Bi-level multi-source learning for heterogeneous block-wise missing data
Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to impro...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 102; pp. 192 - 206 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.11.2014
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified “bi-level” learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches.
•Ability to fuse large multi-modal datasets with large segments of missing entries.•A unified framework to perform both feature-level and source-level analysis.•Efficient optimization algorithms for both models with complete and incomplete data.•Detailed evaluation and comparison on clinical group classification problems. |
---|---|
AbstractList | Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified "bi-level" learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches. Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified “bi-level” learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches. •Ability to fuse large multi-modal datasets with large segments of missing entries.•A unified framework to perform both feature-level and source-level analysis.•Efficient optimization algorithms for both models with complete and incomplete data.•Detailed evaluation and comparison on clinical group classification problems. Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified "bi-level" learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches.Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified "bi-level" learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches. |
Author | Xiang, Shuo Yuan, Lei Ye, Jieping Fan, Wei Wang, Yalin Thompson, Paul M. |
AuthorAffiliation | 1 School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA 3 Huawei Noah’s Ark Lab, Hong Kong 2 Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA 4 Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology & Psychiatry, UCLA School of Medicine, Los Angeles, CA, USA |
AuthorAffiliation_xml | – name: 4 Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology & Psychiatry, UCLA School of Medicine, Los Angeles, CA, USA – name: 3 Huawei Noah’s Ark Lab, Hong Kong – name: 2 Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA – name: 1 School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA |
Author_xml | – sequence: 1 givenname: Shuo surname: Xiang fullname: Xiang, Shuo organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA – sequence: 2 givenname: Lei surname: Yuan fullname: Yuan, Lei organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA – sequence: 3 givenname: Wei surname: Fan fullname: Fan, Wei organization: Huawei Noah's Ark Lab, Hong Kong – sequence: 4 givenname: Yalin surname: Wang fullname: Wang, Yalin organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA – sequence: 5 givenname: Paul M. surname: Thompson fullname: Thompson, Paul M. organization: Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology & Psychiatry, UCLA School of Medicine, Los Angeles, CA, USA – sequence: 6 givenname: Jieping surname: Ye fullname: Ye, Jieping email: jieping.ye@asu.edu organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23988272$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9vFCEYh4mpsX_0K5hJvHiZKTAwwMVoG7UmTbzomTDMO1u2LFSYWdNvL-O2W-1pT7wJD094f79TdBRiAIQqghuCSXe-bgLMKbqNWUFDMWkbLBtM-At0QrDiteKCHi0zb2tJiDpGpzmvMcaKMPkKHdNWSUkFPUFXF672sAVfbWY_uTrHOVmoPJgUXFhVY0zVDUyQ4goCxDlXvY_2tv7tMlQbl_MCDWYyr9HL0fgMbx7OM_Tzy-cfl1f19fev3y4_Xde2I2KqrSSCU6IE7ofeghEArONWYtPbbhS9EpRYxkD0ZWDSyq5nDI8KGzkSq2h7hj7svHdzv4HBQpiS8foulTDSvY7G6f9vgrvRq7jVrWoFVaII3j8IUvw1Q550WcOC9-bvfpp0nLaSd5gdgFLaYVGkBX33DF2XJENJYqG4YpgLUqi3_35-_-vHPgogd4BNMecE4x4hWC_V67V-ql4v1Wssdan-KZj9U-smM7m4xOD8IYKLnQBKfVsHSWfrIFgYXAI76SG6QyQfn0msd8FZ42_h_jDFH3l657I |
CitedBy_id | crossref_primary_10_1093_biostatistics_kxy052 crossref_primary_10_1038_s41598_018_21118_1 crossref_primary_10_1016_j_trsl_2018_01_001 crossref_primary_10_1007_s11042_018_6463_x crossref_primary_10_1109_TBME_2018_2873252 crossref_primary_10_1038_nn_3718 crossref_primary_10_1016_j_cosrev_2024_100720 crossref_primary_10_1155_2021_3541516 crossref_primary_10_1016_j_ins_2021_09_035 crossref_primary_10_1016_j_neuroimage_2014_10_052 crossref_primary_10_1002_hbm_23326 crossref_primary_10_1088_1361_6560_abf200 crossref_primary_10_1109_TFUZZ_2021_3099696 crossref_primary_10_3389_fnins_2021_634124 crossref_primary_10_1053_j_akdh_2022_11_007 crossref_primary_10_1016_j_bspc_2021_103293 crossref_primary_10_1080_10618600_2022_2118753 crossref_primary_10_1109_TBME_2021_3070875 crossref_primary_10_1016_j_media_2016_11_002 crossref_primary_10_1080_01621459_2020_1751176 crossref_primary_10_1007_s00429_015_1059_y crossref_primary_10_1007_s11336_023_09918_5 crossref_primary_10_1016_j_ins_2019_04_039 crossref_primary_10_1142_S0129065718500429 crossref_primary_10_1080_07350015_2021_1922120 crossref_primary_10_3389_fnins_2019_00642 crossref_primary_10_1016_j_patcog_2018_11_027 crossref_primary_10_1177_09622802221084596 crossref_primary_10_1016_j_jalz_2014_11_001 crossref_primary_10_1080_24725854_2020_1798569 crossref_primary_10_1109_TCYB_2019_2904186 crossref_primary_10_1109_TPAMI_2021_3091214 crossref_primary_10_1371_journal_pone_0307482 crossref_primary_10_1080_24725579_2023_2227197 crossref_primary_10_1002_asmb_2299 crossref_primary_10_1016_j_jalz_2016_11_007 crossref_primary_10_2478_jos_2023_0022 crossref_primary_10_1002_wics_1626 crossref_primary_10_1109_TMI_2020_3041227 crossref_primary_10_1109_TMI_2023_3295489 crossref_primary_10_3233_JAD_231047 crossref_primary_10_1109_TMI_2019_2913158 crossref_primary_10_1111_sjos_12632 crossref_primary_10_1080_00949655_2022_2109636 crossref_primary_10_3389_fgene_2023_1162690 crossref_primary_10_1016_j_cmpb_2016_12_007 crossref_primary_10_3233_JID_230026 crossref_primary_10_1109_TKDE_2018_2791607 crossref_primary_10_1016_j_media_2016_07_012 crossref_primary_10_1016_j_media_2017_10_005 crossref_primary_10_1016_j_compmedimag_2023_102303 crossref_primary_10_1080_24725854_2021_1987593 crossref_primary_10_1109_JBHI_2017_2732287 crossref_primary_10_1016_j_media_2018_01_002 |
Cites_doi | 10.1212/WNL.0b013e3181e8e8b8 10.1016/j.neuroimage.2010.10.081 10.1016/j.neuroimage.2011.01.008 10.1002/jmri.21049 10.1016/j.neuroimage.2011.09.069 10.1016/j.neuroimage.2012.03.059 10.1016/j.neuroimage.2008.10.057 10.1214/08-AOAS202 10.1093/bioinformatics/bth294 10.3174/ajnr.A1809 10.1523/JNEUROSCI.3785-09.2010 10.1016/j.neuroimage.2008.02.043 10.1016/j.neurobiolaging.2008.08.013 10.1016/j.jalz.2007.04.381 10.1016/j.nic.2005.09.008 10.1006/nimg.2001.0978 10.1137/080716542 10.1214/009053604000000067 10.1198/004017005000000139 10.1214/08-AOS620 10.1111/j.1467-9868.2005.00532.x 10.1093/bioinformatics/bts228 10.1093/bioinformatics/btq174 10.1109/TSP.2009.2026004 10.1073/pnas.0832373100 10.1145/2408736.2408739 10.1212/WNL.0b013e3181af79fb 10.1007/s10994-007-5040-8 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Nov 15, 2014 2013 Elsevier Inc. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Nov 15, 2014 – notice: 2013 Elsevier Inc. All rights reserved. 2013 |
CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7QO 7X8 5PM |
DOI | 10.1016/j.neuroimage.2013.08.015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts Biotechnology Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 206 |
ExternalDocumentID | PMC3937297 3500428901 23988272 10_1016_j_neuroimage_2013_08_015 S1053811913008690 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NLM NIH HHS grantid: R01 LM010730 – fundername: NIA NIH HHS grantid: R21 AG043760 – fundername: NIA NIH HHS grantid: P30 AG010129 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NIA NIH HHS grantid: K01 AG030514 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7QO 7X8 5PM |
ID | FETCH-LOGICAL-c617t-c817521970bdbcea7ee465c80abc6f7b9721c44e7b72148c86b440f90a8f1c923 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 13:49:02 EDT 2025 Fri Jul 11 06:22:40 EDT 2025 Wed Jul 30 10:47:28 EDT 2025 Wed Aug 13 07:38:51 EDT 2025 Mon Jul 21 06:05:45 EDT 2025 Tue Jul 01 02:14:52 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Fri Feb 23 02:36:03 EST 2024 Tue Aug 26 16:31:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-source Multi-modal fusion Alzheimer's disease Block-wise missing data Optimization |
Language | English |
License | 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c617t-c817521970bdbcea7ee465c80abc6f7b9721c44e7b72148c86b440f90a8f1c923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Review-3 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but most of them did not participate in analysis or writing of this report. A complete listing of ADNI investigators may be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf |
PMID | 23988272 |
PQID | 1625940571 |
PQPubID | 2031077 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3937297 proquest_miscellaneous_1652385604 proquest_miscellaneous_1622607973 proquest_journals_1625940571 pubmed_primary_23988272 crossref_primary_10_1016_j_neuroimage_2013_08_015 crossref_citationtrail_10_1016_j_neuroimage_2013_08_015 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_08_015 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_08_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-15 |
PublicationDateYYYYMMDD | 2014-11-15 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Wang, Nie, Huang, Risacher, Saykin, Shen (bb0170) 2012; 28 Friedman, Hastie, Tibshirani (bb0075) 2010 Turlach, Venables, Wright (bb0145) 2005; 47 Duda, Hart, Stork (bb0055) 1997 Liu, Ji, Ye (bb0110) 2009 Calhoun, Liu, Adalı (bb0040) 2009; 45 Zhao, Yu (bb0220) 2006; 7 Fjell, Walhovd, Fennema-Notestine, McEvoy, Hagler, Holland, Brewer, Dale (bb0070) 2010; 30 Zhang, Shen (bb0210) 2012; 59 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bb0150) 2002; 15 Walhovd, Fjell, Brewer, McEvoy, Fennema-Notestine, Hagler, Jennings, Karow, Dale (bb0160) 2010; 31 Hinrichs, Singh, Xu, Johnson (bb0085) 2011; 55 Bickel, Ritov, Tsybakov (bb0025) 2009; 37 Lanckriet, De Bie, Cristianini, Jordan, Noble (bb0100) 2004; 20 Quattoni, Carreras, Collins, Darrell (bb0125) 2009 Yuan, Wang, Thompson, Narayan, Ye (bb0200) 2012; 61 Argyriou, Evgeniou, Pontil (bb0010) 2008; 73 Beck, Teboulle (bb0020) 2009; 2 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bb0120) 2005; 15 Crammer, Kearns, Wortman (bb0045) 2008; 9 Vemuri, Wiste, Weigand, Shaw, Trojanowski, Weiner, Knopman, Petersen, Jack (bb0155) 2009; 73 Culp, Michailidis, Johnson (bb0050) 2009; 3 Mazumder, Hastie, Tibshirani (bb0115) 2010; 11 Gasso, Rakotomamonjy, Canu (bb0080) 2009; 57 Yang, Xu, King, Lyu (bb0185) 2010 Brookmeyer, Johnson, Ziegler-Graham, Arrighi (bb0035) 2007; 3 Fan, Resnick, Wu, Davatzikos (bb0065) 2008; 41 Xiang, Shen, Ye (bb0175) 2013 Huopaniemi, Suvitaival, Nikkilä, Orešič, Kaski (bb0090) 2010; 26 Walhovd, Fjell, Dale, McEvoy, Brewer, Karow, Salmon, Fennema-Notestine (bb0165) 2010; 31 Tibshirani (bb0135) 1996; 267–288 Troyanskaya, Dolinski, Owen, Altman, Botstein (bb0140) 2003; 100 Zhang, Wang, Zhou, Yuan, Shen (bb0215) 2011; 55 Ando, Zhang (bb0005) 2007 Ye, Liu (bb0195) 2012; 14 Tao, An (bb0130) 1997; 22 Breheny, Huang (bb0030) 2009; 2 Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward (bb0095) 2008; 27 Landau, Harvey, Madison, Reiman, Foster, Aisen, Petersen, Shaw, Trojanowski, Jack, Weiner, Jagust (bb0105) 2010; 75 Yuan, Lin (bb0205) 2006; 68 Xu, King, Lyu (bb0180) 2007 Ye, Chen, Wu, Li, Zhao, Patel, Bae, Janardan, Liu, Alexander (bb0190) 2008 Bach (bb0015) 2011; 4 Efron, Hastie, Johnstone, Tibshirani (bb0060) 2004; 32 Bach (10.1016/j.neuroimage.2013.08.015_bb0015) 2011; 4 Fjell (10.1016/j.neuroimage.2013.08.015_bb0070) 2010; 30 Hinrichs (10.1016/j.neuroimage.2013.08.015_bb0085) 2011; 55 Jack (10.1016/j.neuroimage.2013.08.015_bb0095) 2008; 27 Walhovd (10.1016/j.neuroimage.2013.08.015_bb0160) 2010; 31 Troyanskaya (10.1016/j.neuroimage.2013.08.015_bb0140) 2003; 100 Lanckriet (10.1016/j.neuroimage.2013.08.015_bb0100) 2004; 20 Walhovd (10.1016/j.neuroimage.2013.08.015_bb0165) 2010; 31 Huopaniemi (10.1016/j.neuroimage.2013.08.015_bb0090) 2010; 26 Friedman (10.1016/j.neuroimage.2013.08.015_bb0075) 2010 Liu (10.1016/j.neuroimage.2013.08.015_bb0110) 2009 Quattoni (10.1016/j.neuroimage.2013.08.015_bb0125) 2009 Ye (10.1016/j.neuroimage.2013.08.015_bb0190) 2008 Zhang (10.1016/j.neuroimage.2013.08.015_bb0210) 2012; 59 Brookmeyer (10.1016/j.neuroimage.2013.08.015_bb0035) 2007; 3 Turlach (10.1016/j.neuroimage.2013.08.015_bb0145) 2005; 47 Culp (10.1016/j.neuroimage.2013.08.015_bb0050) 2009; 3 Mueller (10.1016/j.neuroimage.2013.08.015_bb0120) 2005; 15 Yang (10.1016/j.neuroimage.2013.08.015_bb0185) 2010 Gasso (10.1016/j.neuroimage.2013.08.015_bb0080) 2009; 57 Xu (10.1016/j.neuroimage.2013.08.015_bb0180) 2007 Argyriou (10.1016/j.neuroimage.2013.08.015_bb0010) 2008; 73 Zhang (10.1016/j.neuroimage.2013.08.015_bb0215) 2011; 55 Yuan (10.1016/j.neuroimage.2013.08.015_bb0205) 2006; 68 Landau (10.1016/j.neuroimage.2013.08.015_bb0105) 2010; 75 Duda (10.1016/j.neuroimage.2013.08.015_bb0055) 1997 Tibshirani (10.1016/j.neuroimage.2013.08.015_bb0135) 1996; 267–288 Bickel (10.1016/j.neuroimage.2013.08.015_bb0025) 2009; 37 Fan (10.1016/j.neuroimage.2013.08.015_bb0065) 2008; 41 Crammer (10.1016/j.neuroimage.2013.08.015_bb0045) 2008; 9 Mazumder (10.1016/j.neuroimage.2013.08.015_bb0115) 2010; 11 Ando (10.1016/j.neuroimage.2013.08.015_bb0005) 2007 Efron (10.1016/j.neuroimage.2013.08.015_bb0060) 2004; 32 Breheny (10.1016/j.neuroimage.2013.08.015_bb0030) 2009; 2 Vemuri (10.1016/j.neuroimage.2013.08.015_bb0155) 2009; 73 Tzourio-Mazoyer (10.1016/j.neuroimage.2013.08.015_bb0150) 2002; 15 Xiang (10.1016/j.neuroimage.2013.08.015_bb0175) 2013 Zhao (10.1016/j.neuroimage.2013.08.015_bb0220) 2006; 7 Beck (10.1016/j.neuroimage.2013.08.015_bb0020) 2009; 2 Ye (10.1016/j.neuroimage.2013.08.015_bb0195) 2012; 14 Calhoun (10.1016/j.neuroimage.2013.08.015_bb0040) 2009; 45 Wang (10.1016/j.neuroimage.2013.08.015_bb0170) 2012; 28 Tao (10.1016/j.neuroimage.2013.08.015_bb0130) 1997; 22 Yuan (10.1016/j.neuroimage.2013.08.015_bb0200) 2012; 61 21236349 - Neuroimage. 2011 Apr 1;55(3):856-67 24076585 - SIGKDD Explor. 2012 Jun 1;14(1):4-15 21552465 - J Mach Learn Res. 2010 Mar 1;11:2287-2322 19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72 22689752 - Bioinformatics. 2012 Jun 15;28(12):i127-36 20592257 - Neurology. 2010 Jul 20;75(3):230-8 18838195 - Neurobiol Aging. 2010 Jul;31(7):1107-21 21146621 - Neuroimage. 2011 Mar 15;55(2):574-89 18302232 - J Magn Reson Imaging. 2008 Apr;27(4):685-91 16443497 - Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii 19595937 - Alzheimers Dement. 2007 Jul;3(3):186-91 20529933 - Bioinformatics. 2010 Jun 15;26(12):i391-8 21992749 - Neuroimage. 2012 Jan 16;59(2):895-907 18400519 - Neuroimage. 2008 Jun;41(2):277-85 15130933 - Bioinformatics. 2004 Nov 1;20(16):2626-35 22498655 - Neuroimage. 2012 Jul 2;61(3):622-32 20640242 - Stat Interface. 2009 Jul 1;2(3):369-380 20075088 - AJNR Am J Neuroradiol. 2010 Feb;31(2):347-54 11771995 - Neuroimage. 2002 Jan;15(1):273-89 19636049 - Neurology. 2009 Jul 28;73(4):294-301 12826619 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8348-53 20147537 - J Neurosci. 2010 Feb 10;30(6):2088-101 |
References_xml | – volume: 4 start-page: 1 year: 2011 end-page: 106 ident: bb0015 article-title: Optimization with sparsity-inducing penalties publication-title: Foundations and Trendstextregistered in Machine Learning – volume: 20 start-page: 2626 year: 2004 end-page: 2635 ident: bb0100 article-title: A statistical framework for genomic data fusion publication-title: Bioinformatics – volume: 11 start-page: 2287 year: 2010 end-page: 2322 ident: bb0115 article-title: Spectral regularization algorithms for learning large incomplete matrices publication-title: J. Mach. Learn. Res. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bb0150 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage – volume: 3 start-page: 292 year: 2009 end-page: 318 ident: bb0050 article-title: On multi-view learning with additive models publication-title: Ann. Appl. Stat. – volume: 73 start-page: 294 year: 2009 end-page: 301 ident: bb0155 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change publication-title: Neurology – volume: 15 start-page: 869 year: 2005 end-page: 877 ident: bb0120 article-title: The Alzheimer's disease neuroimaging initiative publication-title: Neuroimaging Clin. N. Am. – start-page: 1025 year: 2008 end-page: 1033 ident: bb0190 article-title: Heterogeneous data fusion for Alzheimer's disease study publication-title: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 55 start-page: 574 year: 2011 end-page: 589 ident: bb0085 article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population publication-title: NeuroImage – volume: 75 start-page: 230 year: 2010 end-page: 238 ident: bb0105 article-title: Comparing predictors of conversion and decline in mild cognitive impairment publication-title: Neurology – year: 2013 ident: bb0175 article-title: Efficient sparse group feature selection via nonconvex optimization publication-title: The 30th International Conference on Machine Learning (ICML) – volume: 32 start-page: 407 year: 2004 end-page: 499 ident: bb0060 article-title: Least angle regression publication-title: Ann. Stat. – volume: 68 start-page: 49 year: 2006 end-page: 67 ident: bb0205 article-title: Model selection and estimation in regression with grouped variables publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.) – volume: 59 start-page: 895 year: 2012 end-page: 907 ident: bb0210 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease publication-title: NeuroImage – volume: 41 start-page: 277 year: 2008 end-page: 285 ident: bb0065 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study publication-title: NeuroImage – volume: 7 start-page: 2541 year: 2006 end-page: 2563 ident: bb0220 article-title: On model selection consistency of Lasso publication-title: J. Mach. Learn. Res. – volume: 73 start-page: 243 year: 2008 end-page: 272 ident: bb0010 article-title: Convex multi-task feature learning publication-title: Mach. Learn. – volume: 3 start-page: 186 year: 2007 end-page: 191 ident: bb0035 article-title: Forecasting the global burden of Alzheimer's disease publication-title: Alzheimers Dement. – start-page: 339 year: 2009 end-page: 348 ident: bb0110 article-title: Multi-task feature learning via efficient l publication-title: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence – start-page: 1171 year: 2007 end-page: 1172 ident: bb0180 article-title: Web page classification with heterogeneous data fusion publication-title: Proceedings of the 16th International Conference on, World Wide Web – volume: 45 start-page: S163 year: 2009 ident: bb0040 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: NeuroImage – volume: 37 start-page: 1705 year: 2009 end-page: 1732 ident: bb0025 article-title: Simultaneous analysis of Lasso and Dantzig selector publication-title: Ann. Stat. – volume: 9 start-page: 1757 year: 2008 end-page: 1774 ident: bb0045 article-title: Learning from multiple sources publication-title: J. Mach. Learn. Res. – volume: 31 start-page: 347 year: 2010 end-page: 354 ident: bb0160 article-title: Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease publication-title: AJNR Am. J. Neuroradiol. – year: 2010 ident: bb0185 article-title: Online learning for group lasso publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML) – volume: 14 start-page: 4 year: 2012 end-page: 15 ident: bb0195 article-title: Sparse methods for biomedical data publication-title: ACM SIGKDD Explorations Newsletter – volume: 31 start-page: 1107 year: 2010 end-page: 1121 ident: bb0165 article-title: Multi-modal imaging predicts memory performance in normal aging and cognitive decline publication-title: Neurobiol. Aging – volume: 2 start-page: 183 year: 2009 end-page: 202 ident: bb0020 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. – volume: 22 start-page: 289 year: 1997 end-page: 355 ident: bb0130 article-title: Convex analysis approach to dc programming: theory, algorithms and applications publication-title: Acta Math. Vietnam – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bb0095 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging – volume: 26 start-page: i391 year: 2010 end-page: i398 ident: bb0090 article-title: Multivariate multi-way analysis of multi-source data publication-title: Bioinformatics – start-page: 25 year: 2007 end-page: 32 ident: bb0005 article-title: Two-view feature generation model for semi-supervised learning publication-title: Proceedings of the 24th International Conference on Machine Learning (ICML) – volume: 100 start-page: 8348 year: 2003 end-page: 8353 ident: bb0140 article-title: A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae) publication-title: Proc. Natl. Acad. Sci. – volume: 2 start-page: 369 year: 2009 end-page: 380 ident: bb0030 article-title: Penalized methods for bi-level variable selection publication-title: Statistics and its interface – volume: 57 start-page: 4686 year: 2009 end-page: 4698 ident: bb0080 article-title: Recovering sparse signals with a certain family of nonconvex penalties and DC programming publication-title: Signal Processing, IEEE Transactions on – start-page: 857 year: 2009 end-page: 864 ident: bb0125 article-title: An efficient projection for l publication-title: Proceedings of the 26th Annual International Conference on Machine Learning (ICML) – year: 1997 ident: bb0055 article-title: Pattern Classification – year: 2010 ident: bb0075 article-title: A note on the group Lasso and a sparse group lasso publication-title: Arxiv – volume: 267–288 year: 1996 ident: bb0135 article-title: Regression shrinkage and selection via the Llsso publication-title: J. R. Stat. Soc. Ser. B Methodol. – volume: 61 start-page: 622 year: 2012 end-page: 632 ident: bb0200 article-title: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data publication-title: NeuroImage – volume: 28 start-page: i127 year: 2012 end-page: i136 ident: bb0170 article-title: Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning publication-title: Bioinformatics – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: bb0215 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: NeuroImage – volume: 30 start-page: 2088 year: 2010 end-page: 2101 ident: bb0070 article-title: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer's disease publication-title: J. Neurosci. – volume: 47 start-page: 349 year: 2005 end-page: 363 ident: bb0145 article-title: Simultaneous variable selection publication-title: Technometrics – volume: 75 start-page: 230 year: 2010 ident: 10.1016/j.neuroimage.2013.08.015_bb0105 article-title: Comparing predictors of conversion and decline in mild cognitive impairment publication-title: Neurology doi: 10.1212/WNL.0b013e3181e8e8b8 – volume: 55 start-page: 574 year: 2011 ident: 10.1016/j.neuroimage.2013.08.015_bb0085 article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.081 – volume: 55 start-page: 856 year: 2011 ident: 10.1016/j.neuroimage.2013.08.015_bb0215 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.008 – start-page: 339 year: 2009 ident: 10.1016/j.neuroimage.2013.08.015_bb0110 article-title: Multi-task feature learning via efficient l2,1-norm minimization – volume: 27 start-page: 685 year: 2008 ident: 10.1016/j.neuroimage.2013.08.015_bb0095 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 22 start-page: 289 year: 1997 ident: 10.1016/j.neuroimage.2013.08.015_bb0130 article-title: Convex analysis approach to dc programming: theory, algorithms and applications publication-title: Acta Math. Vietnam – volume: 59 start-page: 895 year: 2012 ident: 10.1016/j.neuroimage.2013.08.015_bb0210 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.069 – volume: 61 start-page: 622 year: 2012 ident: 10.1016/j.neuroimage.2013.08.015_bb0200 article-title: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.059 – volume: 45 start-page: S163 year: 2009 ident: 10.1016/j.neuroimage.2013.08.015_bb0040 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.057 – volume: 3 start-page: 292 year: 2009 ident: 10.1016/j.neuroimage.2013.08.015_bb0050 article-title: On multi-view learning with additive models publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS202 – year: 2010 ident: 10.1016/j.neuroimage.2013.08.015_bb0185 article-title: Online learning for group lasso – volume: 20 start-page: 2626 year: 2004 ident: 10.1016/j.neuroimage.2013.08.015_bb0100 article-title: A statistical framework for genomic data fusion publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth294 – volume: 31 start-page: 347 year: 2010 ident: 10.1016/j.neuroimage.2013.08.015_bb0160 article-title: Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A1809 – volume: 30 start-page: 2088 year: 2010 ident: 10.1016/j.neuroimage.2013.08.015_bb0070 article-title: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3785-09.2010 – volume: 41 start-page: 277 year: 2008 ident: 10.1016/j.neuroimage.2013.08.015_bb0065 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.02.043 – volume: 31 start-page: 1107 year: 2010 ident: 10.1016/j.neuroimage.2013.08.015_bb0165 article-title: Multi-modal imaging predicts memory performance in normal aging and cognitive decline publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2008.08.013 – volume: 11 start-page: 2287 year: 2010 ident: 10.1016/j.neuroimage.2013.08.015_bb0115 article-title: Spectral regularization algorithms for learning large incomplete matrices publication-title: J. Mach. Learn. Res. – start-page: 25 year: 2007 ident: 10.1016/j.neuroimage.2013.08.015_bb0005 article-title: Two-view feature generation model for semi-supervised learning – volume: 3 start-page: 186 year: 2007 ident: 10.1016/j.neuroimage.2013.08.015_bb0035 article-title: Forecasting the global burden of Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2007.04.381 – start-page: 857 year: 2009 ident: 10.1016/j.neuroimage.2013.08.015_bb0125 article-title: An efficient projection for l1,∞ regularization – volume: 15 start-page: 869 year: 2005 ident: 10.1016/j.neuroimage.2013.08.015_bb0120 article-title: The Alzheimer's disease neuroimaging initiative publication-title: Neuroimaging Clin. N. Am. doi: 10.1016/j.nic.2005.09.008 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2013.08.015_bb0150 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – volume: 4 start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2013.08.015_bb0015 article-title: Optimization with sparsity-inducing penalties – volume: 2 start-page: 183 year: 2009 ident: 10.1016/j.neuroimage.2013.08.015_bb0020 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 32 start-page: 407 year: 2004 ident: 10.1016/j.neuroimage.2013.08.015_bb0060 article-title: Least angle regression publication-title: Ann. Stat. doi: 10.1214/009053604000000067 – volume: 47 start-page: 349 year: 2005 ident: 10.1016/j.neuroimage.2013.08.015_bb0145 article-title: Simultaneous variable selection publication-title: Technometrics doi: 10.1198/004017005000000139 – volume: 37 start-page: 1705 year: 2009 ident: 10.1016/j.neuroimage.2013.08.015_bb0025 article-title: Simultaneous analysis of Lasso and Dantzig selector publication-title: Ann. Stat. doi: 10.1214/08-AOS620 – start-page: 1171 year: 2007 ident: 10.1016/j.neuroimage.2013.08.015_bb0180 article-title: Web page classification with heterogeneous data fusion – volume: 68 start-page: 49 year: 2006 ident: 10.1016/j.neuroimage.2013.08.015_bb0205 article-title: Model selection and estimation in regression with grouped variables publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.) doi: 10.1111/j.1467-9868.2005.00532.x – volume: 28 start-page: i127 year: 2012 ident: 10.1016/j.neuroimage.2013.08.015_bb0170 article-title: Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts228 – year: 2013 ident: 10.1016/j.neuroimage.2013.08.015_bb0175 article-title: Efficient sparse group feature selection via nonconvex optimization – year: 1997 ident: 10.1016/j.neuroimage.2013.08.015_bb0055 – year: 2010 ident: 10.1016/j.neuroimage.2013.08.015_bb0075 article-title: A note on the group Lasso and a sparse group lasso – start-page: 1025 year: 2008 ident: 10.1016/j.neuroimage.2013.08.015_bb0190 article-title: Heterogeneous data fusion for Alzheimer's disease study – volume: 26 start-page: i391 year: 2010 ident: 10.1016/j.neuroimage.2013.08.015_bb0090 article-title: Multivariate multi-way analysis of multi-source data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq174 – volume: 267–288 year: 1996 ident: 10.1016/j.neuroimage.2013.08.015_bb0135 article-title: Regression shrinkage and selection via the Llsso publication-title: J. R. Stat. Soc. Ser. B Methodol. – volume: 57 start-page: 4686 year: 2009 ident: 10.1016/j.neuroimage.2013.08.015_bb0080 article-title: Recovering sparse signals with a certain family of nonconvex penalties and DC programming publication-title: Signal Processing, IEEE Transactions on doi: 10.1109/TSP.2009.2026004 – volume: 100 start-page: 8348 year: 2003 ident: 10.1016/j.neuroimage.2013.08.015_bb0140 article-title: A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae) publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0832373100 – volume: 14 start-page: 4 year: 2012 ident: 10.1016/j.neuroimage.2013.08.015_bb0195 article-title: Sparse methods for biomedical data publication-title: ACM SIGKDD Explorations Newsletter doi: 10.1145/2408736.2408739 – volume: 73 start-page: 294 year: 2009 ident: 10.1016/j.neuroimage.2013.08.015_bb0155 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change publication-title: Neurology doi: 10.1212/WNL.0b013e3181af79fb – volume: 2 start-page: 369 year: 2009 ident: 10.1016/j.neuroimage.2013.08.015_bb0030 article-title: Penalized methods for bi-level variable selection – volume: 9 start-page: 1757 year: 2008 ident: 10.1016/j.neuroimage.2013.08.015_bb0045 article-title: Learning from multiple sources publication-title: J. Mach. Learn. Res. – volume: 73 start-page: 243 year: 2008 ident: 10.1016/j.neuroimage.2013.08.015_bb0010 article-title: Convex multi-task feature learning publication-title: Mach. Learn. doi: 10.1007/s10994-007-5040-8 – volume: 7 start-page: 2541 year: 2006 ident: 10.1016/j.neuroimage.2013.08.015_bb0220 article-title: On model selection consistency of Lasso publication-title: J. Mach. Learn. Res. – reference: 16443497 - Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii – reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89 – reference: 18302232 - J Magn Reson Imaging. 2008 Apr;27(4):685-91 – reference: 20592257 - Neurology. 2010 Jul 20;75(3):230-8 – reference: 15130933 - Bioinformatics. 2004 Nov 1;20(16):2626-35 – reference: 20640242 - Stat Interface. 2009 Jul 1;2(3):369-380 – reference: 22689752 - Bioinformatics. 2012 Jun 15;28(12):i127-36 – reference: 12826619 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8348-53 – reference: 20147537 - J Neurosci. 2010 Feb 10;30(6):2088-101 – reference: 22498655 - Neuroimage. 2012 Jul 2;61(3):622-32 – reference: 20075088 - AJNR Am J Neuroradiol. 2010 Feb;31(2):347-54 – reference: 18400519 - Neuroimage. 2008 Jun;41(2):277-85 – reference: 21236349 - Neuroimage. 2011 Apr 1;55(3):856-67 – reference: 19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72 – reference: 24076585 - SIGKDD Explor. 2012 Jun 1;14(1):4-15 – reference: 19595937 - Alzheimers Dement. 2007 Jul;3(3):186-91 – reference: 20529933 - Bioinformatics. 2010 Jun 15;26(12):i391-8 – reference: 21146621 - Neuroimage. 2011 Mar 15;55(2):574-89 – reference: 21552465 - J Mach Learn Res. 2010 Mar 1;11:2287-2322 – reference: 21992749 - Neuroimage. 2012 Jan 16;59(2):895-907 – reference: 18838195 - Neurobiol Aging. 2010 Jul;31(7):1107-21 – reference: 19636049 - Neurology. 2009 Jul 28;73(4):294-301 |
SSID | ssj0009148 |
Score | 2.427561 |
SecondaryResourceType | review_article |
Snippet | Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 192 |
SubjectTerms | Accuracy Algorithms Alzheimer Disease - cerebrospinal fluid Alzheimer Disease - diagnosis Alzheimer's disease Biomedical research Block-wise missing data Classification Data Mining Humans Magnetic Resonance Imaging Medical imaging Multi-modal fusion Multi-source Neuroimaging - statistics & numerical data NMR Nuclear magnetic resonance Optimization Positron-Emission Tomography Protein expression Proteomics |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELamPSBeEONnYSAj8WqapOfaFk8wMVVI4wUm7c2ynQsLjHainfbG385d4mQUEKrEW9v4pOZ8vvsu-e5OiJdlXTnEYBTa0CiwACpQLkS2jHVdNWhjwbXDJx_mi1N4f6bP9sTRUAvDtMrs-3uf3nnr_Ms0a3N62bbTj4QMKNxQvjFjXO44bwcwbOWvftzQPFwJfTmcnilendk8Pcer6xnZfqOTyySvWdfMkwfk_j1E_QlBf2dS_hKaju-KOxlTyjf93z4Qe7i8J26d5Lfm98XibasumBwkO_qg6h_Yyzww4rMk3CrPmRazImvC1dVaRgpxX9V1u0ZJdsCPEyRTSR-I0-N3n44WKk9QUImQyUYlS-iAfJIpYh0TbQkizHWyRYhp3pjIrXsSAJpIH8AmO48AReOKYJsyEfZ7KPaXqyU-FtJCCDHqkDBqwCoGdI1JIaVYB1dpnAgzKM2n3F6cp1xc-IFH9sXfqNuzuj0PwCz1RJSj5GXfYmMHGTfsix9KSMnpeYoDO8i-HmW3TG1H6cPBDHw-7mtfchbJ0LeciBfjZdogfvsSup3jNZQ7Gmdm_1qjCUIRCIWJeNRb1qgSbtRoK1ORordsblzAjcK3ryzb865hODc9rJx58l83_lTcpm_AdZilPhT7m-9X-IwA2SY-707cT1AAOSc priority: 102 providerName: Elsevier |
Title | Bi-level multi-source learning for heterogeneous block-wise missing data |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913008690 https://dx.doi.org/10.1016/j.neuroimage.2013.08.015 https://www.ncbi.nlm.nih.gov/pubmed/23988272 https://www.proquest.com/docview/1625940571 https://www.proquest.com/docview/1622607973 https://www.proquest.com/docview/1652385604 https://pubmed.ncbi.nlm.nih.gov/PMC3937297 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6xTUK8TON32aiMxKshTu3a0R7QhjYV0CqEmNQ3y3acrTDajXbaG387d4mTMkBTnxLJPik5n-3P9ufvAF6LMi9idJpH4youjZTc4VoIYzmWZV5F4zO6O3wyHo5O5ceJmqQNt0WiVbZjYj1Ql_NAe-RvBQF1Qhfi3eUVp6xRdLqaUmhswBZJlxGlS0_0SnRXyOYqnBpwgxUSk6fhd9V6kdMf2GuJ4DWohTwpOe7_p6d_4effLMo_pqXjHdhOeJIdNAHwEO7F2SO4f5JOzB_D6HDKL4gYxGrqIG8261lKFnHGELOyc6LEzDGS4vx6wTxOb9_5zXQRGcYAbSUwopE-gdPjo6_vRzxlT-ABUcmSB4PIAMcjnfnSB2yOGOVQBZM5H4aV9iTbE6SM2uOLNMEMvZRZVWTOVCIg7nsKm7P5LD4HZqRz3isXolcy5t7FotLBheBLV-Qq9kC3TrMhSYtThosL23LIvtmVuy2521LyS6F6IDrLy0ZeYw2bom0X214fxQHP4hywhu1-Z5sgRgMd1rTea8PApq6-sKvA7MGrrhgbiE5eXN1yVAfXjbrQg7vqKIRPCEBlD541kdW5hEQaTa5zdPStmOsqkEj47ZLZ9LwWCyfBw7zQL-7-9F14gP8p6ZKlUHuwufx5HV8i2lr6Pmy8-SX6dcfqw9bBh0-jMT4Pj8afv_wGXQIx6g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1VqQRcKr5JKWAkOFqsHW_sFUKIQquUNhFCrdSbsb1emlKSlqSq-FP8Rmb2KxRQlUtvkdYjbcbjmef18xuAFyKXWYxO82hcwZVRijvcC2EsxzyXRTQ-obvDw1F_cKA-HqaHK_CruQtDtMomJ5aJOp8G-kb-ShBQJ3Qh3p6eceoaRaerTQuNKix2488L3LLN3ux8wPl9KeX21v77Aa-7CvCA1XrOg8GKietUJz73AV8zRtVPg0mcD_1Ce5KzCUpF7fGHMsH0vVJJkSXOFCJkJHSAKX9V9XAr04HVza3Rp88LmV-hqst3aY8bIbKaO1QxykqFyvF3zBNEKeuV0qHUjvf_BfFfwPs3b_OPQrh9G9ZqBMveVSF3B1bi5C7cGNZn9PdgsDnmJ0RFYiVZkVfHA6xuT_GVIUpmR0TCmWLsxun5jHksqN_4xXgWGUYdfbxgRFy9DwfX4tkH0JlMJ_ERMKOc8z51IfpUReldzAodXAg-d5lMYxd04zQbajFz6qlxYhvW2rFduNuSuy212xRpF0RreVoJeixhkzXzYpsLq5hiLVadJWxft7Y1qKnAypLWG00Y2Dq5zOxiKXThefsYJ4jOelw5czQGd6o6072rxqQI2BDyqi48rCKrdQnJQhqpJTr6Usy1A0iW_PKTyfiolCcniUWZ6fWrX_0Z3BzsD_fs3s5o9zHcwv-s6IqnSDegM_9xHp8g1pv7p_UCY_Dlutf0b2Gpa9s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIlVcUHkHChgJjlbXjh3bQggBJUoprThQKTdje7000CaFpKr4a_w6Zna9GwqoyqW3SOuRNuN5ef3NN4Q846WwKXnNkvEVk0ZK5uEsBLacylJUyYQCe4f3DwajQ_l-rMZr5FfbC4OwyjYm1oG6nEX8Rr7NsVDH6oJvVxkW8XFn-Or0O8MJUnjT2o7TaExkL_08h-Pb_OXuDuz1cyGG7z69HbE8YYBFyNwLFg1kT_BZXYQyRHjllORARVP4EAeVDkhtE6VMOsAPaaIZBCmLyhbeVDxaJD2A8H9N9xVHH9NjvST85bJpw1N9Zji3GUXUYMtqrsrJCUQMBJf1axJRHMz7_9T4b-n7N4Lzj5Q43CQ3ci1LXzfGd5OspektsrGfb-tvk9GbCTtGUBKtYYusuSigeVDFFwr1Mj1COM4MrDjNzuY0QGr9xs4n80TB_vAzBkUI6x1yeCV6vUvWp7Npuk-okd6HoHxMQckkgk-20tHHGEpvhUo9oluluZhpzXG6xrFr8Wtf3VLdDtXtcPAmVz3CO8nThtpjBRnb7otrW1ch2DrIPyvIvuhkc3nTlC0rSm-1ZuBymJm7pVP0yNPuMWwQ3vr4eudwDZxZtdX9y9YoKN2g-JU9cq-xrE4lSBBphBag6As21y1AgvKLT6aTo5qoHMkWhdUPLn_1J2QDPNl92D3Ye0iuw1-W2OvJ1RZZX_w4S4-g6FuEx7V3UfL5qt35NwRrbqs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-level+multi-source+learning+for+heterogeneous+block-wise+missing+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Xiang%2C+Shuo&rft.au=Yuan%2C+Lei&rft.au=Fan%2C+Wei&rft.au=Wang%2C+Yalin&rft.date=2014-11-15&rft.eissn=1095-9572&rft.volume=102+Pt+1&rft.spage=192&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.08.015&rft_id=info%3Apmid%2F23988272&rft.externalDocID=23988272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |