Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1
Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain mi...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 21; pp. 7534 - 7539 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
27.05.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-κB and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-κB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IκB-α but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo, mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation. |
---|---|
AbstractList | Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-...B and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-...B DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of I...B-α but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo, mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation. (ProQuest: ... denotes formulae/symbols omitted.) Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF- Kappa B and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF- Kappa B DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of I Kappa B- alpha but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo, mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation. Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-κB and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-κB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IκB-α but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo , mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation. cytokines flavonoids MAPK brain neuroinflammation Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-κB and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-κB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IκB-α but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo, mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation. Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-kappaB and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-kappaB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IkappaB-alpha but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo, mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation. Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in LPS-stimulated macrophages, fibroblasts, and intestinal epithelial cells. Because excessive production of proinflammatory cytokines by activated brain microglia can cause behavioral pathology and neurodegeneration, we sought to determine whether luteolin also regulates microglial cell production of a prototypic inflammatory cytokine, IL-6. Pretreatment of primary murine microlgia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. To determine how luteolin inhibited IL-6 production in microglia, EMSAs were performed to establish the effects of luteolin on LPS-induced binding of transcription factors to the NF-κB and activator protein-1 (AP-1) sites on the IL-6 promoter. Whereas luteolin had no effect on the LPS-induced increase in NF-κB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IκB-α but inhibited JNK phosphorylation. To determine whether luteolin might have similar effects in vivo , mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 h after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation. |
Author | Jang, Saebyeol Johnson, Rodney W Kelley, Keith W |
