_21_7534
pnas_primary_105_21_7534_fulltext
crossref_primary_10_1073_pnas_0802865105
proquest_miscellaneous_20783410
proquest_journals_201396062
fao_agris_US201300900441
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2008-05-27
PublicationDateYYYYMMDD 2008-05-27
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-05-27
  day: 27
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 10959944 - Eur J Epidemiol. 2000 Apr;16(4):357-63
11257452 - Cell Signal. 2001 Feb;13(2):85-94
16146653 - J Neuroimmunol. 2005 Dec;169(1-2):97-105
11983728 - J Gerontol A Biol Sci Med Sci. 2002 May;57(5):M326-32
14570043 - Nat Rev Cancer. 2003 Oct;3(10):768-80
15611292 - J Exp Med. 2004 Dec 20;200(12):1667-72
12818176 - Neuron. 2003 Jun 19;38(6):899-914
15919760 - FASEB J. 2005 Aug;19(10):1329-31
8906747 - Clin Immunol Immunopathol. 1996 Nov;81(2):161-7
10497256 - J Biol Chem. 1999 Oct 1;274(40):28823-7
11108661 - Mol Carcinog. 2000 Nov;29(3):159-69
15135894 - Neurosci Lett. 2004 May 6;361(1-3):64-7
17220915 - Nat Rev Immunol. 2007 Feb;7(2):161-7
11123379 - J Pharmacol Exp Ther. 2001 Jan;296(1):181-7
12055336 - Annu Rev Nutr. 2002;22:19-34
18075491 - Neuropsychopharmacology. 2008 Sep;33(10):2341-51
17584114 - Curr Pharm Des. 2007;13(18):1875-86
11149903 - FASEB J. 2001 Jan;15(1):155-163
9427519 - Brain Res Mol Brain Res. 1997 Nov;51(1-2):170-8
11431008 - J Neuroimmunol. 2001 Jul 2;117(1-2):87-96
9827549 - FEBS Lett. 1998 Nov 6;438(3):220-4
14980703 - Free Radic Biol Med. 2004 Mar 1;36(5):592-604
15739188 - Glia. 2005 May;50(3):235-46
17088043 - Brain Behav Immun. 2007 Feb;21(2):153-60
17174449 - Neurobiol Aging. 2008 Apr;29(4):614-21
17306896 - Biochim Biophys Acta. 2007 Aug;1773(8):1341-8
14527825 - Pharmacol Res. 2003 Dec;48(6):601-6
18314304 - Toxicol In Vitro. 2008 Jun;22(4):921-6
16484540 - J Nutr. 2006 Mar;136(3):664-71
17050710 - J Neurosci. 2006 Oct 18;26(42):10709-16
10200320 - Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4668-73
8007951 - Mol Cell Biol. 1994 Jul;14(7):4443-54
17951027 - Brain Behav Immun. 2008 Mar;22(3):301-11
11847480 - Neuroimmunomodulation. 2001;9(4):183-92
12198000 - Am J Clin Nutr. 2002 Sep;76(3):560-8
16934226 - Biochem Pharmacol. 2006 Oct 16;72(8):1010-21
17089886 - Adv Exp Med Biol. 2006;588:145-55
15020070 - J Neuroimmunol. 2004 Apr;149(1-2):101-9
8404856 - EMBO J. 1993 Oct;12(10):3879-91
15893410 - Neurobiol Aging. 2006 May;27(5):723-32
17537957 - J Neurosci. 2007 May 30;27(22):5869-78
12963482 - Biochem Pharmacol. 2003 Sep 15;66(6):955-63
15946255 - Immunology. 2005 Jul;115(3):375-87
17052680 - Arch Biochem Biophys. 2006 Nov 15;455(2):197-203
10814840 - Brain Res Mol Brain Res. 2000 Apr 14;77(1):138-47
Rice-Evans C (e_1_3_3_8_2) 1998
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_31_2
e_1_3_3_40_2
Godbout JP (e_1_3_3_5_2) 2007
e_1_3_3_6_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
Xagorari A (e_1_3_3_10_2) 2001; 296
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_39_2
  doi: 10.1073/pnas.96.8.4668
– ident: e_1_3_3_40_2
  doi: 10.1074/jbc.274.40.28823
– ident: e_1_3_3_18_2
  doi: 10.1016/j.bbamcr.2006.12.009
– ident: e_1_3_3_14_2
  doi: 10.1128/mcb.14.7.4443-4454.1994
– ident: e_1_3_3_21_2
  doi: 10.1093/jn/136.3.664
– ident: e_1_3_3_27_2
  doi: 10.1002/1098-2744(200011)29:3<159::AID-MC5>3.0.CO;2-W
– ident: e_1_3_3_37_2
  doi: 10.1016/j.freeradbiomed.2003.11.023
– ident: e_1_3_3_13_2
  doi: 10.1016/S0006-2952(03)00465-9
– ident: e_1_3_3_38_2
  doi: 10.1016/S0169-328X(97)00235-0
– ident: e_1_3_3_42_2
  doi: 10.1016/j.tiv.2008.01.008
– ident: e_1_3_3_32_2
  doi: 10.1016/S1043-6618(03)00225-1
– year: 2007
  ident: e_1_3_3_5_2
  article-title: Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system
  publication-title: Neuropsychopharmacology
  contributor:
    fullname: Godbout JP
– ident: e_1_3_3_16_2
  doi: 10.2174/138161207780858384
– ident: e_1_3_3_31_2
  doi: 10.1084/jem.20040819
– ident: e_1_3_3_22_2
  doi: 10.1016/S0165-5728(01)00316-2
– ident: e_1_3_3_6_2
  doi: 10.1016/j.neurobiolaging.2006.11.002
– ident: e_1_3_3_7_2
  doi: 10.1038/nri2015
– ident: e_1_3_3_12_2
  doi: 10.1111/j.1365-2567.2005.02156.x
– ident: e_1_3_3_30_2
  doi: 10.1146/annurev.nutr.22.111401.144957
– ident: e_1_3_3_33_2
  doi: 10.1006/clin.1996.0172
– ident: e_1_3_3_11_2
  doi: 10.1016/j.bcp.2006.07.016
– ident: e_1_3_3_19_2
  doi: 10.1016/S0896-6273(03)00355-6
– ident: e_1_3_3_28_2
  doi: 10.1023/A:1007614613771
– ident: e_1_3_3_1_2
  doi: 10.1096/fj.00-0339com
– ident: e_1_3_3_20_2
  doi: 10.1007/978-0-387-34817-9_13
– ident: e_1_3_3_4_2
  doi: 10.1096/fj.05-3776fje
– ident: e_1_3_3_35_2
  doi: 10.1523/JNEUROSCI.3376-06.2006
– ident: e_1_3_3_36_2
  doi: 10.1016/j.neurobiolaging.2005.03.010
– ident: e_1_3_3_44_2
  doi: 10.1523/JNEUROSCI.0914-07.2007
– ident: e_1_3_3_43_2
  doi: 10.1016/j.jneuroim.2003.12.017
– volume: 296
  start-page: 181
  year: 2001
  ident: e_1_3_3_10_2
  article-title: Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages
  publication-title: J Pharmacol Exp Ther
  contributor:
    fullname: Xagorari A
– ident: e_1_3_3_34_2
  doi: 10.1093/gerona/57.5.M326
– ident: e_1_3_3_45_2
  doi: 10.1016/j.jneuroim.2005.08.003
– ident: e_1_3_3_46_2
  doi: 10.1016/j.bbi.2007.08.014
– ident: e_1_3_3_3_2
  doi: 10.1016/j.bbi.2006.09.006
– ident: e_1_3_3_24_2
  doi: 10.1159/000049025
– ident: e_1_3_3_9_2
  doi: 10.1016/S0014-5793(98)01304-0
– ident: e_1_3_3_23_2
  doi: 10.1016/S0169-328X(00)00042-5
– ident: e_1_3_3_41_2
  doi: 10.1016/j.abb.2006.09.003
– ident: e_1_3_3_15_2
  doi: 10.1002/glia.20173
– ident: e_1_3_3_26_2
  doi: 10.1002/j.1460-2075.1993.tb06066.x
– ident: e_1_3_3_29_2
  doi: 10.1093/ajcn/76.3.560
– ident: e_1_3_3_2_2
  doi: 10.1016/S0898-6568(00)00149-2
– ident: e_1_3_3_25_2
  doi: 10.1038/nrc1189
– ident: e_1_3_3_17_2
  doi: 10.1016/j.neulet.2004.02.041
– start-page: 329
  volume-title: Flavonoids in Health and Diseases
  year: 1998
  ident: e_1_3_3_8_2
  contributor:
    fullname: Rice-Evans C
SSID ssj0009580
Score 2.483472
Snippet Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7534
SubjectTerms Animals
Antioxidants
Binding sites
Biological Sciences
Brain
Brain - drug effects
Brain - immunology
Cell lines
Cells
Cells, Cultured
Cytokines
DNA - metabolism
Encephalitis - immunology
Epithelial cells
Flavonoids
I-kappa B Kinase - metabolism
Interleukin-6 - blood
Interleukin-6 - genetics
Interleukin-6 - metabolism
JNK Mitogen-Activated Protein Kinases - antagonists & inhibitors
JNK Mitogen-Activated Protein Kinases - metabolism
Lipopolysaccharides - immunology
Lipopolysaccharides - pharmacology
Luteolin - pharmacology
Male
Messenger RNA
Mice
Mice, Inbred BALB C
Microglia
Microglia - drug effects
Microglia - immunology
Neurons
NF-kappa B - metabolism
Phosphorylation
Phosphorylation - drug effects
Potable water
Promoter Regions, Genetic - drug effects
Protein Binding - drug effects
RNA, Messenger - metabolism
Rodents
Transcription Factor AP-1 - antagonists & inhibitors
Transcription Factor AP-1 - metabolism
Title Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1
URI https://www.jstor.org/stable/25462633
http://www.pnas.org/content/105/21/7534.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18490655
https://www.proquest.com/docview/201396062
https://search.proquest.com/docview/20783410
https://pubmed.ncbi.nlm.nih.gov/PMC2396685
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51e-KCKFCaFoqROJRDdpM4TrzHqqIqpa0qwUq9WbZjdyN1k9U-Dv33zOSxyyK4cMghmtiJPGPPTPzNZ4DPiUuiIqY_7rKQYSowYZXZ2IQefYFxRnjdgMdv77KrSXr9IB72QPS1MA1o35pyWD3NhlU5bbCV85kd9Tix0f3tRcIxSJdiNIABxoZ9ir5h2pVt3UmCy2-apD2fT85H80ovh1RcKjOKK4gwVKZjdMJixysNvK57eCJxnmKrv8Wff8Iof_NLl6_gZRdQsvP2ww9gz1Wv4aCbskt21vFKf3kD_ma9cnRGD1sQXysKv92EGZu3nK-oH4aiGQH0Hp9Kzcwz3k9LUxIwml3ffWfzab3Ea_Hc4ueYrgpGdRHtX11We3Z-H8ZvYXL59efFVdgdsxDaLJarUBpuc4tDhdGb8RZXHI35ciGMwyTVRDkmaEWS51lkncXwBlNGLi2uBY4Lb9Hx8UPYr-rKHQHLUx-JSLvC4cBmcix9IR3PY21Myp0UAZz1w6zmLZuGanbBc65omNVWOQEcoRqUfsS1Tk1-JLTDGo1p_zkO4LDRzaYL4vRPMs6xTdPLtmuhklhhRpYG8OlfIuU7mE0AJ72SVTeTl4peTFleEsDHjRSnIO2r6MrVa3qETiuJowDetQaxfUtnXgHkO6ayeYDIvXclaPMNyXdn48f_3fIEXrTYFqo5fA_7q8XafcAAamVOyX2J02ba_AKt3hW7
