Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape

Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of pl...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 8; pp. 3475 - 3480
Main Authors Savir, Yonatan, Noor, Elad, Milo, Ron, Tlusty, Tsvi
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.02.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO₂ affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO₂ concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape.
AbstractList Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO₂ affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO₂ concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape.
Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO(2) affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO(2) concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape.
Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO... affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO... concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape. (ProQuest: ... denotes formulae/symbols omitted.)
Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO 2 affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO 2 concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape.
Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO sub(2) affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO sub(2) concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape.
Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO(2) affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO(2) concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape.Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO(2) affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO(2) concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape.
Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxy genäse), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO₂ affinity. As a result the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO₂ concentration. Rubisco appears as an experimentally testable example for the . evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape.
Author Savir, Yonatan
Milo, Ron
Noor, Elad
Tlusty, Tsvi
Author_xml – sequence: 1
  fullname: Savir, Yonatan
– sequence: 2
  fullname: Noor, Elad
– sequence: 3
  fullname: Milo, Ron
– sequence: 4
  fullname: Tlusty, Tsvi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20142476$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFMycg4gCntOOP2M4FCa34kiohAT1bE9spXmXjECdU--9xtO0Weigna2aeGc87MyfkqI-9J-Q5hTMKip8PPaYzqCmVkmfHI7Ki2SqlqOGIrACYKrVg4picpLQBgLrS8IQcM6DZq-SKuPUYUyrT4G3wqcAeu10KqZhGtIvtcJhwCrEvYlt8m5uQbCymeI2jK-IwhS12YdoVoS-w6OJ16cLW9ynz2BUd9i5ZHPxT8rjFLvlnN-8pufz44cf6c3nx9dOX9fuL0kqqphJbb6XywjWaIm94IyrmUNdtq6yiusbKN61iztqKQ-PAcuZdg7oVHHhdAT8l7_Z1h7nZemd9n2V0Zhhzm-PORAzm30gffpqr-NswLUBwlgu8vSkwxl-zT5PZZsG-y0p8nJNRQoKWUMn_k5xLrbmkmXzzIClkJShndQZf3wM3cR7zIJPJ--JUMyUy9PJviQdttxvNwPkesMtiR98eEApmuRmz3Iy5u5mcUd3LsGG_8zyj0D2Qd9vKErj7RRltuFBVBl7sgU2a4nggBFRccbpM5tU-3mI0eDWGZC6_L1KBatCMKf4HK_jkrA
CitedBy_id crossref_primary_10_1016_j_scitotenv_2022_156606
crossref_primary_10_1016_j_jbiotec_2012_05_006
crossref_primary_10_1021_acs_chemrev_8b00039
crossref_primary_10_1093_jxb_erx278
crossref_primary_10_1093_molbev_msab079
crossref_primary_10_1007_s11120_010_9563_7
crossref_primary_10_3389_fmolb_2017_00031
crossref_primary_10_1093_jxb_erab090
crossref_primary_10_1111_plb_12024
crossref_primary_10_1016_j_copbio_2017_01_004
crossref_primary_10_1111_nph_19528
crossref_primary_10_1016_j_plantsci_2014_01_008
crossref_primary_10_1093_jxb_erw197
crossref_primary_10_15252_embj_2019104081
crossref_primary_10_1007_s11120_013_9819_0
crossref_primary_10_3762_bjoc_11_259
crossref_primary_10_1093_femsle_fnx156
crossref_primary_10_1093_plcell_koad157
crossref_primary_10_1007_s11738_014_1652_3
crossref_primary_10_1073_pnas_1424031112
crossref_primary_10_1007_s10955_015_1388_5
crossref_primary_10_1016_j_bbagen_2016_10_027
crossref_primary_10_3389_fpls_2021_662425
crossref_primary_10_1038_s41477_022_01171_5
crossref_primary_10_7554_eLife_02043
crossref_primary_10_1016_j_jhydrol_2022_128781
crossref_primary_10_5194_bg_10_6989_2013
crossref_primary_10_1073_pnas_1716215115
crossref_primary_10_1103_RevModPhys_85_1327
crossref_primary_10_1016_j_synbio_2019_08_003
crossref_primary_10_1073_pnas_0907176107
crossref_primary_10_1098_rsob_220073
crossref_primary_10_1111_pbi_12246
crossref_primary_10_3389_fpls_2018_00183
crossref_primary_10_1111_nph_19296
crossref_primary_10_1016_j_plrev_2010_08_002
crossref_primary_10_1104_pp_114_237206
crossref_primary_10_1016_j_jbc_2021_101476
crossref_primary_10_1002_bies_201200137
crossref_primary_10_1039_D0GC01796E
crossref_primary_10_3390_f14040827
crossref_primary_10_1103_PhysRevE_97_052402
crossref_primary_10_1111_tpj_15196
crossref_primary_10_1093_protein_gzv057
crossref_primary_10_1007_s12210_022_01084_7
crossref_primary_10_1093_jxb_erv574
crossref_primary_10_1016_j_copbio_2012_10_006
crossref_primary_10_1042_EBC20170014
crossref_primary_10_1111_pce_12335
crossref_primary_10_1007_s11032_020_1101_5
crossref_primary_10_1091_mbc_E18_01_0060
crossref_primary_10_1016_j_biosystems_2010_11_003
crossref_primary_10_1371_journal_pcbi_1003091
crossref_primary_10_1016_j_cbpa_2016_06_026
crossref_primary_10_1371_journal_pone_0183970
crossref_primary_10_1093_jxb_erz029
crossref_primary_10_1007_s10265_024_01606_4
crossref_primary_10_1515_hsz_2020_0214
crossref_primary_10_3389_fmolb_2018_00024
crossref_primary_10_5936_csbj_201210005
crossref_primary_10_1111_tpj_14674
crossref_primary_10_1890_ES13_00020_1
crossref_primary_10_1186_s12862_019_1551_8
crossref_primary_10_1080_15427528_2020_1824168
crossref_primary_10_1038_s41467_018_07649_1
crossref_primary_10_1093_jxb_erx179
crossref_primary_10_1016_j_jplph_2017_06_014
crossref_primary_10_1016_j_jhydrol_2023_129111
crossref_primary_10_1039_C8SE00281A
crossref_primary_10_1111_1462_2920_16161
crossref_primary_10_1038_s41576_024_00803_0
crossref_primary_10_4161_psb_6_5_14524
crossref_primary_10_1093_jxb_erq304
crossref_primary_10_1093_plcell_koae132
crossref_primary_10_1111_pce_12425
crossref_primary_10_1016_j_jplph_2020_153337
crossref_primary_10_1002_bies_202100062
crossref_primary_10_3389_fclim_2024_1412232
crossref_primary_10_1042_BST20150148
crossref_primary_10_1111_ppl_12845
crossref_primary_10_1111_tpj_14643
crossref_primary_10_1007_s00239_024_10161_4
crossref_primary_10_1093_jxb_ers294
crossref_primary_10_1111_tpj_16951
crossref_primary_10_1038_s41477_023_01436_7
crossref_primary_10_1016_j_bidere_2025_100006
crossref_primary_10_3389_fpls_2024_1346759
crossref_primary_10_1016_j_cell_2021_01_052
crossref_primary_10_1093_jxb_erac309
crossref_primary_10_3390_catal11070813
crossref_primary_10_1371_journal_pcbi_1006492
crossref_primary_10_1007_s10265_023_01514_z
crossref_primary_10_1007_s10709_021_00134_6
crossref_primary_10_1016_j_jbiotec_2013_05_007
crossref_primary_10_1093_jxb_erac458
crossref_primary_10_1016_j_neuron_2021_01_020
crossref_primary_10_1088_1478_3975_aac4e6
crossref_primary_10_1021_acs_biochem_8b00132
crossref_primary_10_1016_j_cell_2013_04_058
crossref_primary_10_1098_rstb_2016_0398
crossref_primary_10_1002_bies_201700071
crossref_primary_10_5194_gmd_15_2325_2022
crossref_primary_10_3390_pr5020032
crossref_primary_10_1111_nph_12858
crossref_primary_10_1038_srep22284
crossref_primary_10_1007_s10811_014_0323_5
crossref_primary_10_1093_jxb_erac321
crossref_primary_10_1021_acs_biochem_9b00237
crossref_primary_10_1038_s41467_022_31387_0
crossref_primary_10_3390_c8010018
crossref_primary_10_1093_jxb_erw118
crossref_primary_10_1016_j_cels_2017_11_013
crossref_primary_10_1371_journal_pcbi_1003163
crossref_primary_10_1016_j_pbi_2019_05_002
crossref_primary_10_1007_s11120_019_00619_8
crossref_primary_10_1016_j_plantsci_2014_06_011
crossref_primary_10_1016_j_ymben_2018_02_006
crossref_primary_10_1002_cctc_202300746
crossref_primary_10_3389_fenrg_2020_00213
crossref_primary_10_1007_s11120_021_00861_z
crossref_primary_10_1111_pce_12629
crossref_primary_10_3732_ajb_1500409
crossref_primary_10_1111_pce_12622
crossref_primary_10_1007_s11356_022_19393_7
crossref_primary_10_1038_s41396_021_00971_5
crossref_primary_10_1074_jbc_C113_543132
crossref_primary_10_1002_jcc_25343
crossref_primary_10_1016_j_chemgeo_2023_121608
crossref_primary_10_1016_j_ccst_2024_100318
crossref_primary_10_1103_PhysRevX_7_021037
crossref_primary_10_1111_nph_15668
crossref_primary_10_1111_pce_12192
crossref_primary_10_1098_rsta_2015_0070
crossref_primary_10_1007_s11120_013_9816_3
crossref_primary_10_1038_srep22264
crossref_primary_10_1002_advs_202100199
crossref_primary_10_1038_nplants_2016_186
crossref_primary_10_1111_jipb_13825
crossref_primary_10_1093_jxb_erac349
crossref_primary_10_1371_journal_pone_0095571
crossref_primary_10_1042_BST20190322
crossref_primary_10_1093_jxb_erw333
crossref_primary_10_1016_j_jbiotec_2022_09_010
crossref_primary_10_1021_acs_biochem_5b00621
crossref_primary_10_1038_s41586_022_04662_9
crossref_primary_10_1016_j_biotechadv_2021_107885
crossref_primary_10_7554_eLife_59882
crossref_primary_10_1016_j_mib_2021_10_001
crossref_primary_10_1016_j_plantsci_2017_12_007
crossref_primary_10_1093_jxb_erz051
crossref_primary_10_1002_lol2_10102
crossref_primary_10_1093_jxb_ery443
crossref_primary_10_3389_fbioe_2015_00036
crossref_primary_10_1111_nph_16577
crossref_primary_10_1093_jxb_erw267
crossref_primary_10_3389_fpls_2016_01719
crossref_primary_10_1021_bi300933u
crossref_primary_10_1103_RevModPhys_91_031001
crossref_primary_10_1038_ncomms14724
crossref_primary_10_1007_s11120_014_0067_8
crossref_primary_10_1016_j_molcel_2010_10_020
crossref_primary_10_3389_fpls_2019_01426
crossref_primary_10_1038_s44318_024_00119_z
crossref_primary_10_1002_lno_12367
crossref_primary_10_1073_pnas_1109503108
crossref_primary_10_1093_plphys_kiac492
crossref_primary_10_1111_nph_18623
crossref_primary_10_1093_jxb_erac368
crossref_primary_10_1073_pnas_2321050121
crossref_primary_10_1073_pnas_1210754109
crossref_primary_10_1186_1745_6150_6_29
crossref_primary_10_1126_science_1217665
crossref_primary_10_3390_biom12070872
crossref_primary_10_3390_ijms231911347
crossref_primary_10_1073_pnas_2402925121
crossref_primary_10_1371_journal_pcbi_1010565
crossref_primary_10_1111_pce_12066
crossref_primary_10_1073_pnas_1904071116
crossref_primary_10_1016_j_chempr_2016_12_009
crossref_primary_10_1146_annurev_arplant_081519_040100
crossref_primary_10_1093_jxb_erx130
crossref_primary_10_1038_s41598_021_94903_0
crossref_primary_10_1093_jxb_erw163
crossref_primary_10_1016_j_jplph_2023_154021
crossref_primary_10_1016_j_bbabio_2020_148254
crossref_primary_10_1021_bi2002289
crossref_primary_10_1016_j_copbio_2017_06_006
crossref_primary_10_1042_BST20201056
crossref_primary_10_1093_jxb_err116
crossref_primary_10_1111_gbi_12243
crossref_primary_10_1111_jipb_12709
crossref_primary_10_1111_pce_13004
crossref_primary_10_1038_s41564_019_0520_8
crossref_primary_10_1007_s00253_013_4734_z
crossref_primary_10_1098_rstb_2011_0145
crossref_primary_10_1038_ncomms10382
crossref_primary_10_2323_jgam_2020_02_002
crossref_primary_10_1016_j_copbio_2017_07_017
crossref_primary_10_1021_acs_chemrev_9b00620
crossref_primary_10_1074_jbc_RA118_003518
crossref_primary_10_1016_j_scitotenv_2021_145141
crossref_primary_10_1073_pnas_1525145113
crossref_primary_10_1146_annurev_biochem_040320_101244
crossref_primary_10_1093_jxb_erab291
crossref_primary_10_1016_j_cbpa_2016_09_014
crossref_primary_10_1038_s41586_024_08455_0
crossref_primary_10_1002_pld3_45
crossref_primary_10_1093_jxb_ert306
crossref_primary_10_1073_pnas_1310811111
crossref_primary_10_1016_j_jtbi_2022_111354
crossref_primary_10_1104_pp_114_248013
crossref_primary_10_1126_science_1217405
crossref_primary_10_1111_tpj_13166
crossref_primary_10_1088_1478_3975_ab8697
crossref_primary_10_1126_sciadv_abm6871
Cites_doi 10.1109/JSTSP.2008.923859
10.1046/j.1365-3040.2004.01142.x
10.1038/291513a0
10.1098/rstb.1986.0046
10.1007/s11120-008-9324-z
10.1021/bi00265a003
10.1016/0003-9861(83)90472-1
10.1016/0003-9861(91)90133-4
10.1016/0968-0004(79)90212-3
10.1042/bj1250425
10.1038/243359a0
10.1007/0-306-48137-5_3
10.1146/annurev.arplant.50.1.539
10.1021/bi00086a006
10.1139/b98-074
10.1104/pp.103.026146
10.1371/journal.pone.0000468
10.1016/S0021-9258(18)37741-X
10.1104/pp.85.4.958
10.1016/S0303-2647(97)00042-7
10.1074/jbc.272.9.5445
10.1016/0003-9861(79)90052-3
10.1021/bi00355a029
10.1016/0014-5793(78)80286-5
10.1073/pnas.0600605103
10.1016/S0021-9258(20)89454-X
10.1111/j.1751-1097.2008.00427.x
10.1016/j.plaphy.2008.01.001
10.1098/rspb.1979.0086
10.4324/9780203833483
10.1093/protein/gzj010
10.1016/0303-2647(95)01561-2
10.1021/cr970010r
10.1146/annurev.arplant.53.100301.135233
10.1016/S0021-9258(18)67516-7
10.1073/pnas.86.15.5753
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 23, 2010
Copyright_xml – notice: Copyright National Academy of Sciences Feb 23, 2010
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0911663107
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE
Virology and AIDS Abstracts


Ecology Abstracts
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 3480
ExternalDocumentID PMC2840432
1972020951
20142476
10_1073_pnas_0911663107
107_8_3475
40537311
US201301808227
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c617t-afec67e4db81a3b3b452da89ff7c7189a5ebf72dcc530bd0c32edba8f43039503
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:33:32 EDT 2025
Fri Jul 11 15:54:33 EDT 2025
Fri Jul 11 14:12:34 EDT 2025
Thu Jul 10 19:29:02 EDT 2025
Mon Jun 30 08:47:22 EDT 2025
Mon Jul 21 05:59:15 EDT 2025
Tue Jul 01 00:46:50 EDT 2025
Thu Apr 24 22:54:28 EDT 2025
Wed Nov 11 00:30:42 EST 2020
Thu May 29 08:41:03 EDT 2025
Thu Apr 03 09:40:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c617t-afec67e4db81a3b3b452da89ff7c7189a5ebf72dcc530bd0c32edba8f43039503
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Author contributions: Y.S., E.N., R.M., and T.T. performed research and wrote the paper.
Edited by George H. Lorimer, University of Maryland, College Park, MD, and approved December 17, 2009 (received for review October 8, 2009)
OpenAccessLink http://doi.org/10.1073/pnas.0911663107
PMID 20142476
PQID 201318274
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_201318274
crossref_primary_10_1073_pnas_0911663107
proquest_miscellaneous_46541329
jstor_primary_40537311
fao_agris_US201301808227
proquest_miscellaneous_733688361
proquest_miscellaneous_746086056
pubmed_primary_20142476
pnas_primary_107_8_3475
crossref_citationtrail_10_1073_pnas_0911663107
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2840432
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-23
PublicationDateYYYYMMDD 2010-02-23
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Shaw PJA (e_1_3_3_40_2) 2003
Badger MR (e_1_3_3_16_2) 2000
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Roy H (e_1_3_3_12_2) 2000
Hatch M (e_1_3_3_14_2) 1992; 33
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
Somerville C (e_1_3_3_18_2) 1984
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
9038145 - J Biol Chem. 1997 Feb 28;272(9):5445-51
17520027 - PLoS One. 2007;2(5):e468
18626786 - Photosynth Res. 2008 Oct-Dec;98(1-3):667-75
1952939 - Arch Biochem Biophys. 1991 Dec;291(2):263-9
8369274 - Biochemistry. 1993 Sep 7;32(35):9018-24
12221984 - Annu Rev Plant Biol. 2002;53:449-75
18294858 - Plant Physiol Biochem. 2008 Mar;46(3):275-91
5144745 - Biochem J. 1971 Nov;125(2):425-32
16641091 - Proc Natl Acad Sci U S A. 2006 May 9;103(19):7246-51
42062 - Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):581-98
16665838 - Plant Physiol. 1987 Dec;85(4):958-64
18764897 - Photochem Photobiol. 2008 Nov-Dec;84(6):1317-23
464606 - Arch Biochem Biophys. 1979 Apr 1;193(2):456-68
16423843 - Protein Eng Des Sel. 2006 Mar;19(3):113-9
6293539 - Biochemistry. 1982 Oct 26;21(22):5398-403
11848907 - Chem Rev. 1998 Apr 2;98(2):549-562
12970494 - Plant Physiol. 2003 Sep;133(1):287-94
2503824 - Proc Natl Acad Sci U S A. 1989 Aug;86(15):5753-7
9350356 - Biosystems. 1997;44(1):41-57
3137223 - J Biol Chem. 1988 Sep 5;263(25):12213-9
8924647 - Biosystems. 1996;37(3):229-38
3090034 - J Biol Chem. 1986 Aug 5;261(22):10248-56
6582802 - Arch Biochem Biophys. 1983 Dec;227(2):425-33
1902218 - J Biol Chem. 1991 Apr 25;266(12):7359-62
15012219 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:539-570
References_xml – ident: e_1_3_3_22_2
  doi: 10.1109/JSTSP.2008.923859
– ident: e_1_3_3_19_2
  doi: 10.1046/j.1365-3040.2004.01142.x
– ident: e_1_3_3_9_2
  doi: 10.1038/291513a0
– ident: e_1_3_3_37_2
  doi: 10.1098/rstb.1986.0046
– ident: e_1_3_3_7_2
  doi: 10.1007/s11120-008-9324-z
– ident: e_1_3_3_39_2
  doi: 10.1021/bi00265a003
– ident: e_1_3_3_20_2
  doi: 10.1016/0003-9861(83)90472-1
– ident: e_1_3_3_34_2
  doi: 10.1016/0003-9861(91)90133-4
– ident: e_1_3_3_1_2
  doi: 10.1016/0968-0004(79)90212-3
– volume-title: Photosynthesis: Physiology and Metabolism
  year: 2000
  ident: e_1_3_3_16_2
– ident: e_1_3_3_27_2
  doi: 10.1042/bj1250425
– ident: e_1_3_3_3_2
  doi: 10.1038/243359a0
– start-page: 53
  volume-title: Photosynthesis: Physiology and Metabolism
  year: 2000
  ident: e_1_3_3_12_2
  doi: 10.1007/0-306-48137-5_3
– ident: e_1_3_3_15_2
  doi: 10.1146/annurev.arplant.50.1.539
– ident: e_1_3_3_23_2
  doi: 10.1021/bi00086a006
– ident: e_1_3_3_28_2
  doi: 10.1139/b98-074
– ident: e_1_3_3_31_2
  doi: 10.1104/pp.103.026146
– ident: e_1_3_3_21_2
  doi: 10.1371/journal.pone.0000468
– ident: e_1_3_3_32_2
  doi: 10.1016/S0021-9258(18)37741-X
– ident: e_1_3_3_25_2
  doi: 10.1104/pp.85.4.958
– ident: e_1_3_3_26_2
  doi: 10.1016/S0303-2647(97)00042-7
– ident: e_1_3_3_35_2
  doi: 10.1074/jbc.272.9.5445
– ident: e_1_3_3_13_2
  doi: 10.1016/0003-9861(79)90052-3
– volume: 33
  start-page: 333
  year: 1992
  ident: e_1_3_3_14_2
  article-title: C4 photosynthesis: an unlikely process full of surprises
  publication-title: Plant Cell Physiol
– ident: e_1_3_3_38_2
  doi: 10.1021/bi00355a029
– ident: e_1_3_3_2_2
  doi: 10.1016/0014-5793(78)80286-5
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.0600605103
– ident: e_1_3_3_33_2
  doi: 10.1016/S0021-9258(20)89454-X
– ident: e_1_3_3_6_2
  doi: 10.1111/j.1751-1097.2008.00427.x
– ident: e_1_3_3_4_2
  doi: 10.1016/j.plaphy.2008.01.001
– ident: e_1_3_3_17_2
  doi: 10.1098/rspb.1979.0086
– start-page: 295
  volume-title: Advances in Gene Technology: Molecular Genetics of Plants and Animals
  year: 1984
  ident: e_1_3_3_18_2
– ident: e_1_3_3_5_2
  doi: 10.4324/9780203833483
– volume-title: Multivariate Statistics for the Environmental Sciences
  year: 2003
  ident: e_1_3_3_40_2
– ident: e_1_3_3_8_2
  doi: 10.1093/protein/gzj010
– ident: e_1_3_3_29_2
  doi: 10.1016/0303-2647(95)01561-2
– ident: e_1_3_3_11_2
  doi: 10.1021/cr970010r
– ident: e_1_3_3_24_2
  doi: 10.1146/annurev.arplant.53.100301.135233
– ident: e_1_3_3_36_2
  doi: 10.1016/S0021-9258(18)67516-7
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.86.15.5753
– reference: 42062 - Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):581-98
– reference: 16641091 - Proc Natl Acad Sci U S A. 2006 May 9;103(19):7246-51
– reference: 9038145 - J Biol Chem. 1997 Feb 28;272(9):5445-51
– reference: 18294858 - Plant Physiol Biochem. 2008 Mar;46(3):275-91
– reference: 1902218 - J Biol Chem. 1991 Apr 25;266(12):7359-62
– reference: 15012219 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:539-570
– reference: 12221984 - Annu Rev Plant Biol. 2002;53:449-75
– reference: 3090034 - J Biol Chem. 1986 Aug 5;261(22):10248-56
– reference: 5144745 - Biochem J. 1971 Nov;125(2):425-32
– reference: 6582802 - Arch Biochem Biophys. 1983 Dec;227(2):425-33
– reference: 17520027 - PLoS One. 2007;2(5):e468
– reference: 18764897 - Photochem Photobiol. 2008 Nov-Dec;84(6):1317-23
– reference: 16423843 - Protein Eng Des Sel. 2006 Mar;19(3):113-9
– reference: 2503824 - Proc Natl Acad Sci U S A. 1989 Aug;86(15):5753-7
– reference: 9350356 - Biosystems. 1997;44(1):41-57
– reference: 6293539 - Biochemistry. 1982 Oct 26;21(22):5398-403
– reference: 18626786 - Photosynth Res. 2008 Oct-Dec;98(1-3):667-75
– reference: 1952939 - Arch Biochem Biophys. 1991 Dec;291(2):263-9
– reference: 16665838 - Plant Physiol. 1987 Dec;85(4):958-64
– reference: 8369274 - Biochemistry. 1993 Sep 7;32(35):9018-24
– reference: 464606 - Arch Biochem Biophys. 1979 Apr 1;193(2):456-68
– reference: 11848907 - Chem Rev. 1998 Apr 2;98(2):549-562
– reference: 3137223 - J Biol Chem. 1988 Sep 5;263(25):12213-9
– reference: 8924647 - Biosystems. 1996;37(3):229-38
– reference: 12970494 - Plant Physiol. 2003 Sep;133(1):287-94
SSID ssj0009580
Score 2.445659
Snippet Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of...
Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxy genäse), probably the most abundant protein in the biosphere, performs an essential part in the process of...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3475
SubjectTerms Algae
autotrophs
Bacteria - enzymology
Biochemistry
Biological Sciences
Biosphere
carbon
Carbon dioxide
Carbon Dioxide - metabolism
Carbon fixation
Carboxylation
Enzyme kinetics
Enzymes
Eukaryota - enzymology
Evolution
Evolution, Molecular
Kinetics
Molecules
Oxygen
Photosynthesis
Plants
Plants - enzymology
Power laws
proteins
ribulose-bisphosphate carboxylase
Ribulose-Bisphosphate Carboxylase - chemistry
Ribulose-Bisphosphate Carboxylase - metabolism
Species Specificity
Substrate Specificity
Velocity
Title Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape
URI https://www.jstor.org/stable/40537311
http://www.pnas.org/content/107/8/3475.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20142476
https://www.proquest.com/docview/201318274
https://www.proquest.com/docview/46541329
https://www.proquest.com/docview/733688361
https://www.proquest.com/docview/746086056
https://pubmed.ncbi.nlm.nih.gov/PMC2840432
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacuGCKFC6lIcPHIqiLEnsJM6xqlpVqFqqdlcqJ8t2HIi0JFWzWyQO_HbGceLslpbXJVrF3pGT-TIe2zPfIPQ2zqVmiim_UEnmU5FIPwsC5SshZJhlImc2yneSnMzoh8v4cmPjx2p2yUKO1fc780r-R6twD_RqsmT_QbNOKNyA36BfuIKG4fpXOj40U5xvkiVhveuJnl9kcd3GWYlcXC2cR3i-lGWjwNFs42S9GkzFV-uDl5UnvHn9zc8N079l6fDaFGATHLXqvZ652a7pYwsm_WbiwZCa0tmLxvO9s8lQ6PhC3JQtPj6ZHfsBlZPabhkczUXu9F_aI6HzIUpgOl82toLBtLkpV3crzEF75NuEYpc9ALMitXnTzgLbwrcd1Jh3NSY0jX1CbZGnzraaeyvzdN_6yxwARssULq5EMwZnKASXqpe_xrY9-ciPZ6enfHp0Od1EDyJYZpB-t8eRNjObwtSNuaeGSsn7W-LXvJrNQtR9eKvhzIWud61fbofhrvg108foUbcgwQcWXdtoQ1dP0HavQrzf8ZK_e4ryNbjhHm7Ywg0PcMN1gTu4YQs3PMANlxUW-BbcsIPbMzQ7PpoenvhdkQ5fgfO78EWhVZJqmksWCiKJpHGUC2aOAhT4PZmItSzSKFcqJoHMA0UinUvBCgrOUxYHZAdtVXWldxHW8HedEh2FoQQvPhABLcCOaBJlVImIjtC4f8lcdQz2ppDKnLeRFCnh5lXzQSsjtO_-cGXJW-7vugta4-IzTK18dhGZA_2QmXII0LTTqtKJoIYDiYThCD1vpQyiU864gekI7fXq5p29aLiRCav5FJ7jjWsFY25O6ESl62XDDblhCI87QvieHoa9lDGShL_pQpOAJbCwMeNrAeZGCEMAGKfQkq5Bz3UwZPPrLVX5pSWdBzfWsHe--OPY99DD4cN_ibYW10v9Chz3hXzdfl0_Ad8w8GQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-species+analysis+traces+adaptation+of+Rubisco+toward+optimality+in+a+low-dimensional+landscape&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Savir%2C+Yonatan&rft.au=Noor%2C+Elad&rft.au=Milo%2C+Ron&rft.au=Tlusty%2C+Tsvi&rft.date=2010-02-23&rft.issn=0027-8424&rft.volume=107&rft.issue=8+p.3475-3480&rft.spage=3475&rft.epage=3480&rft_id=info:doi/10.1073%2Fpnas.0911663107&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F8.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F8.cover.gif