Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model
Atmospheric aerosols are a significant public health hazard and have substantial impacts on the climate. Secondary organic aerosols (SOAs) have been shown to phase separate into a highly viscous organic outer layer surrounding an aqueous core. This phase separation can decrease the partitioning of s...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 20; no. 12; pp. 8201 - 8225 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Copernicus GmbH
16.07.2020
European Geosciences Union Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Atmospheric aerosols are a significant public health hazard and have substantial impacts on the climate. Secondary organic aerosols (SOAs) have been shown to phase separate into a highly viscous organic outer layer surrounding an aqueous core. This phase separation can decrease the partitioning of semi-volatile and low-volatile species to the organic phase and alter the extent of acid-catalyzed reactions in the aqueous core. A new algorithm that can determine SOA phase separation based on their glass transition temperature (
), oxygen to carbon (O : C) ratio and organic mass to sulfate ratio, and meteorological conditions was implemented into the Community Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 and was used to simulate the conditions in the continental United States for the summer of 2013. SOA formed at the ground/surface level was predicted to be phase separated with core-shell morphology, i.e., aqueous inorganic core surrounded by organic coating 65.4 % of the time during the 2013 Southern Oxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeastern United States. Our estimate is in proximity to the previously reported ~ 70 % in literature. The phase states of organic coatings switched between semi-solid and liquid states, depending on the environmental conditions. The semi-solid shell occurring with lower aerosol liquid water content (western United States and at higher altitudes) has a viscosity that was predicted to be 10
-10
Pa s, which resulted in organic mass being decreased due to diffusion limitation. Organic aerosol was primarily liquid where aerosol liquid water was dominant (eastern United States and at the surface), with a viscosity < 10
Pa s. Phase separation while in a liquid phase state, i.e., liquid-liquid phase separation (LLPS), also reduces reactive uptake rates relative to homogeneous internally mixed liquid morphology but was lower than aerosols with a thick viscous organic shell. The sensitivity cases performed with different phase-separation parameterization and dissolution rate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can have varying impact on fine particulate matter (PM
) organic mass, in terms of bias and error compared to field data collected during the 2013 SOAS. This highlights the need to better constrain the parameters that govern phase state and morphology of SOA, as well as expand mechanistic representation of multiphase chemistry for non-IEPOX SOA formation in models aided by novel experimental insights. |
---|---|
Bibliography: | PNNL-SA-153998 National Science Foundation (NSF) AC05-76RL01830; AGS-1524731; AGS-1250569; AGS-1644406; AGS-1703535; SC0018221 National Institutes of Health (NIH) USDOE Office of Science (SC), Biological and Environmental Research (BER) present address: Department of Atmospheric and Oceanic Science, McGill University, Montreal, H3A 2K6, Canada present address: Pacific Northwest National Laboratory, Richland, WA 99354, USA These authors contributed equally to this work. present address: Tofwerk AG, 3600 Thun, Switzerland Author contributions. RS and QZR led the writing with WV. RS designed the new PhaseSep methodology along with sensitivity cases to run in consistent consultation with YZ, HOTP, YC, JDS, QZR and WV. QZR implemented the model code and performed the simulations in the regional-scale model with reviews from HOTP. RS analyzed results of simulations with QZR, WV and HZ. FDLH, JAT, AHG and HZ analyzed the SOAS field data. RS and QZR prepared the paper with extensive reviews and edits from WV, YZ, YC, HOTP, HZ and JDS. |
ISSN: | 1680-7316 1680-7324 1680-7324 |
DOI: | 10.5194/acp-20-8201-2020 |