Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo

De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass sp...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 5417 - 12
Main Authors Richard Albert, Julien, Au Yeung, Wan Kin, Toriyama, Keisuke, Kobayashi, Hisato, Hirasawa, Ryutaro, Brind’Amour, Julie, Bogutz, Aaron, Sasaki, Hiroyuki, Lorincz, Matthew
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.10.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a , with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome. The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo.
AbstractList Abstract De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a , with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.
De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a , with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome. The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo.
De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo.
De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.
The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo.
De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a , with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.
ArticleNumber 5417
Author Brind’Amour, Julie
Toriyama, Keisuke
Kobayashi, Hisato
Sasaki, Hiroyuki
Lorincz, Matthew
Au Yeung, Wan Kin
Richard Albert, Julien
Hirasawa, Ryutaro
Bogutz, Aaron
Author_xml – sequence: 1
  givenname: Julien
  orcidid: 0000-0001-9950-9461
  surname: Richard Albert
  fullname: Richard Albert, Julien
  organization: Department of Medical Genetics, University of British Columbia
– sequence: 2
  givenname: Wan Kin
  orcidid: 0000-0002-0312-1073
  surname: Au Yeung
  fullname: Au Yeung, Wan Kin
  organization: Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University
– sequence: 3
  givenname: Keisuke
  surname: Toriyama
  fullname: Toriyama, Keisuke
  organization: Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University
– sequence: 4
  givenname: Hisato
  orcidid: 0000-0003-3800-4691
  surname: Kobayashi
  fullname: Kobayashi, Hisato
  organization: NODAI Genome Research Center, Tokyo University of Agriculture, Department of Embryology, Nara Medical University
– sequence: 5
  givenname: Ryutaro
  surname: Hirasawa
  fullname: Hirasawa, Ryutaro
  organization: Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Center for Regulatory Science, Pharmaceuticals and Medical Devices Agency
– sequence: 6
  givenname: Julie
  orcidid: 0000-0002-9522-8571
  surname: Brind’Amour
  fullname: Brind’Amour, Julie
  organization: Department of Medical Genetics, University of British Columbia
– sequence: 7
  givenname: Aaron
  surname: Bogutz
  fullname: Bogutz, Aaron
  organization: Department of Medical Genetics, University of British Columbia
– sequence: 8
  givenname: Hiroyuki
  orcidid: 0000-0001-8239-8275
  surname: Sasaki
  fullname: Sasaki, Hiroyuki
  organization: Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University
– sequence: 9
  givenname: Matthew
  orcidid: 0000-0003-0885-0467
  surname: Lorincz
  fullname: Lorincz, Matthew
  email: mlorincz@mail.ubc.ca
  organization: Department of Medical Genetics, University of British Columbia
BackLink https://hal.science/hal-04388348$$DView record in HAL
BookMark eNp9kktv3CAUha0qVfNo_kBXlrppF265YBuzqTRKmybSpN2ka4Tx9QwjGxzwjDL_vnicPjKLsAGuv3OA63OenFhnMUneAfkEhFWfQw55yTNCSQaCcpHxV8kZJTlkwCk7-W99mlyGsCFxMAFVnr9JThkDIETAWfJwp0b0VnXp1x9392yRNTigbdCOaYOpdTuX9jiu950ajbOpa9NxjenwR7RC63pMjV2b2oxh2mOKj4PHECbe2AOPynf7FPva793b5HWruoCXT_NF8uv62_3VTbb8-f32arHMdAl8zNqyJVxrqmvBikbnVDDGQWhCasp4S6Btc03bgsUutFRRTlXZUMUEJTUvYv0iuZ19G6c2cvCmV34vnTLyUHB-JZUfje5QAq244FiKosRoVyvkdU1KqJoKCiXq6PVl9hq2dY-Nju3xqntm-vyLNWu5cjvJCwEF0GjwcTZYH8luFks51UjOqorl1Q4i--HpMO8ethhG2ZugseuURbcNkuZFAbEVTET0_RG6cdvpx0wUh4KWrCSRojOlvQvBY_v3BkDkFCY5h0nGMMlDmCSPoupIpM14CEF8oOlelrJZGuI5doX-361eUP0GSY3dqg
CitedBy_id crossref_primary_10_1186_s13072_023_00482_x
crossref_primary_10_1093_nar_gkad516
crossref_primary_10_3390_ijms23158495
crossref_primary_10_1242_dev_182683
crossref_primary_10_1038_s44319_024_00223_5
crossref_primary_10_1093_humupd_dmad006
crossref_primary_10_2217_epi_2023_0104
crossref_primary_10_3389_fgene_2022_909804
crossref_primary_10_1038_s41467_023_37820_2
crossref_primary_10_1152_physiolgenomics_00091_2024
crossref_primary_10_1186_s13072_024_00566_2
crossref_primary_10_3389_fcell_2020_629068
crossref_primary_10_1007_s10815_024_03259_7
crossref_primary_10_1016_j_neuron_2024_12_025
crossref_primary_10_1360_TB_2024_0844
crossref_primary_10_1017_S1062798724000231
crossref_primary_10_1038_s41576_024_00760_8
Cites_doi 10.1186/s13059-014-0545-5
10.1016/j.celrep.2017.09.055
10.1186/s13059-014-0550-8
10.1002/(SICI)1526-968X(200002)26:2<110::AID-GENE2>3.0.CO;2-8
10.1016/S0960-9822(00)00448-6
10.1186/s12864-018-4835-2
10.1016/j.molcel.2016.08.032
10.1093/bioinformatics/btu170
10.1038/s41556-018-0093-4
10.1126/science.aab2006
10.1038/nature13581
10.1038/ng0596-91
10.1016/j.cell.2014.04.017
10.1371/journal.pone.0205969
10.1073/pnas.72.12.5099
10.1371/journal.pgen.1003439
10.1038/nature23262
10.1002/mrd.1080340107
10.1038/ng.864
10.1038/s41586-018-0751-5
10.1073/pnas.1000473107
10.1093/bioinformatics/bts277
10.1101/gr.148023.112
10.1006/dbio.2001.0501
10.1186/s12864-015-1833-5
10.1038/nature08162
10.1038/s41588-019-0398-7
10.1242/dev.126003
10.1038/nature10960
10.1016/j.celrep.2018.05.094
10.1530/REP-09-0281
10.1038/nature05987
10.1186/s13072-017-0130-8
10.1038/nsmb.2599
10.1038/nbt.3122
10.1038/nsmb.1821
10.1038/35000656
10.1101/gr.225896.117
10.1038/s41467-018-05841-x
10.7554/eLife.21064
10.1186/1471-2105-16-S11-S2
10.1038/nature19361
10.1186/s12864-016-3392-9
10.1101/gr.198291.115
10.1126/science.1187945
10.1101/gad.271353.115
10.1038/s41421-019-0081-2
10.1101/gad.2037511
10.1371/journal.pgen.1007042
10.1093/humrep/15.4.874
10.1126/science.aah6895
10.1101/gad.244848.114
10.1038/s41580-018-0008-z
10.1038/ng1990
10.1016/j.molcel.2010.05.004
10.1186/s13059-015-0672-7
10.1016/j.stem.2014.08.003
10.1038/nature18606
10.1038/nature10443
10.1016/j.celrep.2014.11.034
10.1101/gad.1667008
10.1038/ncb3296
10.1038/nrm4043
10.1038/emboj.2010.80
10.1186/s13072-019-0326-1
10.1016/j.molcel.2011.08.032
10.1038/s41588-017-0007-6
10.1038/nature02886
10.1038/nature02633
10.1186/s13072-018-0186-0
10.1038/nature13760
10.1242/dev.129.8.1983
10.1038/ng1598
10.1111/j.1365-2443.2009.01374.x
10.1016/S0092-8674(00)81656-6
10.1126/science.1065848
10.1016/j.celrep.2019.03.002
10.1016/j.stem.2018.06.008
10.1186/s13072-018-0207-z
10.1093/nar/gkp335
10.1016/j.devcel.2008.08.014
10.1038/embor.2009.218
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
1XC
5PM
DOA
DOI 10.1038/s41467-020-19279-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_128797e6956e467bae7bb0618d815a9b
PMC7591512
oai_HAL_hal_04388348v1
10_1038_s41467_020_19279_7
GrantInformation_xml – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
  grantid: RGPIN-2015-05228
  funderid: https://doi.org/10.13039/501100000038
– fundername: Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
  grantid: PJT-153049
  funderid: https://doi.org/10.13039/501100000024
– fundername: ;
  grantid: PJT-153049
– fundername: ;
  grantid: RGPIN-2015-05228
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
1XC
5PM
PUEGO
ID FETCH-LOGICAL-c617t-f6f07cc2cb935dc42933719c00b237f01ff4c2f53467f2a272a6d2a3920b75f53
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:08:53 EDT 2025
Thu Aug 21 13:42:09 EDT 2025
Fri May 09 12:16:03 EDT 2025
Fri Jul 11 10:26:22 EDT 2025
Wed Aug 13 10:59:59 EDT 2025
Tue Jul 01 04:09:06 EDT 2025
Thu Apr 24 22:52:19 EDT 2025
Fri Feb 21 02:40:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c617t-f6f07cc2cb935dc42933719c00b237f01ff4c2f53467f2a272a6d2a3920b75f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9522-8571
0000-0003-0885-0467
0000-0003-3800-4691
0000-0001-8239-8275
0000-0001-9950-9461
0000-0002-0312-1073
OpenAccessLink https://www.proquest.com/docview/2471526360?pq-origsite=%requestingapplication%
PMID 33110091
PQID 2471526360
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_128797e6956e467bae7bb0618d815a9b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7591512
hal_primary_oai_HAL_hal_04388348v1
proquest_miscellaneous_2455171939
proquest_journals_2471526360
crossref_primary_10_1038_s41467_020_19279_7
crossref_citationtrail_10_1038_s41467_020_19279_7
springer_journals_10_1038_s41467_020_19279_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-27
PublicationDateYYYYMMDD 2020-10-27
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Heinz (CR50) 2010; 38
Santos, Hendrich, Reik, Dean (CR4) 2002; 241
Matsuzaki (CR46) 2015; 142
Smith (CR19) 2014; 511
Yamaguchi (CR37) 2018; 23
Pertea (CR84) 2015; 33
Jacobs (CR68) 2014; 516
Bourc’his, Bestor (CR25) 2004; 431
Kaneda (CR58) 2010; 15
Endoh (CR71) 2017; 6
Weber (CR28) 2005; 37
Solter, Knowles (CR78) 1975; 72
Wossidlo (CR60) 2010; 29
Hammoud (CR30) 2009; 460
Hata, Okano, Lei, Li (CR24) 2002; 129
Erkek (CR32) 2013; 20
Zhang (CR38) 2016; 537
Kobayashi (CR47) 2013; 23
Matsuzaki (CR63) 2020; 13
Du, Johnson, Jacobsen, Patel (CR54) 2015; 16
Amouroux (CR14) 2016; 18
Han, Ren, Zhang, Shu, Wang (CR8) 2019; 5
Bourc’his, Xu, Lin, Bollman, Bestor (CR23) 2001; 294
de Vries (CR77) 2000; 26
Kaneda (CR26) 2004; 429
Richard Albert (CR48) 2018; 19
Tsukada, Akiyama, Nakayama (CR13) 2015; 5
Brykczynska (CR31) 2010; 17
Gaysinskaya (CR55) 2018; 11
Velasco (CR70) 2010; 107
Hajkova (CR9) 2010; 329
Stewart (CR44) 2015; 29
Liu (CR53) 2014; 28
Maenohara (CR6) 2017; 13
Guo (CR11) 2014; 15
Ernst, Kellis (CR52) 2012; 9
Toh (CR79) 2017; 18
Kubo (CR2) 2015; 16
Yang (CR69) 2017; 356
Miller, Brinkworth, Iles (CR1) 2010; 139
Wu (CR56) 2016; 534
Zheng (CR42) 2016; 63
Kono, Obata, Yoshimzu, Nakahara, Carroll (CR74) 1996; 13
Siklenka (CR36) 2015; 350
Strogantsev (CR66) 2015; 16
Qu (CR34) 2017; 28
Shirane (CR33) 2013; 9
Gu (CR10) 2011; 477
Matoba (CR57) 2018; 23
Love, Huber, Anders (CR83) 2014; 15
Kweon (CR15) 2017; 21
Wang (CR16) 2014; 15
Smallwood (CR41) 2011; 43
Li (CR7) 2018; 564
Weber (CR29) 2007; 39
Peat (CR12) 2014; 9
Ooi (CR40) 2007; 448
Deaton, Bird (CR49) 2011; 25
Tatsumi (CR73) 2018; 13
Bolger, Lohse, Usadel (CR80) 2014; 30
Eckersley-Maslin, Alda-Catalinas, Reik (CR20) 2018; 19
Auclair, Guibert, Bender, Weber (CR18) 2014; 15
Oswald (CR59) 2000; 10
Hirasawa (CR27) 2008; 22
Au Yeung (CR61) 2019; 27
Matsuzaki (CR62) 2018; 11
Edwards, Yarychkivska, Boulard, Bestor (CR35) 2017; 10
Okano, Bell, Haber, Li (CR22) 1999; 99
Brind’Amour (CR45) 2018; 9
Otani (CR64) 2009; 10
Zhu (CR21) 2018; 50
Xu (CR39) 2019; 51
Bailey (CR51) 2009; 37
Mayer (CR3) 2000; 403
Auclair (CR72) 2016; 26
Obata (CR76) 2000; 15
Younesy, Möller, Lorincz, Karimi, Jones (CR82) 2015; 16
Neph (CR81) 2012; 28
Wang (CR17) 2018; 20
Kono, Sotomaru, Sato, Nakahara (CR75) 1993; 34
Li (CR65) 2008; 15
Inoue, Jiang, Lu, Suzuki, Zhang (CR43) 2017; 547
Quenneville (CR67) 2011; 44
Smith (CR5) 2012; 484
K Siklenka (19279_CR36) 2015; 350
D Bourc’his (19279_CR25) 2004; 431
D Miller (19279_CR1) 2010; 139
J Du (19279_CR54) 2015; 16
WK Au Yeung (19279_CR61) 2019; 27
X Li (19279_CR65) 2008; 15
M Wossidlo (19279_CR60) 2010; 29
J Otani (19279_CR64) 2009; 10
M Pertea (19279_CR84) 2015; 33
T Kono (19279_CR74) 1996; 13
SS Hammoud (19279_CR30) 2009; 460
M Endoh (19279_CR71) 2017; 6
T-P Gu (19279_CR10) 2011; 477
S Matoba (19279_CR57) 2018; 23
K Yamaguchi (19279_CR37) 2018; 23
R Strogantsev (19279_CR66) 2015; 16
H Toh (19279_CR79) 2017; 18
C Wang (19279_CR17) 2018; 20
H Matsuzaki (19279_CR63) 2020; 13
Y Obata (19279_CR76) 2000; 15
S Liu (19279_CR53) 2014; 28
AM Bolger (19279_CR80) 2014; 30
D Bourc’his (19279_CR23) 2001; 294
FMJ Jacobs (19279_CR68) 2014; 516
V Gaysinskaya (19279_CR55) 2018; 11
D Tatsumi (19279_CR73) 2018; 13
M Kaneda (19279_CR26) 2004; 429
ZD Smith (19279_CR19) 2014; 511
D Solter (19279_CR78) 1975; 72
L Han (19279_CR8) 2019; 5
Y-I Tsukada (19279_CR13) 2015; 5
M Weber (19279_CR28) 2005; 37
H Zheng (19279_CR42) 2016; 63
S Erkek (19279_CR32) 2013; 20
W Mayer (19279_CR3) 2000; 403
JR Peat (19279_CR12) 2014; 9
R Amouroux (19279_CR14) 2016; 18
AM Deaton (19279_CR49) 2011; 25
ZD Smith (19279_CR5) 2012; 484
TL Bailey (19279_CR51) 2009; 37
K Shirane (19279_CR33) 2013; 9
H Matsuzaki (19279_CR46) 2015; 142
F Guo (19279_CR11) 2014; 15
S Maenohara (19279_CR6) 2017; 13
T Kono (19279_CR75) 1993; 34
MA Eckersley-Maslin (19279_CR20) 2018; 19
J Oswald (19279_CR59) 2000; 10
G Velasco (19279_CR70) 2010; 107
M Kaneda (19279_CR58) 2010; 15
G Auclair (19279_CR18) 2014; 15
H Kobayashi (19279_CR47) 2013; 23
S Heinz (19279_CR50) 2010; 38
U Brykczynska (19279_CR31) 2010; 17
SA Smallwood (19279_CR41) 2011; 43
L Wang (19279_CR16) 2014; 15
A Inoue (19279_CR43) 2017; 547
J Wu (19279_CR56) 2016; 534
H Matsuzaki (19279_CR62) 2018; 11
K Hata (19279_CR24) 2002; 129
S Neph (19279_CR81) 2012; 28
H Younesy (19279_CR82) 2015; 16
F Santos (19279_CR4) 2002; 241
B Zhang (19279_CR38) 2016; 537
WN de Vries (19279_CR77) 2000; 26
P Hajkova (19279_CR9) 2010; 329
P Zhu (19279_CR21) 2018; 50
Q Xu (19279_CR39) 2019; 51
J Qu (19279_CR34) 2017; 28
S Quenneville (19279_CR67) 2011; 44
J Brind’Amour (19279_CR45) 2018; 9
J Ernst (19279_CR52) 2012; 9
G Auclair (19279_CR72) 2016; 26
S-M Kweon (19279_CR15) 2017; 21
R Hirasawa (19279_CR27) 2008; 22
N Kubo (19279_CR2) 2015; 16
J Richard Albert (19279_CR48) 2018; 19
M Weber (19279_CR29) 2007; 39
SKT Ooi (19279_CR40) 2007; 448
KR Stewart (19279_CR44) 2015; 29
P Yang (19279_CR69) 2017; 356
MI Love (19279_CR83) 2014; 15
M Okano (19279_CR22) 1999; 99
Y Li (19279_CR7) 2018; 564
JR Edwards (19279_CR35) 2017; 10
References_xml – volume: 15
  year: 2014
  ident: CR18
  article-title: Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0545-5
– volume: 29
  start-page: 1877
  year: 2010
  end-page: 1888
  ident: CR60
  article-title: Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes
  publication-title: EMBO J.
– volume: 44
  start-page: 361
  year: 2011
  end-page: 372
  ident: CR67
  article-title: In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions
  publication-title: Mol. Cell
– volume: 21
  start-page: 482
  year: 2017
  end-page: 494
  ident: CR15
  article-title: Erasure of Tet-oxidized 5-methylcytosine by a SRAP nuclease
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.055
– volume: 15
  year: 2014
  ident: CR83
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 99
  start-page: 247
  year: 1999
  end-page: 257
  ident: CR22
  article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
  publication-title: Cell
– volume: 26
  start-page: 110
  year: 2000
  end-page: 112
  ident: CR77
  article-title: Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes
  publication-title: Genesis
  doi: 10.1002/(SICI)1526-968X(200002)26:2<110::AID-GENE2>3.0.CO;2-8
– volume: 429
  start-page: 900
  year: 2004
  end-page: 903
  ident: CR26
  article-title: Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting
  publication-title: Nature
– volume: 129
  start-page: 1983
  year: 2002
  end-page: 1993
  ident: CR24
  article-title: Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice
  publication-title: Development
– volume: 10
  start-page: 475
  year: 2000
  end-page: 478
  ident: CR59
  article-title: Active demethylation of the paternal genome in the mouse zygote
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00448-6
– volume: 19
  year: 2018
  ident: CR48
  article-title: Development and application of an integrated allele-specific pipeline for methylomic and epigenomic analysis (MEA)
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4835-2
– volume: 37
  start-page: W202
  year: 2009
  end-page: W208
  ident: CR51
  article-title: MEME SUITE: tools for motif discovery and searching
  publication-title: Nucleic Acids Res.
– volume: 431
  start-page: 96
  year: 2004
  end-page: 99
  ident: CR25
  article-title: Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L
  publication-title: Nature
– volume: 22
  start-page: 1607
  year: 2008
  end-page: 1616
  ident: CR27
  article-title: Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development
  publication-title: Genes Dev.
– volume: 15
  start-page: 547
  year: 2008
  end-page: 557
  ident: CR65
  article-title: A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints
  publication-title: Developmental Cell
– volume: 63
  start-page: 1066
  year: 2016
  end-page: 1079
  ident: CR42
  article-title: Resetting epigenetic memory by reprogramming of histone modifications in mammals
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.08.032
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  ident: CR80
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 294
  start-page: 2536
  year: 2001
  end-page: 2539
  ident: CR23
  article-title: Dnmt3L and the establishment of maternal genomic imprints
  publication-title: Science
– volume: 50
  start-page: 12
  year: 2018
  end-page: 19
  ident: CR21
  article-title: Single-cell DNA methylome sequencing of human preimplantation embryos
  publication-title: Nat. Genet.
– volume: 5
  year: 2015
  ident: CR13
  article-title: Maternal TET3 is dispensable for embryonic development but is required for neonatal growth
  publication-title: Sci. Rep.
– volume: 20
  start-page: 620
  year: 2018
  end-page: 631
  ident: CR17
  article-title: Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0093-4
– volume: 9
  start-page: 1990
  year: 2014
  end-page: 2000
  ident: CR12
  article-title: Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation
  publication-title: Cell Rep.
– volume: 516
  start-page: 242
  year: 2014
  end-page: 245
  ident: CR68
  article-title: An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons
  publication-title: Nature
– volume: 350
  start-page: aab2006
  year: 2015
  ident: CR36
  article-title: Disruption of histone methylation in developing sperm impairs offspring health transgenerationally
  publication-title: Science
  doi: 10.1126/science.aab2006
– volume: 511
  start-page: 611
  year: 2014
  end-page: 615
  ident: CR19
  article-title: DNA methylation dynamics of the human preimplantation embryo
  publication-title: Nature
  doi: 10.1038/nature13581
– volume: 39
  start-page: 457
  year: 2007
  end-page: 466
  ident: CR29
  article-title: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome
  publication-title: Nat. Genet.
– volume: 13
  start-page: 91
  year: 1996
  end-page: 94
  ident: CR74
  article-title: Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse
  publication-title: Nat. Genet.
  doi: 10.1038/ng0596-91
– volume: 15
  start-page: 979
  year: 2014
  end-page: 991
  ident: CR16
  article-title: Programming and inheritance of parental DNA methylomes in mammals
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.017
– volume: 13
  start-page: e0205969
  year: 2018
  ident: CR73
  article-title: DNMTs and SETDB1 function as co-repressors in MAX-mediated repression of germ cell-related genes in mouse embryonic stem cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0205969
– volume: 72
  start-page: 5099
  year: 1975
  end-page: 5102
  ident: CR78
  article-title: Immunosurgery of mouse blastocyst
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.72.12.5099
– volume: 27
  start-page: 282
  year: 2019
  end-page: 293
  ident: CR61
  article-title: Histone H3K9 methyltransferase G9a in oocytes is essential for preimplantation development but dispensable for CG methylation protection
  publication-title: Cell Rep.
– volume: 9
  start-page: e1003439
  year: 2013
  ident: CR33
  article-title: Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003439
– volume: 547
  start-page: 419
  year: 2017
  end-page: 424
  ident: CR43
  article-title: Maternal H3K27me3 controls DNA methylation-independent imprinting
  publication-title: Nature
  doi: 10.1038/nature23262
– volume: 16
  start-page: 519
  year: 2015
  end-page: 532
  ident: CR54
  article-title: DNA methylation pathways and their crosstalk with histone methylation
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 38
  start-page: 576
  year: 2010
  end-page: 589
  ident: CR50
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
– volume: 356
  start-page: 757
  year: 2017
  end-page: 759
  ident: CR69
  article-title: A placental growth factor is silenced in mouse embryos by the zinc finger protein ZFP568
  publication-title: Science
– volume: 34
  start-page: 43
  year: 1993
  end-page: 46
  ident: CR75
  article-title: Development of androgenetic mouse embryos produced by in vitro fertilization of enucleated oocytes
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.1080340107
– volume: 43
  start-page: 811
  year: 2011
  end-page: 814
  ident: CR41
  article-title: Dynamic CpG island methylation landscape in oocytes and preimplantation embryos
  publication-title: Nat. Genet.
  doi: 10.1038/ng.864
– volume: 564
  start-page: 136
  year: 2018
  end-page: 140
  ident: CR7
  article-title: Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1
  publication-title: Nature
  doi: 10.1038/s41586-018-0751-5
– volume: 19
  start-page: 436
  year: 2018
  end-page: 450
  ident: CR20
  article-title: Dynamics of the epigenetic landscape during the maternal-to-zygotic transition
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 107
  start-page: 9281
  year: 2010
  end-page: 9286
  ident: CR70
  article-title: Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1000473107
– volume: 28
  start-page: 1919
  year: 2012
  end-page: 1920
  ident: CR81
  article-title: BEDOPS: high-performance genomic feature operations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts277
– volume: 18
  start-page: 225
  year: 2016
  end-page: 233
  ident: CR14
  article-title: De novo DNA methylation drives 5hmC accumulation in mouse zygotes
  publication-title: Nat. Cell Biol.
– volume: 23
  start-page: 616
  year: 2013
  end-page: 627
  ident: CR47
  article-title: High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice
  publication-title: Genome Res.
  doi: 10.1101/gr.148023.112
– volume: 13
  start-page: 2
  year: 2020
  end-page: 19
  ident: CR63
  article-title: Recapitulation of gametic DNA methylation and its post-fertilization maintenance with reassembled DNA elements at the mouse Igf2/H19 locus
  publication-title: Epigenetics Chromatin
– volume: 11
  start-page: 15
  year: 2018
  ident: CR55
  article-title: Transient reduction of DNA methylation at the onset of meiosis in male mice
  publication-title: Epigenetics Chromatin
– volume: 9
  start-page: 215
  year: 2012
  end-page: 216
  ident: CR52
  article-title: ChromHMM: automating chromatin-state discovery and characterization
  publication-title: Nat. Chem. Biol.
– volume: 241
  start-page: 172
  year: 2002
  end-page: 182
  ident: CR4
  article-title: Dynamic reprogramming of DNA methylation in the early mouse Embryo
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2001.0501
– volume: 23
  start-page: 343
  year: 2018
  end-page: 354
  ident: CR57
  article-title: Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development
  publication-title: Cell Stem Cell
– volume: 16
  year: 2015
  ident: CR2
  article-title: DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1833-5
– volume: 460
  start-page: 473
  year: 2009
  end-page: 478
  ident: CR30
  article-title: Distinctive chromatin in human sperm packages genes for embryo development
  publication-title: Nature
  doi: 10.1038/nature08162
– volume: 51
  start-page: 844
  year: 2019
  end-page: 856
  ident: CR39
  article-title: SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0398-7
– volume: 142
  start-page: 3833
  year: 2015
  end-page: 3844
  ident: CR46
  article-title: De novo DNA methylation through the 5′-segment of the H19 ICR maintains its imprint during early embryogenesis
  publication-title: Development
  doi: 10.1242/dev.126003
– volume: 28
  start-page: 2041
  year: 2014
  end-page: 2055
  ident: CR53
  article-title: Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells
  publication-title: Genes Dev.
– volume: 484
  start-page: 339
  year: 2012
  end-page: 344
  ident: CR5
  article-title: A unique regulatory phase of DNA methylation in the early mammalian embryo
  publication-title: Nature
  doi: 10.1038/nature10960
– volume: 477
  start-page: 606
  year: 2011
  end-page: 610
  ident: CR10
  article-title: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes
  publication-title: Nature
– volume: 23
  start-page: 3920
  year: 2018
  end-page: 3932
  ident: CR37
  article-title: Re-evaluating the localization of sperm-retained histones revealed the modification-dependent accumulation in specific genome regions
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.094
– volume: 139
  start-page: 287
  year: 2010
  end-page: 301
  ident: CR1
  article-title: Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics
  publication-title: Reproduction
  doi: 10.1530/REP-09-0281
– volume: 448
  start-page: 714
  year: 2007
  end-page: 717
  ident: CR40
  article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA
  publication-title: Nature
  doi: 10.1038/nature05987
– volume: 11
  start-page: 36
  year: 2018
  ident: CR62
  article-title: Synthetic DNA fragments bearing ICR cis elements become differentially methylated and recapitulate genomic imprinting in transgenic mice
  publication-title: Epigenetics Chromatin
– volume: 10
  start-page: 23
  year: 2017
  ident: CR35
  article-title: DNA methylation and DNA methyltransferases
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-017-0130-8
– volume: 20
  start-page: 868
  year: 2013
  end-page: 875
  ident: CR32
  article-title: Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2599
– volume: 33
  start-page: 290
  year: 2015
  end-page: 295
  ident: CR84
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3122
– volume: 16
  year: 2015
  ident: CR66
  article-title: Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression
  publication-title: Genome Biol.
– volume: 17
  start-page: 679
  year: 2010
  end-page: 687
  ident: CR31
  article-title: Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1821
– volume: 403
  start-page: 501
  year: 2000
  end-page: 502
  ident: CR3
  article-title: Demethylation of the zygotic paternal genome
  publication-title: Nature
  doi: 10.1038/35000656
– volume: 28
  start-page: 145
  year: 2017
  end-page: 158
  ident: CR34
  article-title: Evolutionary expansion of DNA hypomethylation in the mammalian germline genome
  publication-title: Genome Res.
  doi: 10.1101/gr.225896.117
– volume: 9
  year: 2018
  ident: CR45
  article-title: LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05841-x
– volume: 6
  start-page: e21064
  year: 2017
  ident: CR71
  article-title: PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes
  publication-title: eLife
  doi: 10.7554/eLife.21064
– volume: 16
  year: 2015
  ident: CR82
  article-title: VisRseq: R-based visual framework for analysis of sequencing data
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-16-S11-S2
– volume: 537
  start-page: 553
  year: 2016
  end-page: 557
  ident: CR38
  article-title: Allelic reprogramming of the histone modification H3K4me3 in early mammalian development
  publication-title: Nature
  doi: 10.1038/nature19361
– volume: 10
  start-page: 1235
  year: 2009
  end-page: 1241
  ident: CR64
  article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain
  publication-title: EMBO Rep.
– volume: 18
  year: 2017
  ident: CR79
  article-title: Software updates in the Illumina HiSeq platform affect whole-genome bisulfite sequencing
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-3392-9
– volume: 26
  start-page: 192
  year: 2016
  end-page: 202
  ident: CR72
  article-title: EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos
  publication-title: Genome Res.
  doi: 10.1101/gr.198291.115
– volume: 329
  start-page: 78
  year: 2010
  end-page: 82
  ident: CR9
  article-title: Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway
  publication-title: Science
  doi: 10.1126/science.1187945
– volume: 29
  start-page: 2449
  year: 2015
  end-page: 2462
  ident: CR44
  article-title: Dynamic changes in histone modifications precede de novo DNA methylation in oocytes
  publication-title: Genes Dev.
  doi: 10.1101/gad.271353.115
– volume: 15
  start-page: 169
  year: 2010
  end-page: 179
  ident: CR58
  article-title: Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3-Cre and complete exclusion of Dnmt3b by chimera formation
  publication-title: Genes Cells
– volume: 5
  start-page: 9
  year: 2019
  ident: CR8
  article-title: Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development
  publication-title: Cell Discov.
  doi: 10.1038/s41421-019-0081-2
– volume: 25
  start-page: 1010
  year: 2011
  end-page: 1022
  ident: CR49
  article-title: CpG islands and the regulation of transcription
  publication-title: Genes Dev.
  doi: 10.1101/gad.2037511
– volume: 534
  start-page: 652
  year: 2016
  end-page: 657
  ident: CR56
  article-title: The landscape of accessible chromatin in mammalian preimplantation embryos
  publication-title: Nature
– volume: 13
  start-page: e1007042
  year: 2017
  ident: CR6
  article-title: Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007042
– volume: 15
  start-page: 874
  year: 2000
  end-page: 880
  ident: CR76
  article-title: Post-implantation development of mouse androgenetic embryos produced by in-vitro fertilization of enucleated oocytes
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/15.4.874
– volume: 15
  start-page: 447
  year: 2014
  end-page: 458
  ident: CR11
  article-title: Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote
  publication-title: Cell Stem Cell
– volume: 37
  start-page: 853
  year: 2005
  end-page: 862
  ident: CR28
  article-title: Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells
  publication-title: Nat. Genet.
– volume: 356
  start-page: 757
  year: 2017
  ident: 19279_CR69
  publication-title: Science
  doi: 10.1126/science.aah6895
– volume: 350
  start-page: aab2006
  year: 2015
  ident: 19279_CR36
  publication-title: Science
  doi: 10.1126/science.aab2006
– volume: 29
  start-page: 2449
  year: 2015
  ident: 19279_CR44
  publication-title: Genes Dev.
  doi: 10.1101/gad.271353.115
– volume: 460
  start-page: 473
  year: 2009
  ident: 19279_CR30
  publication-title: Nature
  doi: 10.1038/nature08162
– volume: 28
  start-page: 2041
  year: 2014
  ident: 19279_CR53
  publication-title: Genes Dev.
  doi: 10.1101/gad.244848.114
– volume: 19
  start-page: 436
  year: 2018
  ident: 19279_CR20
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0008-z
– volume: 20
  start-page: 620
  year: 2018
  ident: 19279_CR17
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0093-4
– volume: 329
  start-page: 78
  year: 2010
  ident: 19279_CR9
  publication-title: Science
  doi: 10.1126/science.1187945
– volume: 5
  year: 2015
  ident: 19279_CR13
  publication-title: Sci. Rep.
– volume: 39
  start-page: 457
  year: 2007
  ident: 19279_CR29
  publication-title: Nat. Genet.
  doi: 10.1038/ng1990
– volume: 38
  start-page: 576
  year: 2010
  ident: 19279_CR50
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 28
  start-page: 145
  year: 2017
  ident: 19279_CR34
  publication-title: Genome Res.
  doi: 10.1101/gr.225896.117
– volume: 16
  year: 2015
  ident: 19279_CR66
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0672-7
– volume: 33
  start-page: 290
  year: 2015
  ident: 19279_CR84
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3122
– volume: 537
  start-page: 553
  year: 2016
  ident: 19279_CR38
  publication-title: Nature
  doi: 10.1038/nature19361
– volume: 15
  start-page: 447
  year: 2014
  ident: 19279_CR11
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.08.003
– volume: 15
  year: 2014
  ident: 19279_CR83
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 534
  start-page: 652
  year: 2016
  ident: 19279_CR56
  publication-title: Nature
  doi: 10.1038/nature18606
– volume: 484
  start-page: 339
  year: 2012
  ident: 19279_CR5
  publication-title: Nature
  doi: 10.1038/nature10960
– volume: 477
  start-page: 606
  year: 2011
  ident: 19279_CR10
  publication-title: Nature
  doi: 10.1038/nature10443
– volume: 403
  start-page: 501
  year: 2000
  ident: 19279_CR3
  publication-title: Nature
  doi: 10.1038/35000656
– volume: 9
  start-page: 1990
  year: 2014
  ident: 19279_CR12
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.11.034
– volume: 22
  start-page: 1607
  year: 2008
  ident: 19279_CR27
  publication-title: Genes Dev.
  doi: 10.1101/gad.1667008
– volume: 18
  start-page: 225
  year: 2016
  ident: 19279_CR14
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3296
– volume: 16
  start-page: 519
  year: 2015
  ident: 19279_CR54
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4043
– volume: 18
  year: 2017
  ident: 19279_CR79
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-3392-9
– volume: 29
  start-page: 1877
  year: 2010
  ident: 19279_CR60
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.80
– volume: 142
  start-page: 3833
  year: 2015
  ident: 19279_CR46
  publication-title: Development
  doi: 10.1242/dev.126003
– volume: 17
  start-page: 679
  year: 2010
  ident: 19279_CR31
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1821
– volume: 13
  start-page: 2
  year: 2020
  ident: 19279_CR63
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-019-0326-1
– volume: 23
  start-page: 3920
  year: 2018
  ident: 19279_CR37
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.094
– volume: 547
  start-page: 419
  year: 2017
  ident: 19279_CR43
  publication-title: Nature
  doi: 10.1038/nature23262
– volume: 44
  start-page: 361
  year: 2011
  ident: 19279_CR67
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.08.032
– volume: 50
  start-page: 12
  year: 2018
  ident: 19279_CR21
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-017-0007-6
– volume: 431
  start-page: 96
  year: 2004
  ident: 19279_CR25
  publication-title: Nature
  doi: 10.1038/nature02886
– volume: 429
  start-page: 900
  year: 2004
  ident: 19279_CR26
  publication-title: Nature
  doi: 10.1038/nature02633
– volume: 21
  start-page: 482
  year: 2017
  ident: 19279_CR15
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.055
– volume: 11
  start-page: 15
  year: 2018
  ident: 19279_CR55
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-018-0186-0
– volume: 241
  start-page: 172
  year: 2002
  ident: 19279_CR4
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2001.0501
– volume: 564
  start-page: 136
  year: 2018
  ident: 19279_CR7
  publication-title: Nature
  doi: 10.1038/s41586-018-0751-5
– volume: 516
  start-page: 242
  year: 2014
  ident: 19279_CR68
  publication-title: Nature
  doi: 10.1038/nature13760
– volume: 13
  start-page: 91
  year: 1996
  ident: 19279_CR74
  publication-title: Nat. Genet.
  doi: 10.1038/ng0596-91
– volume: 129
  start-page: 1983
  year: 2002
  ident: 19279_CR24
  publication-title: Development
  doi: 10.1242/dev.129.8.1983
– volume: 6
  start-page: e21064
  year: 2017
  ident: 19279_CR71
  publication-title: eLife
  doi: 10.7554/eLife.21064
– volume: 15
  start-page: 979
  year: 2014
  ident: 19279_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.017
– volume: 9
  start-page: e1003439
  year: 2013
  ident: 19279_CR33
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003439
– volume: 37
  start-page: 853
  year: 2005
  ident: 19279_CR28
  publication-title: Nat. Genet.
  doi: 10.1038/ng1598
– volume: 15
  start-page: 169
  year: 2010
  ident: 19279_CR58
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2009.01374.x
– volume: 16
  year: 2015
  ident: 19279_CR2
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1833-5
– volume: 10
  start-page: 23
  year: 2017
  ident: 19279_CR35
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-017-0130-8
– volume: 51
  start-page: 844
  year: 2019
  ident: 19279_CR39
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0398-7
– volume: 99
  start-page: 247
  year: 1999
  ident: 19279_CR22
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81656-6
– volume: 25
  start-page: 1010
  year: 2011
  ident: 19279_CR49
  publication-title: Genes Dev.
  doi: 10.1101/gad.2037511
– volume: 511
  start-page: 611
  year: 2014
  ident: 19279_CR19
  publication-title: Nature
  doi: 10.1038/nature13581
– volume: 30
  start-page: 2114
  year: 2014
  ident: 19279_CR80
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 63
  start-page: 1066
  year: 2016
  ident: 19279_CR42
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.08.032
– volume: 10
  start-page: 475
  year: 2000
  ident: 19279_CR59
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00448-6
– volume: 43
  start-page: 811
  year: 2011
  ident: 19279_CR41
  publication-title: Nat. Genet.
  doi: 10.1038/ng.864
– volume: 139
  start-page: 287
  year: 2010
  ident: 19279_CR1
  publication-title: Reproduction
  doi: 10.1530/REP-09-0281
– volume: 9
  year: 2018
  ident: 19279_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05841-x
– volume: 19
  year: 2018
  ident: 19279_CR48
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4835-2
– volume: 15
  year: 2014
  ident: 19279_CR18
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0545-5
– volume: 20
  start-page: 868
  year: 2013
  ident: 19279_CR32
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2599
– volume: 13
  start-page: e0205969
  year: 2018
  ident: 19279_CR73
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0205969
– volume: 16
  year: 2015
  ident: 19279_CR82
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-16-S11-S2
– volume: 294
  start-page: 2536
  year: 2001
  ident: 19279_CR23
  publication-title: Science
  doi: 10.1126/science.1065848
– volume: 5
  start-page: 9
  year: 2019
  ident: 19279_CR8
  publication-title: Cell Discov.
  doi: 10.1038/s41421-019-0081-2
– volume: 15
  start-page: 874
  year: 2000
  ident: 19279_CR76
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/15.4.874
– volume: 34
  start-page: 43
  year: 1993
  ident: 19279_CR75
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.1080340107
– volume: 27
  start-page: 282
  year: 2019
  ident: 19279_CR61
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.03.002
– volume: 26
  start-page: 110
  year: 2000
  ident: 19279_CR77
  publication-title: Genesis
  doi: 10.1002/(SICI)1526-968X(200002)26:2<110::AID-GENE2>3.0.CO;2-8
– volume: 28
  start-page: 1919
  year: 2012
  ident: 19279_CR81
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts277
– volume: 9
  start-page: 215
  year: 2012
  ident: 19279_CR52
  publication-title: Nat. Chem. Biol.
– volume: 23
  start-page: 343
  year: 2018
  ident: 19279_CR57
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.06.008
– volume: 11
  start-page: 36
  year: 2018
  ident: 19279_CR62
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-018-0207-z
– volume: 448
  start-page: 714
  year: 2007
  ident: 19279_CR40
  publication-title: Nature
  doi: 10.1038/nature05987
– volume: 107
  start-page: 9281
  year: 2010
  ident: 19279_CR70
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1000473107
– volume: 37
  start-page: W202
  year: 2009
  ident: 19279_CR51
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp335
– volume: 15
  start-page: 547
  year: 2008
  ident: 19279_CR65
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2008.08.014
– volume: 26
  start-page: 192
  year: 2016
  ident: 19279_CR72
  publication-title: Genome Res.
  doi: 10.1101/gr.198291.115
– volume: 23
  start-page: 616
  year: 2013
  ident: 19279_CR47
  publication-title: Genome Res.
  doi: 10.1101/gr.148023.112
– volume: 13
  start-page: e1007042
  year: 2017
  ident: 19279_CR6
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007042
– volume: 10
  start-page: 1235
  year: 2009
  ident: 19279_CR64
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2009.218
– volume: 72
  start-page: 5099
  year: 1975
  ident: 19279_CR78
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.72.12.5099
SSID ssj0000391844
Score 2.4332414
Snippet De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are...
Abstract De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which...
The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show...
SourceID doaj
pubmedcentral
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5417
SubjectTerms 14/35
38/39
38/91
45/15
45/23
631/136/2086
631/208/176/1968
631/208/176/1988
631/208/200
631/337/176/1988
64/60
Alleles
Blastocysts
CpG islands
Deoxyribonucleic acid
Developmental stages
DNA
DNA methylation
Embryos
Epigenetics
Fertilization
Gene deletion
Gene expression
Gene sequencing
Gene silencing
Genomes
Humanities and Social Sciences
Life Sciences
Loci
Mass spectrometry
Mass spectroscopy
multidisciplinary
Promoters
Science
Science (multidisciplinary)
Spermatogenesis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQJCReEAwQgW0yiDeIlthJLn7sGFOF2J42aW-W7ThqJZZsazbR_547J-maScALj7Wdprofvu901-8Y-1QqcFB5vP1EhQmKqyC2mSxiJ5y0qS9S5wLb51kxv8i-X-aXW6O-qCespwfuBXeI9yco8AXieI9ObY0HazEIlVWZ5kZZun0x5m0lU-EOlgpTl2z4l0wiy8NVFu4EypYQ1ICKYRKJAmE_xpcFtUNuYc3HnZKPyqUhCp28YM8H-Mhn_c9-yZ74Zpc97QdKrl-xm1PTkzrz47PTczmLxxm3Ha88b9r7ltPI6HXfAMfbmiP-49fjQ0TYeuX5slks7bJb0WfP_a-hV7bBjXDeEyky91f2dt2-Zhcn386_zuNhqELsEKx0cV3UCThUhVUyrxyGIykhVS5JrJBQJ2ldZ07UuURp1cIIEKaohEEYlVjIcf0N22naxr9lHNIa4SZUhXKYZRbGYi5H5WFRmdQLqSKWjgLWbmAcp8EXP3WofMtS90rRqBQdlKIhYp83z1z3fBt_PX1EetucJK7ssIAWpAcL0v-yoIh9RK1PvmM--6FpjcqkpczK-zRie6NR6MHLV1pgZM8FMa5F7MNmG_2Tii6m8e0dnUFMigImccDEmCZvnO40y0Vg-oZcESKL2JfR7B5e_mepvPsfUnnPnongLEksYI_tdLd3fh_xV2cPgqv9BlGyKUY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKERIXVF4iUJBB3CCQ2EkmPiC0PKoVYnvqSr1ZseOwK7VJu5tW3X_fGSdZSFV6jB9JNI_MNxrnG8be5woslA6_fqLEBMWWEJpEZqEVVprYZbG1nu3zMJvOk1_H6fEOG9od9QJc35raUT-p-erk09X55is6_Jful_H88zrx7k6JEOIVUCHcY_cxMgE56qyH-_7LLBUmNEn_78ztW0fxydP4Y9RZ0CHJfxDozfOTN4qoPjYd7LFHPajkk84KHrMdVz9hD7o2k5un7HxWdFTP_Mfh7EhOwqHzbctLx-vmsuHUSHrTHYvjTcURFfKzYRPRuJ46vqwXS7Ns13TtuLvqT9DWOOHXO6JK5u7UrDbNMzY_-Hn0fRr2rRZCixCmDausisCigoySaWkxSEkJsbJRZISEKoqrKrGiSiVKqxKFAFFkpSgQXEUGUhx_znbrpnYvGIe4QhAKZaYs5p5ZYTDDo6KxKIvYCakCFg8C1rbnIad2GCfa18NlrjulaFSK9krRELAP2z1nHQvHnau_kd62K4lB2w80qz-6d0iNcRkUuAzzQ4f7TeHAGAQ3eZnHaaFMwN6h1kf3mE5-axqj4mkuk_wyDtj-YBR6MF0tMN6ngnjYAvZ2O41eS6WYonbNBa1BpIoCJnHAyJhGTxzP1MuF5_-GVBFOC9jHwez-Pvz_Unl597u-Yg-Fd4MoFLDPdtvVhXuNeKs1b7wTXQOLsCRy
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NISReED9F2EAG8QYRiZ3kksdSmCrE9rRJe7Nix6GVWDLabFr_e-6cpJAJkHisfW6qu3Puu975M8DbvECLlaO3n6woQbEVhiZRWWilVSZ2WWytZ_s8yRZnyZfz9HwP5HgWxjfte0pL_5oeu8M-bBK_pTnZIUyCRYh34C5Tt7NXz7P57n8VZjzPk2Q4HxOp_A9LJzHIU_VTZFlyI-RvKPN2j-StQqmPP0cP4cEAHMWs_6mPYM81j-Fef5Xk9gn8OC57Omfx6eT4VM3C8XbbTlRONO11K_iy6G3f-ibaWhDyE5fjIqZqvXBi1SxXZtVt-LMT7mbokm1owss7pkMW7sKst-1TODv6fDpfhMN1CqElmNKFdVZHaMkIplBpZSkQKYVxYaPISIV1FNd1YmWdKtJWLUuJsswqWRKAigymNP4M9pu2cc9BYFwT0MQqKyzll1lpKIvjwrCsythJVQQQjwrWduAa5ysvvmtf81a57o2iySjaG0VjAO92ay57po1_Sn9ku-0kmSXbD7Trb3rwGk2xFwt0GeWAjtab0qExBGDyKo_TsjABvCGrT75jMfuqeYwLpLlK8us4gMPRKfSwvzdaUkxPJXOtBfB6N007k8stZePaK5YhNEoKZnXgxJkmT5zONKul5_jGtGAsFsD70e1-PfzvWnnxf-IHcJ_wX-JP6OMh7HfrK_eSMFZnXvlN9RNvhB8h
  priority: 102
  providerName: Springer Nature
Title Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo
URI https://link.springer.com/article/10.1038/s41467-020-19279-7
https://www.proquest.com/docview/2471526360
https://www.proquest.com/docview/2455171939
https://hal.science/hal-04388348
https://pubmed.ncbi.nlm.nih.gov/PMC7591512
https://doaj.org/article/128797e6956e467bae7bb0618d815a9b
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviE8RGJVBvEG0xE5yyRPqykpV0QrBJvXNih1nrcSSru0m-t9z5yQdncReUtUfSeTznX_2XX7H2Mc0AwOFResnCtygmAJ8HcnEN8JIHdokNMaxfU6T0Xk0nsWz9sBt3YZVdjbRGeqiNnRGfizQisaC2K2-LK98yhpF3tU2hcZDdkjUZRTSBTPYnbEQ-3kaRe23MoFMj9eRswy0Z0JoA5kPe-uRo-3HVWZOQZH_IM678ZJ3nKZuLRo-ZU9aEMn7jdSfsQe2es4eNWklty_Y1SRvqJ351-nkTPb9LtPthheWV_VNzSlx9LYJg-N1yREF8mXXiWhbLy1fVPOFXmzW9N9y-6eNmK2wwrW3RI3M7aVebeuX7Hx4ejYY-W1qBd8gZNn4ZVIGYFAgOpNxYXBRkhLCzASBFhLKICzLyIgyljhapcgFiDwpRI5gKtAQY_krdlDVlX3NOIQlgk4okszgXjPJNe7oyEksijy0QmYeC7sBVqblHaf0F7-V83_LVDVCUSgU5YSiwGOfdn2WDevGva1PSG67lsSY7Qrq1YVqFVDhOgwZ2AT3gxb769yC1ghm0iIN4zzTHvuAUt-7x6j_XVEZOUtTGaU3oceOukmhWl1fq9uZ6bH3u2rUUnK95JWtr6kNIlMcYBoO2JtMe0_cr6kWc8f3DXFGuMxjn7tpd_vw_4_Km_vf9S17LJwaBL6AI3awWV3bd4ivNrrnlAiv6fBbjx32--NfY_w9OZ3--Imlg2TQcycXeJ1E6V_psyfz
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguiKcwFFgQnMCqvWt77ANCgVKlNMkplXJbvOs1iUTtNEkL-VP8RmbWdkoq0VuP8e7G1jy_8YxnGHubZmCgsGj9RIEBiinA15FMfCOM1KFNQmNct89R0j-Jvk3iyQ77030LQ2WVnU10hrqoDb0j3xdoRWNB3a0-zc98mhpF2dVuhEYjFsd2_QtDtuXHowPk7zshDr-Ov_T9dqqAb9Bbr_wyKQMw-Cw6k3Fh0B5LCWFmgkALCWUQlmVkRBlLNCGlyAWIPClEjjgi0BCXNCUCTf4tdLwBaRRMYPNOh7qtp1HUfpsTyHR_GTlLRDEaQinIfNjyf25MAHq1KRVh_oNwr9ZnXknSOt93eJ_da0Er7zVS9oDt2Oohu92MsVw_YmfDvGklzQ9Gw7Hs-d1k3RUvLK_qi5rToOp1U3bH65Ij6uTz7hC1iT21fFZNZ3q2WtJvy-3vtkK3wgW331IrZm5P9WJdP2YnN0L0J2y3qiv7lHEISwS5UCSZwdg2yTVGkJSUFkUeWiEzj4UdgZVp-5zTuI2fyuXbZaoapihkinJMUeCx95sz86bLx7W7PxPfNjupQ7e7UC9-qFbhFfp9yMAmGH9aPK9zC1ojeEqLNIzzTHvsDXJ96z_6vYGia5ScTWWUXoQe2-uEQrW2ZakuNcFjrzfLaBUo1ZNXtj6nPYiEkcBEDtgSpq07bq9Us6nrLw5xRjjQYx86sbu8-f-p8uz6Z33F7vTHw4EaHI2On7O7wqlE4AvYY7urxbl9gdhupV86heLs-01r8F8SYV0G
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamIRAviJ8iMMAgeIKoiZ3kkgeECmXq2FbxsEl9M7HjrJVY0rXdoP8afx13TtLRSextj43tJrrzff4ud7lj7G2agYHCIvqJAh0UU4CvI5n4RhipQ5uExrhqn6NkeBx9G8fjLfan-xaG0io7THRAXdSG3pH3BKJoLKi6Va9s0yK-D3Y_zc586iBFkdaunUazRfbt6he6b4uPewPU9Tshdr8efRn6bYcB3-DJvfTLpAzA4HPpTMaFQWyWEsLMBIEWEsogLMvIiDKWCCelyAWIPClEjpwi0BCX1DEC4f8WyDgkG4MxrN_vUOX1NIra73QCmfYWkUMl8teQVkHmw8ZZ6FoG4Ak3oYTMf9ju1VzNKwFbdw7u3mf3WgLL-82Oe8C2bPWQ3W5aWq4esbPDvCkrzQejwyPZ97suu0teWF7VFzWnptWrJgWP1yVHBspn3SIqGXtq-bSaTPV0uaDfltvfbbZuhQNuvqWyzNye6vmqfsyOb0ToT9h2VVf2KeMQlkh4oUgyg35ukmv0JilALYo8tEJmHgs7ASvT1jyn1hs_lYu9y1Q1SlGoFOWUosBj79drZk3Fj2tnfya9rWdStW53oZ6fqNb4FXIAyMAm6ItaXK9zC1ojkUqLNIzzTHvsDWp94z-G_QNF1yhQm8oovQg9ttNtCtXizEJdWoXHXq-HESEo7JNXtj6nOciKUcAkDtjYTBt33BypphNXaxzijDihxz502-7y5v-XyrPrn_UVu4O2qw72RvvP2V3hLCLwBeyw7eX83L5AmrfUL509cfbjpg34L5M8YTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maternal+DNMT3A-dependent+de+novo+methylation+of+the+paternal+genome+inhibits+gene+expression+in+the+early+embryo&rft.jtitle=Nature+communications&rft.au=Julien%2C+Richard+Albert&rft.au=Au+Yeung+Wan+Kin&rft.au=Toriyama+Keisuke&rft.au=Kobayashi+Hisato&rft.date=2020-10-27&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-19279-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon