Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape
Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of pl...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 8; pp. 3475 - 3480 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.02.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO₂ affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO₂ concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape. |
---|---|
AbstractList | Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO₂ affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO₂ concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape. Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO(2) affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO(2) concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape. Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO... affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO... concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape. (ProQuest: ... denotes formulae/symbols omitted.) Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO 2 affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO 2 concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape. Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO sub(2) affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO sub(2) concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape. Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO(2) affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO(2) concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape.Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO(2) affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO(2) concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape. Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxy genäse), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO₂ affinity. As a result the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO₂ concentration. Rubisco appears as an experimentally testable example for the . evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape. |
Author | Savir, Yonatan Milo, Ron Noor, Elad Tlusty, Tsvi |
Author_xml | – sequence: 1 fullname: Savir, Yonatan – sequence: 2 fullname: Noor, Elad – sequence: 3 fullname: Milo, Ron – sequence: 4 fullname: Tlusty, Tsvi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20142476$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFMycg4gCntOOP2M4FCa34kiohAT1bE9spXmXjECdU--9xtO0Weigna2aeGc87MyfkqI-9J-Q5hTMKip8PPaYzqCmVkmfHI7Ki2SqlqOGIrACYKrVg4picpLQBgLrS8IQcM6DZq-SKuPUYUyrT4G3wqcAeu10KqZhGtIvtcJhwCrEvYlt8m5uQbCymeI2jK-IwhS12YdoVoS-w6OJ16cLW9ynz2BUd9i5ZHPxT8rjFLvlnN-8pufz44cf6c3nx9dOX9fuL0kqqphJbb6XywjWaIm94IyrmUNdtq6yiusbKN61iztqKQ-PAcuZdg7oVHHhdAT8l7_Z1h7nZemd9n2V0Zhhzm-PORAzm30gffpqr-NswLUBwlgu8vSkwxl-zT5PZZsG-y0p8nJNRQoKWUMn_k5xLrbmkmXzzIClkJShndQZf3wM3cR7zIJPJ--JUMyUy9PJviQdttxvNwPkesMtiR98eEApmuRmz3Iy5u5mcUd3LsGG_8zyj0D2Qd9vKErj7RRltuFBVBl7sgU2a4nggBFRccbpM5tU-3mI0eDWGZC6_L1KBatCMKf4HK_jkrA |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2022_156606 crossref_primary_10_1016_j_jbiotec_2012_05_006 crossref_primary_10_1021_acs_chemrev_8b00039 crossref_primary_10_1093_jxb_erx278 crossref_primary_10_1093_molbev_msab079 crossref_primary_10_1007_s11120_010_9563_7 crossref_primary_10_3389_fmolb_2017_00031 crossref_primary_10_1093_jxb_erab090 crossref_primary_10_1111_plb_12024 crossref_primary_10_1016_j_copbio_2017_01_004 crossref_primary_10_1111_nph_19528 crossref_primary_10_1016_j_plantsci_2014_01_008 crossref_primary_10_1093_jxb_erw197 crossref_primary_10_15252_embj_2019104081 crossref_primary_10_1007_s11120_013_9819_0 crossref_primary_10_3762_bjoc_11_259 crossref_primary_10_1093_femsle_fnx156 crossref_primary_10_1093_plcell_koad157 crossref_primary_10_1007_s11738_014_1652_3 crossref_primary_10_1073_pnas_1424031112 crossref_primary_10_1007_s10955_015_1388_5 crossref_primary_10_1016_j_bbagen_2016_10_027 crossref_primary_10_3389_fpls_2021_662425 crossref_primary_10_1038_s41477_022_01171_5 crossref_primary_10_7554_eLife_02043 crossref_primary_10_1016_j_jhydrol_2022_128781 crossref_primary_10_5194_bg_10_6989_2013 crossref_primary_10_1073_pnas_1716215115 crossref_primary_10_1103_RevModPhys_85_1327 crossref_primary_10_1016_j_synbio_2019_08_003 crossref_primary_10_1073_pnas_0907176107 crossref_primary_10_1098_rsob_220073 crossref_primary_10_1111_pbi_12246 crossref_primary_10_3389_fpls_2018_00183 crossref_primary_10_1111_nph_19296 crossref_primary_10_1016_j_plrev_2010_08_002 crossref_primary_10_1104_pp_114_237206 crossref_primary_10_1016_j_jbc_2021_101476 crossref_primary_10_1002_bies_201200137 crossref_primary_10_1039_D0GC01796E crossref_primary_10_3390_f14040827 crossref_primary_10_1103_PhysRevE_97_052402 crossref_primary_10_1111_tpj_15196 crossref_primary_10_1093_protein_gzv057 crossref_primary_10_1007_s12210_022_01084_7 crossref_primary_10_1093_jxb_erv574 crossref_primary_10_1016_j_copbio_2012_10_006 crossref_primary_10_1042_EBC20170014 crossref_primary_10_1111_pce_12335 crossref_primary_10_1007_s11032_020_1101_5 crossref_primary_10_1091_mbc_E18_01_0060 crossref_primary_10_1016_j_biosystems_2010_11_003 crossref_primary_10_1371_journal_pcbi_1003091 crossref_primary_10_1016_j_cbpa_2016_06_026 crossref_primary_10_1371_journal_pone_0183970 crossref_primary_10_1093_jxb_erz029 crossref_primary_10_1007_s10265_024_01606_4 crossref_primary_10_1515_hsz_2020_0214 crossref_primary_10_3389_fmolb_2018_00024 crossref_primary_10_5936_csbj_201210005 crossref_primary_10_1111_tpj_14674 crossref_primary_10_1890_ES13_00020_1 crossref_primary_10_1186_s12862_019_1551_8 crossref_primary_10_1080_15427528_2020_1824168 crossref_primary_10_1038_s41467_018_07649_1 crossref_primary_10_1093_jxb_erx179 crossref_primary_10_1016_j_jplph_2017_06_014 crossref_primary_10_1016_j_jhydrol_2023_129111 crossref_primary_10_1039_C8SE00281A crossref_primary_10_1111_1462_2920_16161 crossref_primary_10_1038_s41576_024_00803_0 crossref_primary_10_4161_psb_6_5_14524 crossref_primary_10_1093_jxb_erq304 crossref_primary_10_1093_plcell_koae132 crossref_primary_10_1111_pce_12425 crossref_primary_10_1016_j_jplph_2020_153337 crossref_primary_10_1002_bies_202100062 crossref_primary_10_3389_fclim_2024_1412232 crossref_primary_10_1042_BST20150148 crossref_primary_10_1111_ppl_12845 crossref_primary_10_1111_tpj_14643 crossref_primary_10_1007_s00239_024_10161_4 crossref_primary_10_1093_jxb_ers294 crossref_primary_10_1111_tpj_16951 crossref_primary_10_1038_s41477_023_01436_7 crossref_primary_10_1016_j_bidere_2025_100006 crossref_primary_10_3389_fpls_2024_1346759 crossref_primary_10_1016_j_cell_2021_01_052 crossref_primary_10_1093_jxb_erac309 crossref_primary_10_3390_catal11070813 crossref_primary_10_1371_journal_pcbi_1006492 crossref_primary_10_1007_s10265_023_01514_z crossref_primary_10_1007_s10709_021_00134_6 crossref_primary_10_1016_j_jbiotec_2013_05_007 crossref_primary_10_1093_jxb_erac458 crossref_primary_10_1016_j_neuron_2021_01_020 crossref_primary_10_1088_1478_3975_aac4e6 crossref_primary_10_1021_acs_biochem_8b00132 crossref_primary_10_1016_j_cell_2013_04_058 crossref_primary_10_1098_rstb_2016_0398 crossref_primary_10_1002_bies_201700071 crossref_primary_10_5194_gmd_15_2325_2022 crossref_primary_10_3390_pr5020032 crossref_primary_10_1111_nph_12858 crossref_primary_10_1038_srep22284 crossref_primary_10_1007_s10811_014_0323_5 crossref_primary_10_1093_jxb_erac321 crossref_primary_10_1021_acs_biochem_9b00237 crossref_primary_10_1038_s41467_022_31387_0 crossref_primary_10_3390_c8010018 crossref_primary_10_1093_jxb_erw118 crossref_primary_10_1016_j_cels_2017_11_013 crossref_primary_10_1371_journal_pcbi_1003163 crossref_primary_10_1016_j_pbi_2019_05_002 crossref_primary_10_1007_s11120_019_00619_8 crossref_primary_10_1016_j_plantsci_2014_06_011 crossref_primary_10_1016_j_ymben_2018_02_006 crossref_primary_10_1002_cctc_202300746 crossref_primary_10_3389_fenrg_2020_00213 crossref_primary_10_1007_s11120_021_00861_z crossref_primary_10_1111_pce_12629 crossref_primary_10_3732_ajb_1500409 crossref_primary_10_1111_pce_12622 crossref_primary_10_1007_s11356_022_19393_7 crossref_primary_10_1038_s41396_021_00971_5 crossref_primary_10_1074_jbc_C113_543132 crossref_primary_10_1002_jcc_25343 crossref_primary_10_1016_j_chemgeo_2023_121608 crossref_primary_10_1016_j_ccst_2024_100318 crossref_primary_10_1103_PhysRevX_7_021037 crossref_primary_10_1111_nph_15668 crossref_primary_10_1111_pce_12192 crossref_primary_10_1098_rsta_2015_0070 crossref_primary_10_1007_s11120_013_9816_3 crossref_primary_10_1038_srep22264 crossref_primary_10_1002_advs_202100199 crossref_primary_10_1038_nplants_2016_186 crossref_primary_10_1111_jipb_13825 crossref_primary_10_1093_jxb_erac349 crossref_primary_10_1371_journal_pone_0095571 crossref_primary_10_1042_BST20190322 crossref_primary_10_1093_jxb_erw333 crossref_primary_10_1016_j_jbiotec_2022_09_010 crossref_primary_10_1021_acs_biochem_5b00621 crossref_primary_10_1038_s41586_022_04662_9 crossref_primary_10_1016_j_biotechadv_2021_107885 crossref_primary_10_7554_eLife_59882 crossref_primary_10_1016_j_mib_2021_10_001 crossref_primary_10_1016_j_plantsci_2017_12_007 crossref_primary_10_1093_jxb_erz051 crossref_primary_10_1002_lol2_10102 crossref_primary_10_1093_jxb_ery443 crossref_primary_10_3389_fbioe_2015_00036 crossref_primary_10_1111_nph_16577 crossref_primary_10_1093_jxb_erw267 crossref_primary_10_3389_fpls_2016_01719 crossref_primary_10_1021_bi300933u crossref_primary_10_1103_RevModPhys_91_031001 crossref_primary_10_1038_ncomms14724 crossref_primary_10_1007_s11120_014_0067_8 crossref_primary_10_1016_j_molcel_2010_10_020 crossref_primary_10_3389_fpls_2019_01426 crossref_primary_10_1038_s44318_024_00119_z crossref_primary_10_1002_lno_12367 crossref_primary_10_1073_pnas_1109503108 crossref_primary_10_1093_plphys_kiac492 crossref_primary_10_1111_nph_18623 crossref_primary_10_1093_jxb_erac368 crossref_primary_10_1073_pnas_2321050121 crossref_primary_10_1073_pnas_1210754109 crossref_primary_10_1186_1745_6150_6_29 crossref_primary_10_1126_science_1217665 crossref_primary_10_3390_biom12070872 crossref_primary_10_3390_ijms231911347 crossref_primary_10_1073_pnas_2402925121 crossref_primary_10_1371_journal_pcbi_1010565 crossref_primary_10_1111_pce_12066 crossref_primary_10_1073_pnas_1904071116 crossref_primary_10_1016_j_chempr_2016_12_009 crossref_primary_10_1146_annurev_arplant_081519_040100 crossref_primary_10_1093_jxb_erx130 crossref_primary_10_1038_s41598_021_94903_0 crossref_primary_10_1093_jxb_erw163 crossref_primary_10_1016_j_jplph_2023_154021 crossref_primary_10_1016_j_bbabio_2020_148254 crossref_primary_10_1021_bi2002289 crossref_primary_10_1016_j_copbio_2017_06_006 crossref_primary_10_1042_BST20201056 crossref_primary_10_1093_jxb_err116 crossref_primary_10_1111_gbi_12243 crossref_primary_10_1111_jipb_12709 crossref_primary_10_1111_pce_13004 crossref_primary_10_1038_s41564_019_0520_8 crossref_primary_10_1007_s00253_013_4734_z crossref_primary_10_1098_rstb_2011_0145 crossref_primary_10_1038_ncomms10382 crossref_primary_10_2323_jgam_2020_02_002 crossref_primary_10_1016_j_copbio_2017_07_017 crossref_primary_10_1021_acs_chemrev_9b00620 crossref_primary_10_1074_jbc_RA118_003518 crossref_primary_10_1016_j_scitotenv_2021_145141 crossref_primary_10_1073_pnas_1525145113 crossref_primary_10_1146_annurev_biochem_040320_101244 crossref_primary_10_1093_jxb_erab291 crossref_primary_10_1016_j_cbpa_2016_09_014 crossref_primary_10_1038_s41586_024_08455_0 crossref_primary_10_1002_pld3_45 crossref_primary_10_1093_jxb_ert306 crossref_primary_10_1073_pnas_1310811111 crossref_primary_10_1016_j_jtbi_2022_111354 crossref_primary_10_1104_pp_114_248013 crossref_primary_10_1126_science_1217405 crossref_primary_10_1111_tpj_13166 crossref_primary_10_1088_1478_3975_ab8697 crossref_primary_10_1126_sciadv_abm6871 |
Cites_doi | 10.1109/JSTSP.2008.923859 10.1046/j.1365-3040.2004.01142.x 10.1038/291513a0 10.1098/rstb.1986.0046 10.1007/s11120-008-9324-z 10.1021/bi00265a003 10.1016/0003-9861(83)90472-1 10.1016/0003-9861(91)90133-4 10.1016/0968-0004(79)90212-3 10.1042/bj1250425 10.1038/243359a0 10.1007/0-306-48137-5_3 10.1146/annurev.arplant.50.1.539 10.1021/bi00086a006 10.1139/b98-074 10.1104/pp.103.026146 10.1371/journal.pone.0000468 10.1016/S0021-9258(18)37741-X 10.1104/pp.85.4.958 10.1016/S0303-2647(97)00042-7 10.1074/jbc.272.9.5445 10.1016/0003-9861(79)90052-3 10.1021/bi00355a029 10.1016/0014-5793(78)80286-5 10.1073/pnas.0600605103 10.1016/S0021-9258(20)89454-X 10.1111/j.1751-1097.2008.00427.x 10.1016/j.plaphy.2008.01.001 10.1098/rspb.1979.0086 10.4324/9780203833483 10.1093/protein/gzj010 10.1016/0303-2647(95)01561-2 10.1021/cr970010r 10.1146/annurev.arplant.53.100301.135233 10.1016/S0021-9258(18)67516-7 10.1073/pnas.86.15.5753 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 23, 2010 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 23, 2010 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0911663107 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Virology and AIDS Abstracts Ecology Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 3480 |
ExternalDocumentID | PMC2840432 1972020951 20142476 10_1073_pnas_0911663107 107_8_3475 40537311 US201301808227 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c617t-afec67e4db81a3b3b452da89ff7c7189a5ebf72dcc530bd0c32edba8f43039503 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:33:32 EDT 2025 Fri Jul 11 15:54:33 EDT 2025 Fri Jul 11 14:12:34 EDT 2025 Thu Jul 10 19:29:02 EDT 2025 Mon Jun 30 08:47:22 EDT 2025 Mon Jul 21 05:59:15 EDT 2025 Tue Jul 01 00:46:50 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Wed Nov 11 00:30:42 EST 2020 Thu May 29 08:41:03 EDT 2025 Thu Apr 03 09:40:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c617t-afec67e4db81a3b3b452da89ff7c7189a5ebf72dcc530bd0c32edba8f43039503 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Author contributions: Y.S., E.N., R.M., and T.T. performed research and wrote the paper. Edited by George H. Lorimer, University of Maryland, College Park, MD, and approved December 17, 2009 (received for review October 8, 2009) |
OpenAccessLink | http://doi.org/10.1073/pnas.0911663107 |
PMID | 20142476 |
PQID | 201318274 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_201318274 crossref_primary_10_1073_pnas_0911663107 proquest_miscellaneous_46541329 jstor_primary_40537311 fao_agris_US201301808227 proquest_miscellaneous_733688361 proquest_miscellaneous_746086056 pubmed_primary_20142476 pnas_primary_107_8_3475 crossref_citationtrail_10_1073_pnas_0911663107 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2840432 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-02-23 |
PublicationDateYYYYMMDD | 2010-02-23 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Shaw PJA (e_1_3_3_40_2) 2003 Badger MR (e_1_3_3_16_2) 2000 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Roy H (e_1_3_3_12_2) 2000 Hatch M (e_1_3_3_14_2) 1992; 33 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 Somerville C (e_1_3_3_18_2) 1984 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 9038145 - J Biol Chem. 1997 Feb 28;272(9):5445-51 17520027 - PLoS One. 2007;2(5):e468 18626786 - Photosynth Res. 2008 Oct-Dec;98(1-3):667-75 1952939 - Arch Biochem Biophys. 1991 Dec;291(2):263-9 8369274 - Biochemistry. 1993 Sep 7;32(35):9018-24 12221984 - Annu Rev Plant Biol. 2002;53:449-75 18294858 - Plant Physiol Biochem. 2008 Mar;46(3):275-91 5144745 - Biochem J. 1971 Nov;125(2):425-32 16641091 - Proc Natl Acad Sci U S A. 2006 May 9;103(19):7246-51 42062 - Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):581-98 16665838 - Plant Physiol. 1987 Dec;85(4):958-64 18764897 - Photochem Photobiol. 2008 Nov-Dec;84(6):1317-23 464606 - Arch Biochem Biophys. 1979 Apr 1;193(2):456-68 16423843 - Protein Eng Des Sel. 2006 Mar;19(3):113-9 6293539 - Biochemistry. 1982 Oct 26;21(22):5398-403 11848907 - Chem Rev. 1998 Apr 2;98(2):549-562 12970494 - Plant Physiol. 2003 Sep;133(1):287-94 2503824 - Proc Natl Acad Sci U S A. 1989 Aug;86(15):5753-7 9350356 - Biosystems. 1997;44(1):41-57 3137223 - J Biol Chem. 1988 Sep 5;263(25):12213-9 8924647 - Biosystems. 1996;37(3):229-38 3090034 - J Biol Chem. 1986 Aug 5;261(22):10248-56 6582802 - Arch Biochem Biophys. 1983 Dec;227(2):425-33 1902218 - J Biol Chem. 1991 Apr 25;266(12):7359-62 15012219 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:539-570 |
References_xml | – ident: e_1_3_3_22_2 doi: 10.1109/JSTSP.2008.923859 – ident: e_1_3_3_19_2 doi: 10.1046/j.1365-3040.2004.01142.x – ident: e_1_3_3_9_2 doi: 10.1038/291513a0 – ident: e_1_3_3_37_2 doi: 10.1098/rstb.1986.0046 – ident: e_1_3_3_7_2 doi: 10.1007/s11120-008-9324-z – ident: e_1_3_3_39_2 doi: 10.1021/bi00265a003 – ident: e_1_3_3_20_2 doi: 10.1016/0003-9861(83)90472-1 – ident: e_1_3_3_34_2 doi: 10.1016/0003-9861(91)90133-4 – ident: e_1_3_3_1_2 doi: 10.1016/0968-0004(79)90212-3 – volume-title: Photosynthesis: Physiology and Metabolism year: 2000 ident: e_1_3_3_16_2 – ident: e_1_3_3_27_2 doi: 10.1042/bj1250425 – ident: e_1_3_3_3_2 doi: 10.1038/243359a0 – start-page: 53 volume-title: Photosynthesis: Physiology and Metabolism year: 2000 ident: e_1_3_3_12_2 doi: 10.1007/0-306-48137-5_3 – ident: e_1_3_3_15_2 doi: 10.1146/annurev.arplant.50.1.539 – ident: e_1_3_3_23_2 doi: 10.1021/bi00086a006 – ident: e_1_3_3_28_2 doi: 10.1139/b98-074 – ident: e_1_3_3_31_2 doi: 10.1104/pp.103.026146 – ident: e_1_3_3_21_2 doi: 10.1371/journal.pone.0000468 – ident: e_1_3_3_32_2 doi: 10.1016/S0021-9258(18)37741-X – ident: e_1_3_3_25_2 doi: 10.1104/pp.85.4.958 – ident: e_1_3_3_26_2 doi: 10.1016/S0303-2647(97)00042-7 – ident: e_1_3_3_35_2 doi: 10.1074/jbc.272.9.5445 – ident: e_1_3_3_13_2 doi: 10.1016/0003-9861(79)90052-3 – volume: 33 start-page: 333 year: 1992 ident: e_1_3_3_14_2 article-title: C4 photosynthesis: an unlikely process full of surprises publication-title: Plant Cell Physiol – ident: e_1_3_3_38_2 doi: 10.1021/bi00355a029 – ident: e_1_3_3_2_2 doi: 10.1016/0014-5793(78)80286-5 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.0600605103 – ident: e_1_3_3_33_2 doi: 10.1016/S0021-9258(20)89454-X – ident: e_1_3_3_6_2 doi: 10.1111/j.1751-1097.2008.00427.x – ident: e_1_3_3_4_2 doi: 10.1016/j.plaphy.2008.01.001 – ident: e_1_3_3_17_2 doi: 10.1098/rspb.1979.0086 – start-page: 295 volume-title: Advances in Gene Technology: Molecular Genetics of Plants and Animals year: 1984 ident: e_1_3_3_18_2 – ident: e_1_3_3_5_2 doi: 10.4324/9780203833483 – volume-title: Multivariate Statistics for the Environmental Sciences year: 2003 ident: e_1_3_3_40_2 – ident: e_1_3_3_8_2 doi: 10.1093/protein/gzj010 – ident: e_1_3_3_29_2 doi: 10.1016/0303-2647(95)01561-2 – ident: e_1_3_3_11_2 doi: 10.1021/cr970010r – ident: e_1_3_3_24_2 doi: 10.1146/annurev.arplant.53.100301.135233 – ident: e_1_3_3_36_2 doi: 10.1016/S0021-9258(18)67516-7 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.86.15.5753 – reference: 42062 - Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):581-98 – reference: 16641091 - Proc Natl Acad Sci U S A. 2006 May 9;103(19):7246-51 – reference: 9038145 - J Biol Chem. 1997 Feb 28;272(9):5445-51 – reference: 18294858 - Plant Physiol Biochem. 2008 Mar;46(3):275-91 – reference: 1902218 - J Biol Chem. 1991 Apr 25;266(12):7359-62 – reference: 15012219 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:539-570 – reference: 12221984 - Annu Rev Plant Biol. 2002;53:449-75 – reference: 3090034 - J Biol Chem. 1986 Aug 5;261(22):10248-56 – reference: 5144745 - Biochem J. 1971 Nov;125(2):425-32 – reference: 6582802 - Arch Biochem Biophys. 1983 Dec;227(2):425-33 – reference: 17520027 - PLoS One. 2007;2(5):e468 – reference: 18764897 - Photochem Photobiol. 2008 Nov-Dec;84(6):1317-23 – reference: 16423843 - Protein Eng Des Sel. 2006 Mar;19(3):113-9 – reference: 2503824 - Proc Natl Acad Sci U S A. 1989 Aug;86(15):5753-7 – reference: 9350356 - Biosystems. 1997;44(1):41-57 – reference: 6293539 - Biochemistry. 1982 Oct 26;21(22):5398-403 – reference: 18626786 - Photosynth Res. 2008 Oct-Dec;98(1-3):667-75 – reference: 1952939 - Arch Biochem Biophys. 1991 Dec;291(2):263-9 – reference: 16665838 - Plant Physiol. 1987 Dec;85(4):958-64 – reference: 8369274 - Biochemistry. 1993 Sep 7;32(35):9018-24 – reference: 464606 - Arch Biochem Biophys. 1979 Apr 1;193(2):456-68 – reference: 11848907 - Chem Rev. 1998 Apr 2;98(2):549-562 – reference: 3137223 - J Biol Chem. 1988 Sep 5;263(25):12213-9 – reference: 8924647 - Biosystems. 1996;37(3):229-38 – reference: 12970494 - Plant Physiol. 2003 Sep;133(1):287-94 |
SSID | ssj0009580 |
Score | 2.445659 |
Snippet | Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of... Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxy genäse), probably the most abundant protein in the biosphere, performs an essential part in the process of... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3475 |
SubjectTerms | Algae autotrophs Bacteria - enzymology Biochemistry Biological Sciences Biosphere carbon Carbon dioxide Carbon Dioxide - metabolism Carbon fixation Carboxylation Enzyme kinetics Enzymes Eukaryota - enzymology Evolution Evolution, Molecular Kinetics Molecules Oxygen Photosynthesis Plants Plants - enzymology Power laws proteins ribulose-bisphosphate carboxylase Ribulose-Bisphosphate Carboxylase - chemistry Ribulose-Bisphosphate Carboxylase - metabolism Species Specificity Substrate Specificity Velocity |
Title | Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape |
URI | https://www.jstor.org/stable/40537311 http://www.pnas.org/content/107/8/3475.abstract https://www.ncbi.nlm.nih.gov/pubmed/20142476 https://www.proquest.com/docview/201318274 https://www.proquest.com/docview/46541329 https://www.proquest.com/docview/733688361 https://www.proquest.com/docview/746086056 https://pubmed.ncbi.nlm.nih.gov/PMC2840432 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacuGCKFC6lIcPHIqiLEnsJM6xqlpVqFqqdlcqJ8t2HIi0JFWzWyQO_HbGceLslpbXJVrF3pGT-TIe2zPfIPQ2zqVmiim_UEnmU5FIPwsC5SshZJhlImc2yneSnMzoh8v4cmPjx2p2yUKO1fc780r-R6twD_RqsmT_QbNOKNyA36BfuIKG4fpXOj40U5xvkiVhveuJnl9kcd3GWYlcXC2cR3i-lGWjwNFs42S9GkzFV-uDl5UnvHn9zc8N079l6fDaFGATHLXqvZ652a7pYwsm_WbiwZCa0tmLxvO9s8lQ6PhC3JQtPj6ZHfsBlZPabhkczUXu9F_aI6HzIUpgOl82toLBtLkpV3crzEF75NuEYpc9ALMitXnTzgLbwrcd1Jh3NSY0jX1CbZGnzraaeyvzdN_6yxwARssULq5EMwZnKASXqpe_xrY9-ciPZ6enfHp0Od1EDyJYZpB-t8eRNjObwtSNuaeGSsn7W-LXvJrNQtR9eKvhzIWud61fbofhrvg108foUbcgwQcWXdtoQ1dP0HavQrzf8ZK_e4ryNbjhHm7Ywg0PcMN1gTu4YQs3PMANlxUW-BbcsIPbMzQ7PpoenvhdkQ5fgfO78EWhVZJqmksWCiKJpHGUC2aOAhT4PZmItSzSKFcqJoHMA0UinUvBCgrOUxYHZAdtVXWldxHW8HedEh2FoQQvPhABLcCOaBJlVImIjtC4f8lcdQz2ppDKnLeRFCnh5lXzQSsjtO_-cGXJW-7vugta4-IzTK18dhGZA_2QmXII0LTTqtKJoIYDiYThCD1vpQyiU864gekI7fXq5p29aLiRCav5FJ7jjWsFY25O6ESl62XDDblhCI87QvieHoa9lDGShL_pQpOAJbCwMeNrAeZGCEMAGKfQkq5Bz3UwZPPrLVX5pSWdBzfWsHe--OPY99DD4cN_ibYW10v9Chz3hXzdfl0_Ad8w8GQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-species+analysis+traces+adaptation+of+Rubisco+toward+optimality+in+a+low-dimensional+landscape&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Savir%2C+Yonatan&rft.au=Noor%2C+Elad&rft.au=Milo%2C+Ron&rft.au=Tlusty%2C+Tsvi&rft.date=2010-02-23&rft.issn=0027-8424&rft.volume=107&rft.issue=8+p.3475-3480&rft.spage=3475&rft.epage=3480&rft_id=info:doi/10.1073%2Fpnas.0911663107&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F8.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F8.cover.gif |