Author_xml | – sequence: 1 fullname: Jang, Saebyeol – sequence: 2 fullname: Kelley, Keith W – sequence: 3 fullname: Johnson, Rodney W |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18490655$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1vEzEQxS1URNPCmROw4oC4bDv-9l6QqoqPQgRI0LPldbyJo4292LsV-e9xSNQABw6WNZrfPM3z8xk6CTE4hJ5iuMAg6eUQTL4ABUQJjoE_QDMMDa4Fa-AEzQCIrBUj7BSd5bwGgIYreIROsSqA4HyGuvk0utj7UCW3mKzL1c28FtWQYqlGH0NVWhtvU1z23lTtttQr3_rRh2X18fOnaljFXE7a9uY3bsKiMmXybl_Grrr6WuPH6GFn-uyeHO5zdPvu7ffrD_X8y_ub66t5bQVWY61aaqUtGwNnbWepFEYysuCt44S2IAlrFkRKAdZZqhpJMFUWKHaUdxYTSs_Rm73uMLUbt7AujMn0ekh-Y9JWR-P1353gV3oZ7zShjRCKF4FXB4EUf0wuj3rjs3V9b4KLU9YEpKIMQwFf_gOu45RCMVcYXNRAkAJd7qHyfjkn191vgkHvAtS7APUxwDLx_E8DR_6QWAFeH4Dd5FGOa4K15JTpbur70f0cC_ri_2ghnu2JdR5jukcIZ4IISo8KnYnaLJPP-vbbzl75SQCMYfoLWcnDFQ |
CitedBy_id | crossref_primary_10_1002_cbdv_202300561 crossref_primary_10_1016_j_ijbiomac_2021_10_065 crossref_primary_10_1155_2020_1842347 crossref_primary_10_1016_j_anifeedsci_2021_114826 crossref_primary_10_1016_j_clinthera_2014_05_005 crossref_primary_10_4103_1673_5374_373680 crossref_primary_10_3390_ijms20153611 crossref_primary_10_1016_j_intimp_2011_03_012 crossref_primary_10_1016_j_jneuroim_2014_12_003 crossref_primary_10_1038_s41583_023_00769_8 crossref_primary_10_1097_JCP_0000000000000084 crossref_primary_10_1016_j_neuint_2023_105604 crossref_primary_10_1111_j_1753_4887_2010_00320_x crossref_primary_10_1016_j_neurobiolaging_2015_10_021 crossref_primary_10_1002_acn3_51631 crossref_primary_10_1002_ptr_5141 crossref_primary_10_1038_srep17645 crossref_primary_10_2174_1573407214666180703130525 crossref_primary_10_1016_j_exger_2015_11_004 crossref_primary_10_1158_1940_6207_CAPR_08_0086 crossref_primary_10_1002_biof_1908 crossref_primary_10_12717_DR_2013_17_1_037 crossref_primary_10_1016_j_abb_2009_10_003 crossref_primary_10_1371_journal_pone_0027915 crossref_primary_10_4049_jimmunol_1602016 crossref_primary_10_1007_s00109_011_0741_7 crossref_primary_10_1016_j_intimp_2023_110520 crossref_primary_10_1016_j_aca_2013_01_065 crossref_primary_10_1016_j_neulet_2015_10_022 crossref_primary_10_1016_j_neuroscience_2009_04_014 crossref_primary_10_3390_molecules14093486 crossref_primary_10_1371_journal_pone_0104321 crossref_primary_10_5012_bkcs_2012_33_9_2907 crossref_primary_10_1021_tx200140s crossref_primary_10_3892_etm_2014_1564 crossref_primary_10_1016_j_heliyon_2024_e27365 crossref_primary_10_1111_j_1476_5381_2011_01389_x crossref_primary_10_1155_2011_323171 crossref_primary_10_1007_s12031_010_9454_6 crossref_primary_10_1017_S0007114510003910 crossref_primary_10_1016_j_jff_2017_08_023 crossref_primary_10_1016_j_mam_2011_10_016 crossref_primary_10_1007_s12017_016_8430_x crossref_primary_10_30699_jambs_30_e56821 crossref_primary_10_3945_an_114_007500 crossref_primary_10_1016_j_apsb_2024_05_002 crossref_primary_10_1002_elan_201900066 crossref_primary_10_1177_039463201002300406 crossref_primary_10_3390_molecules16043152 crossref_primary_10_1016_j_neubiorev_2019_05_010 crossref_primary_10_1016_j_jnutbio_2019_108222 crossref_primary_10_1016_j_nurt_2010_07_005 crossref_primary_10_1124_jpet_118_250845 crossref_primary_10_1016_j_mad_2021_111559 crossref_primary_10_1097_JCP_0000000000000504 crossref_primary_10_3390_ijerph18052483 crossref_primary_10_1016_j_biopha_2017_01_152 crossref_primary_10_1111_j_1745_4514_2011_00609_x crossref_primary_10_1097_JCP_0b013e318239c190 crossref_primary_10_1016_j_tifs_2020_09_023 crossref_primary_10_3109_10715762_2013_795649 crossref_primary_10_1080_1744666X_2019_1596800 crossref_primary_10_3390_cells12050688 crossref_primary_10_1007_s12640_021_00443_w crossref_primary_10_1111_jphp_12116 crossref_primary_10_1080_10408390903584094 crossref_primary_10_1016_j_bbi_2014_09_022 crossref_primary_10_1016_j_neuint_2015_11_001 crossref_primary_10_1016_j_ejphar_2015_03_086 crossref_primary_10_1007_s00394_019_02128_9 crossref_primary_10_1017_S0007114510003934 crossref_primary_10_1159_000343769 crossref_primary_10_1177_0394632017707610 crossref_primary_10_1016_j_biopha_2018_10_086 crossref_primary_10_5352_JLS_2009_19_4_514 crossref_primary_10_1002_biof_1714 crossref_primary_10_3389_fnagi_2019_00155 crossref_primary_10_1007_s00011_014_0738_0 crossref_primary_10_1177_039463201202500201 crossref_primary_10_11620_IJOB_2020_45_2_33 crossref_primary_10_1155_2018_4934592 crossref_primary_10_3390_ijms23062914 crossref_primary_10_3390_ijms17091420 crossref_primary_10_1016_j_jneuroim_2009_09_004 crossref_primary_10_1016_j_bbi_2009_06_152 crossref_primary_10_1016_j_neuint_2023_105486 crossref_primary_10_3390_ijms22169061 crossref_primary_10_1007_s11010_022_04504_2 crossref_primary_10_1016_j_jep_2017_12_002 crossref_primary_10_1007_s43440_024_00610_8 crossref_primary_10_3390_ph16070941 crossref_primary_10_3389_fphar_2020_583777 crossref_primary_10_3390_ijms241512081 crossref_primary_10_1007_s00044_012_0449_4 crossref_primary_10_1166_jbn_2021_3101 crossref_primary_10_1016_j_bbrc_2016_11_101 crossref_primary_10_1186_1471_2431_12_89 crossref_primary_10_1038_s41598_017_18909_3 crossref_primary_10_1021_acschemneuro_3c00092 crossref_primary_10_3390_plants10081708 crossref_primary_10_1155_2023_8883860 crossref_primary_10_1016_j_pbb_2014_09_005 crossref_primary_10_1017_S0007114520003591 crossref_primary_10_3390_nu14061155 crossref_primary_10_1073_pnas_1604992113 crossref_primary_10_1016_j_ejmech_2017_09_001 crossref_primary_10_1016_j_freeradbiomed_2011_09_010 crossref_primary_10_1021_cb300634b crossref_primary_10_1007_s12035_018_1420_2 crossref_primary_10_6116_kjh_2015_30_4_81 crossref_primary_10_1007_s13659_014_0005_7 crossref_primary_10_1186_s12974_023_02904_9 crossref_primary_10_1007_s10068_012_0037_x crossref_primary_10_1158_0008_5472_CAN_08_2506 crossref_primary_10_1155_2020_9358080 crossref_primary_10_1155_2013_726954 crossref_primary_10_3892_or_2012_1914 crossref_primary_10_1074_jbc_M112_445429 crossref_primary_10_1016_j_jnutbio_2010_01_011 crossref_primary_10_1155_2021_8819245 crossref_primary_10_1038_onc_2014_413 crossref_primary_10_3233_JAD_190240 crossref_primary_10_3390_molecules26071820 crossref_primary_10_1016_j_bcp_2011_07_086 crossref_primary_10_1186_s12979_023_00341_z crossref_primary_10_3390_molecules22060951 crossref_primary_10_1002_mnfr_201300445 crossref_primary_10_1007_s11064_010_0151_1 crossref_primary_10_1073_pnas_1120251109 crossref_primary_10_1186_1742_2094_8_54 crossref_primary_10_1017_S0029665110000054 crossref_primary_10_1124_jpet_114_222505 crossref_primary_10_1016_j_neuint_2012_06_009 crossref_primary_10_1016_j_phanu_2020_100176 crossref_primary_10_1016_j_autrev_2013_02_006 crossref_primary_10_1016_j_febslet_2009_10_045 crossref_primary_10_1016_j_spen_2020_100836 crossref_primary_10_3390_ijms25052651 crossref_primary_10_1016_j_antiviral_2016_05_007 crossref_primary_10_1007_s10803_010_1171_z crossref_primary_10_1016_j_biocel_2015_06_017 crossref_primary_10_1016_j_neuroscience_2011_04_005 crossref_primary_10_1186_s12974_015_0388_3 crossref_primary_10_1002_jcp_22489 crossref_primary_10_1016_j_exger_2017_05_014 crossref_primary_10_1152_ajpgi_90434_2008 crossref_primary_10_1016_j_jneuroim_2018_09_002 crossref_primary_10_1016_S0084_3954_09_79460_6 crossref_primary_10_1016_j_foodchem_2011_07_024 crossref_primary_10_2174_1871527318666190319141835 crossref_primary_10_3390_foods12081682 crossref_primary_10_1089_adt_2018_848 crossref_primary_10_1007_s12035_021_02696_0 crossref_primary_10_2174_1389557522666220309140855 crossref_primary_10_3390_medicina59091584 