link.rule.ids 230,315,729,782,786,887,27931,27932,53798,53800
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED4k6dAuRdI2jZq2YYEO6SBbEkWRHoOggZPYRoDGQDZClKhYQCwJfgz597nTw66LdumgQTiREnhH3p343UeA74ENvNSnP-4qVW4oMGFV0cC4GfoCY43I4ho8Pp5Ew2l48yAe9kB0tTA1aD8xea94mveKfFZjK6t50u9wYv278WXAMUhXor8PrwSXA9Ul6RuuXdVUngS4AIdB2DH6SN6vinjZo_JSFVFkQZShKhygGxY7fmk_i8sOoEisp9jqbxHon0DK3zzT1SG8bUNKdtF8-hHs2eIdHLWTdsnOW2bpH-8hG61Xlk7pYQtibEXh9ciNWNWwvqKGGIrmBNF7fMpjZp7xfpabnKDR7GZyy6pZucRr8dwg6FhcpIwqI5r_uqzM2MWd63-A6dXP-8uh2x604CaRr1auMjyRCQ4Vxm8mS3DNiTFjToWxmKYaT2KKlgZSRl5iEwxwMGnkKsHVwHKRJej6-DEcFGVhT4DJMPOEF9vU4sBGaqCyVFku_diYkFslHDjvhllXDZ-GrvfBJdc0zHqrHAdOUA06fsTVTk9_BbTH6g1oB9p34LjWzaYLYvUPIs6xTd3LtmuhA19jThY68O1fIp21QBsHTjsl63YuLzW9mPK8wIGzjRQnIe2sxIUt1_QInVfiew58bAxi-5bWvByQO6ayeYDovXclaPU1zXdr5Z_-u-UZvB7ej0d6dD25PYU3DdKFKhA_w8FqsbZfMJxama_15HkB9PsYLw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbWDhh2GdptXb1uqwbs0B2c2JZlK8eiW9BHGgTYAvQmWLbUGGhsI49D_31JP5Jm2C47-GDQkg2RFEnr0yeAb4EJvMynP-4yk24osGCV0UC7FmOBNlrYpAaP346jy2l4fSfunh31VYP2U533iod5r8hnNbaymqf9DifWn9xeBByTdCn6VWb7e_ASfdbzukJ9w7crm90nAU7CYRB2rD4x71dFsuzRFlMZUXZBtKEyHGAoFjuxac8mZQdSJOZTbPW3LPRPMOWz6DQ8gDdtWsnOm88_hBemeAuHreMu2VnLLv39HdjRemXopB62INZWFF6N3IhVDfMraomhaE4wvfuHPGH6Ee9nuc4JHs2uxzesmpVLvBaPDYqOJUXGaHdE82-XlZadT1z_PUyHP39fXLrtYQtuGvly5UrN0zjFocIcTtsU550Eq-ZMaIOlqvZiLNOyII4jLzUpJjlYOHKZ4oxguLAphj9-BPtFWZhjYHFoPeElJjM4sJEcSJtJw2M_0TrkRgoHzrphVlXDqaHqtfCYKxpmtVWOA8eoBpXc44ynpr8CWmf1BrQK7TtwVOtm0wUx-wcR59im7mXbtVCBr7AuCx34-i-Rsi3YxoGTTsmq9eelohdTrRc4cLqRoiPS6kpSmHJNj9CZJb7nwIfGILZvac3LgXjHVDYPEMX3rgQtv6b6bi3943-3PIVXkx9DNboa35zA6wbsQpsQP8H-arE2nzGjWukvte88AdHlGTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Luteolin+reduces+IL-6+production+in+microglia+by+inhibiting+JNK+phosphorylation+and+activation+of+AP-1&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jang%2C+Saebyeol&rft.au=Kelley%2C+Keith+W&rft.au=Johnson%2C+Rodney+W&rft.date=2008-05-27&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=21&rft.spage=7534&rft_id=info:doi/10.1073%2Fpnas.0802865105&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1487601231
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F21.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F21.cover.gif