Agonist-selective signaling is determined by the receptor location within the membrane domains
The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the a...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 27; pp. 9421 - 9426 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.07.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gαi2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine-MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Gαi2 interaction, either by deleting the ²⁷⁶RRITR²⁸⁰ sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin. |
---|---|
AbstractList | The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gαi2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine-MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Gαi2 interaction, either by deleting the ²⁷⁶RRITR²⁸⁰ sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin. The basis for agonist-selective signaling was investigated by using the ...-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gαi2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine-MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Gαi2 interaction, either by deleting the ...RRITR... sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin. (ProQuest: ... denotes formulae/symbols omitted.) The basis for agonist-selective signaling was investigated by using the mu-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-beta-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Galphai2 first and then the binding of beta-arrestin. In contrast, the low affinity of the morphine-MOR complex for beta-arrestin and the rebinding of Galphai2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Galphai2 interaction, either by deleting the (276)RRITR(280) sequence of MOR or knocking down the level of Galphai2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas beta-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and beta-arrestin.The basis for agonist-selective signaling was investigated by using the mu-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-beta-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Galphai2 first and then the binding of beta-arrestin. In contrast, the low affinity of the morphine-MOR complex for beta-arrestin and the rebinding of Galphai2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Galphai2 interaction, either by deleting the (276)RRITR(280) sequence of MOR or knocking down the level of Galphai2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas beta-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and beta-arrestin. The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gαi2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine–MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR–Gαi2 interaction, either by deleting the 276 RRITR 280 sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin. lipid raft opioid The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gai2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine-MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Gαi2 interaction, either by deleting the ²⁷⁶RRITR²⁸⁰ sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin. The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-β-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Gαi2 first and then the binding of β-arrestin. In contrast, the low affinity of the morphine–MOR complex for β-arrestin and the rebinding of Gαi2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR–Gαi2 interaction, either by deleting the 276 RRITR 280 sequence of MOR or knocking down the level of Gαi2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas β-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and β-arrestin. The basis for agonist-selective signaling was investigated by using the mu-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the lipid raft domains, whereas etorphine, but not morphine, induced the translocation of MOR from lipid raft to nonraft domains, similar to the action of methyl-beta-cyclodextrin. The etorphine-induced MOR translocation required the dissociation of the receptor from Galphai2 first and then the binding of beta-arrestin. In contrast, the low affinity of the morphine-MOR complex for beta-arrestin and the rebinding of Galphai2 after GTP hydrolysis retained the complex within the lipid raft domains. Disruption of the MOR-Galphai2 interaction, either by deleting the (276)RRITR(280) sequence of MOR or knocking down the level of Galphai2, resulted in the translocation of MOR to the nonraft domains. In addition, lipid raft location of MOR was critical for G protein-dependent signaling, such as etorphine- and morphine-mediated inhibition of adenylyl cyclase activity and morphine-induced ERK phosphorylation, whereas beta-arrestin-dependent, etorphine-induced ERK phosphorylation required MOR to translocate into the nonraft domains. Thus, agonist-selective signaling is regulated by the location of MOR, which is determined by interactions of MOR with G proteins and beta-arrestin. |
Author | Law, Ping-Yee Loh, Horace H Zheng, Hui Chu, Ji Qiu, Yu |
Author_xml | – sequence: 1 fullname: Zheng, Hui – sequence: 2 fullname: Chu, Ji – sequence: 3 fullname: Qiu, Yu – sequence: 4 fullname: Loh, Horace H – sequence: 5 fullname: Law, Ping-Yee |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18599439$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhS1URNPCmhUwYoHYTOvnjL1BqipeUiUW0C2Wx7mTOJqxg-0p9N_jNCGBSsDKi_vdo3uOzwk68sEDQk8JPiO4Zedrb9IZlphSwQgWD9CMYEXqhit8hGYY07aWnPJjdJLSCmOshMSP0DGRQinO1Ax9vVgE71KuEwxgs7uBKrmFN4Pzi8qlag4Z4ug8zKvutspLqCJYWOcQqyFYk13w1XeXl87fDUcYu2g8VPMwGufTY_SwN0OCJ7v3FF2_e_vl8kN99en9x8uLq9o2ROaaEmtasA0zYKxoZI-ZYVYBUT0YI1RbTPVWAGUgO2ibjmMrhe0NNqQhomOn6M1Wdz11I8wt-BzNoNfRjSbe6mCc_nPi3VIvwo2mXLCW8CLwaicQw7cJUtajSxaGoZgJU9KNYlQ0DfsvyNsWE0ZIAV_eA1dhiiXZpCkmVEquaIGe_373_uBfH1QAsQVsDClF6LV1-S72YsMNmmC9KYLeFEEfilD2zu_t7aX_uvF6d8pmcKCFpq1WnBLdT8OQ4Ucu6It_o4V4tiVWqVRlj1DBG6okPyj0JmiziC7p688lFlYqSnhxz34CHoniiw |
CitedBy_id | crossref_primary_10_1016_j_tibs_2013_03_003 crossref_primary_10_1111_j_1476_5381_2011_01482_x crossref_primary_10_1371_journal_pone_0186797 crossref_primary_10_1517_17460441_2012_648611 crossref_primary_10_1016_j_febslet_2010_07_025 crossref_primary_10_1111_j_1471_4159_2011_07361_x crossref_primary_10_33393_dti_2020_2185 crossref_primary_10_1124_pr_111_004598 crossref_primary_10_1016_j_yexcr_2009_06_005 crossref_primary_10_1021_bc200482z crossref_primary_10_1186_s12944_016_0212_9 crossref_primary_10_1074_jbc_M109_024109 crossref_primary_10_1016_j_neuropharm_2019_02_019 crossref_primary_10_1016_j_brainres_2011_02_040 crossref_primary_10_1096_fj_201902873R crossref_primary_10_1124_mol_110_070870 crossref_primary_10_1074_jbc_M113_475863 crossref_primary_10_1007_s00018_009_0088_1 crossref_primary_10_1016_j_biocel_2016_04_009 crossref_primary_10_1194_jlr_M024455 crossref_primary_10_1186_1744_8069_10_48 crossref_primary_10_3389_fonc_2017_00138 crossref_primary_10_3389_fnmol_2019_00104 crossref_primary_10_1124_jpet_114_220913 crossref_primary_10_1124_mol_113_087825 crossref_primary_10_1002_iub_293 crossref_primary_10_1111_j_1476_5381_2010_00869_x crossref_primary_10_1111_j_1530_0277_2011_01631_x crossref_primary_10_1074_jbc_M114_588558 crossref_primary_10_1002_stem_1774 crossref_primary_10_1002_ana_22002 crossref_primary_10_1111_bph_12703 crossref_primary_10_1016_j_ymeth_2011_10_011 crossref_primary_10_1007_s10863_016_9667_7 crossref_primary_10_1021_bi301107p crossref_primary_10_4062_biomolther_2016_186 crossref_primary_10_1124_mol_108_050906 crossref_primary_10_1002_stem_2055 crossref_primary_10_3390_pharmaceutics14122559 crossref_primary_10_1016_j_ygcen_2019_113340 crossref_primary_10_1124_jpet_116_232561 crossref_primary_10_1124_pr_112_005942 crossref_primary_10_1124_molpharm_124_000947 crossref_primary_10_3390_ijms18020342 crossref_primary_10_1042_BJ20100458 crossref_primary_10_1002_syn_20625 crossref_primary_10_1016_j_peptides_2009_09_027 crossref_primary_10_1002_mas_20294 crossref_primary_10_1016_j_bbalip_2020_158706 crossref_primary_10_1074_jbc_M109_042937 crossref_primary_10_1074_jbc_M110_177089 crossref_primary_10_1074_jbc_M110_112607 crossref_primary_10_1124_mol_111_076208 crossref_primary_10_1186_1471_2121_13_6 crossref_primary_10_1146_annurev_biophys_050708_133634 crossref_primary_10_1371_journal_pcbi_1005240 crossref_primary_10_1016_j_jconrel_2017_10_016 crossref_primary_10_1016_j_jneuroim_2013_07_012 crossref_primary_10_1124_mol_109_060848 crossref_primary_10_3390_ncrna4030022 crossref_primary_10_1002_stem_3334 crossref_primary_10_1126_scisignal_aac9177 |
Cites_doi | 10.1083/jcb.108.2.389 10.1677/jme.0.0320325 10.1083/jcb.147.2.447 10.1111/j.1600-0854.2004.00172.x 10.1016/j.tips.2007.06.006 10.1124/mol.105.021352 10.1124/mol.105.020024 10.1083/jcb.122.4.789 10.1172/JCI25330 10.1016/S0960-9822(95)00026-1 10.1124/jpet.106.104463 10.1074/jbc.M105348200 10.1016/S0021-9258(20)79672-9 10.1073/pnas.1936664100 10.1124/mol.107.039842 10.1074/jbc.M305857200 10.1091/mbc.10.4.961 10.1074/jbc.M205386200 10.1016/j.brainres.2007.09.096 10.1074/jbc.271.46.29182 10.1046/j.1471-4159.1995.64062534.x 10.1074/jbc.M405806200 10.1046/j.1471-4159.2002.00946.x 10.1111/j.1600-0854.2004.0181.x 10.1016/j.bbamem.2007.09.022 10.1074/jbc.M009571200 10.1523/JNEUROSCI.15-05-03328.1995 10.1074/jbc.M304273200 10.1073/pnas.95.12.7157 10.1124/jpet.102.046219 10.1194/jlr.D400041-JLR200 10.1073/pnas.1834556100 10.1074/jbc.M402125200 10.1074/jbc.M405878200 10.1097/00000542-199505000-00018 10.1074/jbc.M910348199 10.1146/annurev.bi.56.070187.003151 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jul 8, 2008 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jul 8, 2008 – notice: 2008 by The National Academy of Sciences of the USA |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0802253105 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA Virology and AIDS Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 9426 |
ExternalDocumentID | PMC2453714 1508776731 18599439 10_1073_pnas_0802253105 105_27_9421 25462984 US201300914185 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: DA007339 – fundername: NIDA NIH HHS grantid: R56 DA000564 – fundername: NIDA NIH HHS grantid: DA011806 – fundername: NIDA NIH HHS grantid: R01 DA007339 – fundername: NIDA NIH HHS grantid: K05-DA00513 – fundername: NIDA NIH HHS grantid: R01 DA000564 – fundername: NIDA NIH HHS grantid: K05 DA000513 – fundername: NIDA NIH HHS grantid: DA016674 – fundername: NIDA NIH HHS grantid: K05-DA70544 – fundername: NIDA NIH HHS grantid: P50 DA011806 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c618t-21ca7ec63aeac568f03a3c9e19feaa597091fc5e23e8be76b40c85cfa0a1615b3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:43:10 EDT 2025 Fri Jul 11 08:45:17 EDT 2025 Fri Jul 11 06:53:13 EDT 2025 Mon Jun 30 10:34:16 EDT 2025 Mon Jul 21 05:58:44 EDT 2025 Tue Jul 01 02:38:59 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Wed Nov 11 00:29:04 EST 2020 Thu May 30 08:52:57 EDT 2019 Thu May 29 08:42:57 EDT 2025 Thu Apr 03 09:45:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c618t-21ca7ec63aeac568f03a3c9e19feaa597091fc5e23e8be76b40c85cfa0a1615b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: H.Z. and P.-Y.L. designed research; H.Z. and J.C. performed research; H.Z., J.C., Y.Q., H.H.L., and P.-Y.L. analyzed data; and H.Z. and P.-Y.L. wrote the paper. Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved April 23, 2008 |
OpenAccessLink | http://doi.org/10.1073/pnas.0802253105 |
PMID | 18599439 |
PQID | 201288492 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_105_27_9421_fulltext fao_agris_US201300914185 jstor_primary_25462984 crossref_primary_10_1073_pnas_0802253105 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2453714 proquest_miscellaneous_47701311 proquest_journals_201288492 crossref_citationtrail_10_1073_pnas_0802253105 pnas_primary_105_27_9421 proquest_miscellaneous_69325663 pubmed_primary_18599439 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-07-08 |
PublicationDateYYYYMMDD | 2008-07-08 |
PublicationDate_xml | – month: 07 year: 2008 text: 2008-07-08 day: 08 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Law PY (e_1_3_3_36_2) 1991; 256 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 3113327 - Annu Rev Biochem. 1987;56:615-49 15072542 - J Mol Endocrinol. 2004 Apr;32(2):325-38 9618555 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7157-62 8910575 - J Biol Chem. 1996 Nov 15;271(46):29182-90 13679574 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11406-11 8349730 - J Cell Biol. 1993 Aug;122(4):789-807 16415176 - Mol Pharmacol. 2006 Apr;69(4):1421-32 15590676 - J Biol Chem. 2005 Feb 25;280(8):7135-46 11533056 - J Biol Chem. 2001 Nov 9;276(45):42063-9 15054093 - J Biol Chem. 2004 May 28;279(22):23214-22 7743169 - Curr Biol. 1995 Feb 1;5(2):107-9 10525547 - J Cell Biol. 1999 Oct 18;147(2):447-61 12791688 - J Biol Chem. 2003 Aug 22;278(34):31593-602 12860981 - J Biol Chem. 2003 Sep 19;278(38):36733-9 15030566 - Traffic. 2004 Apr;5(4):247-54 1847209 - J Pharmacol Exp Ther. 1991 Feb;256(2):710-6 11278523 - J Biol Chem. 2001 Apr 20;276(16):12774-80 17980352 - Brain Res. 2007 Dec 12;1184:46-56 15722565 - J Lipid Res. 2005 May;46(5):1061-7 16276415 - J Clin Invest. 2005 Nov;115(11):3045-56 10198050 - Mol Biol Cell. 1999 Apr;10(4):961-74 12202484 - J Biol Chem. 2002 Nov 8;277(45):43399-409 7760033 - J Neurochem. 1995 Jun;64(6):2534-43 2563728 - J Cell Biol. 1989 Feb;108(2):389-400 17947509 - Mol Pharmacol. 2008 Jan;73(1):178-90 17644195 - Trends Pharmacol Sci. 2007 Aug;28(8):416-22 7751913 - J Neurosci. 1995 May;15(5 Pt 1):3328-41 6248546 - J Biol Chem. 1980 Aug 10;255(15):7108-17 12949261 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10782-7 7741298 - Anesthesiology. 1995 May;82(5):1226-36 10748214 - J Biol Chem. 2000 Jun 2;275(22):17201-10 15205453 - J Biol Chem. 2004 Aug 20;279(34):35518-25 12068084 - J Neurochem. 2002 Jun;81(6):1372-82 16803859 - J Pharmacol Exp Ther. 2007 Jan;320(1):1-13 15030564 - Traffic. 2004 Apr;5(4):231-40 16525132 - Mol Pharmacol. 2006 Jun;69(6):1810-9 18068686 - Biochim Biophys Acta. 2008 Jan;1778(1):175-84 12626655 - J Pharmacol Exp Ther. 2003 Jun;305(3):909-18 |
References_xml | – ident: e_1_3_3_20_2 doi: 10.1083/jcb.108.2.389 – ident: e_1_3_3_17_2 doi: 10.1677/jme.0.0320325 – ident: e_1_3_3_21_2 doi: 10.1083/jcb.147.2.447 – ident: e_1_3_3_9_2 doi: 10.1111/j.1600-0854.2004.00172.x – ident: e_1_3_3_2_2 doi: 10.1016/j.tips.2007.06.006 – ident: e_1_3_3_16_2 doi: 10.1124/mol.105.021352 – ident: e_1_3_3_19_2 doi: 10.1124/mol.105.020024 – ident: e_1_3_3_14_2 doi: 10.1083/jcb.122.4.789 – ident: e_1_3_3_7_2 doi: 10.1172/JCI25330 – ident: e_1_3_3_33_2 doi: 10.1016/S0960-9822(95)00026-1 – ident: e_1_3_3_1_2 doi: 10.1124/jpet.106.104463 – ident: e_1_3_3_11_2 doi: 10.1074/jbc.M105348200 – ident: e_1_3_3_37_2 doi: 10.1016/S0021-9258(20)79672-9 – ident: e_1_3_3_4_2 doi: 10.1073/pnas.1936664100 – volume: 256 start-page: 710 year: 1991 ident: e_1_3_3_36_2 article-title: Effect of chronic d-Ala,2 d-Leu5-enkephalin or pertussis toxin treatment on the high-affinity state of delta opioid receptor in neuroblastoma × glioma NG108–15 hybrid cells publication-title: J Pharmacol Exp Ther – ident: e_1_3_3_18_2 doi: 10.1124/mol.107.039842 – ident: e_1_3_3_30_2 doi: 10.1074/jbc.M305857200 – ident: e_1_3_3_24_2 doi: 10.1091/mbc.10.4.961 – ident: e_1_3_3_26_2 doi: 10.1074/jbc.M205386200 – ident: e_1_3_3_38_2 doi: 10.1016/j.brainres.2007.09.096 – ident: e_1_3_3_15_2 doi: 10.1074/jbc.271.46.29182 – ident: e_1_3_3_35_2 doi: 10.1046/j.1471-4159.1995.64062534.x – ident: e_1_3_3_13_2 doi: 10.1074/jbc.M405806200 – ident: e_1_3_3_27_2 doi: 10.1046/j.1471-4159.2002.00946.x – ident: e_1_3_3_10_2 doi: 10.1111/j.1600-0854.2004.0181.x – ident: e_1_3_3_25_2 doi: 10.1016/j.bbamem.2007.09.022 – ident: e_1_3_3_31_2 doi: 10.1074/jbc.M009571200 – ident: e_1_3_3_22_2 doi: 10.1523/JNEUROSCI.15-05-03328.1995 – ident: e_1_3_3_12_2 doi: 10.1074/jbc.M304273200 – ident: e_1_3_3_6_2 doi: 10.1073/pnas.95.12.7157 – ident: e_1_3_3_28_2 doi: 10.1124/jpet.102.046219 – ident: e_1_3_3_34_2 doi: 10.1194/jlr.D400041-JLR200 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.1834556100 – ident: e_1_3_3_3_2 doi: 10.1074/jbc.M402125200 – ident: e_1_3_3_5_2 doi: 10.1074/jbc.M405878200 – ident: e_1_3_3_23_2 doi: 10.1097/00000542-199505000-00018 – ident: e_1_3_3_29_2 doi: 10.1074/jbc.M910348199 – ident: e_1_3_3_32_2 doi: 10.1146/annurev.bi.56.070187.003151 – reference: 7760033 - J Neurochem. 1995 Jun;64(6):2534-43 – reference: 10198050 - Mol Biol Cell. 1999 Apr;10(4):961-74 – reference: 16415176 - Mol Pharmacol. 2006 Apr;69(4):1421-32 – reference: 12791688 - J Biol Chem. 2003 Aug 22;278(34):31593-602 – reference: 12949261 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10782-7 – reference: 9618555 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7157-62 – reference: 10525547 - J Cell Biol. 1999 Oct 18;147(2):447-61 – reference: 15722565 - J Lipid Res. 2005 May;46(5):1061-7 – reference: 12202484 - J Biol Chem. 2002 Nov 8;277(45):43399-409 – reference: 16803859 - J Pharmacol Exp Ther. 2007 Jan;320(1):1-13 – reference: 3113327 - Annu Rev Biochem. 1987;56:615-49 – reference: 7751913 - J Neurosci. 1995 May;15(5 Pt 1):3328-41 – reference: 7741298 - Anesthesiology. 1995 May;82(5):1226-36 – reference: 7743169 - Curr Biol. 1995 Feb 1;5(2):107-9 – reference: 17644195 - Trends Pharmacol Sci. 2007 Aug;28(8):416-22 – reference: 12626655 - J Pharmacol Exp Ther. 2003 Jun;305(3):909-18 – reference: 16276415 - J Clin Invest. 2005 Nov;115(11):3045-56 – reference: 15205453 - J Biol Chem. 2004 Aug 20;279(34):35518-25 – reference: 11278523 - J Biol Chem. 2001 Apr 20;276(16):12774-80 – reference: 13679574 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11406-11 – reference: 11533056 - J Biol Chem. 2001 Nov 9;276(45):42063-9 – reference: 15072542 - J Mol Endocrinol. 2004 Apr;32(2):325-38 – reference: 10748214 - J Biol Chem. 2000 Jun 2;275(22):17201-10 – reference: 15030566 - Traffic. 2004 Apr;5(4):247-54 – reference: 18068686 - Biochim Biophys Acta. 2008 Jan;1778(1):175-84 – reference: 1847209 - J Pharmacol Exp Ther. 1991 Feb;256(2):710-6 – reference: 15030564 - Traffic. 2004 Apr;5(4):231-40 – reference: 17947509 - Mol Pharmacol. 2008 Jan;73(1):178-90 – reference: 15054093 - J Biol Chem. 2004 May 28;279(22):23214-22 – reference: 6248546 - J Biol Chem. 1980 Aug 10;255(15):7108-17 – reference: 15590676 - J Biol Chem. 2005 Feb 25;280(8):7135-46 – reference: 16525132 - Mol Pharmacol. 2006 Jun;69(6):1810-9 – reference: 17980352 - Brain Res. 2007 Dec 12;1184:46-56 – reference: 8910575 - J Biol Chem. 1996 Nov 15;271(46):29182-90 – reference: 12860981 - J Biol Chem. 2003 Sep 19;278(38):36733-9 – reference: 8349730 - J Cell Biol. 1993 Aug;122(4):789-807 – reference: 12068084 - J Neurochem. 2002 Jun;81(6):1372-82 – reference: 2563728 - J Cell Biol. 1989 Feb;108(2):389-400 |
SSID | ssj0009580 |
Score | 2.2228804 |
Snippet | The basis for agonist-selective signaling was investigated by using the μ-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the... The basis for agonist-selective signaling was investigated by using the mu-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the... The basis for agonist-selective signaling was investigated by using the ...-opioid receptor (MOR) as a model. In the absence of agonist, MOR located within the... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9421 |
SubjectTerms | adenylate cyclase Agonists Animals Antibodies Arrestins - metabolism beta-Arrestins beta-Cyclodextrins - pharmacology Binding sites Biological Sciences Cell Line Cell membranes Cholesterols Colforsin - pharmacology dissociation etorphine Etorphine - pharmacology Gene Deletion GTP-Binding Protein alpha Subunit, Gi2 - metabolism guanosine triphosphate HEK293 cells Humans hydrolysis Lipids Male Membrane Microdomains - drug effects Membrane Microdomains - metabolism Membranes Mice Mice, Inbred C57BL Microscopy, Confocal mitogen-activated protein kinase Morphine Morphine - pharmacology Mutant Proteins - metabolism Phosphorylation Protein Binding - drug effects Protein Transport - drug effects Proteins Rafts Receptors Receptors, Opioid, mu - agonists Signal transduction Signal Transduction - drug effects Translocation |
Title | Agonist-selective signaling is determined by the receptor location within the membrane domains |
URI | https://www.jstor.org/stable/25462984 http://www.pnas.org/content/105/27/9421.abstract https://www.ncbi.nlm.nih.gov/pubmed/18599439 https://www.proquest.com/docview/201288492 https://www.proquest.com/docview/47701311 https://www.proquest.com/docview/69325663 https://pubmed.ncbi.nlm.nih.gov/PMC2453714 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeOEFMWAsjI8g8TBUpbS2kziPFdpUoVKGaKXBA5aTOFuktZmW9gH-eu4c56PbKj5eosp2XCv3y_nu8rszIW8TFsRxwFNPxCH1eMqYpxLBvIDqJAxUoCOO2cifpsF4zj-e-WdtMMdkl6zifvLrzryS_5EqtIFcMUv2HyTbTAoN8BvkC1eQMFz_Ssaj8wIL33qlOcwGOUBIx1Amwzwve6mlulgjE7mEGlksxXUPtzAjeYzDWqrjQi_AdQajMy0WKrdRPGu3njb7XFmzCqZ1GHHUJqVYTVH2vN7ptD3i-PuFrlTKeJ23fIK1QVDT8CU3Dd_WdcOkMCGfMYAUlM94Iz4hDJdVdHUuhX2QV5nSjc4d-B1w0bB31Y84kkU47apTbOtszXXvLbUPegrPKl6qsm9yh0Gx2D_YKLA9_SxP5pOJnB2fzXbIfQqeheGCjrt1mkWVtWQXXVeDCtn7G9NvGDI7mSpqRiuWyYWhd7ksN5m3HVNm9og8tD6IO6oAtUfu6eVjslfLzj2ypcjfPSE_biHMbRDm5qXbIsyNf7qACrdGmFsjzK0QZjprhLkWYU_J_OR49mHs2RM5vCQYipVHh4kKdRIwBfu1H4hswBRLIj2MMq0U-KZgfWaJrynTItZhEPNBIvwkUwOFnkXM9snusljqA-JioceYx4qFIuPgQ0RxOkxBcfhpRodMBQ7p149XJrZcPZ6acikNbSJkEh-ybOXhkKPmhquqUsv2oQcgL6nOYR-V868Uv97DyrGOk0P2jRCbKfC8CBoJDveYWdqpfUlDiQh1yJttXTKzFC6HHNZokFaDlJKidSh4RB3yuukF9Y7f7EAYxbqUPAxNRaztIwLwwMAnYw55VmGrXYfwowgcDoeEG6hrBmBp-c2eZX5hSsxT7mMpz-d_XNchedC-9C_I7up6rV-Cmb6KX5kX6zf2kec1 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agonist-selective+signaling+is+determined+by+the+receptor+location+within+the+membrane+domains&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zheng%2C+Hui&rft.au=Chu%2C+Ji&rft.au=Qiu%2C+Yu&rft.au=Loh%2C+Horace+H&rft.date=2008-07-08&rft.issn=0027-8424&rft.volume=105&rft.issue=27+p.9421-9426&rft.spage=9421&rft.epage=9426&rft_id=info:doi/10.1073%2Fpnas.0802253105&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F27.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F27.cover.gif |