Defensive endosymbionts: a cryptic trophic level in community ecology

Ecology Letters (2011) 14: 150-155 ABSTRACT: Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an end...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 14; no. 2; pp. 150 - 155
Main Authors Jaenike, John, Brekke, Thomas D
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.02.2011
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ecology Letters (2011) 14: 150-155 ABSTRACT: Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild.
AbstractList Ecology Letters (2011) 14: 150-155 ABSTRACT: Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild.
Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild.
Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild. [PUBLICATION ABSTRACT]
Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild.Original Abstract: Ecology Letters (2011) 14: 150-155
Ecology Letters (2011) 14: 150–155 Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma‐infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer‐resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild.
Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild.Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild.
Author Jaenike, John
Brekke, Thomas D.
Author_xml – sequence: 1
  fullname: Jaenike, John
– sequence: 2
  fullname: Brekke, Thomas D
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23819801$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21155960$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhiM0xD7gL0CEhOCmxY4d20ECCUYZoAqExhh3luOcDJckLnYymn-PvXRF2gXMN-fIft7XOh-HyV5nO0iSFKM5Duf5ao4pwzOUUTHPULhFOGd0vrmTHOwe9nY5-b6fHHq_QghnBcf3kv0M4zwvGDpIFm-hhs6bS0ihq6wf29LYrvcvUpVqN657o9Pe2fWPEBu4hCY1Xapt2w6d6ccUtG3sxXg_uVurxsODbTxKzt4tvh6_ny0_n3w4fr2caYYFneGyokJQUguKqowhntVFVquca1FXRQE50qVGhKiyIgAVUMKpgLKqai00RZwcJU8n37WzvwbwvWyN19A0qgM7eCkYIpwgjP9PUk4J5SJ6PvsniXOECWPFFfr4Brqyg-tCxdEP00KwCD3cQkPZQiXXzrTKjfK65wF4sgWU16qpneq08X85InAhUCzh1cRpZ713UEttetXH8ThlGomRjMsgVzLOWcaZy7gM8moZ5CYYiBsG13_cQvpykv42DYy31snFchGzoJ9NeuN72Oz0yv2UoUU8l-efTuSbj98E_4LP5WngH018raxUFy704-w0OIdZFgQzzskfi3vhuQ
CitedBy_id crossref_primary_10_1038_ismej_2016_164
crossref_primary_10_1111_mec_12421
crossref_primary_10_1093_ee_nvv031
crossref_primary_10_1111_mec_14449
crossref_primary_10_1111_1365_2435_12133
crossref_primary_10_1128_mBio_01885_21
crossref_primary_10_1890_11_0689_1
crossref_primary_10_3390_insects3020553
crossref_primary_10_1111_mec_12901
crossref_primary_10_1111_mec_12603
crossref_primary_10_1111_ele_12087
crossref_primary_10_1111_mec_15897
crossref_primary_10_1098_rstb_2023_0122
crossref_primary_10_1111_mec_15799
crossref_primary_10_1016_j_cois_2018_10_003
crossref_primary_10_1111_1744_7917_12696
crossref_primary_10_1093_femsec_fiu017
crossref_primary_10_1186_1471_2148_12_204
crossref_primary_10_1371_journal_pone_0192183
crossref_primary_10_1111_evo_12020
crossref_primary_10_1371_journal_pone_0058467
crossref_primary_10_1111_een_12419
crossref_primary_10_1007_s00248_013_0335_8
crossref_primary_10_1002_bies_201100095
crossref_primary_10_1016_j_pt_2016_10_003
crossref_primary_10_1016_j_pt_2021_05_007
crossref_primary_10_1111_evo_12767
crossref_primary_10_1016_j_pt_2017_10_004
crossref_primary_10_3390_microorganisms8101569
crossref_primary_10_1016_j_tim_2018_03_004
crossref_primary_10_1111_mec_13187
crossref_primary_10_1038_srep36406
crossref_primary_10_1111_ele_12118
crossref_primary_10_1002_ece3_2085
crossref_primary_10_1111_j_1420_9101_2012_02535_x
crossref_primary_10_1111_mec_15906
crossref_primary_10_1073_pnas_1518648113
crossref_primary_10_1086_674827
crossref_primary_10_3390_microorganisms9020333
crossref_primary_10_1371_journal_pgen_1006297
crossref_primary_10_3390_insects2040540
crossref_primary_10_1111_brv_12417
crossref_primary_10_1111_ele_12616
crossref_primary_10_1186_s12866_016_0634_6
Cites_doi 10.2307/5421
10.1086/282146
10.1098/rspb.2007.1192
10.2307/1938319
10.1371/journal.pbio.1000002
10.1111/j.0014-3820.2003.tb01546.x
10.1098/rspb.2006.3541
10.1371/journal.pone.0012149
10.1111/j.1558-5646.1998.tb03707.x
10.1016/j.jtbi.2006.12.007
10.1073/pnas.0803232105
10.1126/science.1174463
10.1111/j.1365-2311.1984.tb00697.x
10.1073/pnas.0335320100
10.1371/journal.pone.0005703
10.2307/3546226
10.1080/17513750601040367
10.1007/s00442-007-0742-y
10.1126/science.185.4156.1058
10.2307/3933
10.1126/science.1162418
10.1111/j.1574-6968.2008.01110.x
10.1086/383620
10.1126/science.250.4982.811
10.1098/rspb.2007.1211
10.1111/j.1461-0248.2006.00890.x
10.1086/285365
10.1371/journal.pbio.1000210
10.1126/science.1188235
10.1126/science.1120180
10.1111/j.1558-5646.1996.tb03613.x
10.1126/science.1148526
10.1111/j.1365-294X.2009.04448.x
10.1038/nrmicro1969
ContentType Journal Article
Copyright 2010 Blackwell Publishing Ltd/CNRS
2015 INIST-CNRS
2010 Blackwell Publishing Ltd/CNRS.
Copyright_xml – notice: 2010 Blackwell Publishing Ltd/CNRS
– notice: 2015 INIST-CNRS
– notice: 2010 Blackwell Publishing Ltd/CNRS.
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7S9
L.6
7X8
DOI 10.1111/j.1461-0248.2010.01564.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE
Entomology Abstracts
Ecology Abstracts


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
EndPage 155
ExternalDocumentID 2247836791
21155960
23819801
10_1111_j_1461_0248_2010_01564_x
ELE1564
ark_67375_WNG_BJV87Q1W_S
US201301931677
Genre letter
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GeographicLocations New York
GeographicLocations_xml – name: New York
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7S9
L.6
7X8
ID FETCH-LOGICAL-c6184-1bd48843f840d26072f92fa57c8fd99e50cbc033abd3eede43748ebddfc8c4073
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Fri Jul 11 08:02:54 EDT 2025
Thu Jul 10 16:39:38 EDT 2025
Fri Jul 11 06:53:10 EDT 2025
Fri Jul 25 10:59:52 EDT 2025
Mon Jul 21 06:04:08 EDT 2025
Mon Jul 21 09:16:30 EDT 2025
Tue Jul 01 02:29:37 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Wed Jan 22 16:19:51 EST 2025
Wed Oct 30 09:52:19 EDT 2024
Wed Dec 27 19:20:25 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Host parasite relation
Howardula
Insecta
Cryptic
Mollicutes
Mycoplasmatales
Dynamics
Trophic level
Bacteria
trophic cascades
Nematoda
Drosophila neotestacea
Drosophila
host-parasite dynamics
Endosymbiont
Ecology
nematodes
Drosophilidae
Spiroplasmataceae
Top down control
Arthropoda
Trophic cascade
Helmintha
Nemathelminthia
Spiroplasma
Invertebrata
Diptera
Community
top-down
Language English
License CC BY 4.0
2010 Blackwell Publishing Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6184-1bd48843f840d26072f92fa57c8fd99e50cbc033abd3eede43748ebddfc8c4073
Notes http://dx.doi.org/10.1111/j.1461-0248.2010.01564.x
ArticleID:ELE1564
istex:508C0C17D95B5E6AF732596FC0301D29F853F186
ark:/67375/WNG-BJV87Q1W-S
Present address: Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMID 21155960
PQID 847149867
PQPubID 32390
PageCount 6
ParticipantIDs proquest_miscellaneous_860373011
proquest_miscellaneous_847434787
proquest_miscellaneous_1501366987
proquest_journals_847149867
pubmed_primary_21155960
pascalfrancis_primary_23819801
crossref_citationtrail_10_1111_j_1461_0248_2010_01564_x
crossref_primary_10_1111_j_1461_0248_2010_01564_x
wiley_primary_10_1111_j_1461_0248_2010_01564_x_ELE1564
istex_primary_ark_67375_WNG_BJV87Q1W_S
fao_agris_US201301931677
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2011
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: February 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Anderson, R.M. & May, R.M. (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. J. Anim. Ecol., 47, 219-247.
Jaenike, J., Unckless, R.L., Cockburn, S.N., Boelio, L.M. & Perlman, S.J. (2010a). Adaptive evolution via symbiosis: recent spread of a defensive symbiont in Drosophila. Science, 329, 212-215.
Jaenike, J. (1996). Suboptimal virulence of an insect-parasitic nematode. Evolution, 50, 2241-2247.
SAS Institute. (2009). JMP 8.0.2. SAS Institute Inc., Cary, NC.
Hedges, L.M., Brownlie, J.C., O'Neill, S.L. & Johnson, K.N. (2008). Wolbachia and virus protection in insects. Science, 322, 702.
Lively, C.M., Clay, K., Wade, M.J. & Fuqua, C. (2005). Competitive co-existence of vertically and horizontally transmitted parasites. Evol. Ecol. Res., 7, 1183-1190.