crossref_primary_10_1016_j_jff_2024_106198 crossref_primary_10_1016_j_ajpath_2019_01_012 crossref_primary_10_1515_jbcpp_2020_0255 crossref_primary_10_1016_j_bbadis_2010_12_014 crossref_primary_10_1254_jphs_10060FP crossref_primary_10_1016_j_jep_2013_08_058 crossref_primary_10_4049_jimmunol_1402077 crossref_primary_10_1016_j_ejphar_2022_174884 crossref_primary_10_1089_jmf_2012_0196 crossref_primary_10_1124_mol_110_064535 crossref_primary_10_3389_fphar_2022_897966 crossref_primary_10_4162_nrp_2013_7_6_423 crossref_primary_10_1089_rej_2015_1708 crossref_primary_10_3390_antiox12020427 crossref_primary_10_1039_c0fo00103a crossref_primary_10_1186_s12974_016_0650_3 crossref_primary_10_1080_01480545_2018_1504961 crossref_primary_10_1080_07853890_2024_2308077 crossref_primary_10_1002_jms_4209 crossref_primary_10_1007_s00592_016_0842_4 crossref_primary_10_1111_jphp_12160 crossref_primary_10_1039_C4FO00144C crossref_primary_10_1016_j_fct_2013_12_017 crossref_primary_10_1016_j_mam_2017_11_003 crossref_primary_10_1016_j_pscia_2023_100021 crossref_primary_10_1016_j_bbi_2013_10_022 crossref_primary_10_1016_j_intimp_2013_06_032 crossref_primary_10_1016_j_jfca_2011_04_007 crossref_primary_10_1016_j_bbadis_2010_12_017 crossref_primary_10_1080_22311866_2024_2351023 crossref_primary_10_1016_j_yexcr_2012_08_008 crossref_primary_10_3390_nu12030811 crossref_primary_10_6000_1929_5634_2015_04_03_4 crossref_primary_10_1002_biof_1726 crossref_primary_10_1016_j_jnutbio_2011_06_013 crossref_primary_10_2174_1871527319666200613223018 crossref_primary_10_1021_acssynbio_8b00326 crossref_primary_10_3233_JAD_150765 crossref_primary_10_1016_j_phymed_2023_154889 crossref_primary_10_1016_j_mcn_2014_05_004 crossref_primary_10_1016_j_phymed_2024_155611 crossref_primary_10_1186_s12974_014_0168_5 crossref_primary_10_1007_s12031_018_1094_2 crossref_primary_10_3892_etm_2016_3854 crossref_primary_10_3177_jnsv_61_188 crossref_primary_10_1016_j_bbrc_2017_06_140 crossref_primary_10_1016_j_ejphar_2011_06_047 crossref_primary_10_3109_13880209_2014_892515 crossref_primary_10_1039_C4RA03038A crossref_primary_10_1007_s12272_010_1117_1 crossref_primary_10_1007_s12013_014_9872_0 crossref_primary_10_1080_1744666X_2023_2200936 crossref_primary_10_1007_s12263_009_0136_3 crossref_primary_10_1186_s41232_016_0031_4 crossref_primary_10_1016_j_heliyon_2023_e16930 crossref_primary_10_1002_jbt_23619 crossref_primary_10_1016_j_seppur_2014_08_022 crossref_primary_10_1186_s12974_023_02946_z crossref_primary_10_1016_j_clinthera_2013_04_009 crossref_primary_10_1007_s11064_018_2608_6 crossref_primary_10_1016_j_intimp_2019_04_019 crossref_primary_10_1111_j_1471_4159_2010_06783_x crossref_primary_10_1186_s12974_023_02801_1 crossref_primary_10_1007_s10753_010_9271_7 crossref_primary_10_1016_j_jaci_2014_10_032 crossref_primary_10_3233_BPL_200098 crossref_primary_10_1038_tp_2015_142 crossref_primary_10_3892_ol_2017_6643 crossref_primary_10_1007_s12017_010_8112_z crossref_primary_10_1039_D0FO01030H crossref_primary_10_3945_jn_110_123273 crossref_primary_10_1186_1742_2094_9_172 crossref_primary_10_1016_j_ntt_2017_11_002 crossref_primary_10_1111_j_1753_4887_2010_00336_x crossref_primary_10_2174_1389557519666190617150051 crossref_primary_10_1016_j_lfs_2020_117990 crossref_primary_10_1016_j_brainres_2010_11_069 crossref_primary_10_1016_j_tiv_2011_05_009 crossref_primary_10_1007_s00281_009_0180_5 crossref_primary_10_1016_j_molstruc_2019_07_056 crossref_primary_10_5114_reum_2015_53998 crossref_primary_10_1007_s11064_009_0043_4 crossref_primary_10_1016_j_prmcm_2024_100475 crossref_primary_10_3390_jpm11090860 crossref_primary_10_1038_tp_2016_77 crossref_primary_10_1002_ptr_6942 crossref_primary_10_1016_j_jep_2012_05_048 crossref_primary_10_1038_ijo_2009_296 crossref_primary_10_3892_ijo_2018_4633 crossref_primary_10_1186_1742_2094_7_3 crossref_primary_10_1016_j_clinthera_2013_07_419 crossref_primary_10_1517_14656560903107789 crossref_primary_10_1097_FJC_0000000000000380 crossref_primary_10_1038_ijo_2010_272 crossref_primary_10_1097_NT_0000000000000683 crossref_primary_10_1002_mnfr_201300830 crossref_primary_10_1016_j_intimp_2018_06_004 crossref_primary_10_3390_pharmaceutics14010116 crossref_primary_10_1016_j_freeradbiomed_2014_03_009 crossref_primary_10_1021_jm901773d crossref_primary_10_1016_j_jep_2020_112687 crossref_primary_10_1016_j_molliq_2021_117895 crossref_primary_10_2174_0113816128287109240321074628 crossref_primary_10_1097_j_pain_0000000000001681 |
Cites_doi | 10.1073/pnas.96.8.4668 10.1074/jbc.274.40.28823 10.1016/j.bbamcr.2006.12.009 10.1128/mcb.14.7.4443-4454.1994 10.1093/jn/136.3.664 10.1002/1098-2744(200011)29:3<159::AID-MC5>3.0.CO;2-W 10.1016/j.freeradbiomed.2003.11.023 10.1016/S0006-2952(03)00465-9 10.1016/S0169-328X(97)00235-0 10.1016/j.tiv.2008.01.008 10.1016/S1043-6618(03)00225-1 10.2174/138161207780858384 10.1084/jem.20040819 10.1016/S0165-5728(01)00316-2 10.1016/j.neurobiolaging.2006.11.002 10.1038/nri2015 10.1111/j.1365-2567.2005.02156.x 10.1146/annurev.nutr.22.111401.144957 10.1006/clin.1996.0172 10.1016/j.bcp.2006.07.016 10.1016/S0896-6273(03)00355-6 10.1023/A:1007614613771 10.1096/fj.00-0339com 10.1007/978-0-387-34817-9_13 10.1096/fj.05-3776fje 10.1523/JNEUROSCI.3376-06.2006 10.1016/j.neurobiolaging.2005.03.010 10.1523/JNEUROSCI.0914-07.2007 10.1016/j.jneuroim.2003.12.017 10.1093/gerona/57.5.M326 10.1016/j.jneuroim.2005.08.003 10.1016/j.bbi.2007.08.014 10.1016/j.bbi.2006.09.006 10.1159/000049025 10.1016/S0014-5793(98)01304-0 10.1016/S0169-328X(00)00042-5 10.1016/j.abb.2006.09.003 10.1002/glia.20173 10.1002/j.1460-2075.1993.tb06066.x 10.1093/ajcn/76.3.560 10.1016/S0898-6568(00)00149-2 10.1038/nrc1189 10.1016/j.neulet.2004.02.041 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences May 27, 2008 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences May 27, 2008 – notice: 2008 by The National Academy of Sciences of the USA |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.0802865105 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | Virology and AIDS Abstracts Neurosciences Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 7539 |
ExternalDocumentID | 1487601231 10_1073_pnas_0802865105 18490655 105_21_7534 25462633 US201300900441 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG016710 – fundername: NIMH NIH HHS grantid: MH069148 – fundername: NIA NIH HHS grantid: AG023580 – fundername: NIMH NIH HHS grantid: R01 MH069148 – fundername: NIA NIH HHS grantid: AG029573 – fundername: NIA NIH HHS grantid: AG16710 – fundername: NIA NIH HHS grantid: R01 AG023580 – fundername: NIA NIH HHS grantid: R01 AG029573 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c618t-8b3c7c842054bfc376a742d5be523b07249d27760cec38972138c031e35fc1233 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:22:11 EDT 2024 Fri Oct 25 03:31:53 EDT 2024 Thu Oct 10 17:04:52 EDT 2024 Thu Nov 21 21:02:06 EST 2024 Mon Nov 04 07:35:47 EST 2024 Wed Nov 11 00:29:26 EST 2020 Thu May 30 08:52:56 EDT 2019 Fri Feb 02 07:05:54 EST 2024 Wed Dec 27 19:14:24 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c618t-8b3c7c842054bfc376a742d5be523b07249d27760cec38972138c031e35fc1233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Communicated by David H. Baker, University of Illinois at Urbana–Champaign, Urbana, IL, March 25, 2008 Author contributions: S.J., K.W.K., and R.W.J. designed research; S.J. performed research; S.J. analyzed data; and S.J. and R.W.J. wrote the paper. |
OpenAccessLink | https://europepmc.org/articles/pmc2396685?pdf=render |
PMID | 18490655 |
PQID | 201396062 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | jstor_primary_25462633 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2396685 pubmed_primary_18490655 pnas_primary_105_21_7534 pnas_primary_105_21_7534_fulltext crossref_primary_10_1073_pnas_0802865105 proquest_miscellaneous_20783410 proquest_journals_201396062 fao_agris_US201300900441 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2008-05-27 |
PublicationDateYYYYMMDD | 2008-05-27 |
PublicationDate_xml | – month: 05 year: 2008 text: 2008-05-27 day: 27 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 10959944 - Eur J Epidemiol. 2000 Apr;16(4):357-63 11257452 - Cell Signal. 2001 Feb;13(2):85-94 16146653 - J Neuroimmunol. 2005 Dec;169(1-2):97-105 11983728 - J Gerontol A Biol Sci Med Sci. 2002 May;57(5):M326-32 14570043 - Nat Rev Cancer. 2003 Oct;3(10):768-80 15611292 - J Exp Med. 2004 Dec 20;200(12):1667-72 12818176 - Neuron. 2003 Jun 19;38(6):899-914 15919760 - FASEB J. 2005 Aug;19(10):1329-31 8906747 - Clin Immunol Immunopathol. 1996 Nov;81(2):161-7 10497256 - J Biol Chem. 1999 Oct 1;274(40):28823-7 11108661 - Mol Carcinog. 2000 Nov;29(3):159-69 15135894 - Neurosci Lett. 2004 May 6;361(1-3):64-7 17220915 - Nat Rev Immunol. 2007 Feb;7(2):161-7 11123379 - J Pharmacol Exp Ther. 2001 Jan;296(1):181-7 12055336 - Annu Rev Nutr. 2002;22:19-34 18075491 - Neuropsychopharmacology. 2008 Sep;33(10):2341-51 17584114 - Curr Pharm Des. 2007;13(18):1875-86 11149903 - FASEB J. 2001 Jan;15(1):155-163 9427519 - Brain Res Mol Brain Res. 1997 Nov;51(1-2):170-8 11431008 - J Neuroimmunol. 2001 Jul 2;117(1-2):87-96 9827549 - FEBS Lett. 1998 Nov 6;438(3):220-4 14980703 - Free Radic Biol Med. 2004 Mar 1;36(5):592-604 15739188 - Glia. 2005 May;50(3):235-46 17088043 - Brain Behav Immun. 2007 Feb;21(2):153-60 17174449 - Neurobiol Aging. 2008 Apr;29(4):614-21 17306896 - Biochim Biophys Acta. 2007 Aug;1773(8):1341-8 14527825 - Pharmacol Res. 2003 Dec;48(6):601-6 18314304 - Toxicol In Vitro. 2008 Jun;22(4):921-6 16484540 - J Nutr. 2006 Mar;136(3):664-71 17050710 - J Neurosci. 2006 Oct 18;26(42):10709-16 10200320 - Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4668-73 8007951 - Mol Cell Biol. 1994 Jul;14(7):4443-54 17951027 - Brain Behav Immun. 2008 Mar;22(3):301-11 11847480 - Neuroimmunomodulation. 2001;9(4):183-92 12198000 - Am J Clin Nutr. 2002 Sep;76(3):560-8 16934226 - Biochem Pharmacol. 2006 Oct 16;72(8):1010-21 17089886 - Adv Exp Med Biol. 2006;588:145-55 15020070 - J Neuroimmunol. 2004 Apr;149(1-2):101-9 8404856 - EMBO J. 1993 Oct;12(10):3879-91 15893410 - Neurobiol Aging. 2006 May;27(5):723-32 17537957 - J Neurosci. 2007 May 30;27(22):5869-78 12963482 - Biochem Pharmacol. 2003 Sep 15;66(6):955-63 15946255 - Immunology. 2005 Jul;115(3):375-87 17052680 - Arch Biochem Biophys. 2006 Nov 15;455(2):197-203 10814840 - Brain Res Mol Brain Res. 2000 Apr 14;77(1):138-47 Rice-Evans C (e_1_3_3_8_2) 1998 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_31_2 e_1_3_3_40_2 Godbout JP (e_1_3_3_5_2) 2007 e_1_3_3_6_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 Xagorari A (e_1_3_3_10_2) 2001; 296 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_39_2 doi: 10.1073/pnas.96.8.4668 – ident: e_1_3_3_40_2 doi: 10.1074/jbc.274.40.28823 – ident: e_1_3_3_18_2 doi: 10.1016/j.bbamcr.2006.12.009 – ident: e_1_3_3_14_2 doi: 10.1128/mcb.14.7.4443-4454.1994 – ident: e_1_3_3_21_2 doi: 10.1093/jn/136.3.664 – ident: e_1_3_3_27_2 doi: 10.1002/1098-2744(200011)29:3<159::AID-MC5>3.0.CO;2-W – ident: e_1_3_3_37_2 doi: 10.1016/j.freeradbiomed.2003.11.023 – ident: e_1_3_3_13_2 doi: 10.1016/S0006-2952(03)00465-9 – ident: e_1_3_3_38_2 doi: 10.1016/S0169-328X(97)00235-0 – ident: e_1_3_3_42_2 doi: 10.1016/j.tiv.2008.01.008 – ident: e_1_3_3_32_2 doi: 10.1016/S1043-6618(03)00225-1 – year: 2007 ident: e_1_3_3_5_2 article-title: Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system publication-title: Neuropsychopharmacology contributor: fullname: Godbout JP – ident: e_1_3_3_16_2 doi: 10.2174/138161207780858384 – ident: e_1_3_3_31_2 doi: 10.1084/jem.20040819 – ident: e_1_3_3_22_2 doi: 10.1016/S0165-5728(01)00316-2 – ident: e_1_3_3_6_2 doi: 10.1016/j.neurobiolaging.2006.11.002 – ident: e_1_3_3_7_2 doi: 10.1038/nri2015 – ident: e_1_3_3_12_2 doi: 10.1111/j.1365-2567.2005.02156.x – ident: e_1_3_3_30_2 doi: 10.1146/annurev.nutr.22.111401.144957 – ident: e_1_3_3_33_2 doi: 10.1006/clin.1996.0172 – ident: e_1_3_3_11_2 doi: 10.1016/j.bcp.2006.07.016 – ident: e_1_3_3_19_2 doi: 10.1016/S0896-6273(03)00355-6 – ident: e_1_3_3_28_2 doi: 10.1023/A:1007614613771 – ident: e_1_3_3_1_2 doi: 10.1096/fj.00-0339com – ident: e_1_3_3_20_2 doi: 10.1007/978-0-387-34817-9_13 – ident: e_1_3_3_4_2 doi: 10.1096/fj.05-3776fje – ident: e_1_3_3_35_2 doi: 10.1523/JNEUROSCI.3376-06.2006 – ident: e_1_3_3_36_2 doi: 10.1016/j.neurobiolaging.2005.03.010 – ident: e_1_3_3_44_2 doi: 10.1523/JNEUROSCI.0914-07.2007 – ident: e_1_3_3_43_2 doi: 10.1016/j.jneuroim.2003.12.017 – volume: 296 start-page: 181 year: 2001 ident: e_1_3_3_10_2 article-title: Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages publication-title: J Pharmacol Exp Ther contributor: fullname: Xagorari A – ident: e_1_3_3_34_2 doi: 10.1093/gerona/57.5.M326 – ident: e_1_3_3_45_2 doi: 10.1016/j.jneuroim.2005.08.003 – ident: e_1_3_3_46_2 doi: 10.1016/j.bbi.2007.08.014 – ident: e_1_3_3_3_2 doi: 10.1016/j.bbi.2006.09.006 – ident: e_1_3_3_24_2 doi: 10.1159/000049025 – ident: e_1_3_3_9_2 doi: 10.1016/S0014-5793(98)01304-0 – ident: e_1_3_3_23_2 doi: 10.1016/S0169-328X(00)00042-5 – ident: e_1_3_3_41_2 doi: 10.1016/j.abb.2006.09.003 – ident: e_1_3_3_15_2 doi: 10.1002/glia.20173 – ident: e_1_3_3_26_2 doi: 10.1002/j.1460-2075.1993.tb06066.x – ident: e_1_3_3_29_2 doi: 10.1093/ajcn/76.3.560 – ident: e_1_3_3_2_2 doi: 10.1016/S0898-6568(00)00149-2 – ident: e_1_3_3_25_2 doi: 10.1038/nrc1189 – ident: e_1_3_3_17_2 doi: 10.1016/j.neulet.2004.02.041 – start-page: 329 volume-title: Flavonoids in Health and Diseases year: 1998 ident: e_1_3_3_8_2 contributor: fullname: Rice-Evans C |
SSID | ssj0009580 |
Score | 2.483472 |
Snippet | Luteolin, a flavonoid found in high concentrations in celery and green pepper, has been shown to reduce production of proinflammatory mediators in... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7534 |
SubjectTerms | Animals Antioxidants Binding sites Biological Sciences Brain Brain - drug effects Brain - immunology Cell lines Cells Cells, Cultured Cytokines DNA - metabolism Encephalitis - immunology Epithelial cells Flavonoids I-kappa B Kinase - metabolism Interleukin-6 - blood Interleukin-6 - genetics Interleukin-6 - metabolism JNK Mitogen-Activated Protein Kinases - antagonists & inhibitors JNK Mitogen-Activated Protein Kinases - metabolism Lipopolysaccharides - immunology Lipopolysaccharides - pharmacology Luteolin - pharmacology Male Messenger RNA Mice Mice, Inbred BALB C Microglia Microglia - drug effects Microglia - immunology Neurons NF-kappa B - metabolism Phosphorylation Phosphorylation - drug effects Potable water Promoter Regions, Genetic - drug effects Protein Binding - drug effects RNA, Messenger - metabolism Rodents Transcription Factor AP-1 - antagonists & inhibitors Transcription Factor AP-1 - metabolism |
Title | Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1 |
URI | https://www.jstor.org/stable/25462633 http://www.pnas.org/content/105/21/7534.abstract https://www.ncbi.nlm.nih.gov/pubmed/18490655 https://www.proquest.com/docview/201396062 https://search.proquest.com/docview/20783410 https://pubmed.ncbi.nlm.nih.gov/PMC2396685 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51e-KCKFCaFoqROJRDdpM4TrzHqqIqpa0qwUq9WbZjdyN1k9U-Dv33zOSxyyK4cMghmtiJPGPPTPzNZ4DPiUuiIqY_7rKQYSowYZXZ2IQefYFxRnjdgMdv77KrSXr9IB72QPS1MA1o35pyWD3NhlU5bbCV85kd9Tix0f3tRcIxSJdiNIABxoZ9ir5h2pVt3UmCy2-apD2fT85H80ovh1RcKjOKK4gwVKZjdMJixysNvK57eCJxnmKrv8Wff8Iof_NLl6_gZRdQsvP2ww9gz1Wv4aCbskt21vFKf3kD_ma9cnRGD1sQXysKv92EGZu3nK-oH4aiGQH0Hp9Kzcwz3k9LUxIwml3ffWfzab3Ea_Hc4ueYrgpGdRHtX11We3Z-H8ZvYXL59efFVdgdsxDaLJarUBpuc4tDhdGb8RZXHI35ciGMwyTVRDkmaEWS51lkncXwBlNGLi2uBY4Lb9Hx8UPYr-rKHQHLUx-JSLvC4cBmcix9IR3PY21Myp0UAZz1w6zmLZuGanbBc65omNVWOQEcoRqUfsS1Tk1-JLTDGo1p_zkO4LDRzaYL4vRPMs6xTdPLtmuhklhhRpYG8OlfIuU7mE0AJ72SVTeTl4peTFleEsDHjRSnIO2r6MrVa3qETiuJowDetQaxfUtnXgHkO6ayeYDIvXclaPMNyXdn48f_3fIEXrTYFqo5fA_7q8XafcAAamVOyX2J02ba_AKt3hW7 |
link.rule.ids | 230,315,729,782,786,887,27931,27932,53798,53800 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED4k6dAuRdI2jZq2YYEO6SBbEkWRHoOggZPYRoDGQDZClKhYQCwJfgz597nTw66LdumgQTiREnhH3p343UeA74ENvNSnP-4qVW4oMGFV0cC4GfoCY43I4ho8Pp5Ew2l48yAe9kB0tTA1aD8xea94mveKfFZjK6t50u9wYv278WXAMUhXor8PrwSXA9Ul6RuuXdVUngS4AIdB2DH6SN6vinjZo_JSFVFkQZShKhygGxY7fmk_i8sOoEisp9jqbxHon0DK3zzT1SG8bUNKdtF8-hHs2eIdHLWTdsnOW2bpH-8hG61Xlk7pYQtibEXh9ciNWNWwvqKGGIrmBNF7fMpjZp7xfpabnKDR7GZyy6pZucRr8dwg6FhcpIwqI5r_uqzM2MWd63-A6dXP-8uh2x604CaRr1auMjyRCQ4Vxm8mS3DNiTFjToWxmKYaT2KKlgZSRl5iEwxwMGnkKsHVwHKRJej6-DEcFGVhT4DJMPOEF9vU4sBGaqCyVFku_diYkFslHDjvhllXDZ-GrvfBJdc0zHqrHAdOUA06fsTVTk9_BbTH6g1oB9p34LjWzaYLYvUPIs6xTd3LtmuhA19jThY68O1fIp21QBsHTjsl63YuLzW9mPK8wIGzjRQnIe2sxIUt1_QInVfiew58bAxi-5bWvByQO6ayeYDovXclaPU1zXdr5Z_-u-UZvB7ej0d6dD25PYU3DdKFKhA_w8FqsbZfMJxama_15HkB9PsYLw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbWDhh2GdptXb1uqwbs0B2c2JZlK8eiW9BHGgTYAvQmWLbUGGhsI49D_31JP5Jm2C47-GDQkg2RFEnr0yeAb4EJvMynP-4yk24osGCV0UC7FmOBNlrYpAaP346jy2l4fSfunh31VYP2U533iod5r8hnNbaymqf9DifWn9xeBByTdCn6VWb7e_ASfdbzukJ9w7crm90nAU7CYRB2rD4x71dFsuzRFlMZUXZBtKEyHGAoFjuxac8mZQdSJOZTbPW3LPRPMOWz6DQ8gDdtWsnOm88_hBemeAuHreMu2VnLLv39HdjRemXopB62INZWFF6N3IhVDfMraomhaE4wvfuHPGH6Ee9nuc4JHs2uxzesmpVLvBaPDYqOJUXGaHdE82-XlZadT1z_PUyHP39fXLrtYQtuGvly5UrN0zjFocIcTtsU550Eq-ZMaIOlqvZiLNOyII4jLzUpJjlYOHKZ4oxguLAphj9-BPtFWZhjYHFoPeElJjM4sJEcSJtJw2M_0TrkRgoHzrphVlXDqaHqtfCYKxpmtVWOA8eoBpXc44ynpr8CWmf1BrQK7TtwVOtm0wUx-wcR59im7mXbtVCBr7AuCx34-i-Rsi3YxoGTTsmq9eelohdTrRc4cLqRoiPS6kpSmHJNj9CZJb7nwIfGILZvac3LgXjHVDYPEMX3rgQtv6b6bi3943-3PIVXkx9DNboa35zA6wbsQpsQP8H-arE2nzGjWukvte88AdHlGTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Luteolin+reduces+IL-6+production+in+microglia+by+inhibiting+JNK+phosphorylation+and+activation+of+AP-1&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jang%2C+Saebyeol&rft.au=Kelley%2C+Keith+W&rft.au=Johnson%2C+Rodney+W&rft.date=2008-05-27&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=21&rft.spage=7534&rft_id=info:doi/10.1073%2Fpnas.0802865105&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1487601231 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F21.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F21.cover.gif |