Defensive endosymbionts: a cryptic trophic level in community ecology
Ecology Letters (2011) 14: 150-155 ABSTRACT: Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an end...
Saved in:
Published in | Ecology letters Vol. 14; no. 2; pp. 150 - 155 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.02.2011
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ecology Letters (2011) 14: 150-155 ABSTRACT: Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild. |
---|---|
AbstractList | Ecology Letters (2011) 14: 150-155 ABSTRACT: Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild. Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild. Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild. [PUBLICATION ABSTRACT] Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild.Original Abstract: Ecology Letters (2011) 14: 150-155 Ecology Letters (2011) 14: 150–155 Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma‐infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer‐resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild. Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild.Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild. |
Author | Jaenike, John Brekke, Thomas D. |
Author_xml | – sequence: 1 fullname: Jaenike, John – sequence: 2 fullname: Brekke, Thomas D |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23819801$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21155960$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1v0zAUhiM0xD7gL0CEhOCmxY4d20ECCUYZoAqExhh3luOcDJckLnYymn-PvXRF2gXMN-fIft7XOh-HyV5nO0iSFKM5Duf5ao4pwzOUUTHPULhFOGd0vrmTHOwe9nY5-b6fHHq_QghnBcf3kv0M4zwvGDpIFm-hhs6bS0ihq6wf29LYrvcvUpVqN657o9Pe2fWPEBu4hCY1Xapt2w6d6ccUtG3sxXg_uVurxsODbTxKzt4tvh6_ny0_n3w4fr2caYYFneGyokJQUguKqowhntVFVquca1FXRQE50qVGhKiyIgAVUMKpgLKqai00RZwcJU8n37WzvwbwvWyN19A0qgM7eCkYIpwgjP9PUk4J5SJ6PvsniXOECWPFFfr4Brqyg-tCxdEP00KwCD3cQkPZQiXXzrTKjfK65wF4sgWU16qpneq08X85InAhUCzh1cRpZ713UEttetXH8ThlGomRjMsgVzLOWcaZy7gM8moZ5CYYiBsG13_cQvpykv42DYy31snFchGzoJ9NeuN72Oz0yv2UoUU8l-efTuSbj98E_4LP5WngH018raxUFy704-w0OIdZFgQzzskfi3vhuQ |
CitedBy_id | crossref_primary_10_1038_ismej_2016_164 crossref_primary_10_1111_mec_12421 crossref_primary_10_1093_ee_nvv031 crossref_primary_10_1111_mec_14449 crossref_primary_10_1111_1365_2435_12133 crossref_primary_10_1128_mBio_01885_21 crossref_primary_10_1890_11_0689_1 crossref_primary_10_3390_insects3020553 crossref_primary_10_1111_mec_12901 crossref_primary_10_1111_mec_12603 crossref_primary_10_1111_ele_12087 crossref_primary_10_1111_mec_15897 crossref_primary_10_1098_rstb_2023_0122 crossref_primary_10_1111_mec_15799 crossref_primary_10_1016_j_cois_2018_10_003 crossref_primary_10_1111_1744_7917_12696 crossref_primary_10_1093_femsec_fiu017 crossref_primary_10_1186_1471_2148_12_204 crossref_primary_10_1371_journal_pone_0192183 crossref_primary_10_1111_evo_12020 crossref_primary_10_1371_journal_pone_0058467 crossref_primary_10_1111_een_12419 crossref_primary_10_1007_s00248_013_0335_8 crossref_primary_10_1002_bies_201100095 crossref_primary_10_1016_j_pt_2016_10_003 crossref_primary_10_1016_j_pt_2021_05_007 crossref_primary_10_1111_evo_12767 crossref_primary_10_1016_j_pt_2017_10_004 crossref_primary_10_3390_microorganisms8101569 crossref_primary_10_1016_j_tim_2018_03_004 crossref_primary_10_1111_mec_13187 crossref_primary_10_1038_srep36406 crossref_primary_10_1111_ele_12118 crossref_primary_10_1002_ece3_2085 crossref_primary_10_1111_j_1420_9101_2012_02535_x crossref_primary_10_1111_mec_15906 crossref_primary_10_1073_pnas_1518648113 crossref_primary_10_1086_674827 crossref_primary_10_3390_microorganisms9020333 crossref_primary_10_1371_journal_pgen_1006297 crossref_primary_10_3390_insects2040540 crossref_primary_10_1111_brv_12417 crossref_primary_10_1111_ele_12616 crossref_primary_10_1186_s12866_016_0634_6 |
Cites_doi | 10.2307/5421 10.1086/282146 10.1098/rspb.2007.1192 10.2307/1938319 10.1371/journal.pbio.1000002 10.1111/j.0014-3820.2003.tb01546.x 10.1098/rspb.2006.3541 10.1371/journal.pone.0012149 10.1111/j.1558-5646.1998.tb03707.x 10.1016/j.jtbi.2006.12.007 10.1073/pnas.0803232105 10.1126/science.1174463 10.1111/j.1365-2311.1984.tb00697.x 10.1073/pnas.0335320100 10.1371/journal.pone.0005703 10.2307/3546226 10.1080/17513750601040367 10.1007/s00442-007-0742-y 10.1126/science.185.4156.1058 10.2307/3933 10.1126/science.1162418 10.1111/j.1574-6968.2008.01110.x 10.1086/383620 10.1126/science.250.4982.811 10.1098/rspb.2007.1211 10.1111/j.1461-0248.2006.00890.x 10.1086/285365 10.1371/journal.pbio.1000210 10.1126/science.1188235 10.1126/science.1120180 10.1111/j.1558-5646.1996.tb03613.x 10.1126/science.1148526 10.1111/j.1365-294X.2009.04448.x 10.1038/nrmicro1969 |
ContentType | Journal Article |
Copyright | 2010 Blackwell Publishing Ltd/CNRS 2015 INIST-CNRS 2010 Blackwell Publishing Ltd/CNRS. |
Copyright_xml | – notice: 2010 Blackwell Publishing Ltd/CNRS – notice: 2015 INIST-CNRS – notice: 2010 Blackwell Publishing Ltd/CNRS. |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7S9 L.6 7X8 |
DOI | 10.1111/j.1461-0248.2010.01564.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Entomology Abstracts Ecology Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
EndPage | 155 |
ExternalDocumentID | 2247836791 21155960 23819801 10_1111_j_1461_0248_2010_01564_x ELE1564 ark_67375_WNG_BJV87Q1W_S US201301931677 |
Genre | letter Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GeographicLocations | New York |
GeographicLocations_xml | – name: New York |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABTAH ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c6184-1bd48843f840d26072f92fa57c8fd99e50cbc033abd3eede43748ebddfc8c4073 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Fri Jul 11 08:02:54 EDT 2025 Thu Jul 10 16:39:38 EDT 2025 Fri Jul 11 06:53:10 EDT 2025 Fri Jul 25 10:59:52 EDT 2025 Mon Jul 21 06:04:08 EDT 2025 Mon Jul 21 09:16:30 EDT 2025 Tue Jul 01 02:29:37 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Wed Jan 22 16:19:51 EST 2025 Wed Oct 30 09:52:19 EDT 2024 Wed Dec 27 19:20:25 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Host parasite relation Howardula Insecta Cryptic Mollicutes Mycoplasmatales Dynamics Trophic level Bacteria trophic cascades Nematoda Drosophila neotestacea Drosophila host-parasite dynamics Endosymbiont Ecology nematodes Drosophilidae Spiroplasmataceae Top down control Arthropoda Trophic cascade Helmintha Nemathelminthia Spiroplasma Invertebrata Diptera Community top-down |
Language | English |
License | CC BY 4.0 2010 Blackwell Publishing Ltd/CNRS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6184-1bd48843f840d26072f92fa57c8fd99e50cbc033abd3eede43748ebddfc8c4073 |
Notes | http://dx.doi.org/10.1111/j.1461-0248.2010.01564.x ArticleID:ELE1564 istex:508C0C17D95B5E6AF732596FC0301D29F853F186 ark:/67375/WNG-BJV87Q1W-S Present address: Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PMID | 21155960 |
PQID | 847149867 |
PQPubID | 32390 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_860373011 proquest_miscellaneous_847434787 proquest_miscellaneous_1501366987 proquest_journals_847149867 pubmed_primary_21155960 pascalfrancis_primary_23819801 crossref_citationtrail_10_1111_j_1461_0248_2010_01564_x crossref_primary_10_1111_j_1461_0248_2010_01564_x wiley_primary_10_1111_j_1461_0248_2010_01564_x_ELE1564 istex_primary_ark_67375_WNG_BJV87Q1W_S fao_agris_US201301931677 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2011 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: February 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Anderson, R.M. & May, R.M. (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. J. Anim. Ecol., 47, 219-247. Jaenike, J., Unckless, R.L., Cockburn, S.N., Boelio, L.M. & Perlman, S.J. (2010a). Adaptive evolution via symbiosis: recent spread of a defensive symbiont in Drosophila. Science, 329, 212-215. Jaenike, J. (1996). Suboptimal virulence of an insect-parasitic nematode. Evolution, 50, 2241-2247. SAS Institute. (2009). JMP 8.0.2. SAS Institute Inc., Cary, NC. Hedges, L.M., Brownlie, J.C., O'Neill, S.L. & Johnson, K.N. (2008). Wolbachia and virus protection in insects. Science, 322, 702. Lively, C.M., Clay, K., Wade, M.J. & Fuqua, C. (2005). Competitive co-existence of vertically and horizontally transmitted parasites. Evol. Ecol. Res., 7, 1183-1190. Jaenike, J. (1992). Mycophagous Drosophila and their nematode parasites. Am. Nat., 139, 893-906. Oliver, K.M., Russell, J.A., Moran, N.A. & Hunter, M.S. (2003). Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. U.S.A., 100, 1803-1807. Jaenike, J., Stahlhut, J., Boelio, L. & Unckless, R. (2010b). Association between Wolbachia and Spiroplasma within Drosophila neotestacea: an emerging symbiotic mutualism? Mol. Ecol., 19, 414-425. Jones, E.O., White, A. & Boots, M. (2007). Interference and the persistence of vertically transmitted parasites. J. Theor. Biol., 246, 10-17. Jaenike, J. (2002). Time-delayed effects of climatic variation on host-parasite dynamics. Ecology, 84, 917-924. Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J.H. (2008). How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiol. Lett., 281, 215-220. Xie, J., Vilchez, I. & Mateos, M. (2010). Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS ONE, 5, e12149. Råberg, L., Sim, D. & Read, A.F. (2007). Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science, 318, 812-814. Scarborough, C.L., Ferrari, J. & Godfray, H.C.J. (2005). Aphid protected from pathogen by endosymbiont. Science, 310, 1781. Oliver, K.M., Campos, J., Moran, N.A. & Hunter, M.S. (2008). Population dynamics of defensive symbionts in aphids. Proc. R. Soc. Lond., B, Biol. Sci., 275, 293-299. Estes, J.A. & Palmisano, J.F. (1974). Sea otters, their role in structuring nearshore communities. Science, 185, 1058-1060. Faeth, S.H., Hadeler, K.P. & Thieme, H.R. (2007). An apparent paradox of horizontal and vertical disease transmission. J. Biol. Dyn., 1, 45-62. Perlman, S.J., Hunter, M.S. & Zchori-Fein, E. (2006). The emerging diversity of Rickettsia. Proc. R. Soc. Lond., B, Biol. Sci., 273, 2097-2106. Terborgh, J. & Estes, J.A. (2010). Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature. Island Press, Washington, DC. Lacy, R.C. (1984). Predictability, toxicity, and trophic niche breadth in fungus-feeding Drosophilidae (Diptera). Ecol. Entomol., 9, 43-54. Wilmers, C.C., Post, E., Peterson, R.O. & Vucetich, J.A. (2006). Predator disease out-break modulates top-down, bottom-up and climatic effects on herbivore population dynamics. Ecol. Lett., 9, 383-389. Teixeira, L., Ferreira, Á. & Ashburner, M. (2008). The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol., 6, e1000002. Watts, T., Haselkorn, T.S., Moran, N.A. & Markow, T.A. (2009). Variable incidence of Spiroplasma infections in natural populations of Drosophila species. PLoS ONE, 4, e5703. Jaenike, J. (1995). Interactions between mycophagous Drosophila and the nematode parasites, from physiological to community ecology. Oikos, 72, 235-244. Preisser, E.L. & Strong, D.R. (2004). Climate affects predator control of an herbivore outbreak. Am. Nat., 163, 754-762. Dobson, A., Lafferty, K.D., Kuris, A.M., Hechinger, R.F. & Jetz, W. (2008). Homage to Linnaeus: how many parasites? How many hosts? Proc. Natl Acad. Sci. U.S.A., 105, 11482-11489. Power, M.E. (1990). Effects of fish in river food webs. Science, 250, 411-415. Holdo, R.M., Sinclair, A.R.E., Dobson, A.P., Metzger, K.L., Bolker, B.M., Ritchie, M.E. et al. (2009). A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol., 7, e1000210. Hairston, N.G., Smith, F.E. & Slobodkin, L.E. (1960). Community structure, population control, and competition. Am. Nat., 94, 421-425. Oliver, K.M., Degnan, P.H., Moran, N.A. & Hunter, M.S. (2009). Bacteriophages encode factors required for protection in a symbiotic mutualism. Science, 325, 992-994. Grimaldi, D. & Jaenike, J. (1984). Competition in natural populations of mycophagous Drosophila. Ecology, 65, 1113-1120. Werren, J.H., Baldo, L. & Clark, M.E. (2008). Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol., 6, 741-751. Perlman, S.J. & Jaenike, J. (2003). Infection success in novel hosts: an experimental phylogenetic study of Drosophila- parasitic nematodes. Evolution, 57, 544-557. Jaenike, J. & James, A.C. (1991). Aggregation and the coexistence of mycophagous Drosophila. J. Anim. Ecol., 60, 913-928. Haine, E.R. (2008). Symbiont-mediated protection. Proc. R. Soc. Lond., B, Biol. Sci., 275, 353-361. Jaenike, J. & Dombeck, I. (1998). General-purpose genotypes for host utilization in a parasitic nematode. Evolution, 52, 832-840. Duffy, M.A. (2007). Selective predation, parasitism, and trophic cascades in a bluegill-Daphnia-parasite system. Oecologia, 153, 453-460. 1960; 94 2007; 246 2010b; 19 1995; 72 2005; 310 2010 1984; 65 2004; 163 2006; 9 1996; 50 2003; 57 2006; 273 2009 1991; 60 2008; 105 2008; 6 2008; 322 1974; 185 2008; 281 2002; 84 2007; 153 1992; 139 2005; 7 1984; 9 2009; 7 1978; 47 2010a; 329 2009; 4 1998; 52 2007; 1 2008; 275 2007; 318 2010; 5 2003; 100 2009; 325 1990; 250 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 Terborgh J. (e_1_2_6_35_1) 2010 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 Lively C.M. (e_1_2_6_23_1) 2005; 7 e_1_2_6_37_1 Jaenike J. (e_1_2_6_16_1) 2002; 84 e_1_2_6_21_1 e_1_2_6_20_1 SAS Institute (e_1_2_6_32_1) 2009 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Jaenike, J. & Dombeck, I. (1998). General-purpose genotypes for host utilization in a parasitic nematode. Evolution, 52, 832-840. – reference: Jaenike, J. (1995). Interactions between mycophagous Drosophila and the nematode parasites, from physiological to community ecology. Oikos, 72, 235-244. – reference: Jaenike, J. (2002). Time-delayed effects of climatic variation on host-parasite dynamics. Ecology, 84, 917-924. – reference: Råberg, L., Sim, D. & Read, A.F. (2007). Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science, 318, 812-814. – reference: Perlman, S.J. & Jaenike, J. (2003). Infection success in novel hosts: an experimental phylogenetic study of Drosophila- parasitic nematodes. Evolution, 57, 544-557. – reference: Power, M.E. (1990). Effects of fish in river food webs. Science, 250, 411-415. – reference: Watts, T., Haselkorn, T.S., Moran, N.A. & Markow, T.A. (2009). Variable incidence of Spiroplasma infections in natural populations of Drosophila species. PLoS ONE, 4, e5703. – reference: Grimaldi, D. & Jaenike, J. (1984). Competition in natural populations of mycophagous Drosophila. Ecology, 65, 1113-1120. – reference: Faeth, S.H., Hadeler, K.P. & Thieme, H.R. (2007). An apparent paradox of horizontal and vertical disease transmission. J. Biol. Dyn., 1, 45-62. – reference: Haine, E.R. (2008). Symbiont-mediated protection. Proc. R. Soc. Lond., B, Biol. Sci., 275, 353-361. – reference: Jaenike, J., Stahlhut, J., Boelio, L. & Unckless, R. (2010b). Association between Wolbachia and Spiroplasma within Drosophila neotestacea: an emerging symbiotic mutualism? Mol. Ecol., 19, 414-425. – reference: Perlman, S.J., Hunter, M.S. & Zchori-Fein, E. (2006). The emerging diversity of Rickettsia. Proc. R. Soc. Lond., B, Biol. Sci., 273, 2097-2106. – reference: Terborgh, J. & Estes, J.A. (2010). Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature. Island Press, Washington, DC. – reference: Werren, J.H., Baldo, L. & Clark, M.E. (2008). Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol., 6, 741-751. – reference: Duffy, M.A. (2007). Selective predation, parasitism, and trophic cascades in a bluegill-Daphnia-parasite system. Oecologia, 153, 453-460. – reference: Holdo, R.M., Sinclair, A.R.E., Dobson, A.P., Metzger, K.L., Bolker, B.M., Ritchie, M.E. et al. (2009). A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol., 7, e1000210. – reference: Lacy, R.C. (1984). Predictability, toxicity, and trophic niche breadth in fungus-feeding Drosophilidae (Diptera). Ecol. Entomol., 9, 43-54. – reference: Preisser, E.L. & Strong, D.R. (2004). Climate affects predator control of an herbivore outbreak. Am. Nat., 163, 754-762. – reference: Xie, J., Vilchez, I. & Mateos, M. (2010). Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS ONE, 5, e12149. – reference: Jaenike, J. & James, A.C. (1991). Aggregation and the coexistence of mycophagous Drosophila. J. Anim. Ecol., 60, 913-928. – reference: Lively, C.M., Clay, K., Wade, M.J. & Fuqua, C. (2005). Competitive co-existence of vertically and horizontally transmitted parasites. Evol. Ecol. Res., 7, 1183-1190. – reference: Anderson, R.M. & May, R.M. (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. J. Anim. Ecol., 47, 219-247. – reference: Scarborough, C.L., Ferrari, J. & Godfray, H.C.J. (2005). Aphid protected from pathogen by endosymbiont. Science, 310, 1781. – reference: Hedges, L.M., Brownlie, J.C., O'Neill, S.L. & Johnson, K.N. (2008). Wolbachia and virus protection in insects. Science, 322, 702. – reference: Oliver, K.M., Campos, J., Moran, N.A. & Hunter, M.S. (2008). Population dynamics of defensive symbionts in aphids. Proc. R. Soc. Lond., B, Biol. Sci., 275, 293-299. – reference: Teixeira, L., Ferreira, Á. & Ashburner, M. (2008). The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol., 6, e1000002. – reference: Wilmers, C.C., Post, E., Peterson, R.O. & Vucetich, J.A. (2006). Predator disease out-break modulates top-down, bottom-up and climatic effects on herbivore population dynamics. Ecol. Lett., 9, 383-389. – reference: Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J.H. (2008). How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiol. Lett., 281, 215-220. – reference: Hairston, N.G., Smith, F.E. & Slobodkin, L.E. (1960). Community structure, population control, and competition. Am. Nat., 94, 421-425. – reference: Jaenike, J. (1996). Suboptimal virulence of an insect-parasitic nematode. Evolution, 50, 2241-2247. – reference: Dobson, A., Lafferty, K.D., Kuris, A.M., Hechinger, R.F. & Jetz, W. (2008). Homage to Linnaeus: how many parasites? How many hosts? Proc. Natl Acad. Sci. U.S.A., 105, 11482-11489. – reference: Oliver, K.M., Russell, J.A., Moran, N.A. & Hunter, M.S. (2003). Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. U.S.A., 100, 1803-1807. – reference: SAS Institute. (2009). JMP 8.0.2. SAS Institute Inc., Cary, NC. – reference: Estes, J.A. & Palmisano, J.F. (1974). Sea otters, their role in structuring nearshore communities. Science, 185, 1058-1060. – reference: Jaenike, J. (1992). Mycophagous Drosophila and their nematode parasites. Am. Nat., 139, 893-906. – reference: Jaenike, J., Unckless, R.L., Cockburn, S.N., Boelio, L.M. & Perlman, S.J. (2010a). Adaptive evolution via symbiosis: recent spread of a defensive symbiont in Drosophila. Science, 329, 212-215. – reference: Jones, E.O., White, A. & Boots, M. (2007). Interference and the persistence of vertically transmitted parasites. J. Theor. Biol., 246, 10-17. – reference: Oliver, K.M., Degnan, P.H., Moran, N.A. & Hunter, M.S. (2009). Bacteriophages encode factors required for protection in a symbiotic mutualism. Science, 325, 992-994. – volume: 322 start-page: 702 year: 2008 article-title: and virus protection in insects publication-title: Science – volume: 9 start-page: 43 year: 1984 end-page: 54 article-title: Predictability, toxicity, and trophic niche breadth in fungus‐feeding Drosophilidae (Diptera) publication-title: Ecol. Entomol. – year: 2009 – volume: 275 start-page: 353 year: 2008 end-page: 361 article-title: Symbiont‐mediated protection publication-title: Proc. R. Soc. Lond., B, Biol. Sci. – volume: 9 start-page: 383 year: 2006 end-page: 389 article-title: Predator disease out‐break modulates top‐down, bottom‐up and climatic effects on herbivore population dynamics publication-title: Ecol. Lett. – volume: 7 start-page: e1000210 year: 2009 article-title: A disease‐mediated trophic cascade in the Serengeti and its implications for ecosystem C publication-title: PLoS Biol. – volume: 281 start-page: 215 year: 2008 end-page: 220 article-title: How many species are infected with ? – a statistical analysis of current data publication-title: FEMS Microbiol. Lett. – volume: 52 start-page: 832 year: 1998 end-page: 840 article-title: General‐purpose genotypes for host utilization in a parasitic nematode publication-title: Evolution – volume: 4 start-page: e5703 year: 2009 article-title: Variable incidence of infections in natural populations of species publication-title: PLoS ONE – volume: 325 start-page: 992 year: 2009 end-page: 994 article-title: Bacteriophages encode factors required for protection in a symbiotic mutualism publication-title: Science – volume: 72 start-page: 235 year: 1995 end-page: 244 article-title: Interactions between mycophagous and the nematode parasites, from physiological to community ecology publication-title: Oikos – volume: 19 start-page: 414 year: 2010b end-page: 425 article-title: Association between and within : an emerging symbiotic mutualism? publication-title: Mol. Ecol. – volume: 50 start-page: 2241 year: 1996 end-page: 2247 article-title: Suboptimal virulence of an insect‐parasitic nematode publication-title: Evolution – volume: 139 start-page: 893 year: 1992 end-page: 906 article-title: Mycophagous and their nematode parasites publication-title: Am. Nat. – volume: 163 start-page: 754 year: 2004 end-page: 762 article-title: Climate affects predator control of an herbivore outbreak publication-title: Am. Nat. – volume: 153 start-page: 453 year: 2007 end-page: 460 article-title: Selective predation, parasitism, and trophic cascades in a bluegill‐ ‐parasite system publication-title: Oecologia – year: 2010 – volume: 7 start-page: 1183 year: 2005 end-page: 1190 article-title: Competitive co‐existence of vertically and horizontally transmitted parasites publication-title: Evol. Ecol. Res. – volume: 6 start-page: 741 year: 2008 end-page: 751 article-title: master manipulators of invertebrate biology publication-title: Nat. Rev. Microbiol. – volume: 5 start-page: e12149 year: 2010 article-title: bacteria enhance survival of attacked by the parasitic wasp publication-title: PLoS ONE – volume: 329 start-page: 212 year: 2010a end-page: 215 article-title: Adaptive evolution via symbiosis: recent spread of a defensive symbiont in publication-title: Science – volume: 275 start-page: 293 year: 2008 end-page: 299 article-title: Population dynamics of defensive symbionts in aphids publication-title: Proc. R. Soc. Lond., B, Biol. Sci. – volume: 310 start-page: 1781 year: 2005 article-title: Aphid protected from pathogen by endosymbiont publication-title: Science – volume: 57 start-page: 544 year: 2003 end-page: 557 article-title: Infection success in novel hosts: an experimental phylogenetic study of – parasitic nematodes publication-title: Evolution – volume: 65 start-page: 1113 year: 1984 end-page: 1120 article-title: Competition in natural populations of mycophagous publication-title: Ecology – volume: 6 start-page: e1000002 year: 2008 article-title: The bacterial symbiont induces resistance to RNA viral infections in Drosophila melanogaster publication-title: PLoS Biol. – volume: 100 start-page: 1803 year: 2003 end-page: 1807 article-title: Facultative bacterial symbionts in aphids confer resistance to parasitic wasps publication-title: Proc. Natl Acad. Sci. U.S.A. – volume: 273 start-page: 2097 year: 2006 end-page: 2106 article-title: The emerging diversity of Rickettsia publication-title: Proc. R. Soc. Lond., B, Biol. Sci. – volume: 1 start-page: 45 year: 2007 end-page: 62 article-title: An apparent paradox of horizontal and vertical disease transmission publication-title: J. Biol. Dyn. – volume: 318 start-page: 812 year: 2007 end-page: 814 article-title: Disentangling genetic variation for resistance and tolerance to infectious diseases in animals publication-title: Science – volume: 105 start-page: 11482 year: 2008 end-page: 11489 article-title: Homage to Linnaeus: how many parasites? How many hosts? publication-title: Proc. Natl Acad. Sci. U.S.A. – volume: 47 start-page: 219 year: 1978 end-page: 247 article-title: Regulation and stability of host‐parasite population interactions. I. Regulatory processes publication-title: J. Anim. Ecol. – volume: 84 start-page: 917 year: 2002 end-page: 924 article-title: Time‐delayed effects of climatic variation on host‐parasite dynamics publication-title: Ecology – volume: 185 start-page: 1058 year: 1974 end-page: 1060 article-title: Sea otters, their role in structuring nearshore communities publication-title: Science – volume: 60 start-page: 913 year: 1991 end-page: 928 article-title: Aggregation and the coexistence of mycophagous publication-title: J. Anim. Ecol. – volume: 246 start-page: 10 year: 2007 end-page: 17 article-title: Interference and the persistence of vertically transmitted parasites publication-title: J. Theor. Biol. – volume: 94 start-page: 421 year: 1960 end-page: 425 article-title: Community structure, population control, and competition publication-title: Am. Nat. – volume: 250 start-page: 411 year: 1990 end-page: 415 article-title: Effects of fish in river food webs publication-title: Science – ident: e_1_2_6_18_1 doi: 10.2307/5421 – ident: e_1_2_6_9_1 doi: 10.1086/282146 – ident: e_1_2_6_25_1 doi: 10.1098/rspb.2007.1192 – ident: e_1_2_6_7_1 doi: 10.2307/1938319 – ident: e_1_2_6_34_1 doi: 10.1371/journal.pbio.1000002 – ident: e_1_2_6_27_1 doi: 10.1111/j.0014-3820.2003.tb01546.x – ident: e_1_2_6_28_1 doi: 10.1098/rspb.2006.3541 – ident: e_1_2_6_39_1 doi: 10.1371/journal.pone.0012149 – ident: e_1_2_6_17_1 doi: 10.1111/j.1558-5646.1998.tb03707.x – ident: e_1_2_6_21_1 doi: 10.1016/j.jtbi.2006.12.007 – ident: e_1_2_6_3_1 doi: 10.1073/pnas.0803232105 – ident: e_1_2_6_26_1 doi: 10.1126/science.1174463 – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-2311.1984.tb00697.x – ident: e_1_2_6_24_1 doi: 10.1073/pnas.0335320100 – ident: e_1_2_6_36_1 doi: 10.1371/journal.pone.0005703 – ident: e_1_2_6_14_1 doi: 10.2307/3546226 – ident: e_1_2_6_6_1 doi: 10.1080/17513750601040367 – volume-title: JMP 8.0.2 year: 2009 ident: e_1_2_6_32_1 – ident: e_1_2_6_4_1 doi: 10.1007/s00442-007-0742-y – ident: e_1_2_6_5_1 doi: 10.1126/science.185.4156.1058 – volume: 7 start-page: 1183 year: 2005 ident: e_1_2_6_23_1 article-title: Competitive co‐existence of vertically and horizontally transmitted parasites publication-title: Evol. Ecol. Res. – ident: e_1_2_6_2_1 doi: 10.2307/3933 – ident: e_1_2_6_10_1 doi: 10.1126/science.1162418 – ident: e_1_2_6_11_1 doi: 10.1111/j.1574-6968.2008.01110.x – volume: 84 start-page: 917 year: 2002 ident: e_1_2_6_16_1 article-title: Time‐delayed effects of climatic variation on host‐parasite dynamics publication-title: Ecology – ident: e_1_2_6_30_1 doi: 10.1086/383620 – ident: e_1_2_6_29_1 doi: 10.1126/science.250.4982.811 – volume-title: Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature year: 2010 ident: e_1_2_6_35_1 – ident: e_1_2_6_8_1 doi: 10.1098/rspb.2007.1211 – ident: e_1_2_6_38_1 doi: 10.1111/j.1461-0248.2006.00890.x – ident: e_1_2_6_13_1 doi: 10.1086/285365 – ident: e_1_2_6_12_1 doi: 10.1371/journal.pbio.1000210 – ident: e_1_2_6_19_1 doi: 10.1126/science.1188235 – ident: e_1_2_6_33_1 doi: 10.1126/science.1120180 – ident: e_1_2_6_15_1 doi: 10.1111/j.1558-5646.1996.tb03613.x – ident: e_1_2_6_31_1 doi: 10.1126/science.1148526 – ident: e_1_2_6_20_1 doi: 10.1111/j.1365-294X.2009.04448.x – ident: e_1_2_6_37_1 doi: 10.1038/nrmicro1969 |
SSID | ssj0012971 |
Score | 2.2298622 |
Snippet | Ecology Letters (2011) 14: 150-155 ABSTRACT: Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host... Ecology Letters (2011) 14: 150–155 Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is... Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 150 |
SubjectTerms | Animal and plant ecology Animal populations Animal, plant and microbial ecology Animals Biological and medical sciences Biota Community ecology Drosophila Drosophila - genetics Drosophila - microbiology Drosophila - parasitology Drosophila neotestacea Ecology Endosymbionts extinction Female Fundamental and applied biological sciences. Psychology General aspects genetics host-parasite dynamics Host-Parasite Interactions hosts Howardula Insects Invertebrates Male microbiology Natural populations Nemathelminthia. Plathelmintha nematodes New York Parasites Parasitism parasitology pathogens physiology Reproduction Selection, Genetic Spiroplasma Spiroplasma - genetics Spiroplasma - physiology sterilizing Symbiosis top-down trophic cascades Trophic levels Tylenchida Tylenchida - genetics Tylenchida - microbiology |
Title | Defensive endosymbionts: a cryptic trophic level in community ecology |
URI | https://api.istex.fr/ark:/67375/WNG-BJV87Q1W-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2010.01564.x https://www.ncbi.nlm.nih.gov/pubmed/21155960 https://www.proquest.com/docview/847149867 https://www.proquest.com/docview/1501366987 https://www.proquest.com/docview/847434787 https://www.proquest.com/docview/860373011 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0IPjitzatlhXEtxyXbD4uvvmRWooWtJ69t2V3s6tybVIuOWj8653J5iIpVYr4dIGb2Uvm5uM32dkZgBc2KsI41CkaUhL7UWoC8oORn_GCxppzGwR03vnjUXIwjw4X8aKvf6KzMK4_xPDCjSyj89dk4FLVl40cU-FwqNCivicTwpNUukX46PPQSQqjmsu9HAtfjIt6rlxoFKluWlkhfiXRX1D9pKxRhNbNvrgKnI6xbhes9u_CcvOYrkZlOVk3aqJ_XuoA-X_kcA_u9JiWvXZKeB9umPIB3HJTLlu8yrvO2O1DyN8Z6wrmmSmLqm7PFKpFU79ikulVi95Ls2ZVnX_Hz1OqZmI_SqbdEZamZcat8wjm-_mXtwd-P8fB1zROxg9UgW4i4haTyQLzpzS0WWhlnOqZLbLMxFOt9JRzqQqOIdtE1BLHqKKweqYx4eSPYausSrMNLEJagwhTmwSfF7VPIv5RmUJYidQ28yDd_GdC903OadbGqRglO4EgcQkSl-jEJS48CAbOc9fo4xo826gWQn5DfyzmxyHtAiMgDpI09eBlpyvDWnK1pBq6NBYnR-_Fm8Ovs_RTcCKOPdgbKdPA0OXSaDce7G60S_T-pRaEKaJsluDvPB--RcdAuz2yNNW6Foj00Q6SbIY07A80uEzEqT3TX0iSKe-igAdPnGr_vsOA9rSTqQdJp6DXlpvIP-R0tfOvjLtw273bp7Kip7DVrNbmGYLDRu11Zv8Lr1pPWQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMEL37AwGEFCvKWq48RJeOMjo4yuEmxlfbMSxwa0kkxNKi389dzZaVCmgSbEUyP1zkkud-ff2ec7Ql7ooPBDX0ZgSDz0gkhR9IOBl7AC25ozTSmedz6Y8ck82F-Ei64dEJ6FsfUh-gU3tAzjr9HAcUH6vJVDLOz3KVpY-GQEgPIaNvg28dXnvpYUzGs2-rI8bDFM67lwpMFcdVVnFSBYFP4ZZlBmNQhR2-4XF8HTIdo109XebbLcvKjNUjkZrZt8JH-eqwH5nyRxh9zqYK372urhXXJFlffIddvosoWr1BTHbu-T9J3SNmfeVWVR1e2PHDSjqV-5mStXLTgw6Tar6vQb_C4xocn9XrrSnmJpWlfZcR6Q-V569Hbida0cPIkdZTyaF-ApAqYhniwghIp8nfg6CyMZ6yJJVDiWuRwzluUFg1lbBVgVR-VFoWUsIeZkD8lWWZVqm7gB0CoAmVJxeF9QwAwgUJ7kgCyBWicOiTYfTciuzjm221iKQbxDBYpLoLiEEZc4cwjtOU9trY9L8GyDXojsK7hkMT_0cSMYMDHlUeSQl0ZZ-rGy1Qmm0UWhOJ69F2_2v8TRJ3osDh2yO9CmnsGE02A6DtnZqJfoXEwtEFYESczhPs_7f8E34IZPVqpqXQsA-5RxnsRA4_6BBoYJGFZo-gsJHzMzETjkkdXt309IcVubjx3CjYZeWm4inaZ49fhfGZ-RG5Ojg6mYfph93CE37VI_Zhk9IVvNaq2eAlZs8l3jA34BoWFTdA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMQL37AwGEFCvKVKYsdJeAOaMsaogFHWNytxbDZ1JFWTSgt_PXdxGpRpoAnx1Ei9c5PrffwuPt8R8kKz3A98GYIh8cBhofLQDzInpjmONafa8_C888cp35ux_Xkw7-qf8CyM6Q_Rv3BDy2j9NRr4MtfnjRxSYb-v0MK-JyPAk9cYdyPU8PGXvpUUhDWTfBkeOh9W9Vy40iBUXdVpCQAWZX-GBZRpBTLUZvjFReh0CHbbaDW5TRab5zRFKovRus5G8ue5FpD_RxB3yK0O1NqvjRbeJVdUcY9cN2MuG7hK2tbYzX2SjJU2FfO2KvKyan5koBd19cpObblqwH1Ju16Vy2P4PMVyJvuksKU5w1I3tjLrPCCzSfL17Z7TDXJwJM6TcbwsBz_BqIZsMocEKvR17Os0CGWk8zhWgSsz6VKaZjmFmK0Y9sRRWZ5rGUnIOOlDslWUhdomNgNaBRBTKg7PC-qXAgDK4gxwJVDr2CLh5j8TsutyjsM2TsUg2_EEikuguEQrLnFmEa_nXJpOH5fg2Qa1EOl3cMhidujjNjAgYo-HoUVetrrSr5WuFlhEFwbiaPpOvNn_FoWfvSNxaJHdgTL1DG0yDYZjkZ2NdonOwVQCQQWLIw6_87z_FjwDbvekhSrXlQCo71HO4who7D_QwDKMYn-mv5Bwl7ZhwCKPjGr_vkMPN7W5axHeKuil5SaSgwSvHv8r4zNy49N4Ig7eTz_skJvmPT-WGD0hW_VqrZ4CUKyz3dYD_AJo3FIs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defensive+endosymbionts%3A+a+cryptic+trophic+level+in+community+ecology&rft.jtitle=Ecology+letters&rft.au=Jaenike%2C+John&rft.au=Brekke%2C+Thomas+D.&rft.date=2011-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=14&rft.issue=2&rft.spage=150&rft.epage=155&rft_id=info:doi/10.1111%2Fj.1461-0248.2010.01564.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_BJV87Q1W_S |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |