Agonist-selective signaling is determined by the receptor location within the membrane domains

The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 27; pp. 9421 - 9426
Main Authors Zheng, Hui, Chu, Ji, Qiu, Yu, Loh, Horace H, Law, Ping-Yee
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.07.2008
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gαi2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine-MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Gαi2 interaction, either by deleting the ²⁷⁶RRITR²⁸⁰ sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin.
AbstractList The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gαi2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine-MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Gαi2 interaction, either by deleting the ²⁷⁶RRITR²⁸⁰ sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin.
The basis for agonist-selective signaling was investigated by using the ...-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gαi2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine-MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Gαi2 interaction, either by deleting the ...RRITR... sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin. (ProQuest: ... denotes formulae/symbols omitted.)
The basis for agonist-selective signaling was investigated by using the mu-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-beta-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Galphai2 first and then the binding of beta-arrestin. In contrast, the low affinity of the morphine-MOR complex for beta-arrestin and the rebinding of Galphai2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Galphai2 interaction, either by deleting the (276)RRITR(280) sequence of MOR or knocking down the level of Galphai2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas beta-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and beta-arrestin.The basis for agonist-selective signaling was investigated by using the mu-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-beta-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Galphai2 first and then the binding of beta-arrestin. In contrast, the low affinity of the morphine-MOR complex for beta-arrestin and the rebinding of Galphai2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Galphai2 interaction, either by deleting the (276)RRITR(280) sequence of MOR or knocking down the level of Galphai2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas beta-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and beta-arrestin.
The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gαi2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine–MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR–Gαi2 interaction, either by deleting the 276 RRITR 280 sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin. lipid raft opioid
The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gai2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine-MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Gαi2 interaction, either by deleting the ²⁷⁶RRITR²⁸⁰ sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin.
The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gαi2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine–MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR–Gαi2 interaction, either by deleting the 276 RRITR 280 sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin.
The basis for agonist-selective signaling was investigated by using the mu-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-beta-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Galphai2 first and then the binding of beta-arrestin. In contrast, the low affinity of the morphine-MOR complex for beta-arrestin and the rebinding of Galphai2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Galphai2 interaction, either by deleting the (276)RRITR(280) sequence of MOR or knocking down the level of Galphai2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas beta-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and beta-arrestin.
Author Law, Ping-Yee
Loh, Horace H
Zheng, Hui
Chu, Ji
Qiu, Yu
Author_xml – sequence: 1
  fullname: Zheng, Hui
– sequence: 2
  fullname: Chu, Ji
– sequence: 3
  fullname: Qiu, Yu
– sequence: 4
  fullname: Loh, Horace H
– sequence: 5
  fullname: Law, Ping-Yee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18599439$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhS1URNPCmhUwYoHYTOvnjL1BqipeUiUW0C2Wx7mTOJqxg-0p9N_jNCGBSsDKi_vdo3uOzwk68sEDQk8JPiO4Zedrb9IZlphSwQgWD9CMYEXqhit8hGYY07aWnPJjdJLSCmOshMSP0DGRQinO1Ax9vVgE71KuEwxgs7uBKrmFN4Pzi8qlag4Z4ug8zKvutspLqCJYWOcQqyFYk13w1XeXl87fDUcYu2g8VPMwGufTY_SwN0OCJ7v3FF2_e_vl8kN99en9x8uLq9o2ROaaEmtasA0zYKxoZI-ZYVYBUT0YI1RbTPVWAGUgO2ibjmMrhe0NNqQhomOn6M1Wdz11I8wt-BzNoNfRjSbe6mCc_nPi3VIvwo2mXLCW8CLwaicQw7cJUtajSxaGoZgJU9KNYlQ0DfsvyNsWE0ZIAV_eA1dhiiXZpCkmVEquaIGe_373_uBfH1QAsQVsDClF6LV1-S72YsMNmmC9KYLeFEEfilD2zu_t7aX_uvF6d8pmcKCFpq1WnBLdT8OQ4Ucu6It_o4V4tiVWqVRlj1DBG6okPyj0JmiziC7p688lFlYqSnhxz34CHoniiw
CitedBy_id crossref_primary_10_1016_j_tibs_2013_03_003
crossref_primary_10_1111_j_1476_5381_2011_01482_x
crossref_primary_10_1371_journal_pone_0186797
crossref_primary_10_1517_17460441_2012_648611
crossref_primary_10_1016_j_febslet_2010_07_025
crossref_primary_10_1111_j_1471_4159_2011_07361_x
crossref_primary_10_33393_dti_2020_2185
crossref_primary_10_1124_pr_111_004598
crossref_primary_10_1016_j_yexcr_2009_06_005
crossref_primary_10_1021_bc200482z
crossref_primary_10_1186_s12944_016_0212_9
crossref_primary_10_1074_jbc_M109_024109
crossref_primary_10_1016_j_neuropharm_2019_02_019
crossref_primary_10_1016_j_brainres_2011_02_040
crossref_primary_10_1096_fj_201902873R
crossref_primary_10_1124_mol_110_070870
crossref_primary_10_1074_jbc_M113_475863
crossref_primary_10_1007_s00018_009_0088_1
crossref_primary_10_1016_j_biocel_2016_04_009
crossref_primary_10_1194_jlr_M024455
crossref_primary_10_1186_1744_8069_10_48
crossref_primary_10_3389_fonc_2017_00138
crossref_primary_10_3389_fnmol_2019_00104
crossref_primary_10_1124_jpet_114_220913
crossref_primary_10_1124_mol_113_087825
crossref_primary_10_1002_iub_293
crossref_primary_10_1111_j_1476_5381_2010_00869_x
crossref_primary_10_1111_j_1530_0277_2011_01631_x
crossref_primary_10_1074_jbc_M114_588558
crossref_primary_10_1002_stem_1774
crossref_primary_10_1002_ana_22002
crossref_primary_10_1111_bph_12703
crossref_primary_10_1016_j_ymeth_2011_10_011
crossref_primary_10_1007_s10863_016_9667_7
crossref_primary_10_1021_bi301107p
crossref_primary_10_4062_biomolther_2016_186
crossref_primary_10_1124_mol_108_050906
crossref_primary_10_1002_stem_2055
crossref_primary_10_3390_pharmaceutics14122559
crossref_primary_10_1016_j_ygcen_2019_113340
crossref_primary_10_1124_jpet_116_232561
crossref_primary_10_1124_pr_112_005942
crossref_primary_10_1124_molpharm_124_000947
crossref_primary_10_3390_ijms18020342
crossref_primary_10_1042_BJ20100458
crossref_primary_10_1002_syn_20625
crossref_primary_10_1016_j_peptides_2009_09_027
crossref_primary_10_1002_mas_20294
crossref_primary_10_1016_j_bbalip_2020_158706
crossref_primary_10_1074_jbc_M109_042937
crossref_primary_10_1074_jbc_M110_177089
crossref_primary_10_1074_jbc_M110_112607
crossref_primary_10_1124_mol_111_076208
crossref_primary_10_1186_1471_2121_13_6
crossref_primary_10_1146_annurev_biophys_050708_133634
crossref_primary_10_1371_journal_pcbi_1005240
crossref_primary_10_1016_j_jconrel_2017_10_016
crossref_primary_10_1016_j_jneuroim_2013_07_012
crossref_primary_10_1124_mol_109_060848
crossref_primary_10_3390_ncrna4030022
crossref_primary_10_1002_stem_3334
crossref_primary_10_1126_scisignal_aac9177
Cites_doi 10.1083/jcb.108.2.389
10.1677/jme.0.0320325
10.1083/jcb.147.2.447
10.1111/j.1600-0854.2004.00172.x
10.1016/j.tips.2007.06.006
10.1124/mol.105.021352
10.1124/mol.105.020024
10.1083/jcb.122.4.789
10.1172/JCI25330
10.1016/S0960-9822(95)00026-1
10.1124/jpet.106.104463
10.1074/jbc.M105348200
10.1016/S0021-9258(20)79672-9
10.1073/pnas.1936664100
10.1124/mol.107.039842
10.1074/jbc.M305857200
10.1091/mbc.10.4.961
10.1074/jbc.M205386200
10.1016/j.brainres.2007.09.096
10.1074/jbc.271.46.29182
10.1046/j.1471-4159.1995.64062534.x
10.1074/jbc.M405806200
10.1046/j.1471-4159.2002.00946.x
10.1111/j.1600-0854.2004.0181.x
10.1016/j.bbamem.2007.09.022
10.1074/jbc.M009571200
10.1523/JNEUROSCI.15-05-03328.1995
10.1074/jbc.M304273200
10.1073/pnas.95.12.7157
10.1124/jpet.102.046219
10.1194/jlr.D400041-JLR200
10.1073/pnas.1834556100
10.1074/jbc.M402125200
10.1074/jbc.M405878200
10.1097/00000542-199505000-00018
10.1074/jbc.M910348199
10.1146/annurev.bi.56.070187.003151
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jul 8, 2008
2008 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jul 8, 2008
– notice: 2008 by The National Academy of Sciences of the USA
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0802253105
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
Virology and AIDS Abstracts
MEDLINE - Academic




MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 9426
ExternalDocumentID PMC2453714
1508776731
18599439
10_1073_pnas_0802253105
105_27_9421
25462984
US201300914185
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: DA007339
– fundername: NIDA NIH HHS
  grantid: R56 DA000564
– fundername: NIDA NIH HHS
  grantid: DA011806
– fundername: NIDA NIH HHS
  grantid: R01 DA007339
– fundername: NIDA NIH HHS
  grantid: K05-DA00513
– fundername: NIDA NIH HHS
  grantid: R01 DA000564
– fundername: NIDA NIH HHS
  grantid: K05 DA000513
– fundername: NIDA NIH HHS
  grantid: DA016674
– fundername: NIDA NIH HHS
  grantid: K05-DA70544
– fundername: NIDA NIH HHS
  grantid: P50 DA011806
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c618t-21ca7ec63aeac568f03a3c9e19feaa597091fc5e23e8be76b40c85cfa0a1615b3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:43:10 EDT 2025
Fri Jul 11 08:45:17 EDT 2025
Fri Jul 11 06:53:13 EDT 2025
Mon Jun 30 10:34:16 EDT 2025
Mon Jul 21 05:58:44 EDT 2025
Tue Jul 01 02:38:59 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Wed Nov 11 00:29:04 EST 2020
Thu May 30 08:52:57 EDT 2019
Thu May 29 08:42:57 EDT 2025
Thu Apr 03 09:45:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c618t-21ca7ec63aeac568f03a3c9e19feaa597091fc5e23e8be76b40c85cfa0a1615b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: H.Z. and P.-Y.L. designed research; H.Z. and J.C. performed research; H.Z., J.C., Y.Q., H.H.L., and P.-Y.L. analyzed data; and H.Z. and P.-Y.L. wrote the paper.
Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved April 23, 2008
OpenAccessLink http://doi.org/10.1073/pnas.0802253105
PMID 18599439
PQID 201288492
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_105_27_9421_fulltext
fao_agris_US201300914185
jstor_primary_25462984
crossref_primary_10_1073_pnas_0802253105
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2453714
proquest_miscellaneous_47701311
proquest_journals_201288492
crossref_citationtrail_10_1073_pnas_0802253105
pnas_primary_105_27_9421
proquest_miscellaneous_69325663
pubmed_primary_18599439
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-07-08
PublicationDateYYYYMMDD 2008-07-08
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-08
  day: 08
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Law PY (e_1_3_3_36_2) 1991; 256
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
3113327 - Annu Rev Biochem. 1987;56:615-49
15072542 - J Mol Endocrinol. 2004 Apr;32(2):325-38
9618555 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7157-62
8910575 - J Biol Chem. 1996 Nov 15;271(46):29182-90
13679574 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11406-11
8349730 - J Cell Biol. 1993 Aug;122(4):789-807
16415176 - Mol Pharmacol. 2006 Apr;69(4):1421-32
15590676 - J Biol Chem. 2005 Feb 25;280(8):7135-46
11533056 - J Biol Chem. 2001 Nov 9;276(45):42063-9
15054093 - J Biol Chem. 2004 May 28;279(22):23214-22
7743169 - Curr Biol. 1995 Feb 1;5(2):107-9
10525547 - J Cell Biol. 1999 Oct 18;147(2):447-61
12791688 - J Biol Chem. 2003 Aug 22;278(34):31593-602
12860981 - J Biol Chem. 2003 Sep 19;278(38):36733-9
15030566 - Traffic. 2004 Apr;5(4):247-54
1847209 - J Pharmacol Exp Ther. 1991 Feb;256(2):710-6
11278523 - J Biol Chem. 2001 Apr 20;276(16):12774-80
17980352 - Brain Res. 2007 Dec 12;1184:46-56
15722565 - J Lipid Res. 2005 May;46(5):1061-7
16276415 - J Clin Invest. 2005 Nov;115(11):3045-56
10198050 - Mol Biol Cell. 1999 Apr;10(4):961-74
12202484 - J Biol Chem. 2002 Nov 8;277(45):43399-409
7760033 - J Neurochem. 1995 Jun;64(6):2534-43
2563728 - J Cell Biol. 1989 Feb;108(2):389-400
17947509 - Mol Pharmacol. 2008 Jan;73(1):178-90
17644195 - Trends Pharmacol Sci. 2007 Aug;28(8):416-22
7751913 - J Neurosci. 1995 May;15(5 Pt 1):3328-41
6248546 - J Biol Chem. 1980 Aug 10;255(15):7108-17
12949261 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10782-7
7741298 - Anesthesiology. 1995 May;82(5):1226-36
10748214 - J Biol Chem. 2000 Jun 2;275(22):17201-10
15205453 - J Biol Chem. 2004 Aug 20;279(34):35518-25
12068084 - J Neurochem. 2002 Jun;81(6):1372-82
16803859 - J Pharmacol Exp Ther. 2007 Jan;320(1):1-13
15030564 - Traffic. 2004 Apr;5(4):231-40
16525132 - Mol Pharmacol. 2006 Jun;69(6):1810-9
18068686 - Biochim Biophys Acta. 2008 Jan;1778(1):175-84
12626655 - J Pharmacol Exp Ther. 2003 Jun;305(3):909-18
References_xml – ident: e_1_3_3_20_2
  doi: 10.1083/jcb.108.2.389
– ident: e_1_3_3_17_2
  doi: 10.1677/jme.0.0320325
– ident: e_1_3_3_21_2
  doi: 10.1083/jcb.147.2.447
– ident: e_1_3_3_9_2
  doi: 10.1111/j.1600-0854.2004.00172.x
– ident: e_1_3_3_2_2
  doi: 10.1016/j.tips.2007.06.006
– ident: e_1_3_3_16_2
  doi: 10.1124/mol.105.021352
– ident: e_1_3_3_19_2
  doi: 10.1124/mol.105.020024
– ident: e_1_3_3_14_2
  doi: 10.1083/jcb.122.4.789
– ident: e_1_3_3_7_2
  doi: 10.1172/JCI25330
– ident: e_1_3_3_33_2
  doi: 10.1016/S0960-9822(95)00026-1
– ident: e_1_3_3_1_2
  doi: 10.1124/jpet.106.104463
– ident: e_1_3_3_11_2
  doi: 10.1074/jbc.M105348200
– ident: e_1_3_3_37_2
  doi: 10.1016/S0021-9258(20)79672-9
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.1936664100
– volume: 256
  start-page: 710
  year: 1991
  ident: e_1_3_3_36_2
  article-title: Effect of chronic d-Ala,2 d-Leu5-enkephalin or pertussis toxin treatment on the high-affinity state of delta opioid receptor in neuroblastoma × glioma NG108–15 hybrid cells
  publication-title: J Pharmacol Exp Ther
– ident: e_1_3_3_18_2
  doi: 10.1124/mol.107.039842
– ident: e_1_3_3_30_2
  doi: 10.1074/jbc.M305857200
– ident: e_1_3_3_24_2
  doi: 10.1091/mbc.10.4.961
– ident: e_1_3_3_26_2
  doi: 10.1074/jbc.M205386200
– ident: e_1_3_3_38_2
  doi: 10.1016/j.brainres.2007.09.096
– ident: e_1_3_3_15_2
  doi: 10.1074/jbc.271.46.29182
– ident: e_1_3_3_35_2
  doi: 10.1046/j.1471-4159.1995.64062534.x
– ident: e_1_3_3_13_2
  doi: 10.1074/jbc.M405806200
– ident: e_1_3_3_27_2
  doi: 10.1046/j.1471-4159.2002.00946.x
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1600-0854.2004.0181.x
– ident: e_1_3_3_25_2
  doi: 10.1016/j.bbamem.2007.09.022
– ident: e_1_3_3_31_2
  doi: 10.1074/jbc.M009571200
– ident: e_1_3_3_22_2
  doi: 10.1523/JNEUROSCI.15-05-03328.1995
– ident: e_1_3_3_12_2
  doi: 10.1074/jbc.M304273200
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.95.12.7157
– ident: e_1_3_3_28_2
  doi: 10.1124/jpet.102.046219
– ident: e_1_3_3_34_2
  doi: 10.1194/jlr.D400041-JLR200
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.1834556100
– ident: e_1_3_3_3_2
  doi: 10.1074/jbc.M402125200
– ident: e_1_3_3_5_2
  doi: 10.1074/jbc.M405878200
– ident: e_1_3_3_23_2
  doi: 10.1097/00000542-199505000-00018
– ident: e_1_3_3_29_2
  doi: 10.1074/jbc.M910348199
– ident: e_1_3_3_32_2
  doi: 10.1146/annurev.bi.56.070187.003151
– reference: 7760033 - J Neurochem. 1995 Jun;64(6):2534-43
– reference: 10198050 - Mol Biol Cell. 1999 Apr;10(4):961-74
– reference: 16415176 - Mol Pharmacol. 2006 Apr;69(4):1421-32
– reference: 12791688 - J Biol Chem. 2003 Aug 22;278(34):31593-602
– reference: 12949261 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10782-7
– reference: 9618555 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7157-62
– reference: 10525547 - J Cell Biol. 1999 Oct 18;147(2):447-61
– reference: 15722565 - J Lipid Res. 2005 May;46(5):1061-7
– reference: 12202484 - J Biol Chem. 2002 Nov 8;277(45):43399-409
– reference: 16803859 - J Pharmacol Exp Ther. 2007 Jan;320(1):1-13
– reference: 3113327 - Annu Rev Biochem. 1987;56:615-49
– reference: 7751913 - J Neurosci. 1995 May;15(5 Pt 1):3328-41
– reference: 7741298 - Anesthesiology. 1995 May;82(5):1226-36
– reference: 7743169 - Curr Biol. 1995 Feb 1;5(2):107-9
– reference: 17644195 - Trends Pharmacol Sci. 2007 Aug;28(8):416-22
– reference: 12626655 - J Pharmacol Exp Ther. 2003 Jun;305(3):909-18
– reference: 16276415 - J Clin Invest. 2005 Nov;115(11):3045-56
– reference: 15205453 - J Biol Chem. 2004 Aug 20;279(34):35518-25
– reference: 11278523 - J Biol Chem. 2001 Apr 20;276(16):12774-80
– reference: 13679574 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11406-11
– reference: 11533056 - J Biol Chem. 2001 Nov 9;276(45):42063-9
– reference: 15072542 - J Mol Endocrinol. 2004 Apr;32(2):325-38
– reference: 10748214 - J Biol Chem. 2000 Jun 2;275(22):17201-10
– reference: 15030566 - Traffic. 2004 Apr;5(4):247-54
– reference: 18068686 - Biochim Biophys Acta. 2008 Jan;1778(1):175-84
– reference: 1847209 - J Pharmacol Exp Ther. 1991 Feb;256(2):710-6
– reference: 15030564 - Traffic. 2004 Apr;5(4):231-40
– reference: 17947509 - Mol Pharmacol. 2008 Jan;73(1):178-90
– reference: 15054093 - J Biol Chem. 2004 May 28;279(22):23214-22
– reference: 6248546 - J Biol Chem. 1980 Aug 10;255(15):7108-17
– reference: 15590676 - J Biol Chem. 2005 Feb 25;280(8):7135-46
– reference: 16525132 - Mol Pharmacol. 2006 Jun;69(6):1810-9
– reference: 17980352 - Brain Res. 2007 Dec 12;1184:46-56
– reference: 8910575 - J Biol Chem. 1996 Nov 15;271(46):29182-90
– reference: 12860981 - J Biol Chem. 2003 Sep 19;278(38):36733-9
– reference: 8349730 - J Cell Biol. 1993 Aug;122(4):789-807
– reference: 12068084 - J Neurochem. 2002 Jun;81(6):1372-82
– reference: 2563728 - J Cell Biol. 1989 Feb;108(2):389-400
SSID ssj0009580
Score 2.2228804
Snippet The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the...
The basis for agonist-selective signaling was investigated by using the mu-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the...
The basis for agonist-selective signaling was investigated by using the ...-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9421
SubjectTerms adenylate cyclase
Agonists
Animals
Antibodies
Arrestins - metabolism
beta-Arrestins
beta-Cyclodextrins - pharmacology
Binding sites
Biological Sciences
Cell Line
Cell membranes
Cholesterols
Colforsin - pharmacology
dissociation
etorphine
Etorphine - pharmacology
Gene Deletion
GTP-Binding Protein alpha Subunit, Gi2 - metabolism
guanosine triphosphate
HEK293 cells
Humans
hydrolysis
Lipids
Male
Membrane Microdomains - drug effects
Membrane Microdomains - metabolism
Membranes
Mice
Mice, Inbred C57BL
Microscopy, Confocal
mitogen-activated protein kinase
Morphine
Morphine - pharmacology
Mutant Proteins - metabolism
Phosphorylation
Protein Binding - drug effects
Protein Transport - drug effects
Proteins
Rafts
Receptors
Receptors, Opioid, mu - agonists
Signal transduction
Signal Transduction - drug effects
Translocation
Title Agonist-selective signaling is determined by the receptor location within the membrane domains
URI https://www.jstor.org/stable/25462984
http://www.pnas.org/content/105/27/9421.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18599439
https://www.proquest.com/docview/201288492
https://www.proquest.com/docview/47701311
https://www.proquest.com/docview/69325663
https://pubmed.ncbi.nlm.nih.gov/PMC2453714
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeOEFMWAsjI8g8TBUpbS2kziPFdpUoVKGaKXBA5aTOFuktZmW9gH-eu4c56PbKj5eosp2XCv3y_nu8rszIW8TFsRxwFNPxCH1eMqYpxLBvIDqJAxUoCOO2cifpsF4zj-e-WdtMMdkl6zifvLrzryS_5EqtIFcMUv2HyTbTAoN8BvkC1eQMFz_Ssaj8wIL33qlOcwGOUBIx1Amwzwve6mlulgjE7mEGlksxXUPtzAjeYzDWqrjQi_AdQajMy0WKrdRPGu3njb7XFmzCqZ1GHHUJqVYTVH2vN7ptD3i-PuFrlTKeJ23fIK1QVDT8CU3Dd_WdcOkMCGfMYAUlM94Iz4hDJdVdHUuhX2QV5nSjc4d-B1w0bB31Y84kkU47apTbOtszXXvLbUPegrPKl6qsm9yh0Gx2D_YKLA9_SxP5pOJnB2fzXbIfQqeheGCjrt1mkWVtWQXXVeDCtn7G9NvGDI7mSpqRiuWyYWhd7ksN5m3HVNm9og8tD6IO6oAtUfu6eVjslfLzj2ypcjfPSE_biHMbRDm5qXbIsyNf7qACrdGmFsjzK0QZjprhLkWYU_J_OR49mHs2RM5vCQYipVHh4kKdRIwBfu1H4hswBRLIj2MMq0U-KZgfWaJrynTItZhEPNBIvwkUwOFnkXM9snusljqA-JioceYx4qFIuPgQ0RxOkxBcfhpRodMBQ7p149XJrZcPZ6acikNbSJkEh-ybOXhkKPmhquqUsv2oQcgL6nOYR-V868Uv97DyrGOk0P2jRCbKfC8CBoJDveYWdqpfUlDiQh1yJttXTKzFC6HHNZokFaDlJKidSh4RB3yuukF9Y7f7EAYxbqUPAxNRaztIwLwwMAnYw55VmGrXYfwowgcDoeEG6hrBmBp-c2eZX5hSsxT7mMpz-d_XNchedC-9C_I7up6rV-Cmb6KX5kX6zf2kec1
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agonist-selective+signaling+is+determined+by+the+receptor+location+within+the+membrane+domains&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zheng%2C+Hui&rft.au=Chu%2C+Ji&rft.au=Qiu%2C+Yu&rft.au=Loh%2C+Horace+H&rft.date=2008-07-08&rft.issn=0027-8424&rft.volume=105&rft.issue=27+p.9421-9426&rft.spage=9421&rft.epage=9426&rft_id=info:doi/10.1073%2Fpnas.0802253105&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F27.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F27.cover.gif