Jaenike, J. (1992). Mycophagous Drosophila and their nematode parasites. Am. Nat., 139, 893-906.
Oliver, K.M., Russell, J.A., Moran, N.A. & Hunter, M.S. (2003). Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. U.S.A., 100, 1803-1807.
Jaenike, J., Stahlhut, J., Boelio, L. & Unckless, R. (2010b). Association between Wolbachia and Spiroplasma within Drosophila neotestacea: an emerging symbiotic mutualism? Mol. Ecol., 19, 414-425.
Jones, E.O., White, A. & Boots, M. (2007). Interference and the persistence of vertically transmitted parasites. J. Theor. Biol., 246, 10-17.
Jaenike, J. (2002). Time-delayed effects of climatic variation on host-parasite dynamics. Ecology, 84, 917-924.
Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J.H. (2008). How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiol. Lett., 281, 215-220.
Xie, J., Vilchez, I. & Mateos, M. (2010). Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS ONE, 5, e12149.
Råberg, L., Sim, D. & Read, A.F. (2007). Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science, 318, 812-814.
Scarborough, C.L., Ferrari, J. & Godfray, H.C.J. (2005). Aphid protected from pathogen by endosymbiont. Science, 310, 1781.
Oliver, K.M., Campos, J., Moran, N.A. & Hunter, M.S. (2008). Population dynamics of defensive symbionts in aphids. Proc. R. Soc. Lond., B, Biol. Sci., 275, 293-299.
Estes, J.A. & Palmisano, J.F. (1974). Sea otters, their role in structuring nearshore communities. Science, 185, 1058-1060.
Faeth, S.H., Hadeler, K.P. & Thieme, H.R. (2007). An apparent paradox of horizontal and vertical disease transmission. J. Biol. Dyn., 1, 45-62.
Perlman, S.J., Hunter, M.S. & Zchori-Fein, E. (2006). The emerging diversity of Rickettsia. Proc. R. Soc. Lond., B, Biol. Sci., 273, 2097-2106.
Terborgh, J. & Estes, J.A. (2010). Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature. Island Press, Washington, DC.
Lacy, R.C. (1984). Predictability, toxicity, and trophic niche breadth in fungus-feeding Drosophilidae (Diptera). Ecol. Entomol., 9, 43-54.
Wilmers, C.C., Post, E., Peterson, R.O. & Vucetich, J.A. (2006). Predator disease out-break modulates top-down, bottom-up and climatic effects on herbivore population dynamics. Ecol. Lett., 9, 383-389.
Teixeira, L., Ferreira, Á. & Ashburner, M. (2008). The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol., 6, e1000002.
Watts, T., Haselkorn, T.S., Moran, N.A. & Markow, T.A. (2009). Variable incidence of Spiroplasma infections in natural populations of Drosophila species. PLoS ONE, 4, e5703.
Jaenike, J. (1995). Interactions between mycophagous Drosophila and the nematode parasites, from physiological to community ecology. Oikos, 72, 235-244.
Preisser, E.L. & Strong, D.R. (2004). Climate affects predator control of an herbivore outbreak. Am. Nat., 163, 754-762.
Dobson, A., Lafferty, K.D., Kuris, A.M., Hechinger, R.F. & Jetz, W. (2008). Homage to Linnaeus: how many parasites? How many hosts? Proc. Natl Acad. Sci. U.S.A., 105, 11482-11489.
Power, M.E. (1990). Effects of fish in river food webs. Science, 250, 411-415.
Holdo, R.M., Sinclair, A.R.E., Dobson, A.P., Metzger, K.L., Bolker, B.M., Ritchie, M.E. et al. (2009). A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol., 7, e1000210.
Hairston, N.G., Smith, F.E. & Slobodkin, L.E. (1960). Community structure, population control, and competition. Am. Nat., 94, 421-425.
Oliver, K.M., Degnan, P.H., Moran, N.A. & Hunter, M.S. (2009). Bacteriophages encode factors required for protection in a symbiotic mutualism. Science, 325, 992-994.
Grimaldi, D. & Jaenike, J. (1984). Competition in natural populations of mycophagous Drosophila. Ecology, 65, 1113-1120.
Werren, J.H., Baldo, L. & Clark, M.E. (2008). Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol., 6, 741-751.
Perlman, S.J. & Jaenike, J. (2003). Infection success in novel hosts: an experimental phylogenetic study of Drosophila- parasitic nematodes. Evolution, 57, 544-557.
Jaenike, J. & James, A.C. (1991). Aggregation and the coexistence of mycophagous Drosophila. J. Anim. Ecol., 60, 913-928.
Haine, E.R. (2008). Symbiont-mediated protection. Proc. R. Soc. Lond., B, Biol. Sci., 275, 353-361.
Jaenike, J. & Dombeck, I. (1998). General-purpose genotypes for host utilization in a parasitic nematode. Evolution, 52, 832-840.
Duffy, M.A. (2007). Selective predation, parasitism, and trophic cascades in a bluegill-Daphnia-parasite system. Oecologia, 153, 453-460.
1960; 94
2007; 246
2010b; 19
1995; 72
2005; 310
2010
1984; 65
2004; 163
2006; 9
1996; 50
2003; 57
2006; 273
2009
1991; 60
2008; 105
2008; 6
2008; 322
1974; 185
2008; 281
2002; 84
2007; 153
1992; 139
2005; 7
1984; 9
2009; 7
1978; 47
2010a; 329
2009; 4
1998; 52
2007; 1
2008; 275
2007; 318
2010; 5
2003; 100
2009; 325
1990; 250
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Terborgh J. (e_1_2_6_35_1) 2010
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
Lively C.M. (e_1_2_6_23_1) 2005; 7
e_1_2_6_37_1
Jaenike J. (e_1_2_6_16_1) 2002; 84
e_1_2_6_21_1
e_1_2_6_20_1
SAS Institute (e_1_2_6_32_1) 2009
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Jaenike, J. & Dombeck, I. (1998). General-purpose genotypes for host utilization in a parasitic nematode. Evolution, 52, 832-840.
– reference: Jaenike, J. (1995). Interactions between mycophagous Drosophila and the nematode parasites, from physiological to community ecology. Oikos, 72, 235-244.
– reference: Jaenike, J. (2002). Time-delayed effects of climatic variation on host-parasite dynamics. Ecology, 84, 917-924.
– reference: Råberg, L., Sim, D. & Read, A.F. (2007). Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science, 318, 812-814.
– reference: Perlman, S.J. & Jaenike, J. (2003). Infection success in novel hosts: an experimental phylogenetic study of Drosophila- parasitic nematodes. Evolution, 57, 544-557.
– reference: Power, M.E. (1990). Effects of fish in river food webs. Science, 250, 411-415.
– reference: Watts, T., Haselkorn, T.S., Moran, N.A. & Markow, T.A. (2009). Variable incidence of Spiroplasma infections in natural populations of Drosophila species. PLoS ONE, 4, e5703.
– reference: Grimaldi, D. & Jaenike, J. (1984). Competition in natural populations of mycophagous Drosophila. Ecology, 65, 1113-1120.
– reference: Faeth, S.H., Hadeler, K.P. & Thieme, H.R. (2007). An apparent paradox of horizontal and vertical disease transmission. J. Biol. Dyn., 1, 45-62.
– reference: Haine, E.R. (2008). Symbiont-mediated protection. Proc. R. Soc. Lond., B, Biol. Sci., 275, 353-361.
– reference: Jaenike, J., Stahlhut, J., Boelio, L. & Unckless, R. (2010b). Association between Wolbachia and Spiroplasma within Drosophila neotestacea: an emerging symbiotic mutualism? Mol. Ecol., 19, 414-425.
– reference: Perlman, S.J., Hunter, M.S. & Zchori-Fein, E. (2006). The emerging diversity of Rickettsia. Proc. R. Soc. Lond., B, Biol. Sci., 273, 2097-2106.
– reference: Terborgh, J. & Estes, J.A. (2010). Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature. Island Press, Washington, DC.
– reference: Werren, J.H., Baldo, L. & Clark, M.E. (2008). Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol., 6, 741-751.
– reference: Duffy, M.A. (2007). Selective predation, parasitism, and trophic cascades in a bluegill-Daphnia-parasite system. Oecologia, 153, 453-460.
– reference: Holdo, R.M., Sinclair, A.R.E., Dobson, A.P., Metzger, K.L., Bolker, B.M., Ritchie, M.E. et al. (2009). A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol., 7, e1000210.
– reference: Lacy, R.C. (1984). Predictability, toxicity, and trophic niche breadth in fungus-feeding Drosophilidae (Diptera). Ecol. Entomol., 9, 43-54.
– reference: Preisser, E.L. & Strong, D.R. (2004). Climate affects predator control of an herbivore outbreak. Am. Nat., 163, 754-762.
– reference: Xie, J., Vilchez, I. & Mateos, M. (2010). Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS ONE, 5, e12149.
– reference: Jaenike, J. & James, A.C. (1991). Aggregation and the coexistence of mycophagous Drosophila. J. Anim. Ecol., 60, 913-928.
– reference: Lively, C.M., Clay, K., Wade, M.J. & Fuqua, C. (2005). Competitive co-existence of vertically and horizontally transmitted parasites. Evol. Ecol. Res., 7, 1183-1190.
– reference: Anderson, R.M. & May, R.M. (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. J. Anim. Ecol., 47, 219-247.
– reference: Scarborough, C.L., Ferrari, J. & Godfray, H.C.J. (2005). Aphid protected from pathogen by endosymbiont. Science, 310, 1781.
– reference: Hedges, L.M., Brownlie, J.C., O'Neill, S.L. & Johnson, K.N. (2008). Wolbachia and virus protection in insects. Science, 322, 702.
– reference: Oliver, K.M., Campos, J., Moran, N.A. & Hunter, M.S. (2008). Population dynamics of defensive symbionts in aphids. Proc. R. Soc. Lond., B, Biol. Sci., 275, 293-299.
– reference: Teixeira, L., Ferreira, Á. & Ashburner, M. (2008). The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol., 6, e1000002.
– reference: Wilmers, C.C., Post, E., Peterson, R.O. & Vucetich, J.A. (2006). Predator disease out-break modulates top-down, bottom-up and climatic effects on herbivore population dynamics. Ecol. Lett., 9, 383-389.
– reference: Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J.H. (2008). How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiol. Lett., 281, 215-220.
– reference: Hairston, N.G., Smith, F.E. & Slobodkin, L.E. (1960). Community structure, population control, and competition. Am. Nat., 94, 421-425.
– reference: Jaenike, J. (1996). Suboptimal virulence of an insect-parasitic nematode. Evolution, 50, 2241-2247.
– reference: Dobson, A., Lafferty, K.D., Kuris, A.M., Hechinger, R.F. & Jetz, W. (2008). Homage to Linnaeus: how many parasites? How many hosts? Proc. Natl Acad. Sci. U.S.A., 105, 11482-11489.
– reference: Oliver, K.M., Russell, J.A., Moran, N.A. & Hunter, M.S. (2003). Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. U.S.A., 100, 1803-1807.
– reference: SAS Institute. (2009). JMP 8.0.2. SAS Institute Inc., Cary, NC.
– reference: Estes, J.A. & Palmisano, J.F. (1974). Sea otters, their role in structuring nearshore communities. Science, 185, 1058-1060.
– reference: Jaenike, J. (1992). Mycophagous Drosophila and their nematode parasites. Am. Nat., 139, 893-906.
– reference: Jaenike, J., Unckless, R.L., Cockburn, S.N., Boelio, L.M. & Perlman, S.J. (2010a). Adaptive evolution via symbiosis: recent spread of a defensive symbiont in Drosophila. Science, 329, 212-215.
– reference: Jones, E.O., White, A. & Boots, M. (2007). Interference and the persistence of vertically transmitted parasites. J. Theor. Biol., 246, 10-17.
– reference: Oliver, K.M., Degnan, P.H., Moran, N.A. & Hunter, M.S. (2009). Bacteriophages encode factors required for protection in a symbiotic mutualism. Science, 325, 992-994.
– volume: 322
  start-page: 702
  year: 2008
  article-title: and virus protection in insects
  publication-title: Science
– volume: 9
  start-page: 43
  year: 1984
  end-page: 54
  article-title: Predictability, toxicity, and trophic niche breadth in fungus‐feeding Drosophilidae (Diptera)
  publication-title: Ecol. Entomol.
– year: 2009
– volume: 275
  start-page: 353
  year: 2008
  end-page: 361
  article-title: Symbiont‐mediated protection
  publication-title: Proc. R. Soc. Lond., B, Biol. Sci.
– volume: 9
  start-page: 383
  year: 2006
  end-page: 389
  article-title: Predator disease out‐break modulates top‐down, bottom‐up and climatic effects on herbivore population dynamics
  publication-title: Ecol. Lett.
– volume: 7
  start-page: e1000210
  year: 2009
  article-title: A disease‐mediated trophic cascade in the Serengeti and its implications for ecosystem C
  publication-title: PLoS Biol.
– volume: 281
  start-page: 215
  year: 2008
  end-page: 220
  article-title: How many species are infected with ? – a statistical analysis of current data
  publication-title: FEMS Microbiol. Lett.
– volume: 52
  start-page: 832
  year: 1998
  end-page: 840
  article-title: General‐purpose genotypes for host utilization in a parasitic nematode
  publication-title: Evolution
– volume: 4
  start-page: e5703
  year: 2009
  article-title: Variable incidence of infections in natural populations of species
  publication-title: PLoS ONE
– volume: 325
  start-page: 992
  year: 2009
  end-page: 994
  article-title: Bacteriophages encode factors required for protection in a symbiotic mutualism
  publication-title: Science
– volume: 72
  start-page: 235
  year: 1995
  end-page: 244
  article-title: Interactions between mycophagous and the nematode parasites, from physiological to community ecology
  publication-title: Oikos
– volume: 19
  start-page: 414
  year: 2010b
  end-page: 425
  article-title: Association between and within : an emerging symbiotic mutualism?
  publication-title: Mol. Ecol.
– volume: 50
  start-page: 2241
  year: 1996
  end-page: 2247
  article-title: Suboptimal virulence of an insect‐parasitic nematode
  publication-title: Evolution
– volume: 139
  start-page: 893
  year: 1992
  end-page: 906
  article-title: Mycophagous and their nematode parasites
  publication-title: Am. Nat.
– volume: 163
  start-page: 754
  year: 2004
  end-page: 762
  article-title: Climate affects predator control of an herbivore outbreak
  publication-title: Am. Nat.
– volume: 153
  start-page: 453
  year: 2007
  end-page: 460
  article-title: Selective predation, parasitism, and trophic cascades in a bluegill‐ ‐parasite system
  publication-title: Oecologia
– year: 2010
– volume: 7
  start-page: 1183
  year: 2005
  end-page: 1190
  article-title: Competitive co‐existence of vertically and horizontally transmitted parasites
  publication-title: Evol. Ecol. Res.
– volume: 6
  start-page: 741
  year: 2008
  end-page: 751
  article-title: master manipulators of invertebrate biology
  publication-title: Nat. Rev. Microbiol.
– volume: 5
  start-page: e12149
  year: 2010
  article-title: bacteria enhance survival of attacked by the parasitic wasp
  publication-title: PLoS ONE
– volume: 329
  start-page: 212
  year: 2010a
  end-page: 215
  article-title: Adaptive evolution via symbiosis: recent spread of a defensive symbiont in
  publication-title: Science
– volume: 275
  start-page: 293
  year: 2008
  end-page: 299
  article-title: Population dynamics of defensive symbionts in aphids
  publication-title: Proc. R. Soc. Lond., B, Biol. Sci.
– volume: 310
  start-page: 1781
  year: 2005
  article-title: Aphid protected from pathogen by endosymbiont
  publication-title: Science
– volume: 57
  start-page: 544
  year: 2003
  end-page: 557
  article-title: Infection success in novel hosts: an experimental phylogenetic study of – parasitic nematodes
  publication-title: Evolution
– volume: 65
  start-page: 1113
  year: 1984
  end-page: 1120
  article-title: Competition in natural populations of mycophagous
  publication-title: Ecology
– volume: 6
  start-page: e1000002
  year: 2008
  article-title: The bacterial symbiont induces resistance to RNA viral infections in Drosophila melanogaster
  publication-title: PLoS Biol.
– volume: 100
  start-page: 1803
  year: 2003
  end-page: 1807
  article-title: Facultative bacterial symbionts in aphids confer resistance to parasitic wasps
  publication-title: Proc. Natl Acad. Sci. U.S.A.
– volume: 273
  start-page: 2097
  year: 2006
  end-page: 2106
  article-title: The emerging diversity of Rickettsia
  publication-title: Proc. R. Soc. Lond., B, Biol. Sci.
– volume: 1
  start-page: 45
  year: 2007
  end-page: 62
  article-title: An apparent paradox of horizontal and vertical disease transmission
  publication-title: J. Biol. Dyn.
– volume: 318
  start-page: 812
  year: 2007
  end-page: 814
  article-title: Disentangling genetic variation for resistance and tolerance to infectious diseases in animals
  publication-title: Science
– volume: 105
  start-page: 11482
  year: 2008
  end-page: 11489
  article-title: Homage to Linnaeus: how many parasites? How many hosts?
  publication-title: Proc. Natl Acad. Sci. U.S.A.
– volume: 47
  start-page: 219
  year: 1978
  end-page: 247
  article-title: Regulation and stability of host‐parasite population interactions. I. Regulatory processes
  publication-title: J. Anim. Ecol.
– volume: 84
  start-page: 917
  year: 2002
  end-page: 924
  article-title: Time‐delayed effects of climatic variation on host‐parasite dynamics
  publication-title: Ecology
– volume: 185
  start-page: 1058
  year: 1974
  end-page: 1060
  article-title: Sea otters, their role in structuring nearshore communities
  publication-title: Science
– volume: 60
  start-page: 913
  year: 1991
  end-page: 928
  article-title: Aggregation and the coexistence of mycophagous
  publication-title: J. Anim. Ecol.
– volume: 246
  start-page: 10
  year: 2007
  end-page: 17
  article-title: Interference and the persistence of vertically transmitted parasites
  publication-title: J. Theor. Biol.
– volume: 94
  start-page: 421
  year: 1960
  end-page: 425
  article-title: Community structure, population control, and competition
  publication-title: Am. Nat.
– volume: 250
  start-page: 411
  year: 1990
  end-page: 415
  article-title: Effects of fish in river food webs
  publication-title: Science
– ident: e_1_2_6_18_1
  doi: 10.2307/5421
– ident: e_1_2_6_9_1
  doi: 10.1086/282146
– ident: e_1_2_6_25_1
  doi: 10.1098/rspb.2007.1192
– ident: e_1_2_6_7_1
  doi: 10.2307/1938319
– ident: e_1_2_6_34_1
  doi: 10.1371/journal.pbio.1000002
– ident: e_1_2_6_27_1
  doi: 10.1111/j.0014-3820.2003.tb01546.x
– ident: e_1_2_6_28_1
  doi: 10.1098/rspb.2006.3541
– ident: e_1_2_6_39_1
  doi: 10.1371/journal.pone.0012149
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1558-5646.1998.tb03707.x
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jtbi.2006.12.007
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.0803232105
– ident: e_1_2_6_26_1
  doi: 10.1126/science.1174463
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-2311.1984.tb00697.x
– ident: e_1_2_6_24_1
  doi: 10.1073/pnas.0335320100
– ident: e_1_2_6_36_1
  doi: 10.1371/journal.pone.0005703
– ident: e_1_2_6_14_1
  doi: 10.2307/3546226
– ident: e_1_2_6_6_1
  doi: 10.1080/17513750601040367
– volume-title: JMP 8.0.2
  year: 2009
  ident: e_1_2_6_32_1
– ident: e_1_2_6_4_1
  doi: 10.1007/s00442-007-0742-y
– ident: e_1_2_6_5_1
  doi: 10.1126/science.185.4156.1058
– volume: 7
  start-page: 1183
  year: 2005
  ident: e_1_2_6_23_1
  article-title: Competitive co‐existence of vertically and horizontally transmitted parasites
  publication-title: Evol. Ecol. Res.
– ident: e_1_2_6_2_1
  doi: 10.2307/3933
– ident: e_1_2_6_10_1
  doi: 10.1126/science.1162418
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1574-6968.2008.01110.x
– volume: 84
  start-page: 917
  year: 2002
  ident: e_1_2_6_16_1
  article-title: Time‐delayed effects of climatic variation on host‐parasite dynamics
  publication-title: Ecology
– ident: e_1_2_6_30_1
  doi: 10.1086/383620
– ident: e_1_2_6_29_1
  doi: 10.1126/science.250.4982.811
– volume-title: Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature
  year: 2010
  ident: e_1_2_6_35_1
– ident: e_1_2_6_8_1
  doi: 10.1098/rspb.2007.1211
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1461-0248.2006.00890.x
– ident: e_1_2_6_13_1
  doi: 10.1086/285365
– ident: e_1_2_6_12_1
  doi: 10.1371/journal.pbio.1000210
– ident: e_1_2_6_19_1
  doi: 10.1126/science.1188235
– ident: e_1_2_6_33_1
  doi: 10.1126/science.1120180
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1558-5646.1996.tb03613.x
– ident: e_1_2_6_31_1
  doi: 10.1126/science.1148526
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1365-294X.2009.04448.x
– ident: e_1_2_6_37_1
  doi: 10.1038/nrmicro1969
SSID ssj0012971
Score 2.2298622
Snippet Ecology Letters (2011) 14: 150-155 ABSTRACT: Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host...
Ecology Letters (2011) 14: 150–155 Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is...
Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 150
SubjectTerms Animal and plant ecology
Animal populations
Animal, plant and microbial ecology
Animals
Biological and medical sciences
Biota
Community ecology
Drosophila
Drosophila - genetics
Drosophila - microbiology
Drosophila - parasitology
Drosophila neotestacea
Ecology
Endosymbionts
extinction
Female
Fundamental and applied biological sciences. Psychology
General aspects
genetics
host-parasite dynamics
Host-Parasite Interactions
hosts
Howardula
Insects
Invertebrates
Male
microbiology
Natural populations
Nemathelminthia. Plathelmintha
nematodes
New York
Parasites
Parasitism
parasitology
pathogens
physiology
Reproduction
Selection, Genetic
Spiroplasma
Spiroplasma - genetics
Spiroplasma - physiology
sterilizing
Symbiosis
top-down
trophic cascades
Trophic levels
Tylenchida
Tylenchida - genetics
Tylenchida - microbiology
Title Defensive endosymbionts: a cryptic trophic level in community ecology
URI https://api.istex.fr/ark:/67375/WNG-BJV87Q1W-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2010.01564.x
https://www.ncbi.nlm.nih.gov/pubmed/21155960
https://www.proquest.com/docview/847149867
https://www.proquest.com/docview/1501366987
https://www.proquest.com/docview/847434787
https://www.proquest.com/docview/860373011
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0IPjitzatlhXEtxyXbD4uvvmRWooWtJ69t2V3s6tybVIuOWj8653J5iIpVYr4dIGb2Uvm5uM32dkZgBc2KsI41CkaUhL7UWoC8oORn_GCxppzGwR03vnjUXIwjw4X8aKvf6KzMK4_xPDCjSyj89dk4FLVl40cU-FwqNCivicTwpNUukX46PPQSQqjmsu9HAtfjIt6rlxoFKluWlkhfiXRX1D9pKxRhNbNvrgKnI6xbhes9u_CcvOYrkZlOVk3aqJ_XuoA-X_kcA_u9JiWvXZKeB9umPIB3HJTLlu8yrvO2O1DyN8Z6wrmmSmLqm7PFKpFU79ikulVi95Ls2ZVnX_Hz1OqZmI_SqbdEZamZcat8wjm-_mXtwd-P8fB1zROxg9UgW4i4haTyQLzpzS0WWhlnOqZLbLMxFOt9JRzqQqOIdtE1BLHqKKweqYx4eSPYausSrMNLEJagwhTmwSfF7VPIv5RmUJYidQ28yDd_GdC903OadbGqRglO4EgcQkSl-jEJS48CAbOc9fo4xo826gWQn5DfyzmxyHtAiMgDpI09eBlpyvDWnK1pBq6NBYnR-_Fm8Ovs_RTcCKOPdgbKdPA0OXSaDce7G60S_T-pRaEKaJsluDvPB--RcdAuz2yNNW6Foj00Q6SbIY07A80uEzEqT3TX0iSKe-igAdPnGr_vsOA9rSTqQdJp6DXlpvIP-R0tfOvjLtw273bp7Kip7DVrNbmGYLDRu11Zv8Lr1pPWQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMEL37AwGEFCvKWq48RJeOMjo4yuEmxlfbMSxwa0kkxNKi389dzZaVCmgSbEUyP1zkkud-ff2ec7Ql7ooPBDX0ZgSDz0gkhR9IOBl7AC25ozTSmedz6Y8ck82F-Ei64dEJ6FsfUh-gU3tAzjr9HAcUH6vJVDLOz3KVpY-GQEgPIaNvg28dXnvpYUzGs2-rI8bDFM67lwpMFcdVVnFSBYFP4ZZlBmNQhR2-4XF8HTIdo109XebbLcvKjNUjkZrZt8JH-eqwH5nyRxh9zqYK372urhXXJFlffIddvosoWr1BTHbu-T9J3SNmfeVWVR1e2PHDSjqV-5mStXLTgw6Tar6vQb_C4xocn9XrrSnmJpWlfZcR6Q-V569Hbida0cPIkdZTyaF-ApAqYhniwghIp8nfg6CyMZ6yJJVDiWuRwzluUFg1lbBVgVR-VFoWUsIeZkD8lWWZVqm7gB0CoAmVJxeF9QwAwgUJ7kgCyBWicOiTYfTciuzjm221iKQbxDBYpLoLiEEZc4cwjtOU9trY9L8GyDXojsK7hkMT_0cSMYMDHlUeSQl0ZZ-rGy1Qmm0UWhOJ69F2_2v8TRJ3osDh2yO9CmnsGE02A6DtnZqJfoXEwtEFYESczhPs_7f8E34IZPVqpqXQsA-5RxnsRA4_6BBoYJGFZo-gsJHzMzETjkkdXt309IcVubjx3CjYZeWm4inaZ49fhfGZ-RG5Ojg6mYfph93CE37VI_Zhk9IVvNaq2eAlZs8l3jA34BoWFTdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMQL37AwGEFCvKVKYsdJeAOaMsaogFHWNytxbDZ1JFWTSgt_PXdxGpRpoAnx1Ei9c5PrffwuPt8R8kKz3A98GYIh8cBhofLQDzInpjmONafa8_C888cp35ux_Xkw7-qf8CyM6Q_Rv3BDy2j9NRr4MtfnjRxSYb-v0MK-JyPAk9cYdyPU8PGXvpUUhDWTfBkeOh9W9Vy40iBUXdVpCQAWZX-GBZRpBTLUZvjFReh0CHbbaDW5TRab5zRFKovRus5G8ue5FpD_RxB3yK0O1NqvjRbeJVdUcY9cN2MuG7hK2tbYzX2SjJU2FfO2KvKyan5koBd19cpObblqwH1Ju16Vy2P4PMVyJvuksKU5w1I3tjLrPCCzSfL17Z7TDXJwJM6TcbwsBz_BqIZsMocEKvR17Os0CGWk8zhWgSsz6VKaZjmFmK0Y9sRRWZ5rGUnIOOlDslWUhdomNgNaBRBTKg7PC-qXAgDK4gxwJVDr2CLh5j8TsutyjsM2TsUg2_EEikuguEQrLnFmEa_nXJpOH5fg2Qa1EOl3cMhidujjNjAgYo-HoUVetrrSr5WuFlhEFwbiaPpOvNn_FoWfvSNxaJHdgTL1DG0yDYZjkZ2NdonOwVQCQQWLIw6_87z_FjwDbvekhSrXlQCo71HO4who7D_QwDKMYn-mv5Bwl7ZhwCKPjGr_vkMPN7W5axHeKuil5SaSgwSvHv8r4zNy49N4Ig7eTz_skJvmPT-WGD0hW_VqrZ4CUKyz3dYD_AJo3FIs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defensive+endosymbionts%3A+a+cryptic+trophic+level+in+community+ecology&rft.jtitle=Ecology+letters&rft.au=Jaenike%2C+John&rft.au=Brekke%2C+Thomas+D.&rft.date=2011-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=14&rft.issue=2&rft.spage=150&rft.epage=155&rft_id=info:doi/10.1111%2Fj.1461-0248.2010.01564.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_BJV87Q1W_S
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon