Bi-level multi-source learning for heterogeneous block-wise missing data

Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to impro...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 102; pp. 192 - 206
Main Authors Xiang, Shuo, Yuan, Lei, Fan, Wei, Wang, Yalin, Thompson, Paul M., Ye, Jieping
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.11.2014
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified “bi-level” learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches. •Ability to fuse large multi-modal datasets with large segments of missing entries.•A unified framework to perform both feature-level and source-level analysis.•Efficient optimization algorithms for both models with complete and incomplete data.•Detailed evaluation and comparison on clinical group classification problems.
AbstractList Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified "bi-level" learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches.
Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified “bi-level” learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches. •Ability to fuse large multi-modal datasets with large segments of missing entries.•A unified framework to perform both feature-level and source-level analysis.•Efficient optimization algorithms for both models with complete and incomplete data.•Detailed evaluation and comparison on clinical group classification problems.
Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified "bi-level" learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches.Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified "bi-level" learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches.
Author Xiang, Shuo
Yuan, Lei
Ye, Jieping
Fan, Wei
Wang, Yalin
Thompson, Paul M.
AuthorAffiliation 1 School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
3 Huawei Noah’s Ark Lab, Hong Kong
2 Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
4 Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology & Psychiatry, UCLA School of Medicine, Los Angeles, CA, USA
AuthorAffiliation_xml – name: 4 Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology & Psychiatry, UCLA School of Medicine, Los Angeles, CA, USA
– name: 3 Huawei Noah’s Ark Lab, Hong Kong
– name: 2 Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
– name: 1 School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
Author_xml – sequence: 1
  givenname: Shuo
  surname: Xiang
  fullname: Xiang, Shuo
  organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 2
  givenname: Lei
  surname: Yuan
  fullname: Yuan, Lei
  organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 3
  givenname: Wei
  surname: Fan
  fullname: Fan, Wei
  organization: Huawei Noah's Ark Lab, Hong Kong
– sequence: 4
  givenname: Yalin
  surname: Wang
  fullname: Wang, Yalin
  organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 5
  givenname: Paul M.
  surname: Thompson
  fullname: Thompson, Paul M.
  organization: Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology & Psychiatry, UCLA School of Medicine, Los Angeles, CA, USA
– sequence: 6
  givenname: Jieping
  surname: Ye
  fullname: Ye, Jieping
  email: jieping.ye@asu.edu
  organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23988272$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vFCEYh4mpsX_0K5hJvHiZKTAwwMVoG7UmTbzomTDMO1u2LFSYWdNvL-O2W-1pT7wJD094f79TdBRiAIQqghuCSXe-bgLMKbqNWUFDMWkbLBtM-At0QrDiteKCHi0zb2tJiDpGpzmvMcaKMPkKHdNWSUkFPUFXF672sAVfbWY_uTrHOVmoPJgUXFhVY0zVDUyQ4goCxDlXvY_2tv7tMlQbl_MCDWYyr9HL0fgMbx7OM_Tzy-cfl1f19fev3y4_Xde2I2KqrSSCU6IE7ofeghEArONWYtPbbhS9EpRYxkD0ZWDSyq5nDI8KGzkSq2h7hj7svHdzv4HBQpiS8foulTDSvY7G6f9vgrvRq7jVrWoFVaII3j8IUvw1Q550WcOC9-bvfpp0nLaSd5gdgFLaYVGkBX33DF2XJENJYqG4YpgLUqi3_35-_-vHPgogd4BNMecE4x4hWC_V67V-ql4v1Wssdan-KZj9U-smM7m4xOD8IYKLnQBKfVsHSWfrIFgYXAI76SG6QyQfn0msd8FZ42_h_jDFH3l657I
CitedBy_id crossref_primary_10_1093_biostatistics_kxy052
crossref_primary_10_1038_s41598_018_21118_1
crossref_primary_10_1016_j_trsl_2018_01_001
crossref_primary_10_1007_s11042_018_6463_x
crossref_primary_10_1109_TBME_2018_2873252
crossref_primary_10_1038_nn_3718
crossref_primary_10_1016_j_cosrev_2024_100720
crossref_primary_10_1155_2021_3541516
crossref_primary_10_1016_j_ins_2021_09_035
crossref_primary_10_1016_j_neuroimage_2014_10_052
crossref_primary_10_1002_hbm_23326
crossref_primary_10_1088_1361_6560_abf200
crossref_primary_10_1109_TFUZZ_2021_3099696
crossref_primary_10_3389_fnins_2021_634124
crossref_primary_10_1053_j_akdh_2022_11_007
crossref_primary_10_1016_j_bspc_2021_103293
crossref_primary_10_1080_10618600_2022_2118753
crossref_primary_10_1109_TBME_2021_3070875
crossref_primary_10_1016_j_media_2016_11_002
crossref_primary_10_1080_01621459_2020_1751176
crossref_primary_10_1007_s00429_015_1059_y
crossref_primary_10_1007_s11336_023_09918_5
crossref_primary_10_1016_j_ins_2019_04_039
crossref_primary_10_1142_S0129065718500429
crossref_primary_10_1080_07350015_2021_1922120
crossref_primary_10_3389_fnins_2019_00642
crossref_primary_10_1016_j_patcog_2018_11_027
crossref_primary_10_1177_09622802221084596
crossref_primary_10_1016_j_jalz_2014_11_001
crossref_primary_10_1080_24725854_2020_1798569
crossref_primary_10_1109_TCYB_2019_2904186
crossref_primary_10_1109_TPAMI_2021_3091214
crossref_primary_10_1371_journal_pone_0307482
crossref_primary_10_1080_24725579_2023_2227197
crossref_primary_10_1002_asmb_2299
crossref_primary_10_1016_j_jalz_2016_11_007
crossref_primary_10_2478_jos_2023_0022
crossref_primary_10_1002_wics_1626
crossref_primary_10_1109_TMI_2020_3041227
crossref_primary_10_1109_TMI_2023_3295489
crossref_primary_10_3233_JAD_231047
crossref_primary_10_1109_TMI_2019_2913158
crossref_primary_10_1111_sjos_12632
crossref_primary_10_1080_00949655_2022_2109636
crossref_primary_10_3389_fgene_2023_1162690
crossref_primary_10_1016_j_cmpb_2016_12_007
crossref_primary_10_3233_JID_230026
crossref_primary_10_1109_TKDE_2018_2791607
crossref_primary_10_1016_j_media_2016_07_012
crossref_primary_10_1016_j_media_2017_10_005
crossref_primary_10_1016_j_compmedimag_2023_102303
crossref_primary_10_1080_24725854_2021_1987593
crossref_primary_10_1109_JBHI_2017_2732287
crossref_primary_10_1016_j_media_2018_01_002
Cites_doi 10.1212/WNL.0b013e3181e8e8b8
10.1016/j.neuroimage.2010.10.081
10.1016/j.neuroimage.2011.01.008
10.1002/jmri.21049
10.1016/j.neuroimage.2011.09.069
10.1016/j.neuroimage.2012.03.059
10.1016/j.neuroimage.2008.10.057
10.1214/08-AOAS202
10.1093/bioinformatics/bth294
10.3174/ajnr.A1809
10.1523/JNEUROSCI.3785-09.2010
10.1016/j.neuroimage.2008.02.043
10.1016/j.neurobiolaging.2008.08.013
10.1016/j.jalz.2007.04.381
10.1016/j.nic.2005.09.008
10.1006/nimg.2001.0978
10.1137/080716542
10.1214/009053604000000067
10.1198/004017005000000139
10.1214/08-AOS620
10.1111/j.1467-9868.2005.00532.x
10.1093/bioinformatics/bts228
10.1093/bioinformatics/btq174
10.1109/TSP.2009.2026004
10.1073/pnas.0832373100
10.1145/2408736.2408739
10.1212/WNL.0b013e3181af79fb
10.1007/s10994-007-5040-8
ContentType Journal Article
Copyright 2013 Elsevier Inc.
2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Nov 15, 2014
2013 Elsevier Inc. All rights reserved. 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Nov 15, 2014
– notice: 2013 Elsevier Inc. All rights reserved. 2013
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7QO
7X8
5PM
DOI 10.1016/j.neuroimage.2013.08.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

Engineering Research Database


MEDLINE - Academic
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 206
ExternalDocumentID PMC3937297
3500428901
23988272
10_1016_j_neuroimage_2013_08_015
S1053811913008690
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM010730
– fundername: NIA NIH HHS
  grantid: R21 AG043760
– fundername: NIA NIH HHS
  grantid: P30 AG010129
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NIA NIH HHS
  grantid: K01 AG030514
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7QO
7X8
5PM
ID FETCH-LOGICAL-c617t-c817521970bdbcea7ee465c80abc6f7b9721c44e7b72148c86b440f90a8f1c923
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 13:49:02 EDT 2025
Fri Jul 11 06:22:40 EDT 2025
Wed Jul 30 10:47:28 EDT 2025
Wed Aug 13 07:38:51 EDT 2025
Mon Jul 21 06:05:45 EDT 2025
Tue Jul 01 02:14:52 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Fri Feb 23 02:36:03 EST 2024
Tue Aug 26 16:31:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-source
Multi-modal fusion
Alzheimer's disease
Block-wise missing data
Optimization
Language English
License 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c617t-c817521970bdbcea7ee465c80abc6f7b9721c44e7b72148c86b440f90a8f1c923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Review-3
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but most of them did not participate in analysis or writing of this report. A complete listing of ADNI investigators may be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
PMID 23988272
PQID 1625940571
PQPubID 2031077
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3937297
proquest_miscellaneous_1652385604
proquest_miscellaneous_1622607973
proquest_journals_1625940571
pubmed_primary_23988272
crossref_primary_10_1016_j_neuroimage_2013_08_015
crossref_citationtrail_10_1016_j_neuroimage_2013_08_015
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_08_015
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_08_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-15
PublicationDateYYYYMMDD 2014-11-15
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2014
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Wang, Nie, Huang, Risacher, Saykin, Shen (bb0170) 2012; 28
Friedman, Hastie, Tibshirani (bb0075) 2010
Turlach, Venables, Wright (bb0145) 2005; 47
Duda, Hart, Stork (bb0055) 1997
Liu, Ji, Ye (bb0110) 2009
Calhoun, Liu, Adalı (bb0040) 2009; 45
Zhao, Yu (bb0220) 2006; 7
Fjell, Walhovd, Fennema-Notestine, McEvoy, Hagler, Holland, Brewer, Dale (bb0070) 2010; 30
Zhang, Shen (bb0210) 2012; 59
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bb0150) 2002; 15
Walhovd, Fjell, Brewer, McEvoy, Fennema-Notestine, Hagler, Jennings, Karow, Dale (bb0160) 2010; 31
Hinrichs, Singh, Xu, Johnson (bb0085) 2011; 55
Bickel, Ritov, Tsybakov (bb0025) 2009; 37
Lanckriet, De Bie, Cristianini, Jordan, Noble (bb0100) 2004; 20
Quattoni, Carreras, Collins, Darrell (bb0125) 2009
Yuan, Wang, Thompson, Narayan, Ye (bb0200) 2012; 61
Argyriou, Evgeniou, Pontil (bb0010) 2008; 73
Beck, Teboulle (bb0020) 2009; 2
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bb0120) 2005; 15
Crammer, Kearns, Wortman (bb0045) 2008; 9
Vemuri, Wiste, Weigand, Shaw, Trojanowski, Weiner, Knopman, Petersen, Jack (bb0155) 2009; 73
Culp, Michailidis, Johnson (bb0050) 2009; 3
Mazumder, Hastie, Tibshirani (bb0115) 2010; 11
Gasso, Rakotomamonjy, Canu (bb0080) 2009; 57
Yang, Xu, King, Lyu (bb0185) 2010
Brookmeyer, Johnson, Ziegler-Graham, Arrighi (bb0035) 2007; 3
Fan, Resnick, Wu, Davatzikos (bb0065) 2008; 41
Xiang, Shen, Ye (bb0175) 2013
Huopaniemi, Suvitaival, Nikkilä, Orešič, Kaski (bb0090) 2010; 26
Walhovd, Fjell, Dale, McEvoy, Brewer, Karow, Salmon, Fennema-Notestine (bb0165) 2010; 31
Tibshirani (bb0135) 1996; 267–288
Troyanskaya, Dolinski, Owen, Altman, Botstein (bb0140) 2003; 100
Zhang, Wang, Zhou, Yuan, Shen (bb0215) 2011; 55
Ando, Zhang (bb0005) 2007
Ye, Liu (bb0195) 2012; 14
Tao, An (bb0130) 1997; 22
Breheny, Huang (bb0030) 2009; 2
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward (bb0095) 2008; 27
Landau, Harvey, Madison, Reiman, Foster, Aisen, Petersen, Shaw, Trojanowski, Jack, Weiner, Jagust (bb0105) 2010; 75
Yuan, Lin (bb0205) 2006; 68
Xu, King, Lyu (bb0180) 2007
Ye, Chen, Wu, Li, Zhao, Patel, Bae, Janardan, Liu, Alexander (bb0190) 2008
Bach (bb0015) 2011; 4
Efron, Hastie, Johnstone, Tibshirani (bb0060) 2004; 32
Bach (10.1016/j.neuroimage.2013.08.015_bb0015) 2011; 4
Fjell (10.1016/j.neuroimage.2013.08.015_bb0070) 2010; 30
Hinrichs (10.1016/j.neuroimage.2013.08.015_bb0085) 2011; 55
Jack (10.1016/j.neuroimage.2013.08.015_bb0095) 2008; 27
Walhovd (10.1016/j.neuroimage.2013.08.015_bb0160) 2010; 31
Troyanskaya (10.1016/j.neuroimage.2013.08.015_bb0140) 2003; 100
Lanckriet (10.1016/j.neuroimage.2013.08.015_bb0100) 2004; 20
Walhovd (10.1016/j.neuroimage.2013.08.015_bb0165) 2010; 31
Huopaniemi (10.1016/j.neuroimage.2013.08.015_bb0090) 2010; 26
Friedman (10.1016/j.neuroimage.2013.08.015_bb0075) 2010
Liu (10.1016/j.neuroimage.2013.08.015_bb0110) 2009
Quattoni (10.1016/j.neuroimage.2013.08.015_bb0125) 2009
Ye (10.1016/j.neuroimage.2013.08.015_bb0190) 2008
Zhang (10.1016/j.neuroimage.2013.08.015_bb0210) 2012; 59
Brookmeyer (10.1016/j.neuroimage.2013.08.015_bb0035) 2007; 3
Turlach (10.1016/j.neuroimage.2013.08.015_bb0145) 2005; 47
Culp (10.1016/j.neuroimage.2013.08.015_bb0050) 2009; 3
Mueller (10.1016/j.neuroimage.2013.08.015_bb0120) 2005; 15
Yang (10.1016/j.neuroimage.2013.08.015_bb0185) 2010
Gasso (10.1016/j.neuroimage.2013.08.015_bb0080) 2009; 57
Xu (10.1016/j.neuroimage.2013.08.015_bb0180) 2007
Argyriou (10.1016/j.neuroimage.2013.08.015_bb0010) 2008; 73
Zhang (10.1016/j.neuroimage.2013.08.015_bb0215) 2011; 55
Yuan (10.1016/j.neuroimage.2013.08.015_bb0205) 2006; 68
Landau (10.1016/j.neuroimage.2013.08.015_bb0105) 2010; 75
Duda (10.1016/j.neuroimage.2013.08.015_bb0055) 1997
Tibshirani (10.1016/j.neuroimage.2013.08.015_bb0135) 1996; 267–288
Bickel (10.1016/j.neuroimage.2013.08.015_bb0025) 2009; 37
Fan (10.1016/j.neuroimage.2013.08.015_bb0065) 2008; 41
Crammer (10.1016/j.neuroimage.2013.08.015_bb0045) 2008; 9
Mazumder (10.1016/j.neuroimage.2013.08.015_bb0115) 2010; 11
Ando (10.1016/j.neuroimage.2013.08.015_bb0005) 2007
Efron (10.1016/j.neuroimage.2013.08.015_bb0060) 2004; 32
Breheny (10.1016/j.neuroimage.2013.08.015_bb0030) 2009; 2
Vemuri (10.1016/j.neuroimage.2013.08.015_bb0155) 2009; 73
Tzourio-Mazoyer (10.1016/j.neuroimage.2013.08.015_bb0150) 2002; 15
Xiang (10.1016/j.neuroimage.2013.08.015_bb0175) 2013
Zhao (10.1016/j.neuroimage.2013.08.015_bb0220) 2006; 7
Beck (10.1016/j.neuroimage.2013.08.015_bb0020) 2009; 2
Ye (10.1016/j.neuroimage.2013.08.015_bb0195) 2012; 14
Calhoun (10.1016/j.neuroimage.2013.08.015_bb0040) 2009; 45
Wang (10.1016/j.neuroimage.2013.08.015_bb0170) 2012; 28
Tao (10.1016/j.neuroimage.2013.08.015_bb0130) 1997; 22
Yuan (10.1016/j.neuroimage.2013.08.015_bb0200) 2012; 61
21236349 - Neuroimage. 2011 Apr 1;55(3):856-67
24076585 - SIGKDD Explor. 2012 Jun 1;14(1):4-15
21552465 - J Mach Learn Res. 2010 Mar 1;11:2287-2322
19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72
22689752 - Bioinformatics. 2012 Jun 15;28(12):i127-36
20592257 - Neurology. 2010 Jul 20;75(3):230-8
18838195 - Neurobiol Aging. 2010 Jul;31(7):1107-21
21146621 - Neuroimage. 2011 Mar 15;55(2):574-89
18302232 - J Magn Reson Imaging. 2008 Apr;27(4):685-91
16443497 - Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii
19595937 - Alzheimers Dement. 2007 Jul;3(3):186-91
20529933 - Bioinformatics. 2010 Jun 15;26(12):i391-8
21992749 - Neuroimage. 2012 Jan 16;59(2):895-907
18400519 - Neuroimage. 2008 Jun;41(2):277-85
15130933 - Bioinformatics. 2004 Nov 1;20(16):2626-35
22498655 - Neuroimage. 2012 Jul 2;61(3):622-32
20640242 - Stat Interface. 2009 Jul 1;2(3):369-380
20075088 - AJNR Am J Neuroradiol. 2010 Feb;31(2):347-54
11771995 - Neuroimage. 2002 Jan;15(1):273-89
19636049 - Neurology. 2009 Jul 28;73(4):294-301
12826619 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8348-53
20147537 - J Neurosci. 2010 Feb 10;30(6):2088-101
References_xml – volume: 4
  start-page: 1
  year: 2011
  end-page: 106
  ident: bb0015
  article-title: Optimization with sparsity-inducing penalties
  publication-title: Foundations and Trendstextregistered in Machine Learning
– volume: 20
  start-page: 2626
  year: 2004
  end-page: 2635
  ident: bb0100
  article-title: A statistical framework for genomic data fusion
  publication-title: Bioinformatics
– volume: 11
  start-page: 2287
  year: 2010
  end-page: 2322
  ident: bb0115
  article-title: Spectral regularization algorithms for learning large incomplete matrices
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bb0150
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
– volume: 3
  start-page: 292
  year: 2009
  end-page: 318
  ident: bb0050
  article-title: On multi-view learning with additive models
  publication-title: Ann. Appl. Stat.
– volume: 73
  start-page: 294
  year: 2009
  end-page: 301
  ident: bb0155
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change
  publication-title: Neurology
– volume: 15
  start-page: 869
  year: 2005
  end-page: 877
  ident: bb0120
  article-title: The Alzheimer's disease neuroimaging initiative
  publication-title: Neuroimaging Clin. N. Am.
– start-page: 1025
  year: 2008
  end-page: 1033
  ident: bb0190
  article-title: Heterogeneous data fusion for Alzheimer's disease study
  publication-title: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 55
  start-page: 574
  year: 2011
  end-page: 589
  ident: bb0085
  article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
  publication-title: NeuroImage
– volume: 75
  start-page: 230
  year: 2010
  end-page: 238
  ident: bb0105
  article-title: Comparing predictors of conversion and decline in mild cognitive impairment
  publication-title: Neurology
– year: 2013
  ident: bb0175
  article-title: Efficient sparse group feature selection via nonconvex optimization
  publication-title: The 30th International Conference on Machine Learning (ICML)
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: bb0060
  article-title: Least angle regression
  publication-title: Ann. Stat.
– volume: 68
  start-page: 49
  year: 2006
  end-page: 67
  ident: bb0205
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.)
– volume: 59
  start-page: 895
  year: 2012
  end-page: 907
  ident: bb0210
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
  publication-title: NeuroImage
– volume: 41
  start-page: 277
  year: 2008
  end-page: 285
  ident: bb0065
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
  publication-title: NeuroImage
– volume: 7
  start-page: 2541
  year: 2006
  end-page: 2563
  ident: bb0220
  article-title: On model selection consistency of Lasso
  publication-title: J. Mach. Learn. Res.
– volume: 73
  start-page: 243
  year: 2008
  end-page: 272
  ident: bb0010
  article-title: Convex multi-task feature learning
  publication-title: Mach. Learn.
– volume: 3
  start-page: 186
  year: 2007
  end-page: 191
  ident: bb0035
  article-title: Forecasting the global burden of Alzheimer's disease
  publication-title: Alzheimers Dement.
– start-page: 339
  year: 2009
  end-page: 348
  ident: bb0110
  article-title: Multi-task feature learning via efficient l
  publication-title: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
– start-page: 1171
  year: 2007
  end-page: 1172
  ident: bb0180
  article-title: Web page classification with heterogeneous data fusion
  publication-title: Proceedings of the 16th International Conference on, World Wide Web
– volume: 45
  start-page: S163
  year: 2009
  ident: bb0040
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: NeuroImage
– volume: 37
  start-page: 1705
  year: 2009
  end-page: 1732
  ident: bb0025
  article-title: Simultaneous analysis of Lasso and Dantzig selector
  publication-title: Ann. Stat.
– volume: 9
  start-page: 1757
  year: 2008
  end-page: 1774
  ident: bb0045
  article-title: Learning from multiple sources
  publication-title: J. Mach. Learn. Res.
– volume: 31
  start-page: 347
  year: 2010
  end-page: 354
  ident: bb0160
  article-title: Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease
  publication-title: AJNR Am. J. Neuroradiol.
– year: 2010
  ident: bb0185
  article-title: Online learning for group lasso
  publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML)
– volume: 14
  start-page: 4
  year: 2012
  end-page: 15
  ident: bb0195
  article-title: Sparse methods for biomedical data
  publication-title: ACM SIGKDD Explorations Newsletter
– volume: 31
  start-page: 1107
  year: 2010
  end-page: 1121
  ident: bb0165
  article-title: Multi-modal imaging predicts memory performance in normal aging and cognitive decline
  publication-title: Neurobiol. Aging
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: bb0020
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– volume: 22
  start-page: 289
  year: 1997
  end-page: 355
  ident: bb0130
  article-title: Convex analysis approach to dc programming: theory, algorithms and applications
  publication-title: Acta Math. Vietnam
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bb0095
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– volume: 26
  start-page: i391
  year: 2010
  end-page: i398
  ident: bb0090
  article-title: Multivariate multi-way analysis of multi-source data
  publication-title: Bioinformatics
– start-page: 25
  year: 2007
  end-page: 32
  ident: bb0005
  article-title: Two-view feature generation model for semi-supervised learning
  publication-title: Proceedings of the 24th International Conference on Machine Learning (ICML)
– volume: 100
  start-page: 8348
  year: 2003
  end-page: 8353
  ident: bb0140
  article-title: A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae)
  publication-title: Proc. Natl. Acad. Sci.
– volume: 2
  start-page: 369
  year: 2009
  end-page: 380
  ident: bb0030
  article-title: Penalized methods for bi-level variable selection
  publication-title: Statistics and its interface
– volume: 57
  start-page: 4686
  year: 2009
  end-page: 4698
  ident: bb0080
  article-title: Recovering sparse signals with a certain family of nonconvex penalties and DC programming
  publication-title: Signal Processing, IEEE Transactions on
– start-page: 857
  year: 2009
  end-page: 864
  ident: bb0125
  article-title: An efficient projection for l
  publication-title: Proceedings of the 26th Annual International Conference on Machine Learning (ICML)
– year: 1997
  ident: bb0055
  article-title: Pattern Classification
– year: 2010
  ident: bb0075
  article-title: A note on the group Lasso and a sparse group lasso
  publication-title: Arxiv
– volume: 267–288
  year: 1996
  ident: bb0135
  article-title: Regression shrinkage and selection via the Llsso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 61
  start-page: 622
  year: 2012
  end-page: 632
  ident: bb0200
  article-title: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
  publication-title: NeuroImage
– volume: 28
  start-page: i127
  year: 2012
  end-page: i136
  ident: bb0170
  article-title: Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning
  publication-title: Bioinformatics
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: bb0215
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: NeuroImage
– volume: 30
  start-page: 2088
  year: 2010
  end-page: 2101
  ident: bb0070
  article-title: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer's disease
  publication-title: J. Neurosci.
– volume: 47
  start-page: 349
  year: 2005
  end-page: 363
  ident: bb0145
  article-title: Simultaneous variable selection
  publication-title: Technometrics
– volume: 75
  start-page: 230
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.015_bb0105
  article-title: Comparing predictors of conversion and decline in mild cognitive impairment
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e8e8b8
– volume: 55
  start-page: 574
  year: 2011
  ident: 10.1016/j.neuroimage.2013.08.015_bb0085
  article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.10.081
– volume: 55
  start-page: 856
  year: 2011
  ident: 10.1016/j.neuroimage.2013.08.015_bb0215
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.008
– start-page: 339
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.015_bb0110
  article-title: Multi-task feature learning via efficient l2,1-norm minimization
– volume: 27
  start-page: 685
  year: 2008
  ident: 10.1016/j.neuroimage.2013.08.015_bb0095
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 22
  start-page: 289
  year: 1997
  ident: 10.1016/j.neuroimage.2013.08.015_bb0130
  article-title: Convex analysis approach to dc programming: theory, algorithms and applications
  publication-title: Acta Math. Vietnam
– volume: 59
  start-page: 895
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.015_bb0210
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.069
– volume: 61
  start-page: 622
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.015_bb0200
  article-title: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.059
– volume: 45
  start-page: S163
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.015_bb0040
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.057
– volume: 3
  start-page: 292
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.015_bb0050
  article-title: On multi-view learning with additive models
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS202
– year: 2010
  ident: 10.1016/j.neuroimage.2013.08.015_bb0185
  article-title: Online learning for group lasso
– volume: 20
  start-page: 2626
  year: 2004
  ident: 10.1016/j.neuroimage.2013.08.015_bb0100
  article-title: A statistical framework for genomic data fusion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth294
– volume: 31
  start-page: 347
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.015_bb0160
  article-title: Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A1809
– volume: 30
  start-page: 2088
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.015_bb0070
  article-title: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3785-09.2010
– volume: 41
  start-page: 277
  year: 2008
  ident: 10.1016/j.neuroimage.2013.08.015_bb0065
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.02.043
– volume: 31
  start-page: 1107
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.015_bb0165
  article-title: Multi-modal imaging predicts memory performance in normal aging and cognitive decline
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2008.08.013
– volume: 11
  start-page: 2287
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.015_bb0115
  article-title: Spectral regularization algorithms for learning large incomplete matrices
  publication-title: J. Mach. Learn. Res.
– start-page: 25
  year: 2007
  ident: 10.1016/j.neuroimage.2013.08.015_bb0005
  article-title: Two-view feature generation model for semi-supervised learning
– volume: 3
  start-page: 186
  year: 2007
  ident: 10.1016/j.neuroimage.2013.08.015_bb0035
  article-title: Forecasting the global burden of Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2007.04.381
– start-page: 857
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.015_bb0125
  article-title: An efficient projection for l1,∞ regularization
– volume: 15
  start-page: 869
  year: 2005
  ident: 10.1016/j.neuroimage.2013.08.015_bb0120
  article-title: The Alzheimer's disease neuroimaging initiative
  publication-title: Neuroimaging Clin. N. Am.
  doi: 10.1016/j.nic.2005.09.008
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neuroimage.2013.08.015_bb0150
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0978
– volume: 4
  start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2013.08.015_bb0015
  article-title: Optimization with sparsity-inducing penalties
– volume: 2
  start-page: 183
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.015_bb0020
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 32
  start-page: 407
  year: 2004
  ident: 10.1016/j.neuroimage.2013.08.015_bb0060
  article-title: Least angle regression
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– volume: 47
  start-page: 349
  year: 2005
  ident: 10.1016/j.neuroimage.2013.08.015_bb0145
  article-title: Simultaneous variable selection
  publication-title: Technometrics
  doi: 10.1198/004017005000000139
– volume: 37
  start-page: 1705
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.015_bb0025
  article-title: Simultaneous analysis of Lasso and Dantzig selector
  publication-title: Ann. Stat.
  doi: 10.1214/08-AOS620
– start-page: 1171
  year: 2007
  ident: 10.1016/j.neuroimage.2013.08.015_bb0180
  article-title: Web page classification with heterogeneous data fusion
– volume: 68
  start-page: 49
  year: 2006
  ident: 10.1016/j.neuroimage.2013.08.015_bb0205
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.)
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 28
  start-page: i127
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.015_bb0170
  article-title: Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts228
– year: 2013
  ident: 10.1016/j.neuroimage.2013.08.015_bb0175
  article-title: Efficient sparse group feature selection via nonconvex optimization
– year: 1997
  ident: 10.1016/j.neuroimage.2013.08.015_bb0055
– year: 2010
  ident: 10.1016/j.neuroimage.2013.08.015_bb0075
  article-title: A note on the group Lasso and a sparse group lasso
– start-page: 1025
  year: 2008
  ident: 10.1016/j.neuroimage.2013.08.015_bb0190
  article-title: Heterogeneous data fusion for Alzheimer's disease study
– volume: 26
  start-page: i391
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.015_bb0090
  article-title: Multivariate multi-way analysis of multi-source data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq174
– volume: 267–288
  year: 1996
  ident: 10.1016/j.neuroimage.2013.08.015_bb0135
  article-title: Regression shrinkage and selection via the Llsso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 57
  start-page: 4686
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.015_bb0080
  article-title: Recovering sparse signals with a certain family of nonconvex penalties and DC programming
  publication-title: Signal Processing, IEEE Transactions on
  doi: 10.1109/TSP.2009.2026004
– volume: 100
  start-page: 8348
  year: 2003
  ident: 10.1016/j.neuroimage.2013.08.015_bb0140
  article-title: A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae)
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0832373100
– volume: 14
  start-page: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.015_bb0195
  article-title: Sparse methods for biomedical data
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/2408736.2408739
– volume: 73
  start-page: 294
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.015_bb0155
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181af79fb
– volume: 2
  start-page: 369
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.015_bb0030
  article-title: Penalized methods for bi-level variable selection
– volume: 9
  start-page: 1757
  year: 2008
  ident: 10.1016/j.neuroimage.2013.08.015_bb0045
  article-title: Learning from multiple sources
  publication-title: J. Mach. Learn. Res.
– volume: 73
  start-page: 243
  year: 2008
  ident: 10.1016/j.neuroimage.2013.08.015_bb0010
  article-title: Convex multi-task feature learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-007-5040-8
– volume: 7
  start-page: 2541
  year: 2006
  ident: 10.1016/j.neuroimage.2013.08.015_bb0220
  article-title: On model selection consistency of Lasso
  publication-title: J. Mach. Learn. Res.
– reference: 16443497 - Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii
– reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89
– reference: 18302232 - J Magn Reson Imaging. 2008 Apr;27(4):685-91
– reference: 20592257 - Neurology. 2010 Jul 20;75(3):230-8
– reference: 15130933 - Bioinformatics. 2004 Nov 1;20(16):2626-35
– reference: 20640242 - Stat Interface. 2009 Jul 1;2(3):369-380
– reference: 22689752 - Bioinformatics. 2012 Jun 15;28(12):i127-36
– reference: 12826619 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8348-53
– reference: 20147537 - J Neurosci. 2010 Feb 10;30(6):2088-101
– reference: 22498655 - Neuroimage. 2012 Jul 2;61(3):622-32
– reference: 20075088 - AJNR Am J Neuroradiol. 2010 Feb;31(2):347-54
– reference: 18400519 - Neuroimage. 2008 Jun;41(2):277-85
– reference: 21236349 - Neuroimage. 2011 Apr 1;55(3):856-67
– reference: 19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72
– reference: 24076585 - SIGKDD Explor. 2012 Jun 1;14(1):4-15
– reference: 19595937 - Alzheimers Dement. 2007 Jul;3(3):186-91
– reference: 20529933 - Bioinformatics. 2010 Jun 15;26(12):i391-8
– reference: 21146621 - Neuroimage. 2011 Mar 15;55(2):574-89
– reference: 21552465 - J Mach Learn Res. 2010 Mar 1;11:2287-2322
– reference: 21992749 - Neuroimage. 2012 Jan 16;59(2):895-907
– reference: 18838195 - Neurobiol Aging. 2010 Jul;31(7):1107-21
– reference: 19636049 - Neurology. 2009 Jul 28;73(4):294-301
SSID ssj0009148
Score 2.427561
SecondaryResourceType review_article
Snippet Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 192
SubjectTerms Accuracy
Algorithms
Alzheimer Disease - cerebrospinal fluid
Alzheimer Disease - diagnosis
Alzheimer's disease
Biomedical research
Block-wise missing data
Classification
Data Mining
Humans
Magnetic Resonance Imaging
Medical imaging
Multi-modal fusion
Multi-source
Neuroimaging - statistics & numerical data
NMR
Nuclear magnetic resonance
Optimization
Positron-Emission Tomography
Protein expression
Proteomics
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELamPSBeEONnYSAj8WqapOfaFk8wMVVI4wUm7c2ynQsLjHainfbG385d4mQUEKrEW9v4pOZ8vvsu-e5OiJdlXTnEYBTa0CiwACpQLkS2jHVdNWhjwbXDJx_mi1N4f6bP9sTRUAvDtMrs-3uf3nnr_Ms0a3N62bbTj4QMKNxQvjFjXO44bwcwbOWvftzQPFwJfTmcnilendk8Pcer6xnZfqOTyySvWdfMkwfk_j1E_QlBf2dS_hKaju-KOxlTyjf93z4Qe7i8J26d5Lfm98XibasumBwkO_qg6h_Yyzww4rMk3CrPmRazImvC1dVaRgpxX9V1u0ZJdsCPEyRTSR-I0-N3n44WKk9QUImQyUYlS-iAfJIpYh0TbQkizHWyRYhp3pjIrXsSAJpIH8AmO48AReOKYJsyEfZ7KPaXqyU-FtJCCDHqkDBqwCoGdI1JIaVYB1dpnAgzKM2n3F6cp1xc-IFH9sXfqNuzuj0PwCz1RJSj5GXfYmMHGTfsix9KSMnpeYoDO8i-HmW3TG1H6cPBDHw-7mtfchbJ0LeciBfjZdogfvsSup3jNZQ7Gmdm_1qjCUIRCIWJeNRb1qgSbtRoK1ORordsblzAjcK3ryzb865hODc9rJx58l83_lTcpm_AdZilPhT7m-9X-IwA2SY-707cT1AAOSc
  priority: 102
  providerName: Elsevier
Title Bi-level multi-source learning for heterogeneous block-wise missing data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913008690
https://dx.doi.org/10.1016/j.neuroimage.2013.08.015
https://www.ncbi.nlm.nih.gov/pubmed/23988272
https://www.proquest.com/docview/1625940571
https://www.proquest.com/docview/1622607973
https://www.proquest.com/docview/1652385604
https://pubmed.ncbi.nlm.nih.gov/PMC3937297
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6xTUK8TON32aiMxKshTu3a0R7QhjYV0CqEmNQ3y3acrTDajXbaG387d4mTMkBTnxLJPik5n-3P9ufvAF6LMi9idJpH4youjZTc4VoIYzmWZV5F4zO6O3wyHo5O5ceJmqQNt0WiVbZjYj1Ql_NAe-RvBQF1Qhfi3eUVp6xRdLqaUmhswBZJlxGlS0_0SnRXyOYqnBpwgxUSk6fhd9V6kdMf2GuJ4DWohTwpOe7_p6d_4effLMo_pqXjHdhOeJIdNAHwEO7F2SO4f5JOzB_D6HDKL4gYxGrqIG8261lKFnHGELOyc6LEzDGS4vx6wTxOb9_5zXQRGcYAbSUwopE-gdPjo6_vRzxlT-ABUcmSB4PIAMcjnfnSB2yOGOVQBZM5H4aV9iTbE6SM2uOLNMEMvZRZVWTOVCIg7nsKm7P5LD4HZqRz3isXolcy5t7FotLBheBLV-Qq9kC3TrMhSYtThosL23LIvtmVuy2521LyS6F6IDrLy0ZeYw2bom0X214fxQHP4hywhu1-Z5sgRgMd1rTea8PApq6-sKvA7MGrrhgbiE5eXN1yVAfXjbrQg7vqKIRPCEBlD541kdW5hEQaTa5zdPStmOsqkEj47ZLZ9LwWCyfBw7zQL-7-9F14gP8p6ZKlUHuwufx5HV8i2lr6Pmy8-SX6dcfqw9bBh0-jMT4Pj8afv_wGXQIx6g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1VqQRcKr5JKWAkOFqsHW_sFUKIQquUNhFCrdSbsb1emlKSlqSq-FP8Rmb2KxRQlUtvkdYjbcbjmef18xuAFyKXWYxO82hcwZVRijvcC2EsxzyXRTQ-obvDw1F_cKA-HqaHK_CruQtDtMomJ5aJOp8G-kb-ShBQJ3Qh3p6eceoaRaerTQuNKix2488L3LLN3ux8wPl9KeX21v77Aa-7CvCA1XrOg8GKietUJz73AV8zRtVPg0mcD_1Ce5KzCUpF7fGHMsH0vVJJkSXOFCJkJHSAKX9V9XAr04HVza3Rp88LmV-hqst3aY8bIbKaO1QxykqFyvF3zBNEKeuV0qHUjvf_BfFfwPs3b_OPQrh9G9ZqBMveVSF3B1bi5C7cGNZn9PdgsDnmJ0RFYiVZkVfHA6xuT_GVIUpmR0TCmWLsxun5jHksqN_4xXgWGUYdfbxgRFy9DwfX4tkH0JlMJ_ERMKOc8z51IfpUReldzAodXAg-d5lMYxd04zQbajFz6qlxYhvW2rFduNuSuy212xRpF0RreVoJeixhkzXzYpsLq5hiLVadJWxft7Y1qKnAypLWG00Y2Dq5zOxiKXThefsYJ4jOelw5czQGd6o6072rxqQI2BDyqi48rCKrdQnJQhqpJTr6Usy1A0iW_PKTyfiolCcniUWZ6fWrX_0Z3BzsD_fs3s5o9zHcwv-s6IqnSDegM_9xHp8g1pv7p_UCY_Dlutf0b2Gpa9s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIlVcUHkHChgJjlbXjh3bQggBJUoprThQKTdje7000CaFpKr4a_w6Zna9GwqoyqW3SOuRNuN5ef3NN4Q846WwKXnNkvEVk0ZK5uEsBLacylJUyYQCe4f3DwajQ_l-rMZr5FfbC4OwyjYm1oG6nEX8Rr7NsVDH6oJvVxkW8XFn-Or0O8MJUnjT2o7TaExkL_08h-Pb_OXuDuz1cyGG7z69HbE8YYBFyNwLFg1kT_BZXYQyRHjllORARVP4EAeVDkhtE6VMOsAPaaIZBCmLyhbeVDxaJD2A8H9N9xVHH9NjvST85bJpw1N9Zji3GUXUYMtqrsrJCUQMBJf1axJRHMz7_9T4b-n7N4Lzj5Q43CQ3ci1LXzfGd5OspektsrGfb-tvk9GbCTtGUBKtYYusuSigeVDFFwr1Mj1COM4MrDjNzuY0QGr9xs4n80TB_vAzBkUI6x1yeCV6vUvWp7Npuk-okd6HoHxMQckkgk-20tHHGEpvhUo9oluluZhpzXG6xrFr8Wtf3VLdDtXtcPAmVz3CO8nThtpjBRnb7otrW1ch2DrIPyvIvuhkc3nTlC0rSm-1ZuBymJm7pVP0yNPuMWwQ3vr4eudwDZxZtdX9y9YoKN2g-JU9cq-xrE4lSBBphBag6As21y1AgvKLT6aTo5qoHMkWhdUPLn_1J2QDPNl92D3Ye0iuw1-W2OvJ1RZZX_w4S4-g6FuEx7V3UfL5qt35NwRrbqs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-level+multi-source+learning+for+heterogeneous+block-wise+missing+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Xiang%2C+Shuo&rft.au=Yuan%2C+Lei&rft.au=Fan%2C+Wei&rft.au=Wang%2C+Yalin&rft.date=2014-11-15&rft.eissn=1095-9572&rft.volume=102+Pt+1&rft.spage=192&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.08.015&rft_id=info%3Apmid%2F23988272&rft.externalDocID=23988272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon