ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex
Bidirectional synaptic plasticity during development ensures that appropriate synapses in the brain are strengthened and maintained while inappropriate connections are weakened and eliminated. This plasticity is well illustrated in mouse visual cortex, where monocular deprivation during early postna...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 13; pp. 5377 - 5382 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
31.03.2009
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bidirectional synaptic plasticity during development ensures that appropriate synapses in the brain are strengthened and maintained while inappropriate connections are weakened and eliminated. This plasticity is well illustrated in mouse visual cortex, where monocular deprivation during early postnatal development leads to a rapid depression of inputs from the deprived eye and a delayed strengthening of inputs from the non-deprived eye. The mechanisms that control these bidirectional synaptic modifications remain controversial. Here we demonstrate, both in vitro and in vivo, that genetic deletion or reduction of the NR2A NMDA receptor subunit impairs activity-dependent weakening of synapses and enhances the strengthening of synapses. Although brief monocular deprivation in juvenile WT mice normally causes a profound depression of the deprived-eye response without a change in the non-deprived eye response, NR2A-knockout mice fail to exhibit deprivation-induced depression and instead exhibit precocious potentiation of the non-deprived eye inputs. These data support the hypothesis that a reduction in the NR2A/B ratio during monocular deprivation is permissive for the compensatory potentiation of non-deprived inputs. |
---|---|
AbstractList | Bidirectional synaptic plasticity during development ensures that appropriate synapses in the brain are strengthened and maintained while inappropriate connections are weakened and eliminated. This plasticity is well illustrated in mouse visual cortex, where monocular deprivation during early postnatal development leads to a rapid depression of inputs from the deprived eye and a delayed strengthening of inputs from the non-deprived eye. The mechanisms that control these bidirectional synaptic modifications remain controversial. Here we demonstrate, both in vitro and in vivo, that genetic deletion or reduction of the NR2A NMDA receptor subunit impairs activity-dependent weakening of synapses and enhances the strengthening of synapses. Although brief monocular deprivation in juvenile WT mice normally causes a profound depression of the deprived-eye response without a change in the non-deprived eye response, NR2A-knockout mice fail to exhibit deprivation-induced depression and instead exhibit precocious potentiation of the non-deprived eye inputs. These data support the hypothesis that a reduction in the NR2A/B ratio during monocular deprivation is permissive for the compensatory potentiation of non-deprived inputs. Bidirectional synaptic plasticity during development ensures that appropriate synapses in the brain are strengthened and maintained while inappropriate connections are weakened and eliminated. This plasticity is well illustrated in mouse visual cortex, where monocular deprivation during early postnatal development leads to a rapid depression of inputs from the deprived eye and a delayed strengthening of inputs from the non-deprived eye. The mechanisms that control these bidirectional synaptic modifications remain controversial. Here we demonstrate, both in vitro and in vivo, that genetic deletion or reduction of the NR2A NMDA receptor subunit impairs activity-dependent weakening of synapses and enhances the strengthening of synapses. Although brief monocular deprivation in juvenile WT mice normally causes a profound depression of the deprived-eye response without a change in the non-deprived eye response, NR2A-knockout mice fail to exhibit deprivation-induced depression and instead exhibit precocious potentiation of the non-deprived eye inputs. These data support the hypothesis that a reduction in the NR2A/B ratio during monocular deprivation is permissive for the compensatory potentiation of non-deprived inputs. [PUBLICATION ABSTRACT] |
Author | Khibnik, Lena Philpot, Benjamin D Bear, Mark F Cho, Kathleen K.A |
Author_xml | – sequence: 1 fullname: Cho, Kathleen K.A – sequence: 2 fullname: Khibnik, Lena – sequence: 3 fullname: Philpot, Benjamin D – sequence: 4 fullname: Bear, Mark F |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19276107$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhS1URB-wZgVYLBCbNNfP8WyQQnlKpUhA15bH42kdTezU9lT03-MoUQMsYGVZ97vH99zjY3QQYnAIPSVwSqBh83Uw-RQUKAKcgHyAjgi0ZCZ5CwfoCIA2M8UpP0THOS8BoBUKHqFD0tJGVoEjFJMpPuI44ItvdDF_iy--vFvg5Kxbl5hwnrop-JJx74pLKx9cxuXa4ZvJjL74equd0U6jSbiPtW6CdXg9mly89eUO-4Bvfa40tjEV9_MxejiYMbsnu_MEXX54_-Ps0-z868fPZ4vzmZVElRk3UnJFiVTKESaUY51VyrQ954OwtGfVS9dY3lnZqKHpoCd2UIY4YRszWGAn6M1Wdz11K9dbF0oyo14nvzLpTkfj9Z-V4K_1VbzVVAoOVFSBVzuBFG8ml4te-WzdOJrg4pS1bAgISuh_QQq0LrshFXz5F7iMUwp1C5UhrFpVbYXmW8immHNyw_3IBPQmcr2JXO8jrx3Pf3e653cZV-DFDth07uWkJkwL1myI1_8m9DCNY02vVPTZFl3m-j_uWQ5cCAps_9hgojZXyWd9-X1jD4gkrFGC_QKXCNVP |
CitedBy_id | crossref_primary_10_1016_j_neuropharm_2013_12_015 crossref_primary_10_1016_j_nbd_2011_02_013 crossref_primary_10_1016_j_neuron_2011_02_045 crossref_primary_10_1016_j_ijdevneu_2011_05_005 crossref_primary_10_1016_j_neubiorev_2015_06_022 crossref_primary_10_1016_j_neuropharm_2013_04_014 crossref_primary_10_1038_nn_2708 crossref_primary_10_1038_nn_2508 crossref_primary_10_1002_jnr_23246 crossref_primary_10_1016_j_neuron_2013_07_022 crossref_primary_10_1002_glia_24323 crossref_primary_10_1016_j_neuron_2014_09_036 crossref_primary_10_1073_pnas_1914661116 crossref_primary_10_1177_1087054711434351 crossref_primary_10_1016_j_expneurol_2018_05_005 crossref_primary_10_1111_acer_12775 crossref_primary_10_1038_emboj_2011_453 crossref_primary_10_1113_jphysiol_2012_235119 crossref_primary_10_1007_s12264_014_1504_6 crossref_primary_10_1016_j_neurobiolaging_2015_02_012 crossref_primary_10_3389_fnins_2021_668293 crossref_primary_10_1016_j_celrep_2023_113667 crossref_primary_10_1152_jn_00442_2009 crossref_primary_10_1016_j_neuroscience_2018_09_048 crossref_primary_10_1186_s12199_020_00929_7 crossref_primary_10_3389_fncir_2021_803401 crossref_primary_10_3389_fncel_2020_00245 crossref_primary_10_1155_2013_605079 crossref_primary_10_1093_cercor_bhz260 crossref_primary_10_1016_j_neuropharm_2012_06_051 crossref_primary_10_1186_s13041_015_0141_y crossref_primary_10_1093_cercor_bhy297 crossref_primary_10_1098_rstb_2013_0148 crossref_primary_10_1016_j_survophthal_2024_04_006 crossref_primary_10_1016_j_tins_2013_03_007 crossref_primary_10_1073_pnas_0910499106 crossref_primary_10_1155_2020_5173184 crossref_primary_10_1016_j_neuron_2012_06_009 crossref_primary_10_1038_s41380_018_0034_4 crossref_primary_10_2217_fnl_09_62 crossref_primary_10_3389_fncel_2015_00362 crossref_primary_10_1016_j_visres_2020_07_014 crossref_primary_10_1038_s41593_018_0150_0 crossref_primary_10_1038_s41593_017_0019_7 crossref_primary_10_1098_rstb_2016_0260 crossref_primary_10_21307_ane_2021_006 crossref_primary_10_2139_ssrn_4169250 crossref_primary_10_3389_fncel_2020_00076 crossref_primary_10_1016_j_conb_2018_08_010 crossref_primary_10_1002_cne_24336 crossref_primary_10_1016_j_neuron_2012_12_032 crossref_primary_10_1523_JNEUROSCI_3188_18_2019 crossref_primary_10_1016_j_bbr_2021_113625 crossref_primary_10_1038_s41386_022_01374_6 crossref_primary_10_1371_journal_pcbi_1004559 crossref_primary_10_1073_pnas_1512878112 crossref_primary_10_1038_srep04094 crossref_primary_10_1016_j_conb_2009_05_010 crossref_primary_10_1038_s41386_023_01614_3 crossref_primary_10_1038_s41586_023_06204_3 crossref_primary_10_1159_000522131 crossref_primary_10_1167_19_6_25 crossref_primary_10_1038_emboj_2012_3 crossref_primary_10_1155_2019_2564018 crossref_primary_10_1016_j_nbd_2017_10_006 crossref_primary_10_1152_jn_00457_2014 crossref_primary_10_1038_nrn3353 crossref_primary_10_1523_JNEUROSCI_1314_10_2010 crossref_primary_10_1371_journal_pone_0151233 crossref_primary_10_1088_1741_2560_6_5_055001 crossref_primary_10_1098_rstb_2013_0284 crossref_primary_10_1097_ICU_0000000000000901 crossref_primary_10_1016_j_neubiorev_2012_03_008 crossref_primary_10_1146_annurev_neuro_061010_113813 |
Cites_doi | 10.1523/JNEUROSCI.2451-08.2008 10.1046/j.1460-9568.1999.00859.x 10.1038/nrn2356 10.1113/jphysiol.1970.sp009022 10.1073/pnas.96.22.12876 10.1152/physrev.1994.74.3.723 10.1523/JNEUROSCI.5242-05.2006 10.1016/j.neuron.2007.01.027 10.1098/rstb.2002.1255 10.1523/JNEUROSCI.1697-04.2004 10.1038/373151a0 10.1523/JNEUROSCI.17-07-02469.1997 10.1016/j.neuron.2005.08.014 10.1093/acprof:oso/9780198524243.003.0005 10.1152/physrev.1985.65.1.37 10.1152/jn.1989.62.1.185 10.1016/j.neuropharm.2006.07.003 10.1038/nn1100 10.1073/pnas.0536089100 10.1111/j.1460-9568.2008.06384.x 10.1016/j.neuropharm.2006.07.005 10.1016/j.neuron.2008.04.023 10.1016/0896-6273(94)90210-0 10.1016/S0896-6273(01)00187-8 10.1523/JNEUROSCI.23-12-05208.2003 10.1016/S0896-6273(03)00323-4 10.1523/JNEUROSCI.2388-05.2005 10.1016/j.neuron.2006.06.026 10.1523/JNEUROSCI.23-13-05583.2003 10.1113/jphysiol.1976.sp011551 10.1523/JNEUROSCI.02-01-00032.1982 10.1038/nrn1327 10.1523/JNEUROSCI.1905-05.2005 10.1152/jn.1999.81.5.2587 10.1073/pnas.0609596104 10.1126/science.1096615 10.1152/jn.1975.38.2.369 10.1113/jphysiol.1974.sp010478 10.1038/7263 10.1038/381526a0 10.1152/jn.90290.2008 10.1126/science.8502997 10.1098/rstb.2008.0198 10.1523/JNEUROSCI.16-24-07859.1996 10.1016/S0896-6273(01)00501-3 10.1016/j.neuron.2004.12.003 10.1016/j.neuron.2007.05.028 10.1016/j.neuron.2008.02.020 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Mar 31, 2009 |
Copyright_xml | – notice: Copyright National Academy of Sciences Mar 31, 2009 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.0808104106 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 5382 |
ExternalDocumentID | 1673444421 10_1073_pnas_0808104106 19276107 106_13_5377 40455203 US201301613785 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY012309-12 – fundername: NEI NIH HHS grantid: R01 EY012309 – fundername: Howard Hughes Medical Institute – fundername: NEI NIH HHS grantid: R01 EY018323-02 – fundername: NEI NIH HHS grantid: R01 EY018323 – fundername: NEI NIH HHS grantid: R01 EY018323-01 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c618t-4a664821688e1358e3bc88a9d44f5c2d3000b7c4bc678f7b0d1cf8a1e5c7afc03 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 20:54:58 EDT 2024 Fri Oct 25 02:52:29 EDT 2024 Fri Oct 25 21:45:06 EDT 2024 Thu Oct 10 19:24:37 EDT 2024 Fri Aug 23 00:41:14 EDT 2024 Sat Sep 28 07:56:51 EDT 2024 Thu May 30 08:50:58 EDT 2019 Wed Nov 11 00:29:06 EST 2020 Fri Feb 02 07:05:54 EST 2024 Wed Dec 27 19:11:57 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c618t-4a664821688e1358e3bc88a9d44f5c2d3000b7c4bc678f7b0d1cf8a1e5c7afc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 1K.K.A.C. and L.K. contributed equally to this work. Edited by Richard L. Huganir, Johns Hopkins University School of Medicine, Baltimore, MD, and approved February 4, 2009 |
OpenAccessLink | https://doi.org/10.1073/pnas.0808104106 |
PMID | 19276107 |
PQID | 201368889 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | fao_agris_US201301613785 proquest_miscellaneous_20227671 pnas_primary_106_13_5377_fulltext jstor_primary_40455203 pnas_primary_106_13_5377 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2654025 proquest_journals_201368889 proquest_miscellaneous_67105212 pubmed_primary_19276107 crossref_primary_10_1073_pnas_0808104106 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2009-03-31 |
PublicationDateYYYYMMDD | 2009-03-31 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-31 day: 31 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2009 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 14735113 - Nat Rev Neurosci. 2004 Feb;5(2):97-107 8036251 - Physiol Rev. 1994 Jul;74(3):723-60 18977732 - Philos Trans R Soc Lond B Biol Sci. 2009 Feb 12;364(1515):357-67 18401345 - Nat Rev Neurosci. 2008 May;9(5):387 12843259 - J Neurosci. 2003 Jul 2;23(13):5583-8 10322092 - J Neurophysiol. 1999 May;81(5):2587-91 10594657 - Eur J Neurosci. 1999 Dec;11(12):4320-6 8502997 - Science. 1993 Jun 4;260(5113):1518-21 10536016 - Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12876-80 11719203 - Neuron. 2001 Nov 20;32(4):619-34 18549780 - Neuron. 2008 Jun 12;58(5):673-80 12886226 - Nat Neurosci. 2003 Aug;6(8):854-62 7816096 - Nature. 1995 Jan 12;373(6510):151-5 18667547 - J Neurophysiol. 2008 Oct;100(4):1936-48 16880128 - Neuron. 2006 Aug 3;51(3):339-49 994027 - J Physiol. 1976 Sep;261(1):125-74 7054394 - J Neurosci. 1982 Jan;2(1):32-48 8632826 - Nature. 1996 Jun 6;381(6582):526-8 11182088 - Neuron. 2001 Jan;29(1):157-69 16452656 - J Neurosci. 2006 Feb 1;26(5):1331-3 7512349 - Neuron. 1994 Mar;12(3):529-40 12832545 - J Neurosci. 2003 Jun 15;23(12):5208-18 17296552 - Neuron. 2007 Feb 15;53(4):495-502 10204542 - Nat Neurosci. 1999 Apr;2(4):352-7 15603735 - Neuron. 2004 Dec 16;44(6):917-23 17227847 - Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1383-8 15356193 - J Neurosci. 2004 Sep 8;24(36):7821-8 18466745 - Neuron. 2008 May 8;58(3):340-5 18657180 - Eur J Neurosci. 2008 Aug;28(4):730-43 12591944 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2854-9 2754471 - J Neurophysiol. 1989 Jul;62(1):185-97 9065507 - J Neurosci. 1997 Apr 1;17(7):2469-76 15143284 - Science. 2004 May 14;304(5673):1021-4 16899258 - Neuropharmacology. 2007 Jan;52(1):71-6 18842887 - J Neurosci. 2008 Oct 8;28(41):10278-86 4595664 - J Physiol. 1974 Feb;237(1):195-216 5498493 - J Physiol. 1970 Feb;206(2):419-36 16033900 - J Neurosci. 2005 Jul 20;25(29):6907-10 16157280 - Neuron. 2005 Sep 15;47(6):859-72 16162920 - J Neurosci. 2005 Sep 14;25(37):8386-90 16895734 - Neuropharmacology. 2007 Jan;52(1):200-14 12740110 - Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):649-55 165272 - J Neurophysiol. 1975 Mar;38(2):369-82 12818182 - Neuron. 2003 Jun 19;38(6):977-85 3880898 - Physiol Rev. 1985 Jan;65(1):37-100 8987814 - J Neurosci. 1996 Dec 15;16(24):7859-67 17582335 - Neuron. 2007 Jun 21;54(6):961-72 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_40_2 Philpot BD (e_1_3_3_31_2) 1999 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_44_2 doi: 10.1523/JNEUROSCI.2451-08.2008 – ident: e_1_3_3_28_2 doi: 10.1046/j.1460-9568.1999.00859.x – ident: e_1_3_3_41_2 doi: 10.1038/nrn2356 – ident: e_1_3_3_1_2 doi: 10.1113/jphysiol.1970.sp009022 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.96.22.12876 – ident: e_1_3_3_12_2 doi: 10.1152/physrev.1994.74.3.723 – ident: e_1_3_3_34_2 doi: 10.1523/JNEUROSCI.5242-05.2006 – ident: e_1_3_3_10_2 doi: 10.1016/j.neuron.2007.01.027 – ident: e_1_3_3_24_2 doi: 10.1098/rstb.2002.1255 – ident: e_1_3_3_30_2 doi: 10.1523/JNEUROSCI.1697-04.2004 – ident: e_1_3_3_40_2 doi: 10.1038/373151a0 – ident: e_1_3_3_14_2 doi: 10.1523/JNEUROSCI.17-07-02469.1997 – ident: e_1_3_3_37_2 doi: 10.1016/j.neuron.2005.08.014 – start-page: 160 volume-title: Beyond Neurotransmission: Neuromodulation and Its Importance for Information Processing year: 1999 ident: e_1_3_3_31_2 doi: 10.1093/acprof:oso/9780198524243.003.0005 contributor: fullname: Philpot BD – ident: e_1_3_3_45_2 doi: 10.1152/physrev.1985.65.1.37 – ident: e_1_3_3_4_2 doi: 10.1152/jn.1989.62.1.185 – ident: e_1_3_3_18_2 doi: 10.1016/j.neuropharm.2006.07.003 – ident: e_1_3_3_47_2 doi: 10.1038/nn1100 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.0536089100 – ident: e_1_3_3_42_2 doi: 10.1111/j.1460-9568.2008.06384.x – ident: e_1_3_3_38_2 doi: 10.1016/j.neuropharm.2006.07.005 – ident: e_1_3_3_43_2 doi: 10.1016/j.neuron.2008.04.023 – ident: e_1_3_3_11_2 doi: 10.1016/0896-6273(94)90210-0 – ident: e_1_3_3_17_2 doi: 10.1016/S0896-6273(01)00187-8 – ident: e_1_3_3_32_2 doi: 10.1523/JNEUROSCI.23-12-05208.2003 – ident: e_1_3_3_20_2 doi: 10.1016/S0896-6273(03)00323-4 – ident: e_1_3_3_36_2 doi: 10.1523/JNEUROSCI.2388-05.2005 – ident: e_1_3_3_48_2 doi: 10.1016/j.neuron.2006.06.026 – ident: e_1_3_3_9_2 doi: 10.1523/JNEUROSCI.23-13-05583.2003 – ident: e_1_3_3_3_2 doi: 10.1113/jphysiol.1976.sp011551 – ident: e_1_3_3_7_2 doi: 10.1523/JNEUROSCI.02-01-00032.1982 – ident: e_1_3_3_27_2 doi: 10.1038/nrn1327 – ident: e_1_3_3_35_2 doi: 10.1523/JNEUROSCI.1905-05.2005 – ident: e_1_3_3_13_2 doi: 10.1152/jn.1999.81.5.2587 – ident: e_1_3_3_22_2 doi: 10.1073/pnas.0609596104 – ident: e_1_3_3_29_2 doi: 10.1126/science.1096615 – ident: e_1_3_3_46_2 doi: 10.1152/jn.1975.38.2.369 – ident: e_1_3_3_2_2 doi: 10.1113/jphysiol.1974.sp010478 – ident: e_1_3_3_16_2 doi: 10.1038/7263 – ident: e_1_3_3_8_2 doi: 10.1038/381526a0 – ident: e_1_3_3_39_2 doi: 10.1152/jn.90290.2008 – ident: e_1_3_3_6_2 doi: 10.1126/science.8502997 – ident: e_1_3_3_25_2 doi: 10.1098/rstb.2008.0198 – ident: e_1_3_3_19_2 doi: 10.1523/JNEUROSCI.16-24-07859.1996 – ident: e_1_3_3_33_2 doi: 10.1016/S0896-6273(01)00501-3 – ident: e_1_3_3_5_2 doi: 10.1016/j.neuron.2004.12.003 – ident: e_1_3_3_26_2 doi: 10.1016/j.neuron.2007.05.028 – ident: e_1_3_3_21_2 doi: 10.1016/j.neuron.2008.02.020 |
SSID | ssj0009580 |
Score | 2.321127 |
Snippet | Bidirectional synaptic plasticity during development ensures that appropriate synapses in the brain are strengthened and maintained while inappropriate... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5377 |
SubjectTerms | Animals Biological Sciences Brain Dominance, Ocular Eyes Genetics Long term depression Long term potentiation Mice Mice, Knockout N methyl D aspartate receptors Neuronal Plasticity Neurons Neuroscience Neurosciences Ocular dominance Receptors, N-Methyl-D-Aspartate - analysis Rodents Synapses Theory Vision, Monocular Visual Cortex Visual deprivation |
Title | ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex |
URI | https://www.jstor.org/stable/40455203 http://www.pnas.org/content/106/13/5377.abstract https://www.ncbi.nlm.nih.gov/pubmed/19276107 https://www.proquest.com/docview/201368889 https://search.proquest.com/docview/20227671 https://search.proquest.com/docview/67105212 https://pubmed.ncbi.nlm.nih.gov/PMC2654025 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9ad-KCGDAaNoaROIxD2sQfsXssg2mAWiGg0m5W7DijEksq0k7w3_PsJO2G2IWz7Rfrffm9-PeeAV5PXGEVJhaxEVbFfJKb2DCToDOkiTSi5KnzP_Rn8-xiwT9eiss9EH0tTADtW7McVT-uR9Xye8BWrq7tuMeJjT_PzmiGcQYV4wEMUEH7FH3baVe1dScU3S-nvO_nI9l4VeXNKPFvTSQcU6HQMJRiHu_fkr11Kg3KvO7hib7nKa76V_z5N4zy1rl0_ggedgElmbYbP4A9Vz2Gg85kG3La9ZV-8wQaVAkSBE7qksy_0On4LZnP3k0Jej23wm2QZmM2aOMNKTqUDFLACJG0pZeYVPuVdYCukqIOKBrryAojcA_OXv8my4rcLBucTaxH8f56Covz99_OLuLuzYXYZqlaxzzPMo7Cy5RyKRPKMWOVyicF56WwtGDIYSMtNxZPuVKapEhtqfLUCSvz0ibsEParunJDIMJgop4W1LqScjmRucqcEapIDBWlkyyC057netW21tDhSlwy7Xmud5KKYIgy0fkVOj69-Er9dSuGqkwqEcFhENSWBMcgVdAEyQ8DlR3pTKdMCyZlBK_uG9Jlh7mJ4KiXuO7MutH-w8gZNYng5XYU7dFfsuSVqzd-CkWVkun9M3AwVExH8KzVn90-Om2MQN7RrO0E3wv87giaSOgJ3pnE8_9eeQQP2osyX255DPvrnxv3AuOttTnBTOPDp5NgZX8AZQkoEA |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_axgEuiAGjYcCMxGEcsib-iN1jGUwF1grBKu1mxY4DlVhSkRbBf8-zk7QbYhfOtl-s9-X34t97Bng1coVVmFjERlgV81FuYsNMgs6QJtKIkqfO_9CfzrLJnH-4FJc7IPpamADat2ZxUn2_OqkW3wK2cnllhz1ObPhpekozjDOoGO7CHbTXhPdJ-qbXrmorTyg6YE5539FHsuGyypuTxL82kXBMhkLLUIqZvH9N9tq5tFvmdQ9Q9F1PcdW_ItC_gZTXTqazB3C_CynJuN36Puy46iHsd0bbkOOus_TrR9CgUpAgclKXZPaZjodvyGz6dkzQ77klboM0a7NGK29I0eFkkALGiKQtvsS02q-sA3iVFHXA0VhHlhiDe3j26jdZVOTnosHZxHoc76_HMD97d3E6ibtXF2KbpWoV8zzLOIovU8qlTCjHjFUqHxWcl8LSgiGHjbTcWDznSmmSIrWlylMnrMxLm7AD2Kvqyg2ACIOpelpQ60rK5UjmKnNGqCIxVJROsgiOe57rZdtcQ4dLccm057neSiqCAcpE51_R9en5F-ovXDFYZVKJCA6CoDYkOIapgiZIfhCobElnOmVaMCkjeHnbkC471E0Eh73EdWfYjfYfRs6oUQRHm1G0SH_NkleuXvspFFVKprfPwMFQMx3Bk1Z_tvvotDECeUOzNhN8N_CbI2gkoSt4ZxRP_3vlEdydXEzP9fn72cdDuNdem_niy2ewt_qxds8x-lqZF8HW_gAg3ypt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYkBAviAGjYcCMxMN4SJM4duw8lo1qfLSagEp7s2LHHpVYEpEWwX_P2UnaDrEXnn2-WL4P3-V-PiP0OjelFpBYhIppEdK8UKFKVQzOkMRcMUsT437oz-bZ-YJ-uGSXO099edC-Vstx9f16XC2_eWxlc62jAScWXcxOSQZxBmFRU9poD90Fm42zIVHf9NsV3e0TAk6YEjp09eFp1FRFO47dixMxhYTItw0lkM27F2V3zqY9W9QDSNF1PoVZ_4pC_wZT7pxO04foQR9W4km3_AN0x1SP0EFvuC0-6btLv3mMWlAM7MWOa4vnn8kkeovns7MJBt9nGlgGbtdqDZbe4rLHygAHiBNxdwETUms3s_YAVlzWHkujDW4gDncQ7dVvvKzwz2UL1Fg7LO-vJ2gxfff19DzsX14IdZaIVUiLLKMgwkwIk6RMmFRpIYq8pNQyTcoUdlhxTZWGs85yFZeJtqJIDNO8sDpOD9F-VVdmhDBTkK4nJdHGEspzXojMKCbKWBFmDU8DdDLsuWy6BhvSF8Z5Kt2ey62kAjQCmcjiCtyfXHwhrugKAWvKBQvQoRfUhgWFUJWRGNiPPJct60wmqWQp5wF6dduQtD3yJkBHg8Rlb9ytdB-GnRF5gI43o2CVrtRSVKZeOxICKsWT2ylg0N-bDtDTTn-26-i1MUD8hmZtCFxH8JsjYCi-M3hvGM_-e-YxundxNpWf3s8_HqH7XeXM3b98jvZXP9bmBQRgK_XSm9ofatMrgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ratio+of+NR2A%2FB+NMDA+receptor+subunits+determines+the+qualities+of+ocular+dominance+plasticity+in+visual+cortex&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cho%2C+Kathleen+KA&rft.au=Khibnik%2C+Lena&rft.au=Philpot%2C+Benjamin+D&rft.au=Bear%2C+Mark+F&rft.date=2009-03-31&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=106&rft.issue=13&rft.spage=5377&rft.epage=5382&rft_id=info:doi/10.1073%2Fpnas.0808104106&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F13.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F13.cover.gif |