Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo
De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass sp...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 5417 - 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.10.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of
Dnmt3a
, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal
Dnmt3a
knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.
The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo. |
---|---|
AbstractList | Abstract De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a , with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome. De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a , with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome. The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo. De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo. De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome. The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo. De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a , with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome. |
ArticleNumber | 5417 |
Author | Brind’Amour, Julie Toriyama, Keisuke Kobayashi, Hisato Sasaki, Hiroyuki Lorincz, Matthew Au Yeung, Wan Kin Richard Albert, Julien Hirasawa, Ryutaro Bogutz, Aaron |
Author_xml | – sequence: 1 givenname: Julien orcidid: 0000-0001-9950-9461 surname: Richard Albert fullname: Richard Albert, Julien organization: Department of Medical Genetics, University of British Columbia – sequence: 2 givenname: Wan Kin orcidid: 0000-0002-0312-1073 surname: Au Yeung fullname: Au Yeung, Wan Kin organization: Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University – sequence: 3 givenname: Keisuke surname: Toriyama fullname: Toriyama, Keisuke organization: Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University – sequence: 4 givenname: Hisato orcidid: 0000-0003-3800-4691 surname: Kobayashi fullname: Kobayashi, Hisato organization: NODAI Genome Research Center, Tokyo University of Agriculture, Department of Embryology, Nara Medical University – sequence: 5 givenname: Ryutaro surname: Hirasawa fullname: Hirasawa, Ryutaro organization: Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Center for Regulatory Science, Pharmaceuticals and Medical Devices Agency – sequence: 6 givenname: Julie orcidid: 0000-0002-9522-8571 surname: Brind’Amour fullname: Brind’Amour, Julie organization: Department of Medical Genetics, University of British Columbia – sequence: 7 givenname: Aaron surname: Bogutz fullname: Bogutz, Aaron organization: Department of Medical Genetics, University of British Columbia – sequence: 8 givenname: Hiroyuki orcidid: 0000-0001-8239-8275 surname: Sasaki fullname: Sasaki, Hiroyuki organization: Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University – sequence: 9 givenname: Matthew orcidid: 0000-0003-0885-0467 surname: Lorincz fullname: Lorincz, Matthew email: mlorincz@mail.ubc.ca organization: Department of Medical Genetics, University of British Columbia |
BackLink | https://hal.science/hal-04388348$$DView record in HAL |
BookMark | eNp9kktv3CAUha0qVfNo_kBXlrppF265YBuzqTRKmybSpN2ka4Tx9QwjGxzwjDL_vnicPjKLsAGuv3OA63OenFhnMUneAfkEhFWfQw55yTNCSQaCcpHxV8kZJTlkwCk7-W99mlyGsCFxMAFVnr9JThkDIETAWfJwp0b0VnXp1x9392yRNTigbdCOaYOpdTuX9jiu950ajbOpa9NxjenwR7RC63pMjV2b2oxh2mOKj4PHECbe2AOPynf7FPva793b5HWruoCXT_NF8uv62_3VTbb8-f32arHMdAl8zNqyJVxrqmvBikbnVDDGQWhCasp4S6Btc03bgsUutFRRTlXZUMUEJTUvYv0iuZ19G6c2cvCmV34vnTLyUHB-JZUfje5QAq244FiKosRoVyvkdU1KqJoKCiXq6PVl9hq2dY-Nju3xqntm-vyLNWu5cjvJCwEF0GjwcTZYH8luFks51UjOqorl1Q4i--HpMO8ethhG2ZugseuURbcNkuZFAbEVTET0_RG6cdvpx0wUh4KWrCSRojOlvQvBY_v3BkDkFCY5h0nGMMlDmCSPoupIpM14CEF8oOlelrJZGuI5doX-361eUP0GSY3dqg |
CitedBy_id | crossref_primary_10_1186_s13072_023_00482_x crossref_primary_10_1093_nar_gkad516 crossref_primary_10_3390_ijms23158495 crossref_primary_10_1242_dev_182683 crossref_primary_10_1038_s44319_024_00223_5 crossref_primary_10_1093_humupd_dmad006 crossref_primary_10_2217_epi_2023_0104 crossref_primary_10_3389_fgene_2022_909804 crossref_primary_10_1038_s41467_023_37820_2 crossref_primary_10_1152_physiolgenomics_00091_2024 crossref_primary_10_1186_s13072_024_00566_2 crossref_primary_10_3389_fcell_2020_629068 crossref_primary_10_1007_s10815_024_03259_7 crossref_primary_10_1016_j_neuron_2024_12_025 crossref_primary_10_1360_TB_2024_0844 crossref_primary_10_1017_S1062798724000231 crossref_primary_10_1038_s41576_024_00760_8 |
Cites_doi | 10.1186/s13059-014-0545-5 10.1016/j.celrep.2017.09.055 10.1186/s13059-014-0550-8 10.1002/(SICI)1526-968X(200002)26:2<110::AID-GENE2>3.0.CO;2-8 10.1016/S0960-9822(00)00448-6 10.1186/s12864-018-4835-2 10.1016/j.molcel.2016.08.032 10.1093/bioinformatics/btu170 10.1038/s41556-018-0093-4 10.1126/science.aab2006 10.1038/nature13581 10.1038/ng0596-91 10.1016/j.cell.2014.04.017 10.1371/journal.pone.0205969 10.1073/pnas.72.12.5099 10.1371/journal.pgen.1003439 10.1038/nature23262 10.1002/mrd.1080340107 10.1038/ng.864 10.1038/s41586-018-0751-5 10.1073/pnas.1000473107 10.1093/bioinformatics/bts277 10.1101/gr.148023.112 10.1006/dbio.2001.0501 10.1186/s12864-015-1833-5 10.1038/nature08162 10.1038/s41588-019-0398-7 10.1242/dev.126003 10.1038/nature10960 10.1016/j.celrep.2018.05.094 10.1530/REP-09-0281 10.1038/nature05987 10.1186/s13072-017-0130-8 10.1038/nsmb.2599 10.1038/nbt.3122 10.1038/nsmb.1821 10.1038/35000656 10.1101/gr.225896.117 10.1038/s41467-018-05841-x 10.7554/eLife.21064 10.1186/1471-2105-16-S11-S2 10.1038/nature19361 10.1186/s12864-016-3392-9 10.1101/gr.198291.115 10.1126/science.1187945 10.1101/gad.271353.115 10.1038/s41421-019-0081-2 10.1101/gad.2037511 10.1371/journal.pgen.1007042 10.1093/humrep/15.4.874 10.1126/science.aah6895 10.1101/gad.244848.114 10.1038/s41580-018-0008-z 10.1038/ng1990 10.1016/j.molcel.2010.05.004 10.1186/s13059-015-0672-7 10.1016/j.stem.2014.08.003 10.1038/nature18606 10.1038/nature10443 10.1016/j.celrep.2014.11.034 10.1101/gad.1667008 10.1038/ncb3296 10.1038/nrm4043 10.1038/emboj.2010.80 10.1186/s13072-019-0326-1 10.1016/j.molcel.2011.08.032 10.1038/s41588-017-0007-6 10.1038/nature02886 10.1038/nature02633 10.1186/s13072-018-0186-0 10.1038/nature13760 10.1242/dev.129.8.1983 10.1038/ng1598 10.1111/j.1365-2443.2009.01374.x 10.1016/S0092-8674(00)81656-6 10.1126/science.1065848 10.1016/j.celrep.2019.03.002 10.1016/j.stem.2018.06.008 10.1186/s13072-018-0207-z 10.1093/nar/gkp335 10.1016/j.devcel.2008.08.014 10.1038/embor.2009.218 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 1XC 5PM DOA |
DOI | 10.1038/s41467-020-19279-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_128797e6956e467bae7bb0618d815a9b PMC7591512 oai_HAL_hal_04388348v1 10_1038_s41467_020_19279_7 |
GrantInformation_xml | – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada) grantid: RGPIN-2015-05228 funderid: https://doi.org/10.13039/501100000038 – fundername: Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada) grantid: PJT-153049 funderid: https://doi.org/10.13039/501100000024 – fundername: ; grantid: PJT-153049 – fundername: ; grantid: RGPIN-2015-05228 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 1XC 5PM PUEGO |
ID | FETCH-LOGICAL-c617t-f6f07cc2cb935dc42933719c00b237f01ff4c2f53467f2a272a6d2a3920b75f53 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:08:53 EDT 2025 Thu Aug 21 13:42:09 EDT 2025 Fri May 09 12:16:03 EDT 2025 Fri Jul 11 10:26:22 EDT 2025 Wed Aug 13 10:59:59 EDT 2025 Tue Jul 01 04:09:06 EDT 2025 Thu Apr 24 22:52:19 EDT 2025 Fri Feb 21 02:40:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c617t-f6f07cc2cb935dc42933719c00b237f01ff4c2f53467f2a272a6d2a3920b75f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9522-8571 0000-0003-0885-0467 0000-0003-3800-4691 0000-0001-8239-8275 0000-0001-9950-9461 0000-0002-0312-1073 |
OpenAccessLink | https://www.proquest.com/docview/2471526360?pq-origsite=%requestingapplication% |
PMID | 33110091 |
PQID | 2471526360 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_128797e6956e467bae7bb0618d815a9b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7591512 hal_primary_oai_HAL_hal_04388348v1 proquest_miscellaneous_2455171939 proquest_journals_2471526360 crossref_primary_10_1038_s41467_020_19279_7 crossref_citationtrail_10_1038_s41467_020_19279_7 springer_journals_10_1038_s41467_020_19279_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-27 |
PublicationDateYYYYMMDD | 2020-10-27 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Heinz (CR50) 2010; 38 Santos, Hendrich, Reik, Dean (CR4) 2002; 241 Matsuzaki (CR46) 2015; 142 Smith (CR19) 2014; 511 Yamaguchi (CR37) 2018; 23 Pertea (CR84) 2015; 33 Jacobs (CR68) 2014; 516 Bourc’his, Bestor (CR25) 2004; 431 Kaneda (CR58) 2010; 15 Endoh (CR71) 2017; 6 Weber (CR28) 2005; 37 Solter, Knowles (CR78) 1975; 72 Wossidlo (CR60) 2010; 29 Hammoud (CR30) 2009; 460 Hata, Okano, Lei, Li (CR24) 2002; 129 Erkek (CR32) 2013; 20 Zhang (CR38) 2016; 537 Kobayashi (CR47) 2013; 23 Matsuzaki (CR63) 2020; 13 Du, Johnson, Jacobsen, Patel (CR54) 2015; 16 Amouroux (CR14) 2016; 18 Han, Ren, Zhang, Shu, Wang (CR8) 2019; 5 Bourc’his, Xu, Lin, Bollman, Bestor (CR23) 2001; 294 de Vries (CR77) 2000; 26 Kaneda (CR26) 2004; 429 Richard Albert (CR48) 2018; 19 Tsukada, Akiyama, Nakayama (CR13) 2015; 5 Brykczynska (CR31) 2010; 17 Gaysinskaya (CR55) 2018; 11 Velasco (CR70) 2010; 107 Hajkova (CR9) 2010; 329 Stewart (CR44) 2015; 29 Liu (CR53) 2014; 28 Maenohara (CR6) 2017; 13 Guo (CR11) 2014; 15 Ernst, Kellis (CR52) 2012; 9 Toh (CR79) 2017; 18 Kubo (CR2) 2015; 16 Yang (CR69) 2017; 356 Miller, Brinkworth, Iles (CR1) 2010; 139 Wu (CR56) 2016; 534 Zheng (CR42) 2016; 63 Kono, Obata, Yoshimzu, Nakahara, Carroll (CR74) 1996; 13 Siklenka (CR36) 2015; 350 Strogantsev (CR66) 2015; 16 Qu (CR34) 2017; 28 Shirane (CR33) 2013; 9 Gu (CR10) 2011; 477 Matoba (CR57) 2018; 23 Love, Huber, Anders (CR83) 2014; 15 Kweon (CR15) 2017; 21 Wang (CR16) 2014; 15 Smallwood (CR41) 2011; 43 Li (CR7) 2018; 564 Weber (CR29) 2007; 39 Peat (CR12) 2014; 9 Ooi (CR40) 2007; 448 Deaton, Bird (CR49) 2011; 25 Tatsumi (CR73) 2018; 13 Bolger, Lohse, Usadel (CR80) 2014; 30 Eckersley-Maslin, Alda-Catalinas, Reik (CR20) 2018; 19 Auclair, Guibert, Bender, Weber (CR18) 2014; 15 Oswald (CR59) 2000; 10 Hirasawa (CR27) 2008; 22 Au Yeung (CR61) 2019; 27 Matsuzaki (CR62) 2018; 11 Edwards, Yarychkivska, Boulard, Bestor (CR35) 2017; 10 Okano, Bell, Haber, Li (CR22) 1999; 99 Brind’Amour (CR45) 2018; 9 Otani (CR64) 2009; 10 Zhu (CR21) 2018; 50 Xu (CR39) 2019; 51 Bailey (CR51) 2009; 37 Mayer (CR3) 2000; 403 Auclair (CR72) 2016; 26 Obata (CR76) 2000; 15 Younesy, Möller, Lorincz, Karimi, Jones (CR82) 2015; 16 Neph (CR81) 2012; 28 Wang (CR17) 2018; 20 Kono, Sotomaru, Sato, Nakahara (CR75) 1993; 34 Li (CR65) 2008; 15 Inoue, Jiang, Lu, Suzuki, Zhang (CR43) 2017; 547 Quenneville (CR67) 2011; 44 Smith (CR5) 2012; 484 K Siklenka (19279_CR36) 2015; 350 D Bourc’his (19279_CR25) 2004; 431 D Miller (19279_CR1) 2010; 139 J Du (19279_CR54) 2015; 16 WK Au Yeung (19279_CR61) 2019; 27 X Li (19279_CR65) 2008; 15 M Wossidlo (19279_CR60) 2010; 29 J Otani (19279_CR64) 2009; 10 M Pertea (19279_CR84) 2015; 33 T Kono (19279_CR74) 1996; 13 SS Hammoud (19279_CR30) 2009; 460 M Endoh (19279_CR71) 2017; 6 T-P Gu (19279_CR10) 2011; 477 S Matoba (19279_CR57) 2018; 23 K Yamaguchi (19279_CR37) 2018; 23 R Strogantsev (19279_CR66) 2015; 16 H Toh (19279_CR79) 2017; 18 C Wang (19279_CR17) 2018; 20 H Matsuzaki (19279_CR63) 2020; 13 Y Obata (19279_CR76) 2000; 15 S Liu (19279_CR53) 2014; 28 AM Bolger (19279_CR80) 2014; 30 D Bourc’his (19279_CR23) 2001; 294 FMJ Jacobs (19279_CR68) 2014; 516 V Gaysinskaya (19279_CR55) 2018; 11 D Tatsumi (19279_CR73) 2018; 13 M Kaneda (19279_CR26) 2004; 429 ZD Smith (19279_CR19) 2014; 511 D Solter (19279_CR78) 1975; 72 L Han (19279_CR8) 2019; 5 Y-I Tsukada (19279_CR13) 2015; 5 M Weber (19279_CR28) 2005; 37 H Zheng (19279_CR42) 2016; 63 S Erkek (19279_CR32) 2013; 20 W Mayer (19279_CR3) 2000; 403 JR Peat (19279_CR12) 2014; 9 R Amouroux (19279_CR14) 2016; 18 AM Deaton (19279_CR49) 2011; 25 ZD Smith (19279_CR5) 2012; 484 TL Bailey (19279_CR51) 2009; 37 K Shirane (19279_CR33) 2013; 9 H Matsuzaki (19279_CR46) 2015; 142 F Guo (19279_CR11) 2014; 15 S Maenohara (19279_CR6) 2017; 13 T Kono (19279_CR75) 1993; 34 MA Eckersley-Maslin (19279_CR20) 2018; 19 J Oswald (19279_CR59) 2000; 10 G Velasco (19279_CR70) 2010; 107 M Kaneda (19279_CR58) 2010; 15 G Auclair (19279_CR18) 2014; 15 H Kobayashi (19279_CR47) 2013; 23 S Heinz (19279_CR50) 2010; 38 U Brykczynska (19279_CR31) 2010; 17 SA Smallwood (19279_CR41) 2011; 43 L Wang (19279_CR16) 2014; 15 A Inoue (19279_CR43) 2017; 547 J Wu (19279_CR56) 2016; 534 H Matsuzaki (19279_CR62) 2018; 11 K Hata (19279_CR24) 2002; 129 S Neph (19279_CR81) 2012; 28 H Younesy (19279_CR82) 2015; 16 F Santos (19279_CR4) 2002; 241 B Zhang (19279_CR38) 2016; 537 WN de Vries (19279_CR77) 2000; 26 P Hajkova (19279_CR9) 2010; 329 P Zhu (19279_CR21) 2018; 50 Q Xu (19279_CR39) 2019; 51 J Qu (19279_CR34) 2017; 28 S Quenneville (19279_CR67) 2011; 44 J Brind’Amour (19279_CR45) 2018; 9 J Ernst (19279_CR52) 2012; 9 G Auclair (19279_CR72) 2016; 26 S-M Kweon (19279_CR15) 2017; 21 R Hirasawa (19279_CR27) 2008; 22 N Kubo (19279_CR2) 2015; 16 J Richard Albert (19279_CR48) 2018; 19 M Weber (19279_CR29) 2007; 39 SKT Ooi (19279_CR40) 2007; 448 KR Stewart (19279_CR44) 2015; 29 P Yang (19279_CR69) 2017; 356 MI Love (19279_CR83) 2014; 15 M Okano (19279_CR22) 1999; 99 Y Li (19279_CR7) 2018; 564 JR Edwards (19279_CR35) 2017; 10 |
References_xml | – volume: 15 year: 2014 ident: CR18 article-title: Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse publication-title: Genome Biol. doi: 10.1186/s13059-014-0545-5 – volume: 29 start-page: 1877 year: 2010 end-page: 1888 ident: CR60 article-title: Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes publication-title: EMBO J. – volume: 44 start-page: 361 year: 2011 end-page: 372 ident: CR67 article-title: In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions publication-title: Mol. Cell – volume: 21 start-page: 482 year: 2017 end-page: 494 ident: CR15 article-title: Erasure of Tet-oxidized 5-methylcytosine by a SRAP nuclease publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.055 – volume: 15 year: 2014 ident: CR83 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 99 start-page: 247 year: 1999 end-page: 257 ident: CR22 article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development publication-title: Cell – volume: 26 start-page: 110 year: 2000 end-page: 112 ident: CR77 article-title: Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes publication-title: Genesis doi: 10.1002/(SICI)1526-968X(200002)26:2<110::AID-GENE2>3.0.CO;2-8 – volume: 429 start-page: 900 year: 2004 end-page: 903 ident: CR26 article-title: Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting publication-title: Nature – volume: 129 start-page: 1983 year: 2002 end-page: 1993 ident: CR24 article-title: Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice publication-title: Development – volume: 10 start-page: 475 year: 2000 end-page: 478 ident: CR59 article-title: Active demethylation of the paternal genome in the mouse zygote publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00448-6 – volume: 19 year: 2018 ident: CR48 article-title: Development and application of an integrated allele-specific pipeline for methylomic and epigenomic analysis (MEA) publication-title: BMC Genomics doi: 10.1186/s12864-018-4835-2 – volume: 37 start-page: W202 year: 2009 end-page: W208 ident: CR51 article-title: MEME SUITE: tools for motif discovery and searching publication-title: Nucleic Acids Res. – volume: 431 start-page: 96 year: 2004 end-page: 99 ident: CR25 article-title: Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L publication-title: Nature – volume: 22 start-page: 1607 year: 2008 end-page: 1616 ident: CR27 article-title: Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development publication-title: Genes Dev. – volume: 15 start-page: 547 year: 2008 end-page: 557 ident: CR65 article-title: A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints publication-title: Developmental Cell – volume: 63 start-page: 1066 year: 2016 end-page: 1079 ident: CR42 article-title: Resetting epigenetic memory by reprogramming of histone modifications in mammals publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.08.032 – volume: 30 start-page: 2114 year: 2014 end-page: 2120 ident: CR80 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 294 start-page: 2536 year: 2001 end-page: 2539 ident: CR23 article-title: Dnmt3L and the establishment of maternal genomic imprints publication-title: Science – volume: 50 start-page: 12 year: 2018 end-page: 19 ident: CR21 article-title: Single-cell DNA methylome sequencing of human preimplantation embryos publication-title: Nat. Genet. – volume: 5 year: 2015 ident: CR13 article-title: Maternal TET3 is dispensable for embryonic development but is required for neonatal growth publication-title: Sci. Rep. – volume: 20 start-page: 620 year: 2018 end-page: 631 ident: CR17 article-title: Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0093-4 – volume: 9 start-page: 1990 year: 2014 end-page: 2000 ident: CR12 article-title: Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation publication-title: Cell Rep. – volume: 516 start-page: 242 year: 2014 end-page: 245 ident: CR68 article-title: An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons publication-title: Nature – volume: 350 start-page: aab2006 year: 2015 ident: CR36 article-title: Disruption of histone methylation in developing sperm impairs offspring health transgenerationally publication-title: Science doi: 10.1126/science.aab2006 – volume: 511 start-page: 611 year: 2014 end-page: 615 ident: CR19 article-title: DNA methylation dynamics of the human preimplantation embryo publication-title: Nature doi: 10.1038/nature13581 – volume: 39 start-page: 457 year: 2007 end-page: 466 ident: CR29 article-title: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome publication-title: Nat. Genet. – volume: 13 start-page: 91 year: 1996 end-page: 94 ident: CR74 article-title: Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse publication-title: Nat. Genet. doi: 10.1038/ng0596-91 – volume: 15 start-page: 979 year: 2014 end-page: 991 ident: CR16 article-title: Programming and inheritance of parental DNA methylomes in mammals publication-title: Cell doi: 10.1016/j.cell.2014.04.017 – volume: 13 start-page: e0205969 year: 2018 ident: CR73 article-title: DNMTs and SETDB1 function as co-repressors in MAX-mediated repression of germ cell-related genes in mouse embryonic stem cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0205969 – volume: 72 start-page: 5099 year: 1975 end-page: 5102 ident: CR78 article-title: Immunosurgery of mouse blastocyst publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.72.12.5099 – volume: 27 start-page: 282 year: 2019 end-page: 293 ident: CR61 article-title: Histone H3K9 methyltransferase G9a in oocytes is essential for preimplantation development but dispensable for CG methylation protection publication-title: Cell Rep. – volume: 9 start-page: e1003439 year: 2013 ident: CR33 article-title: Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003439 – volume: 547 start-page: 419 year: 2017 end-page: 424 ident: CR43 article-title: Maternal H3K27me3 controls DNA methylation-independent imprinting publication-title: Nature doi: 10.1038/nature23262 – volume: 16 start-page: 519 year: 2015 end-page: 532 ident: CR54 article-title: DNA methylation pathways and their crosstalk with histone methylation publication-title: Nat. Rev. Mol. Cell Biol. – volume: 38 start-page: 576 year: 2010 end-page: 589 ident: CR50 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell – volume: 356 start-page: 757 year: 2017 end-page: 759 ident: CR69 article-title: A placental growth factor is silenced in mouse embryos by the zinc finger protein ZFP568 publication-title: Science – volume: 34 start-page: 43 year: 1993 end-page: 46 ident: CR75 article-title: Development of androgenetic mouse embryos produced by in vitro fertilization of enucleated oocytes publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.1080340107 – volume: 43 start-page: 811 year: 2011 end-page: 814 ident: CR41 article-title: Dynamic CpG island methylation landscape in oocytes and preimplantation embryos publication-title: Nat. Genet. doi: 10.1038/ng.864 – volume: 564 start-page: 136 year: 2018 end-page: 140 ident: CR7 article-title: Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1 publication-title: Nature doi: 10.1038/s41586-018-0751-5 – volume: 19 start-page: 436 year: 2018 end-page: 450 ident: CR20 article-title: Dynamics of the epigenetic landscape during the maternal-to-zygotic transition publication-title: Nat. Rev. Mol. Cell Biol. – volume: 107 start-page: 9281 year: 2010 end-page: 9286 ident: CR70 article-title: Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1000473107 – volume: 28 start-page: 1919 year: 2012 end-page: 1920 ident: CR81 article-title: BEDOPS: high-performance genomic feature operations publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts277 – volume: 18 start-page: 225 year: 2016 end-page: 233 ident: CR14 article-title: De novo DNA methylation drives 5hmC accumulation in mouse zygotes publication-title: Nat. Cell Biol. – volume: 23 start-page: 616 year: 2013 end-page: 627 ident: CR47 article-title: High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice publication-title: Genome Res. doi: 10.1101/gr.148023.112 – volume: 13 start-page: 2 year: 2020 end-page: 19 ident: CR63 article-title: Recapitulation of gametic DNA methylation and its post-fertilization maintenance with reassembled DNA elements at the mouse Igf2/H19 locus publication-title: Epigenetics Chromatin – volume: 11 start-page: 15 year: 2018 ident: CR55 article-title: Transient reduction of DNA methylation at the onset of meiosis in male mice publication-title: Epigenetics Chromatin – volume: 9 start-page: 215 year: 2012 end-page: 216 ident: CR52 article-title: ChromHMM: automating chromatin-state discovery and characterization publication-title: Nat. Chem. Biol. – volume: 241 start-page: 172 year: 2002 end-page: 182 ident: CR4 article-title: Dynamic reprogramming of DNA methylation in the early mouse Embryo publication-title: Dev. Biol. doi: 10.1006/dbio.2001.0501 – volume: 23 start-page: 343 year: 2018 end-page: 354 ident: CR57 article-title: Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development publication-title: Cell Stem Cell – volume: 16 year: 2015 ident: CR2 article-title: DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis publication-title: BMC Genomics doi: 10.1186/s12864-015-1833-5 – volume: 460 start-page: 473 year: 2009 end-page: 478 ident: CR30 article-title: Distinctive chromatin in human sperm packages genes for embryo development publication-title: Nature doi: 10.1038/nature08162 – volume: 51 start-page: 844 year: 2019 end-page: 856 ident: CR39 article-title: SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development publication-title: Nat. Genet. doi: 10.1038/s41588-019-0398-7 – volume: 142 start-page: 3833 year: 2015 end-page: 3844 ident: CR46 article-title: De novo DNA methylation through the 5′-segment of the H19 ICR maintains its imprint during early embryogenesis publication-title: Development doi: 10.1242/dev.126003 – volume: 28 start-page: 2041 year: 2014 end-page: 2055 ident: CR53 article-title: Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells publication-title: Genes Dev. – volume: 484 start-page: 339 year: 2012 end-page: 344 ident: CR5 article-title: A unique regulatory phase of DNA methylation in the early mammalian embryo publication-title: Nature doi: 10.1038/nature10960 – volume: 477 start-page: 606 year: 2011 end-page: 610 ident: CR10 article-title: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes publication-title: Nature – volume: 23 start-page: 3920 year: 2018 end-page: 3932 ident: CR37 article-title: Re-evaluating the localization of sperm-retained histones revealed the modification-dependent accumulation in specific genome regions publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.094 – volume: 139 start-page: 287 year: 2010 end-page: 301 ident: CR1 article-title: Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics publication-title: Reproduction doi: 10.1530/REP-09-0281 – volume: 448 start-page: 714 year: 2007 end-page: 717 ident: CR40 article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA publication-title: Nature doi: 10.1038/nature05987 – volume: 11 start-page: 36 year: 2018 ident: CR62 article-title: Synthetic DNA fragments bearing ICR cis elements become differentially methylated and recapitulate genomic imprinting in transgenic mice publication-title: Epigenetics Chromatin – volume: 10 start-page: 23 year: 2017 ident: CR35 article-title: DNA methylation and DNA methyltransferases publication-title: Epigenetics Chromatin doi: 10.1186/s13072-017-0130-8 – volume: 20 start-page: 868 year: 2013 end-page: 875 ident: CR32 article-title: Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2599 – volume: 33 start-page: 290 year: 2015 end-page: 295 ident: CR84 article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3122 – volume: 16 year: 2015 ident: CR66 article-title: Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression publication-title: Genome Biol. – volume: 17 start-page: 679 year: 2010 end-page: 687 ident: CR31 article-title: Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1821 – volume: 403 start-page: 501 year: 2000 end-page: 502 ident: CR3 article-title: Demethylation of the zygotic paternal genome publication-title: Nature doi: 10.1038/35000656 – volume: 28 start-page: 145 year: 2017 end-page: 158 ident: CR34 article-title: Evolutionary expansion of DNA hypomethylation in the mammalian germline genome publication-title: Genome Res. doi: 10.1101/gr.225896.117 – volume: 9 year: 2018 ident: CR45 article-title: LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation publication-title: Nat. Commun. doi: 10.1038/s41467-018-05841-x – volume: 6 start-page: e21064 year: 2017 ident: CR71 article-title: PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes publication-title: eLife doi: 10.7554/eLife.21064 – volume: 16 year: 2015 ident: CR82 article-title: VisRseq: R-based visual framework for analysis of sequencing data publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-16-S11-S2 – volume: 537 start-page: 553 year: 2016 end-page: 557 ident: CR38 article-title: Allelic reprogramming of the histone modification H3K4me3 in early mammalian development publication-title: Nature doi: 10.1038/nature19361 – volume: 10 start-page: 1235 year: 2009 end-page: 1241 ident: CR64 article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain publication-title: EMBO Rep. – volume: 18 year: 2017 ident: CR79 article-title: Software updates in the Illumina HiSeq platform affect whole-genome bisulfite sequencing publication-title: BMC Genomics doi: 10.1186/s12864-016-3392-9 – volume: 26 start-page: 192 year: 2016 end-page: 202 ident: CR72 article-title: EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos publication-title: Genome Res. doi: 10.1101/gr.198291.115 – volume: 329 start-page: 78 year: 2010 end-page: 82 ident: CR9 article-title: Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway publication-title: Science doi: 10.1126/science.1187945 – volume: 29 start-page: 2449 year: 2015 end-page: 2462 ident: CR44 article-title: Dynamic changes in histone modifications precede de novo DNA methylation in oocytes publication-title: Genes Dev. doi: 10.1101/gad.271353.115 – volume: 15 start-page: 169 year: 2010 end-page: 179 ident: CR58 article-title: Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3-Cre and complete exclusion of Dnmt3b by chimera formation publication-title: Genes Cells – volume: 5 start-page: 9 year: 2019 ident: CR8 article-title: Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development publication-title: Cell Discov. doi: 10.1038/s41421-019-0081-2 – volume: 25 start-page: 1010 year: 2011 end-page: 1022 ident: CR49 article-title: CpG islands and the regulation of transcription publication-title: Genes Dev. doi: 10.1101/gad.2037511 – volume: 534 start-page: 652 year: 2016 end-page: 657 ident: CR56 article-title: The landscape of accessible chromatin in mammalian preimplantation embryos publication-title: Nature – volume: 13 start-page: e1007042 year: 2017 ident: CR6 article-title: Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007042 – volume: 15 start-page: 874 year: 2000 end-page: 880 ident: CR76 article-title: Post-implantation development of mouse androgenetic embryos produced by in-vitro fertilization of enucleated oocytes publication-title: Hum. Reprod. doi: 10.1093/humrep/15.4.874 – volume: 15 start-page: 447 year: 2014 end-page: 458 ident: CR11 article-title: Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote publication-title: Cell Stem Cell – volume: 37 start-page: 853 year: 2005 end-page: 862 ident: CR28 article-title: Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells publication-title: Nat. Genet. – volume: 356 start-page: 757 year: 2017 ident: 19279_CR69 publication-title: Science doi: 10.1126/science.aah6895 – volume: 350 start-page: aab2006 year: 2015 ident: 19279_CR36 publication-title: Science doi: 10.1126/science.aab2006 – volume: 29 start-page: 2449 year: 2015 ident: 19279_CR44 publication-title: Genes Dev. doi: 10.1101/gad.271353.115 – volume: 460 start-page: 473 year: 2009 ident: 19279_CR30 publication-title: Nature doi: 10.1038/nature08162 – volume: 28 start-page: 2041 year: 2014 ident: 19279_CR53 publication-title: Genes Dev. doi: 10.1101/gad.244848.114 – volume: 19 start-page: 436 year: 2018 ident: 19279_CR20 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0008-z – volume: 20 start-page: 620 year: 2018 ident: 19279_CR17 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0093-4 – volume: 329 start-page: 78 year: 2010 ident: 19279_CR9 publication-title: Science doi: 10.1126/science.1187945 – volume: 5 year: 2015 ident: 19279_CR13 publication-title: Sci. Rep. – volume: 39 start-page: 457 year: 2007 ident: 19279_CR29 publication-title: Nat. Genet. doi: 10.1038/ng1990 – volume: 38 start-page: 576 year: 2010 ident: 19279_CR50 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 28 start-page: 145 year: 2017 ident: 19279_CR34 publication-title: Genome Res. doi: 10.1101/gr.225896.117 – volume: 16 year: 2015 ident: 19279_CR66 publication-title: Genome Biol. doi: 10.1186/s13059-015-0672-7 – volume: 33 start-page: 290 year: 2015 ident: 19279_CR84 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3122 – volume: 537 start-page: 553 year: 2016 ident: 19279_CR38 publication-title: Nature doi: 10.1038/nature19361 – volume: 15 start-page: 447 year: 2014 ident: 19279_CR11 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.08.003 – volume: 15 year: 2014 ident: 19279_CR83 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 534 start-page: 652 year: 2016 ident: 19279_CR56 publication-title: Nature doi: 10.1038/nature18606 – volume: 484 start-page: 339 year: 2012 ident: 19279_CR5 publication-title: Nature doi: 10.1038/nature10960 – volume: 477 start-page: 606 year: 2011 ident: 19279_CR10 publication-title: Nature doi: 10.1038/nature10443 – volume: 403 start-page: 501 year: 2000 ident: 19279_CR3 publication-title: Nature doi: 10.1038/35000656 – volume: 9 start-page: 1990 year: 2014 ident: 19279_CR12 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.11.034 – volume: 22 start-page: 1607 year: 2008 ident: 19279_CR27 publication-title: Genes Dev. doi: 10.1101/gad.1667008 – volume: 18 start-page: 225 year: 2016 ident: 19279_CR14 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3296 – volume: 16 start-page: 519 year: 2015 ident: 19279_CR54 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4043 – volume: 18 year: 2017 ident: 19279_CR79 publication-title: BMC Genomics doi: 10.1186/s12864-016-3392-9 – volume: 29 start-page: 1877 year: 2010 ident: 19279_CR60 publication-title: EMBO J. doi: 10.1038/emboj.2010.80 – volume: 142 start-page: 3833 year: 2015 ident: 19279_CR46 publication-title: Development doi: 10.1242/dev.126003 – volume: 17 start-page: 679 year: 2010 ident: 19279_CR31 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1821 – volume: 13 start-page: 2 year: 2020 ident: 19279_CR63 publication-title: Epigenetics Chromatin doi: 10.1186/s13072-019-0326-1 – volume: 23 start-page: 3920 year: 2018 ident: 19279_CR37 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.094 – volume: 547 start-page: 419 year: 2017 ident: 19279_CR43 publication-title: Nature doi: 10.1038/nature23262 – volume: 44 start-page: 361 year: 2011 ident: 19279_CR67 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.08.032 – volume: 50 start-page: 12 year: 2018 ident: 19279_CR21 publication-title: Nat. Genet. doi: 10.1038/s41588-017-0007-6 – volume: 431 start-page: 96 year: 2004 ident: 19279_CR25 publication-title: Nature doi: 10.1038/nature02886 – volume: 429 start-page: 900 year: 2004 ident: 19279_CR26 publication-title: Nature doi: 10.1038/nature02633 – volume: 21 start-page: 482 year: 2017 ident: 19279_CR15 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.055 – volume: 11 start-page: 15 year: 2018 ident: 19279_CR55 publication-title: Epigenetics Chromatin doi: 10.1186/s13072-018-0186-0 – volume: 241 start-page: 172 year: 2002 ident: 19279_CR4 publication-title: Dev. Biol. doi: 10.1006/dbio.2001.0501 – volume: 564 start-page: 136 year: 2018 ident: 19279_CR7 publication-title: Nature doi: 10.1038/s41586-018-0751-5 – volume: 516 start-page: 242 year: 2014 ident: 19279_CR68 publication-title: Nature doi: 10.1038/nature13760 – volume: 13 start-page: 91 year: 1996 ident: 19279_CR74 publication-title: Nat. Genet. doi: 10.1038/ng0596-91 – volume: 129 start-page: 1983 year: 2002 ident: 19279_CR24 publication-title: Development doi: 10.1242/dev.129.8.1983 – volume: 6 start-page: e21064 year: 2017 ident: 19279_CR71 publication-title: eLife doi: 10.7554/eLife.21064 – volume: 15 start-page: 979 year: 2014 ident: 19279_CR16 publication-title: Cell doi: 10.1016/j.cell.2014.04.017 – volume: 9 start-page: e1003439 year: 2013 ident: 19279_CR33 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003439 – volume: 37 start-page: 853 year: 2005 ident: 19279_CR28 publication-title: Nat. Genet. doi: 10.1038/ng1598 – volume: 15 start-page: 169 year: 2010 ident: 19279_CR58 publication-title: Genes Cells doi: 10.1111/j.1365-2443.2009.01374.x – volume: 16 year: 2015 ident: 19279_CR2 publication-title: BMC Genomics doi: 10.1186/s12864-015-1833-5 – volume: 10 start-page: 23 year: 2017 ident: 19279_CR35 publication-title: Epigenetics Chromatin doi: 10.1186/s13072-017-0130-8 – volume: 51 start-page: 844 year: 2019 ident: 19279_CR39 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0398-7 – volume: 99 start-page: 247 year: 1999 ident: 19279_CR22 publication-title: Cell doi: 10.1016/S0092-8674(00)81656-6 – volume: 25 start-page: 1010 year: 2011 ident: 19279_CR49 publication-title: Genes Dev. doi: 10.1101/gad.2037511 – volume: 511 start-page: 611 year: 2014 ident: 19279_CR19 publication-title: Nature doi: 10.1038/nature13581 – volume: 30 start-page: 2114 year: 2014 ident: 19279_CR80 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 63 start-page: 1066 year: 2016 ident: 19279_CR42 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.08.032 – volume: 10 start-page: 475 year: 2000 ident: 19279_CR59 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00448-6 – volume: 43 start-page: 811 year: 2011 ident: 19279_CR41 publication-title: Nat. Genet. doi: 10.1038/ng.864 – volume: 139 start-page: 287 year: 2010 ident: 19279_CR1 publication-title: Reproduction doi: 10.1530/REP-09-0281 – volume: 9 year: 2018 ident: 19279_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05841-x – volume: 19 year: 2018 ident: 19279_CR48 publication-title: BMC Genomics doi: 10.1186/s12864-018-4835-2 – volume: 15 year: 2014 ident: 19279_CR18 publication-title: Genome Biol. doi: 10.1186/s13059-014-0545-5 – volume: 20 start-page: 868 year: 2013 ident: 19279_CR32 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2599 – volume: 13 start-page: e0205969 year: 2018 ident: 19279_CR73 publication-title: PLoS ONE doi: 10.1371/journal.pone.0205969 – volume: 16 year: 2015 ident: 19279_CR82 publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-16-S11-S2 – volume: 294 start-page: 2536 year: 2001 ident: 19279_CR23 publication-title: Science doi: 10.1126/science.1065848 – volume: 5 start-page: 9 year: 2019 ident: 19279_CR8 publication-title: Cell Discov. doi: 10.1038/s41421-019-0081-2 – volume: 15 start-page: 874 year: 2000 ident: 19279_CR76 publication-title: Hum. Reprod. doi: 10.1093/humrep/15.4.874 – volume: 34 start-page: 43 year: 1993 ident: 19279_CR75 publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.1080340107 – volume: 27 start-page: 282 year: 2019 ident: 19279_CR61 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.002 – volume: 26 start-page: 110 year: 2000 ident: 19279_CR77 publication-title: Genesis doi: 10.1002/(SICI)1526-968X(200002)26:2<110::AID-GENE2>3.0.CO;2-8 – volume: 28 start-page: 1919 year: 2012 ident: 19279_CR81 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts277 – volume: 9 start-page: 215 year: 2012 ident: 19279_CR52 publication-title: Nat. Chem. Biol. – volume: 23 start-page: 343 year: 2018 ident: 19279_CR57 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.06.008 – volume: 11 start-page: 36 year: 2018 ident: 19279_CR62 publication-title: Epigenetics Chromatin doi: 10.1186/s13072-018-0207-z – volume: 448 start-page: 714 year: 2007 ident: 19279_CR40 publication-title: Nature doi: 10.1038/nature05987 – volume: 107 start-page: 9281 year: 2010 ident: 19279_CR70 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1000473107 – volume: 37 start-page: W202 year: 2009 ident: 19279_CR51 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp335 – volume: 15 start-page: 547 year: 2008 ident: 19279_CR65 publication-title: Developmental Cell doi: 10.1016/j.devcel.2008.08.014 – volume: 26 start-page: 192 year: 2016 ident: 19279_CR72 publication-title: Genome Res. doi: 10.1101/gr.198291.115 – volume: 23 start-page: 616 year: 2013 ident: 19279_CR47 publication-title: Genome Res. doi: 10.1101/gr.148023.112 – volume: 13 start-page: e1007042 year: 2017 ident: 19279_CR6 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007042 – volume: 10 start-page: 1235 year: 2009 ident: 19279_CR64 publication-title: EMBO Rep. doi: 10.1038/embor.2009.218 – volume: 72 start-page: 5099 year: 1975 ident: 19279_CR78 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.72.12.5099 |
SSID | ssj0000391844 |
Score | 2.4332414 |
Snippet | De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are... Abstract De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which... The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show... |
SourceID | doaj pubmedcentral hal proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5417 |
SubjectTerms | 14/35 38/39 38/91 45/15 45/23 631/136/2086 631/208/176/1968 631/208/176/1988 631/208/200 631/337/176/1988 64/60 Alleles Blastocysts CpG islands Deoxyribonucleic acid Developmental stages DNA DNA methylation Embryos Epigenetics Fertilization Gene deletion Gene expression Gene sequencing Gene silencing Genomes Humanities and Social Sciences Life Sciences Loci Mass spectrometry Mass spectroscopy multidisciplinary Promoters Science Science (multidisciplinary) Spermatogenesis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQJCReEAwQgW0yiDeIlthJLn7sGFOF2J42aW-W7ThqJZZsazbR_547J-maScALj7Wdprofvu901-8Y-1QqcFB5vP1EhQmKqyC2mSxiJ5y0qS9S5wLb51kxv8i-X-aXW6O-qCespwfuBXeI9yco8AXieI9ObY0HazEIlVWZ5kZZun0x5m0lU-EOlgpTl2z4l0wiy8NVFu4EypYQ1ICKYRKJAmE_xpcFtUNuYc3HnZKPyqUhCp28YM8H-Mhn_c9-yZ74Zpc97QdKrl-xm1PTkzrz47PTczmLxxm3Ha88b9r7ltPI6HXfAMfbmiP-49fjQ0TYeuX5slks7bJb0WfP_a-hV7bBjXDeEyky91f2dt2-Zhcn386_zuNhqELsEKx0cV3UCThUhVUyrxyGIykhVS5JrJBQJ2ldZ07UuURp1cIIEKaohEEYlVjIcf0N22naxr9lHNIa4SZUhXKYZRbGYi5H5WFRmdQLqSKWjgLWbmAcp8EXP3WofMtS90rRqBQdlKIhYp83z1z3fBt_PX1EetucJK7ssIAWpAcL0v-yoIh9RK1PvmM--6FpjcqkpczK-zRie6NR6MHLV1pgZM8FMa5F7MNmG_2Tii6m8e0dnUFMigImccDEmCZvnO40y0Vg-oZcESKL2JfR7B5e_mepvPsfUnnPnongLEksYI_tdLd3fh_xV2cPgqv9BlGyKUY priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKERIXVF4iUJBB3CCQ2EkmPiC0PKoVYnvqSr1ZseOwK7VJu5tW3X_fGSdZSFV6jB9JNI_MNxrnG8be5woslA6_fqLEBMWWEJpEZqEVVprYZbG1nu3zMJvOk1_H6fEOG9od9QJc35raUT-p-erk09X55is6_Jful_H88zrx7k6JEOIVUCHcY_cxMgE56qyH-_7LLBUmNEn_78ztW0fxydP4Y9RZ0CHJfxDozfOTN4qoPjYd7LFHPajkk84KHrMdVz9hD7o2k5un7HxWdFTP_Mfh7EhOwqHzbctLx-vmsuHUSHrTHYvjTcURFfKzYRPRuJ46vqwXS7Ns13TtuLvqT9DWOOHXO6JK5u7UrDbNMzY_-Hn0fRr2rRZCixCmDausisCigoySaWkxSEkJsbJRZISEKoqrKrGiSiVKqxKFAFFkpSgQXEUGUhx_znbrpnYvGIe4QhAKZaYs5p5ZYTDDo6KxKIvYCakCFg8C1rbnIad2GCfa18NlrjulaFSK9krRELAP2z1nHQvHnau_kd62K4lB2w80qz-6d0iNcRkUuAzzQ4f7TeHAGAQ3eZnHaaFMwN6h1kf3mE5-axqj4mkuk_wyDtj-YBR6MF0tMN6ngnjYAvZ2O41eS6WYonbNBa1BpIoCJnHAyJhGTxzP1MuF5_-GVBFOC9jHwez-Pvz_Unl597u-Yg-Fd4MoFLDPdtvVhXuNeKs1b7wTXQOLsCRy priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NISReED9F2EAG8QYRiZ3kksdSmCrE9rRJe7Nix6GVWDLabFr_e-6cpJAJkHisfW6qu3Puu975M8DbvECLlaO3n6woQbEVhiZRWWilVSZ2WWytZ_s8yRZnyZfz9HwP5HgWxjfte0pL_5oeu8M-bBK_pTnZIUyCRYh34C5Tt7NXz7P57n8VZjzPk2Q4HxOp_A9LJzHIU_VTZFlyI-RvKPN2j-StQqmPP0cP4cEAHMWs_6mPYM81j-Fef5Xk9gn8OC57Omfx6eT4VM3C8XbbTlRONO11K_iy6G3f-ibaWhDyE5fjIqZqvXBi1SxXZtVt-LMT7mbokm1owss7pkMW7sKst-1TODv6fDpfhMN1CqElmNKFdVZHaMkIplBpZSkQKYVxYaPISIV1FNd1YmWdKtJWLUuJsswqWRKAigymNP4M9pu2cc9BYFwT0MQqKyzll1lpKIvjwrCsythJVQQQjwrWduAa5ysvvmtf81a57o2iySjaG0VjAO92ay57po1_Sn9ku-0kmSXbD7Trb3rwGk2xFwt0GeWAjtab0qExBGDyKo_TsjABvCGrT75jMfuqeYwLpLlK8us4gMPRKfSwvzdaUkxPJXOtBfB6N007k8stZePaK5YhNEoKZnXgxJkmT5zONKul5_jGtGAsFsD70e1-PfzvWnnxf-IHcJ_wX-JP6OMh7HfrK_eSMFZnXvlN9RNvhB8h priority: 102 providerName: Springer Nature |
Title | Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo |
URI | https://link.springer.com/article/10.1038/s41467-020-19279-7 https://www.proquest.com/docview/2471526360 https://www.proquest.com/docview/2455171939 https://hal.science/hal-04388348 https://pubmed.ncbi.nlm.nih.gov/PMC7591512 https://doaj.org/article/128797e6956e467bae7bb0618d815a9b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviE8RGJVBvEG0xE5yyRPqykpV0QrBJvXNih1nrcSSru0m-t9z5yQdncReUtUfSeTznX_2XX7H2Mc0AwOFResnCtygmAJ8HcnEN8JIHdokNMaxfU6T0Xk0nsWz9sBt3YZVdjbRGeqiNnRGfizQisaC2K2-LK98yhpF3tU2hcZDdkjUZRTSBTPYnbEQ-3kaRe23MoFMj9eRswy0Z0JoA5kPe-uRo-3HVWZOQZH_IM678ZJ3nKZuLRo-ZU9aEMn7jdSfsQe2es4eNWklty_Y1SRvqJ351-nkTPb9LtPthheWV_VNzSlx9LYJg-N1yREF8mXXiWhbLy1fVPOFXmzW9N9y-6eNmK2wwrW3RI3M7aVebeuX7Hx4ejYY-W1qBd8gZNn4ZVIGYFAgOpNxYXBRkhLCzASBFhLKICzLyIgyljhapcgFiDwpRI5gKtAQY_krdlDVlX3NOIQlgk4okszgXjPJNe7oyEksijy0QmYeC7sBVqblHaf0F7-V83_LVDVCUSgU5YSiwGOfdn2WDevGva1PSG67lsSY7Qrq1YVqFVDhOgwZ2AT3gxb769yC1ghm0iIN4zzTHvuAUt-7x6j_XVEZOUtTGaU3oceOukmhWl1fq9uZ6bH3u2rUUnK95JWtr6kNIlMcYBoO2JtMe0_cr6kWc8f3DXFGuMxjn7tpd_vw_4_Km_vf9S17LJwaBL6AI3awWV3bd4ivNrrnlAiv6fBbjx32--NfY_w9OZ3--Imlg2TQcycXeJ1E6V_psyfz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguiKcwFFgQnMCqvWt77ANCgVKlNMkplXJbvOs1iUTtNEkL-VP8RmbWdkoq0VuP8e7G1jy_8YxnGHubZmCgsGj9RIEBiinA15FMfCOM1KFNQmNct89R0j-Jvk3iyQ77030LQ2WVnU10hrqoDb0j3xdoRWNB3a0-zc98mhpF2dVuhEYjFsd2_QtDtuXHowPk7zshDr-Ov_T9dqqAb9Bbr_wyKQMw-Cw6k3Fh0B5LCWFmgkALCWUQlmVkRBlLNCGlyAWIPClEjjgi0BCXNCUCTf4tdLwBaRRMYPNOh7qtp1HUfpsTyHR_GTlLRDEaQinIfNjyf25MAHq1KRVh_oNwr9ZnXknSOt93eJ_da0Er7zVS9oDt2Oohu92MsVw_YmfDvGklzQ9Gw7Hs-d1k3RUvLK_qi5rToOp1U3bH65Ij6uTz7hC1iT21fFZNZ3q2WtJvy-3vtkK3wgW331IrZm5P9WJdP2YnN0L0J2y3qiv7lHEISwS5UCSZwdg2yTVGkJSUFkUeWiEzj4UdgZVp-5zTuI2fyuXbZaoapihkinJMUeCx95sz86bLx7W7PxPfNjupQ7e7UC9-qFbhFfp9yMAmGH9aPK9zC1ojeEqLNIzzTHvsDXJ96z_6vYGia5ScTWWUXoQe2-uEQrW2ZakuNcFjrzfLaBUo1ZNXtj6nPYiEkcBEDtgSpq07bq9Us6nrLw5xRjjQYx86sbu8-f-p8uz6Z33F7vTHw4EaHI2On7O7wqlE4AvYY7urxbl9gdhupV86heLs-01r8F8SYV0G |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamIRAviJ8iMMAgeIKoiZ3kkgeECmXq2FbxsEl9M7HjrJVY0rXdoP8afx13TtLRSextj43tJrrzff4ud7lj7G2agYHCIvqJAh0UU4CvI5n4RhipQ5uExrhqn6NkeBx9G8fjLfan-xaG0io7THRAXdSG3pH3BKJoLKi6Va9s0yK-D3Y_zc586iBFkdaunUazRfbt6he6b4uPewPU9Tshdr8efRn6bYcB3-DJvfTLpAzA4HPpTMaFQWyWEsLMBIEWEsogLMvIiDKWCCelyAWIPClEjpwi0BCX1DEC4f8WyDgkG4MxrN_vUOX1NIra73QCmfYWkUMl8teQVkHmw8ZZ6FoG4Ak3oYTMf9ju1VzNKwFbdw7u3mf3WgLL-82Oe8C2bPWQ3W5aWq4esbPDvCkrzQejwyPZ97suu0teWF7VFzWnptWrJgWP1yVHBspn3SIqGXtq-bSaTPV0uaDfltvfbbZuhQNuvqWyzNye6vmqfsyOb0ToT9h2VVf2KeMQlkh4oUgyg35ukmv0JilALYo8tEJmHgs7ASvT1jyn1hs_lYu9y1Q1SlGoFOWUosBj79drZk3Fj2tnfya9rWdStW53oZ6fqNb4FXIAyMAm6ItaXK9zC1ojkUqLNIzzTHvsDWp94z-G_QNF1yhQm8oovQg9ttNtCtXizEJdWoXHXq-HESEo7JNXtj6nOciKUcAkDtjYTBt33BypphNXaxzijDihxz502-7y5v-XyrPrn_UVu4O2qw72RvvP2V3hLCLwBeyw7eX83L5AmrfUL509cfbjpg34L5M8YTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maternal+DNMT3A-dependent+de+novo+methylation+of+the+paternal+genome+inhibits+gene+expression+in+the+early+embryo&rft.jtitle=Nature+communications&rft.au=Julien%2C+Richard+Albert&rft.au=Au+Yeung+Wan+Kin&rft.au=Toriyama+Keisuke&rft.au=Kobayashi+Hisato&rft.date=2020-10-27&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-19279-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |