Dot1 and Histone H3K79 Methylation in Natural Telomeric and HM Silencing

The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylat...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 42; no. 1; pp. 118 - 126
Main Authors Takahashi, Yoh-Hei, Schulze, Julia M., Jackson, Jessica, Hentrich, Thomas, Seidel, Chris, Jaspersen, Sue L., Kobor, Michael S., Shilatifard, Ali
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.04.2011
Subjects
Online AccessGet full text
ISSN1097-2765
1097-4164
1097-4164
DOI10.1016/j.molcel.2011.03.006

Cover

Loading…
Abstract The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns. ► Maintenance of natural telomeric silencing does not require Dot1 or H3K79 methylation ► Loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions ► Dot1 is not required for the maintenance of natural HML silencing ► URA3 reporter located at TEL-VII-L or HM loci may not report on natural PEV
AbstractList The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns.
The expression of genes that reside near telomeres is attenuated through telomere position-effect variegation (TPEV). Using a URA3 reporter located at TEL-VIIL of S. cerevisiae, it was demonstrated that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing the methylation of H3K79. URA3 was also used as a reporter to demonstrate that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of mutants defective in H3K79 methylation patterns indicated that only a few telomeric genes, such as the COS12 located at TEL-VIIL , are subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2/3 occupancy in subtelomeric regions, but did lead to some telomere-specific changes. Furthermore, we demonstrated that H3K79 methylation by Dot1 does not play a role in the maintenance of natural HML silencing. Our results show that the commonly used URA3 reporter located at TEL-VIIL or at the mating loci may not report on natural PEV and that studies concerning the epigenetic mechanism of silencing in yeast should employ assays that report on the natural pattern of gene expression.
The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns. ► Maintenance of natural telomeric silencing does not require Dot1 or H3K79 methylation ► Loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions ► Dot1 is not required for the maintenance of natural HML silencing ► URA3 reporter located at TEL-VII-L or HM loci may not report on natural PEV
The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns.The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns.
Author Jackson, Jessica
Takahashi, Yoh-Hei
Schulze, Julia M.
Seidel, Chris
Shilatifard, Ali
Hentrich, Thomas
Kobor, Michael S.
Jaspersen, Sue L.
AuthorAffiliation 5 Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
1 Stowers Institute for Medical Research, 1000 East 50 th Street, Kansas City, MO 64110
2 Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC V5Z 4H4, Canada
4 Department of Biochemistry, St. Louis University School of Medicine, St. Louis, MO 63104
3 Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
6 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
AuthorAffiliation_xml – name: 3 Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
– name: 1 Stowers Institute for Medical Research, 1000 East 50 th Street, Kansas City, MO 64110
– name: 2 Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC V5Z 4H4, Canada
– name: 6 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
– name: 5 Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
– name: 4 Department of Biochemistry, St. Louis University School of Medicine, St. Louis, MO 63104
Author_xml – sequence: 1
  givenname: Yoh-Hei
  surname: Takahashi
  fullname: Takahashi, Yoh-Hei
  organization: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
– sequence: 2
  givenname: Julia M.
  surname: Schulze
  fullname: Schulze, Julia M.
  organization: Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
– sequence: 3
  givenname: Jessica
  surname: Jackson
  fullname: Jackson, Jessica
  organization: Department of Biochemistry, St. Louis University School of Medicine, St. Louis, MO 63104, USA
– sequence: 4
  givenname: Thomas
  surname: Hentrich
  fullname: Hentrich, Thomas
  organization: Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
– sequence: 5
  givenname: Chris
  surname: Seidel
  fullname: Seidel, Chris
  organization: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
– sequence: 6
  givenname: Sue L.
  surname: Jaspersen
  fullname: Jaspersen, Sue L.
  organization: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
– sequence: 7
  givenname: Michael S.
  surname: Kobor
  fullname: Kobor, Michael S.
  email: msk@cmmt.ubc.ca
  organization: Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
– sequence: 8
  givenname: Ali
  surname: Shilatifard
  fullname: Shilatifard, Ali
  email: ash@stowers.org
  organization: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21474073$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_wDxBkRzcT_IqdsEBCLTCIFhZt15bjXE89Suxieyr13-MhQ3ksWi-uLfmce4_ud4j2fPCA0EuCa4KJeLuupzAaGGuKCakxqzEWT9ABwZ1ccCL43u5NpWj20WFKa4wJb9ruGdqnhEuOJTtAy9OQSaX9UC1dymVCtWRfZVedQ76-G3V2wVfOV9903kQ9VpcwhgmiM7PlvLpwI3jj_Oo5emr1mODF7j5CV58-Xp4sF2ffP385-XC2MILIvBhaO-i-64D1prdUUsOb3g7UQiu0tA3VwjBr9aAHQrC0sqe4a3hXKnSib9kRej_3vdn0EwwGfC7B1E10k453Kmin_v3x7lqtwq1iuG0o56XBm12DGH5sIGU1uVT2OGoPYZNUJ1oiJG7lo8pWkBKrwCjK4weVFJdTChNF-urv_PfBfyMpAj4LTAwpRbD3EoLVlrxaq5m82pJXmKlCvtje_WczLv_iV7bgxsfMr2ez1UHpVXRJXV0UgdjGZkTQP2uHwvbWQVTJuEIeBhfBZDUE9_CInzsH1BI
CitedBy_id crossref_primary_10_1534_genetics_119_302452
crossref_primary_10_1534_genetics_112_145243
crossref_primary_10_1074_jbc_M113_452979
crossref_primary_10_7554_eLife_30178
crossref_primary_10_1139_bcb_2022_0243
crossref_primary_10_1080_15592294_2016_1265712
crossref_primary_10_1073_pnas_1121471109
crossref_primary_10_1021_cr500457h
crossref_primary_10_1007_s10577_016_9540_x
crossref_primary_10_1007_s13258_021_01203_y
crossref_primary_10_1371_journal_pgen_1003871
crossref_primary_10_1146_annurev_biochem_051710_134100
crossref_primary_10_1007_s11033_023_08415_3
crossref_primary_10_1101_gad_177220_111
crossref_primary_10_1007_s00294_023_01273_3
crossref_primary_10_1016_j_bbagrm_2012_08_011
crossref_primary_10_1534_genetics_111_137851
crossref_primary_10_1002_bies_201900205
crossref_primary_10_1007_s00412_014_0465_x
crossref_primary_10_1080_15592294_2015_1017200
crossref_primary_10_1073_pnas_1300126110
crossref_primary_10_1126_science_abc6663
crossref_primary_10_1371_journal_pone_0070035
crossref_primary_10_1371_journal_pgen_1006900
crossref_primary_10_1002_psc_3381
crossref_primary_10_1016_j_marpolbul_2023_114867
crossref_primary_10_1073_pnas_1518707113
crossref_primary_10_1016_j_molcel_2011_03_007
crossref_primary_10_1002_stem_2187
crossref_primary_10_1101_gad_230532_113
crossref_primary_10_7554_eLife_18919
crossref_primary_10_1186_s13072_023_00513_7
crossref_primary_10_1007_s13277_015_4563_z
crossref_primary_10_1101_gad_2057811
crossref_primary_10_1534_genetics_114_162909
crossref_primary_10_1016_j_cell_2019_02_002
crossref_primary_10_1146_annurev_micro_102215_095757
crossref_primary_10_1534_genetics_111_134577
crossref_primary_10_3390_cells8020199
crossref_primary_10_1080_15592294_2019_1699991
crossref_primary_10_4161_cc_28104
crossref_primary_10_1016_j_mrrev_2016_03_005
crossref_primary_10_1371_journal_pcbi_1003121
crossref_primary_10_3389_fmicb_2019_02566
crossref_primary_10_1016_j_bbagrm_2012_04_001
crossref_primary_10_1038_s41467_020_20711_1
crossref_primary_10_1093_nar_gkr757
crossref_primary_10_1101_gad_179721_111
crossref_primary_10_1016_j_gene_2011_09_035
crossref_primary_10_1101_gad_201095_112
crossref_primary_10_1126_sciadv_adl6280
crossref_primary_10_1038_srep15583
crossref_primary_10_4061_2011_707641
crossref_primary_10_1534_genetics_115_175711
crossref_primary_10_1016_j_jpha_2022_11_008
crossref_primary_10_1038_ncomms10589
crossref_primary_10_3389_fmicb_2022_924476
crossref_primary_10_4014_jmb_2310_10031
crossref_primary_10_3390_genes11060638
crossref_primary_10_3390_biom8010011
crossref_primary_10_1016_j_bbagrm_2011_10_006
crossref_primary_10_1371_journal_pone_0024835
crossref_primary_10_1038_s41467_022_35182_9
crossref_primary_10_1534_g3_112_003558
crossref_primary_10_1016_j_febslet_2011_06_036
crossref_primary_10_1101_gr_267872_120
crossref_primary_10_1016_j_bbrc_2013_07_096
crossref_primary_10_1016_j_gde_2016_03_015
crossref_primary_10_4161_nucl_2_6_17710
crossref_primary_10_1093_nar_gkv409
crossref_primary_10_7554_eLife_27991
crossref_primary_10_1128_microbiolspec_MDNA3_0013_2014
crossref_primary_10_1093_nar_gkt623
crossref_primary_10_1038_s41589_022_01067_7
crossref_primary_10_1038_s41598_020_77545_6
crossref_primary_10_1101_gr_236554_118
crossref_primary_10_1021_bi201120q
crossref_primary_10_1371_journal_pone_0195698
crossref_primary_10_1101_gad_186841_112
crossref_primary_10_4161_epi_6_10_17745
crossref_primary_10_3390_toxins9070232
crossref_primary_10_1074_mcp_RA117_000550
crossref_primary_10_1038_nm_3832
crossref_primary_10_1111_nph_20360
crossref_primary_10_1128_EC_05243_11
crossref_primary_10_1186_s12964_024_01895_1
crossref_primary_10_1371_journal_pgen_1003805
crossref_primary_10_3390_cells10112810
Cites_doi 10.1074/jbc.C200023200
10.1016/j.jmb.2003.09.066
10.1016/j.molcel.2011.03.007
10.1093/nar/gkq689
10.1074/jbc.C200366200
10.1101/gad.1560607
10.1101/gad.1898410
10.1038/sj.emboj.7600692
10.1073/pnas.0906866106
10.1016/0092-8674(86)90067-X
10.1016/j.jmb.2008.06.059
10.1091/mbc.8.12.2421
10.1128/MCB.24.21.9424-9436.2004
10.1128/MCB.7.10.3713
10.1016/j.molcel.2007.07.021
10.1146/annurev.biochem.76.052705.162114
10.1101/gad.8.10.1133
10.1073/pnas.231473398
10.1016/0092-8674(90)90141-Z
10.1016/S0076-6879(03)77013-X
10.1128/MCB.02050-07
10.1016/j.molcel.2009.07.017
10.1146/annurev.biochem.75.103004.142422
10.1093/genetics/150.2.613
10.1093/genetics/15.4.283
10.1073/pnas.0700914104
10.1016/S1369-5274(00)00064-3
10.1038/ng.402
10.1016/S0092-8674(02)00759-6
10.1146/annurev.biochem.72.121801.161547
10.1038/msb4100106
10.1016/0092-8674(91)90049-5
10.1128/MCB.25.14.6123-6139.2005
10.1093/genetics/93.4.877
10.1002/j.1460-2075.1989.tb03615.x
10.1101/gad.1001502
10.1038/nature05914
10.1016/j.molcel.2006.02.006
10.1016/j.molcel.2007.12.002
10.1093/emboj/18.9.2538
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
2011 Elsevier Inc. All rights reserved. 2011
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: 2011 Elsevier Inc. All rights reserved. 2011
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1016/j.molcel.2011.03.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts
AGRICOLA



MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 126
ExternalDocumentID PMC3085244
21474073
10_1016_j_molcel_2011_03_006
US201600023162
S1097276511002048
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: CIHR
  grantid: MOP-79442
– fundername: NIGMS NIH HHS
  grantid: R01 GM069905
– fundername: NIGMS NIH HHS
  grantid: R01GM069905
– fundername: NCI NIH HHS
  grantid: R01 CA089455
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM069905-09 || GM
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
123
1~5
29M
2WC
3O-
4.4
457
4G.
53G
5RE
5VS
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
ADMUD
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
HH5
HVGLF
HZ~
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
OZT
P2P
R2-
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
UHS
WQ6
X7M
ZA5
ZGI
ZXP
ABPTK
AEQTP
FBQ
AAHBH
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7S9
L.6
7X8
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c617t-d8fdab99e3bcbf272c45bfd2fe86a7f52a6c3ffadad1107f7b209549209e96b83
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 18:24:42 EDT 2025
Mon Jul 21 11:23:55 EDT 2025
Fri Jul 11 04:24:10 EDT 2025
Fri Jul 11 04:37:02 EDT 2025
Mon Jul 21 06:04:05 EDT 2025
Tue Jul 01 03:40:39 EDT 2025
Thu Apr 24 22:52:58 EDT 2025
Wed Dec 27 19:03:36 EST 2023
Fri Feb 23 02:27:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c617t-d8fdab99e3bcbf272c45bfd2fe86a7f52a6c3ffadad1107f7b209549209e96b83
Notes http://dx.doi.org/10.1016/j.molcel.2011.03.006
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Contributed equally to this manuscript
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276511002048
PMID 21474073
PQID 2000020036
PQPubID 24069
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3085244
proquest_miscellaneous_968167087
proquest_miscellaneous_861209101
proquest_miscellaneous_2000020036
pubmed_primary_21474073
crossref_primary_10_1016_j_molcel_2011_03_006
crossref_citationtrail_10_1016_j_molcel_2011_03_006
fao_agris_US201600023162
elsevier_sciencedirect_doi_10_1016_j_molcel_2011_03_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-08
PublicationDateYYYYMMDD 2011-04-08
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2011
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gardner, Nelson, Gottschling (bib6) 2005; 25
Xu, Zhang, Zhang, Xie, Grunstein (bib38) 2007; 27
Murphy, Spedale, Powell, Pillus, Schultz, Chen (bib17) 2003; 334
Yang, Britton, Kirchmaier (bib39) 2008; 381
Rossmann, Luo, Tsaponina, Chabes, Stillman (bib23) 2011; 42
Mullen, Kayne, Moerschell, Tsunasawa, Gribskov, Colavito-Shepanski, Grunstein, Sherman, Sternglanz (bib15) 1989; 8
Singer, Kahana, Wolf, Meisinger, Peterson, Goggin, Mahowald, Gottschling (bib29) 1998; 150
Weber, Ehrenhofer-Murray (bib36) 2010; 38
Pryde, Louis (bib21) 1999; 18
Mohan, Herz, Takahashi, Lin, Lai, Zhang, Washburn, Florens, Shilatifard (bib14) 2010; 24
Ng, Feng, Wang, Erdjument-Bromage, Tempst, Zhang, Struhl (bib18) 2002; 16
Rine, Strathern, Hicks, Herskowitz (bib22) 1979; 93
Venkatasubrahmanyam, Hwang, Meneghini, Tong, Madhani (bib34) 2007; 104
Grewal, Elgin (bib9) 2007; 447
Schneider, Dover, Johnston, Shilatifard (bib25) 2004; 377
Shahbazian, Grunstein (bib27) 2007; 76
Lacoste, Utley, Hunter, Poirier, Côte (bib12) 2002; 277
Altaf, Utley, Lacoste, Tan, Briggs, Côté (bib1) 2007; 28
Aparicio, Billington, Gottschling (bib3) 1991; 66
Nislow, Ray, Pillus (bib19) 1997; 8
Krogan, Dover, Khorrami, Greenblatt, Schneider, Johnston, Shilatifard (bib11) 2002; 277
Aparicio, Gottschling (bib2) 1994; 8
Fingerman, Li, Briggs (bib5) 2007; 21
Tsankov, Brown, Yu, Win, Silver, Casolari (bib31) 2006; 2
Zhang, Richardson, Roberts, Utley, Erdjument-Bromage, Tempst, Côté, Cairns (bib40) 2004; 24
van Leeuwen, Gafken, Gottschling (bib32) 2002; 109
Sperling, Grunstein (bib30) 2009; 106
Walton, Paquin, Kaneko, Williamson (bib35) 1986; 46
Osborne, Dudoit, Rine (bib20) 2009; 41
Schulze, Jackson, Nakanishi, Gardner, Hentrich, Haug, Johnston, Jaspersen, Kobor, Shilatifard (bib26) 2009; 35
Rusche, Kirchmaier, Rine (bib24) 2003; 72
Whiteway, Freedman, Van Arsdell, Szostak, Thorner (bib37) 1987; 7
Gartenberg (bib7) 2000; 3
Shilatifard (bib28) 2006; 75
Katan-Khaykovich, Struhl (bib10) 2005; 24
Miller, Krogan, Dover, Erdjument-Bromage, Tempst, Johnston, Greenblatt, Shilatifard (bib13) 2001; 98
van Welsem, Frederiks, Verzijlbergen, Faber, Nelson, Egan, Gottschling, van Leeuwen (bib33) 2008; 28
Cubizolles, Martino, Perrod, Gasser (bib4) 2006; 21
Muller, Altenburg (bib16) 1930; 15
Gottschling, Aparicio, Billington, Zakian (bib8) 1990; 63
Fingerman (10.1016/j.molcel.2011.03.006_bib5) 2007; 21
Singer (10.1016/j.molcel.2011.03.006_bib29) 1998; 150
Gottschling (10.1016/j.molcel.2011.03.006_bib8) 1990; 63
Shilatifard (10.1016/j.molcel.2011.03.006_bib28) 2006; 75
Yang (10.1016/j.molcel.2011.03.006_bib39) 2008; 381
Miller (10.1016/j.molcel.2011.03.006_bib13) 2001; 98
Zhang (10.1016/j.molcel.2011.03.006_bib40) 2004; 24
Osborne (10.1016/j.molcel.2011.03.006_bib20) 2009; 41
Katan-Khaykovich (10.1016/j.molcel.2011.03.006_bib10) 2005; 24
Ng (10.1016/j.molcel.2011.03.006_bib18) 2002; 16
Rossmann (10.1016/j.molcel.2011.03.006_bib23) 2011; 42
Mohan (10.1016/j.molcel.2011.03.006_bib14) 2010; 24
Shahbazian (10.1016/j.molcel.2011.03.006_bib27) 2007; 76
Krogan (10.1016/j.molcel.2011.03.006_bib11) 2002; 277
Walton (10.1016/j.molcel.2011.03.006_bib35) 1986; 46
Weber (10.1016/j.molcel.2011.03.006_bib36) 2010; 38
Venkatasubrahmanyam (10.1016/j.molcel.2011.03.006_bib34) 2007; 104
Aparicio (10.1016/j.molcel.2011.03.006_bib2) 1994; 8
van Leeuwen (10.1016/j.molcel.2011.03.006_bib32) 2002; 109
Gartenberg (10.1016/j.molcel.2011.03.006_bib7) 2000; 3
van Welsem (10.1016/j.molcel.2011.03.006_bib33) 2008; 28
Xu (10.1016/j.molcel.2011.03.006_bib38) 2007; 27
Mullen (10.1016/j.molcel.2011.03.006_bib15) 1989; 8
Altaf (10.1016/j.molcel.2011.03.006_bib1) 2007; 28
Muller (10.1016/j.molcel.2011.03.006_bib16) 1930; 15
Nislow (10.1016/j.molcel.2011.03.006_bib19) 1997; 8
Sperling (10.1016/j.molcel.2011.03.006_bib30) 2009; 106
Lacoste (10.1016/j.molcel.2011.03.006_bib12) 2002; 277
Grewal (10.1016/j.molcel.2011.03.006_bib9) 2007; 447
Rusche (10.1016/j.molcel.2011.03.006_bib24) 2003; 72
Murphy (10.1016/j.molcel.2011.03.006_bib17) 2003; 334
Whiteway (10.1016/j.molcel.2011.03.006_bib37) 1987; 7
Cubizolles (10.1016/j.molcel.2011.03.006_bib4) 2006; 21
Pryde (10.1016/j.molcel.2011.03.006_bib21) 1999; 18
Aparicio (10.1016/j.molcel.2011.03.006_bib3) 1991; 66
Schneider (10.1016/j.molcel.2011.03.006_bib25) 2004; 377
Rine (10.1016/j.molcel.2011.03.006_bib22) 1979; 93
Tsankov (10.1016/j.molcel.2011.03.006_bib31) 2006; 2
Gardner (10.1016/j.molcel.2011.03.006_bib6) 2005; 25
Schulze (10.1016/j.molcel.2011.03.006_bib26) 2009; 35
References_xml – volume: 277
  start-page: 30421
  year: 2002
  end-page: 30424
  ident: bib12
  article-title: Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase
  publication-title: J. Biol. Chem.
– volume: 46
  start-page: 857
  year: 1986
  end-page: 863
  ident: bib35
  article-title: Resistance to antimycin A in yeast by amplification of ADH4 on a linear, 42 kb palindromic plasmid
  publication-title: Cell
– volume: 25
  start-page: 6123
  year: 2005
  end-page: 6139
  ident: bib6
  article-title: Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin
  publication-title: Mol. Cell. Biol.
– volume: 24
  start-page: 574
  year: 2010
  end-page: 589
  ident: bib14
  article-title: Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom)
  publication-title: Genes Dev.
– volume: 8
  start-page: 2421
  year: 1997
  end-page: 2436
  ident: bib19
  article-title: SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes
  publication-title: Mol. Biol. Cell
– volume: 447
  start-page: 399
  year: 2007
  end-page: 406
  ident: bib9
  article-title: Transcription and RNA interference in the formation of heterochromatin
  publication-title: Nature
– volume: 15
  start-page: 283
  year: 1930
  end-page: 311
  ident: bib16
  article-title: The frequency of translocations produced by x-rays in Drosophila
  publication-title: Genetics
– volume: 21
  start-page: 825
  year: 2006
  end-page: 836
  ident: bib4
  article-title: A homotrimer-heterotrimer switch in Sir2 structure differentiates rDNA and telomeric silencing
  publication-title: Mol. Cell
– volume: 28
  start-page: 1002
  year: 2007
  end-page: 1014
  ident: bib1
  article-title: Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin
  publication-title: Mol. Cell
– volume: 277
  start-page: 10753
  year: 2002
  end-page: 10755
  ident: bib11
  article-title: COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression
  publication-title: J. Biol. Chem.
– volume: 35
  start-page: 626
  year: 2009
  end-page: 641
  ident: bib26
  article-title: Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation
  publication-title: Mol. Cell
– volume: 24
  start-page: 2138
  year: 2005
  end-page: 2149
  ident: bib10
  article-title: Heterochromatin formation involves changes in histone modifications over multiple cell generations
  publication-title: EMBO J.
– volume: 66
  start-page: 1279
  year: 1991
  end-page: 1287
  ident: bib3
  article-title: Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae
  publication-title: Cell
– volume: 334
  start-page: 769
  year: 2003
  end-page: 780
  ident: bib17
  article-title: The Sir4 C-terminal coiled coil is required for telomeric and mating type silencing in Saccharomyces cerevisiae
  publication-title: J. Mol. Biol.
– volume: 42
  start-page: 127
  year: 2011
  end-page: 136
  ident: bib23
  article-title: A common telomeric gene silencing assay is affected by nucleotide metabolism
  publication-title: Mol. Cell
– volume: 16
  start-page: 1518
  year: 2002
  end-page: 1527
  ident: bib18
  article-title: Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association
  publication-title: Genes Dev.
– volume: 109
  start-page: 745
  year: 2002
  end-page: 756
  ident: bib32
  article-title: Dot1p modulates silencing in yeast by methylation of the nucleosome core
  publication-title: Cell
– volume: 28
  start-page: 3861
  year: 2008
  end-page: 3872
  ident: bib33
  article-title: Synthetic lethal screens identify gene silencing processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the nucleosome core
  publication-title: Mol. Cell. Biol.
– volume: 63
  start-page: 751
  year: 1990
  end-page: 762
  ident: bib8
  article-title: Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription
  publication-title: Cell
– volume: 75
  start-page: 243
  year: 2006
  end-page: 269
  ident: bib28
  article-title: Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression
  publication-title: Annu. Rev. Biochem.
– volume: 8
  start-page: 1133
  year: 1994
  end-page: 1146
  ident: bib2
  article-title: Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way
  publication-title: Genes Dev.
– volume: 76
  start-page: 75
  year: 2007
  end-page: 100
  ident: bib27
  article-title: Functions of site-specific histone acetylation and deacetylation
  publication-title: Annu. Rev. Biochem.
– volume: 150
  start-page: 613
  year: 1998
  end-page: 632
  ident: bib29
  article-title: Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae
  publication-title: Genetics
– volume: 27
  start-page: 890
  year: 2007
  end-page: 900
  ident: bib38
  article-title: Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast
  publication-title: Mol. Cell
– volume: 381
  start-page: 826
  year: 2008
  end-page: 844
  ident: bib39
  article-title: Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae
  publication-title: J. Mol. Biol.
– volume: 72
  start-page: 481
  year: 2003
  end-page: 516
  ident: bib24
  article-title: The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae
  publication-title: Annu. Rev. Biochem.
– volume: 24
  start-page: 9424
  year: 2004
  end-page: 9436
  ident: bib40
  article-title: The Yaf9 component of the SWR1 and NuA4 complexes is required for proper gene expression, histone H4 acetylation, and Htz1 replacement near telomeres
  publication-title: Mol. Cell. Biol.
– volume: 21
  start-page: 2018
  year: 2007
  end-page: 2029
  ident: bib5
  article-title: A charge-based interaction between histone H4 and Dot1 is required for H3K79 methylation and telomere silencing: identification of a new trans-histone pathway
  publication-title: Genes Dev.
– volume: 7
  start-page: 3713
  year: 1987
  end-page: 3722
  ident: bib37
  article-title: The yeast ARD1 gene product is required for repression of cryptic mating-type information at the HML locus
  publication-title: Mol. Cell. Biol.
– volume: 3
  start-page: 132
  year: 2000
  end-page: 137
  ident: bib7
  article-title: The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more
  publication-title: Curr. Opin. Microbiol.
– volume: 104
  start-page: 16609
  year: 2007
  end-page: 16614
  ident: bib34
  article-title: Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 377
  start-page: 227
  year: 2004
  end-page: 234
  ident: bib25
  article-title: Global proteomic analysis of S. cerevisiae (GPS) to identify proteins required for histone modifications
  publication-title: Methods Enzymol.
– volume: 2
  start-page: 65
  year: 2006
  ident: bib31
  article-title: Communication between levels of transcriptional control improves robustness and adaptivity
  publication-title: Mol. Syst. Biol.
– volume: 38
  start-page: 7991
  year: 2010
  end-page: 8000
  ident: bib36
  article-title: Design of a minimal silencer for the silent mating-type locus HML of Saccharomyces cerevisiae
  publication-title: Nucleic Acids Res.
– volume: 41
  start-page: 800
  year: 2009
  end-page: 806
  ident: bib20
  article-title: The establishment of gene silencing at single-cell resolution
  publication-title: Nat. Genet.
– volume: 8
  start-page: 2067
  year: 1989
  end-page: 2075
  ident: bib15
  article-title: Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast
  publication-title: EMBO J.
– volume: 18
  start-page: 2538
  year: 1999
  end-page: 2550
  ident: bib21
  article-title: Limitations of silencing at native yeast telomeres
  publication-title: EMBO J.
– volume: 93
  start-page: 877
  year: 1979
  end-page: 901
  ident: bib22
  article-title: A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci
  publication-title: Genetics
– volume: 98
  start-page: 12902
  year: 2001
  end-page: 12907
  ident: bib13
  article-title: COMPASS: a complex of proteins associated with a trithorax-related SET domain protein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 106
  start-page: 13153
  year: 2009
  end-page: 13159
  ident: bib30
  article-title: Histone H3 N-terminus regulates higher order structure of yeast heterochromatin
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 277
  start-page: 10753
  year: 2002
  ident: 10.1016/j.molcel.2011.03.006_bib11
  article-title: COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C200023200
– volume: 334
  start-page: 769
  year: 2003
  ident: 10.1016/j.molcel.2011.03.006_bib17
  article-title: The Sir4 C-terminal coiled coil is required for telomeric and mating type silencing in Saccharomyces cerevisiae
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2003.09.066
– volume: 42
  start-page: 127
  year: 2011
  ident: 10.1016/j.molcel.2011.03.006_bib23
  article-title: A common telomeric gene silencing assay is affected by nucleotide metabolism
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.03.007
– volume: 38
  start-page: 7991
  year: 2010
  ident: 10.1016/j.molcel.2011.03.006_bib36
  article-title: Design of a minimal silencer for the silent mating-type locus HML of Saccharomyces cerevisiae
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq689
– volume: 277
  start-page: 30421
  year: 2002
  ident: 10.1016/j.molcel.2011.03.006_bib12
  article-title: Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C200366200
– volume: 21
  start-page: 2018
  year: 2007
  ident: 10.1016/j.molcel.2011.03.006_bib5
  article-title: A charge-based interaction between histone H4 and Dot1 is required for H3K79 methylation and telomere silencing: identification of a new trans-histone pathway
  publication-title: Genes Dev.
  doi: 10.1101/gad.1560607
– volume: 24
  start-page: 574
  year: 2010
  ident: 10.1016/j.molcel.2011.03.006_bib14
  article-title: Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom)
  publication-title: Genes Dev.
  doi: 10.1101/gad.1898410
– volume: 24
  start-page: 2138
  year: 2005
  ident: 10.1016/j.molcel.2011.03.006_bib10
  article-title: Heterochromatin formation involves changes in histone modifications over multiple cell generations
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600692
– volume: 106
  start-page: 13153
  year: 2009
  ident: 10.1016/j.molcel.2011.03.006_bib30
  article-title: Histone H3 N-terminus regulates higher order structure of yeast heterochromatin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0906866106
– volume: 46
  start-page: 857
  year: 1986
  ident: 10.1016/j.molcel.2011.03.006_bib35
  article-title: Resistance to antimycin A in yeast by amplification of ADH4 on a linear, 42 kb palindromic plasmid
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90067-X
– volume: 381
  start-page: 826
  year: 2008
  ident: 10.1016/j.molcel.2011.03.006_bib39
  article-title: Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.06.059
– volume: 8
  start-page: 2421
  year: 1997
  ident: 10.1016/j.molcel.2011.03.006_bib19
  article-title: SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.8.12.2421
– volume: 24
  start-page: 9424
  year: 2004
  ident: 10.1016/j.molcel.2011.03.006_bib40
  article-title: The Yaf9 component of the SWR1 and NuA4 complexes is required for proper gene expression, histone H4 acetylation, and Htz1 replacement near telomeres
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.21.9424-9436.2004
– volume: 7
  start-page: 3713
  year: 1987
  ident: 10.1016/j.molcel.2011.03.006_bib37
  article-title: The yeast ARD1 gene product is required for repression of cryptic mating-type information at the HML locus
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.7.10.3713
– volume: 27
  start-page: 890
  year: 2007
  ident: 10.1016/j.molcel.2011.03.006_bib38
  article-title: Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.07.021
– volume: 76
  start-page: 75
  year: 2007
  ident: 10.1016/j.molcel.2011.03.006_bib27
  article-title: Functions of site-specific histone acetylation and deacetylation
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052705.162114
– volume: 8
  start-page: 1133
  year: 1994
  ident: 10.1016/j.molcel.2011.03.006_bib2
  article-title: Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way
  publication-title: Genes Dev.
  doi: 10.1101/gad.8.10.1133
– volume: 98
  start-page: 12902
  year: 2001
  ident: 10.1016/j.molcel.2011.03.006_bib13
  article-title: COMPASS: a complex of proteins associated with a trithorax-related SET domain protein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.231473398
– volume: 63
  start-page: 751
  year: 1990
  ident: 10.1016/j.molcel.2011.03.006_bib8
  article-title: Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90141-Z
– volume: 377
  start-page: 227
  year: 2004
  ident: 10.1016/j.molcel.2011.03.006_bib25
  article-title: Global proteomic analysis of S. cerevisiae (GPS) to identify proteins required for histone modifications
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(03)77013-X
– volume: 28
  start-page: 3861
  year: 2008
  ident: 10.1016/j.molcel.2011.03.006_bib33
  article-title: Synthetic lethal screens identify gene silencing processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the nucleosome core
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02050-07
– volume: 35
  start-page: 626
  year: 2009
  ident: 10.1016/j.molcel.2011.03.006_bib26
  article-title: Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.07.017
– volume: 75
  start-page: 243
  year: 2006
  ident: 10.1016/j.molcel.2011.03.006_bib28
  article-title: Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.75.103004.142422
– volume: 150
  start-page: 613
  year: 1998
  ident: 10.1016/j.molcel.2011.03.006_bib29
  article-title: Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/150.2.613
– volume: 15
  start-page: 283
  year: 1930
  ident: 10.1016/j.molcel.2011.03.006_bib16
  article-title: The frequency of translocations produced by x-rays in Drosophila
  publication-title: Genetics
  doi: 10.1093/genetics/15.4.283
– volume: 104
  start-page: 16609
  year: 2007
  ident: 10.1016/j.molcel.2011.03.006_bib34
  article-title: Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0700914104
– volume: 3
  start-page: 132
  year: 2000
  ident: 10.1016/j.molcel.2011.03.006_bib7
  article-title: The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(00)00064-3
– volume: 41
  start-page: 800
  year: 2009
  ident: 10.1016/j.molcel.2011.03.006_bib20
  article-title: The establishment of gene silencing at single-cell resolution
  publication-title: Nat. Genet.
  doi: 10.1038/ng.402
– volume: 109
  start-page: 745
  year: 2002
  ident: 10.1016/j.molcel.2011.03.006_bib32
  article-title: Dot1p modulates silencing in yeast by methylation of the nucleosome core
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00759-6
– volume: 72
  start-page: 481
  year: 2003
  ident: 10.1016/j.molcel.2011.03.006_bib24
  article-title: The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.72.121801.161547
– volume: 2
  start-page: 65
  year: 2006
  ident: 10.1016/j.molcel.2011.03.006_bib31
  article-title: Communication between levels of transcriptional control improves robustness and adaptivity
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb4100106
– volume: 66
  start-page: 1279
  year: 1991
  ident: 10.1016/j.molcel.2011.03.006_bib3
  article-title: Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90049-5
– volume: 25
  start-page: 6123
  year: 2005
  ident: 10.1016/j.molcel.2011.03.006_bib6
  article-title: Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.14.6123-6139.2005
– volume: 93
  start-page: 877
  year: 1979
  ident: 10.1016/j.molcel.2011.03.006_bib22
  article-title: A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci
  publication-title: Genetics
  doi: 10.1093/genetics/93.4.877
– volume: 8
  start-page: 2067
  year: 1989
  ident: 10.1016/j.molcel.2011.03.006_bib15
  article-title: Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1989.tb03615.x
– volume: 16
  start-page: 1518
  year: 2002
  ident: 10.1016/j.molcel.2011.03.006_bib18
  article-title: Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association
  publication-title: Genes Dev.
  doi: 10.1101/gad.1001502
– volume: 447
  start-page: 399
  year: 2007
  ident: 10.1016/j.molcel.2011.03.006_bib9
  article-title: Transcription and RNA interference in the formation of heterochromatin
  publication-title: Nature
  doi: 10.1038/nature05914
– volume: 21
  start-page: 825
  year: 2006
  ident: 10.1016/j.molcel.2011.03.006_bib4
  article-title: A homotrimer-heterotrimer switch in Sir2 structure differentiates rDNA and telomeric silencing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.02.006
– volume: 28
  start-page: 1002
  year: 2007
  ident: 10.1016/j.molcel.2011.03.006_bib1
  article-title: Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.12.002
– volume: 18
  start-page: 2538
  year: 1999
  ident: 10.1016/j.molcel.2011.03.006_bib21
  article-title: Limitations of silencing at native yeast telomeres
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.9.2538
SSID ssj0014589
Score 2.3564
Snippet The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at...
The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at...
The expression of genes that reside near telomeres is attenuated through telomere position-effect variegation (TPEV). Using a URA3 reporter located at TEL-VIIL...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118
SubjectTerms Acetyltransferases - metabolism
Chromosomal Position Effects
epigenetics
gene expression
gene expression regulation
Gene Silencing
genes
Genes, Fungal
Genome-Wide Association Study
Histone-Lysine N-Methyltransferase - genetics
Histone-Lysine N-Methyltransferase - metabolism
Histones
Histones - chemistry
Histones - metabolism
Methylation
mutants
N-Terminal Acetyltransferase A
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism
Sirtuin 2 - metabolism
Telomere - genetics
Telomere - metabolism
telomeres
yeasts
Title Dot1 and Histone H3K79 Methylation in Natural Telomeric and HM Silencing
URI https://dx.doi.org/10.1016/j.molcel.2011.03.006
https://www.ncbi.nlm.nih.gov/pubmed/21474073
https://www.proquest.com/docview/2000020036
https://www.proquest.com/docview/861209101
https://www.proquest.com/docview/968167087
https://pubmed.ncbi.nlm.nih.gov/PMC3085244
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKJSQuiHdDoTISV2sTO7GdYylUK9D2sl1pb5Yd2xC0TSrYHvj3zDjJikWsKnHJIRkr8dieR2bmG0Lec_CNoxKOWV8HVjaWMxsKySJa46XPnU3ZhIsrOV-Vn9fV-ohcTLUwmFY5yv5BpidpPd6Zjdyc3bbtbImxU65khaBnCD8LcliUOhXxrT_sIgllldrgITFD6ql8LuV43fSbJmxGIE-EOpWH1NODaPt_GaF_51L-oZwun5DHo1VJz4cPf0qOQveMPBz6TP56TuYf-21BbedpQgXpAp2LL6qmiwDLNCTD0bajVzaBcNDrsOlTIGcYsqDLFkuTQMm9IKvLT9cXcza2UGANmCZb5nX01tV1EK5xkSvelJWLnsegpVWx4lY2IkbrrUdHMCrHcwz8wTXU0mnxkhx38FknhIIjrWrvvS08EBTCWR1iwYO2uS14U2VETJwzzYgvjm0uNmZKJPtuBn4b5LfJhQF-Z4TtRt0O-Br30KtpUczePjGgAu4ZeQJraOxXEJ5mteQIrYcWSyF5Rt5NC2vgdGHIxHahv_uJTTpxc4Gazwg9QKMl1h_Dew-T1FIXUuVaZeTVsF12k8U-UeBUC5jY3kbaESD-9_6Trv2WcMAFmMtgnb3-b5ackkfDL_KS5foNOd7-uAtvwcbaujPUcNVZOkq_AY89I9Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIkQviHfD00hcrU3sxE6OUKhS2t3L7kp7s-zYLkFLUpXtgX_PTB4rFrGqxCWHZKzE47Hnc2b8DSEfOOyNgxKWGVd4llaGM-MTyQKi8dTF1nTZhNOZLJfp11W2OiCn41kYTKsc1v5-Te9W6-HOZNDm5LquJ3OMnXIlMyQ9Q_rZQ3IP0IDC-g3nq0_bUEKadXXwUJqh-Hh-rkvy-tGuK78emDyR61Tu80-HwbT_QqF_J1P-4Z3OHpGHA6ykH_svf0wOfPOE3O8LTf56SsrP7SahpnG0owVpPC3FhSro1MM49dlwtG7ozHQsHHTh120XyembTOm8xrNJ4OWekeXZl8VpyYYaCqwCbLJhLg_O2KLwwlY2cMWrNLPB8eBzaVTIuJGVCME443AnGJTlMUb-4OoLaXPxnBw18FknhMJOWhXOOZM4EEiENbkPCfe5iU3CqywiYtScrgaCcaxzsdZjJtl33etbo751LDToOyJs2-q6J9i4Q16Ng6J3DEWDD7ij5QmMoTZXsHrq5Zwjtx5ClkTyiLwfB1bD9MKYiWl8e_sTq3SidYGfjwjdI5NLPIAM790vUsg8AdPMVURe9Oay7SwWioJdtYCO7RjSVgAJwHefNPW3jghcAF4GePbyv1XyjjwoF9NLfXk-u3hFjvv_5SmL89fkaHNz698A4NrYt92E-g1VMCYP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dot1+and+histone+H3K79+methylation+in+natural+telomeric+and+HM+silencing&rft.jtitle=Molecular+cell&rft.au=Takahashi%2C+Yoh-Hei&rft.au=Schulze%2C+Julia+M&rft.au=Jackson%2C+Jessica&rft.au=Hentrich%2C+Thomas&rft.date=2011-04-08&rft.issn=1097-4164&rft.eissn=1097-4164&rft.volume=42&rft.issue=1&rft.spage=118&rft_id=info:doi/10.1016%2Fj.molcel.2011.03.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon