Model-based small area estimation methods and precise district-level HIV prevalence estimates in Uganda

Model-based small area estimation methods can help generate parameter estimates at the district level, where planned population survey sample sizes are not large enough to support direct estimates of HIV prevalence with adequate precision. We computed district-level HIV prevalence estimates and thei...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 8; p. e0253375
Main Authors Ouma, Joseph, Jeffery, Caroline, Awor, Colletar Anna, Muruta, Allan, Musinguzi, Joshua, Wanyenze, Rhoda K, Biraro, Sam, Levin, Jonathan, Valadez, Joseph J
Format Journal Article
LanguageEnglish
Published San Francisco, CA USA Public Library of Science 06.08.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Model-based small area estimation methods can help generate parameter estimates at the district level, where planned population survey sample sizes are not large enough to support direct estimates of HIV prevalence with adequate precision. We computed district-level HIV prevalence estimates and their 95% confidence intervals for districts in Uganda. Our analysis used direct survey and model-based estimation methods, including Fay-Herriot (area-level) and Battese-Harter-Fuller (unit-level) small area models. We used regression analysis to assess for consistency in estimating HIV prevalence. We use a ratio analysis of the mean square error and the coefficient of variation of the estimates to evaluate precision. The models were applied to Uganda Population-Based HIV Impact Assessment 2016/2017 data with auxiliary information from the 2016 Lot Quality Assurance Sampling survey and antenatal care data from district health information system datasets for unit-level and area-level models, respectively. Estimates from the model-based and the direct survey methods were similar. However, direct survey estimates were unstable compared with the model-based estimates. Area-level model estimates were more stable than unit-level model estimates. The correlation between unit-level and direct survey estimates was ([beta].sub.1 = 0.66, r.sup.2 = 0.862), and correlation between area-level model and direct survey estimates was ([beta].sub.1 = 0.44, r.sup.2 = 0.698). The error associated with the estimates decreased by 37.5% and 33.1% for the unit-level and area-level models, respectively, compared to the direct survey estimates. Although the unit-level model estimates were less precise than the area-level model estimates, they were highly correlated with the direct survey estimates and had less standard error associated with estimates than the area-level model. Unit-level models provide more accurate and reliable data to support local decision-making when unit-level auxiliary information is available.
AbstractList Model-based small area estimation methods can help generate parameter estimates at the district level, where planned population survey sample sizes are not large enough to support direct estimates of HIV prevalence with adequate precision. We computed district-level HIV prevalence estimates and their 95% confidence intervals for districts in Uganda. Our analysis used direct survey and model-based estimation methods, including Fay-Herriot (area-level) and Battese-Harter-Fuller (unit-level) small area models. We used regression analysis to assess for consistency in estimating HIV prevalence. We use a ratio analysis of the mean square error and the coefficient of variation of the estimates to evaluate precision. The models were applied to Uganda Population-Based HIV Impact Assessment 2016/2017 data with auxiliary information from the 2016 Lot Quality Assurance Sampling survey and antenatal care data from district health information system datasets for unit-level and area-level models, respectively. Estimates from the model-based and the direct survey methods were similar. However, direct survey estimates were unstable compared with the model-based estimates. Area-level model estimates were more stable than unit-level model estimates. The correlation between unit-level and direct survey estimates was ([beta].sub.1 = 0.66, r.sup.2 = 0.862), and correlation between area-level model and direct survey estimates was ([beta].sub.1 = 0.44, r.sup.2 = 0.698). The error associated with the estimates decreased by 37.5% and 33.1% for the unit-level and area-level models, respectively, compared to the direct survey estimates. Although the unit-level model estimates were less precise than the area-level model estimates, they were highly correlated with the direct survey estimates and had less standard error associated with estimates than the area-level model. Unit-level models provide more accurate and reliable data to support local decision-making when unit-level auxiliary information is available.
Background Model-based small area estimation methods can help generate parameter estimates at the district level, where planned population survey sample sizes are not large enough to support direct estimates of HIV prevalence with adequate precision. We computed district-level HIV prevalence estimates and their 95% confidence intervals for districts in Uganda. Methods Our analysis used direct survey and model-based estimation methods, including Fay-Herriot (area-level) and Battese-Harter-Fuller (unit-level) small area models. We used regression analysis to assess for consistency in estimating HIV prevalence. We use a ratio analysis of the mean square error and the coefficient of variation of the estimates to evaluate precision. The models were applied to Uganda Population-Based HIV Impact Assessment 2016/2017 data with auxiliary information from the 2016 Lot Quality Assurance Sampling survey and antenatal care data from district health information system datasets for unit-level and area-level models, respectively. Results Estimates from the model-based and the direct survey methods were similar. However, direct survey estimates were unstable compared with the model-based estimates. Area-level model estimates were more stable than unit-level model estimates. The correlation between unit-level and direct survey estimates was ([beta].sub.1 = 0.66, r.sup.2 = 0.862), and correlation between area-level model and direct survey estimates was ([beta].sub.1 = 0.44, r.sup.2 = 0.698). The error associated with the estimates decreased by 37.5% and 33.1% for the unit-level and area-level models, respectively, compared to the direct survey estimates. Conclusions Although the unit-level model estimates were less precise than the area-level model estimates, they were highly correlated with the direct survey estimates and had less standard error associated with estimates than the area-level model. Unit-level models provide more accurate and reliable data to support local decision-making when unit-level auxiliary information is available.
BackgroundModel-based small area estimation methods can help generate parameter estimates at the district level, where planned population survey sample sizes are not large enough to support direct estimates of HIV prevalence with adequate precision. We computed district-level HIV prevalence estimates and their 95% confidence intervals for districts in Uganda.MethodsOur analysis used direct survey and model-based estimation methods, including Fay-Herriot (area-level) and Battese-Harter-Fuller (unit-level) small area models. We used regression analysis to assess for consistency in estimating HIV prevalence. We use a ratio analysis of the mean square error and the coefficient of variation of the estimates to evaluate precision. The models were applied to Uganda Population-Based HIV Impact Assessment 2016/2017 data with auxiliary information from the 2016 Lot Quality Assurance Sampling survey and antenatal care data from district health information system datasets for unit-level and area-level models, respectively.ResultsEstimates from the model-based and the direct survey methods were similar. However, direct survey estimates were unstable compared with the model-based estimates. Area-level model estimates were more stable than unit-level model estimates. The correlation between unit-level and direct survey estimates was (β1 = 0.66, r2 = 0.862), and correlation between area-level model and direct survey estimates was (β1 = 0.44, r2 = 0.698). The error associated with the estimates decreased by 37.5% and 33.1% for the unit-level and area-level models, respectively, compared to the direct survey estimates.ConclusionsAlthough the unit-level model estimates were less precise than the area-level model estimates, they were highly correlated with the direct survey estimates and had less standard error associated with estimates than the area-level model. Unit-level models provide more accurate and reliable data to support local decision-making when unit-level auxiliary information is available.
Audience Academic
Author Awor, Colletar Anna
Jeffery, Caroline
Ouma, Joseph
Biraro, Sam
Wanyenze, Rhoda K
Muruta, Allan
Levin, Jonathan
Musinguzi, Joshua
Valadez, Joseph J
AuthorAffiliation 3 Data Science and Informatics Branch, Centers for Disease Control and Prevention, Uganda
University of Salamanca, SPAIN
5 Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
2 METRe Group, Department of International Health, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
4 AIDS Control Program, Ministry of Health, Uganda
6 ICAP at Columbia University, Nakasero, Kampala, Uganda
1 Division of Epidemiology and Biostatistics, School of Public Health, University of Witwatersrand, Johannesburg, South Africa
AuthorAffiliation_xml – name: 1 Division of Epidemiology and Biostatistics, School of Public Health, University of Witwatersrand, Johannesburg, South Africa
– name: 4 AIDS Control Program, Ministry of Health, Uganda
– name: 3 Data Science and Informatics Branch, Centers for Disease Control and Prevention, Uganda
– name: University of Salamanca, SPAIN
– name: 6 ICAP at Columbia University, Nakasero, Kampala, Uganda
– name: 2 METRe Group, Department of International Health, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
– name: 5 Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
Author_xml – sequence: 1
  fullname: Ouma, Joseph
– sequence: 2
  fullname: Jeffery, Caroline
– sequence: 3
  fullname: Awor, Colletar Anna
– sequence: 4
  fullname: Muruta, Allan
– sequence: 5
  fullname: Musinguzi, Joshua
– sequence: 6
  fullname: Wanyenze, Rhoda K
– sequence: 7
  fullname: Biraro, Sam
– sequence: 8
  fullname: Levin, Jonathan
– sequence: 9
  fullname: Valadez, Joseph J
BookMark eNqNkk2LFDEQhhtZcT_0H3hoEAQPPSap_khfhGVRd2BlQd29hnRS3ZMh3RmSzKD_3rQzyjZ4kBwSqp73pai8l9nZ5CbMsteUrCg09P3W7f0k7WqXyivCKoCmepZd0BZYUTMCZ0_e59llCFtCKuB1_SI7hxIqzgAusuGL02iLTgbUeRiltbn0KHMM0YwyGjflI8aN0yGXk853HpUJmGsTojcqFhYPaPPb9ePcOkiLk8I_Ygy5mfKHIQnly-x5L23AV6f7Knv49PH7zW1xd_95fXN9V6iaNrHgWGrKOENeQwOkA9JXLVLS9mWPvNNclaypFCOKd30ladv1wBqNvIVatxWBq2x99NVObsXOpzn8T-GkEb8Lzg9C-miURaFU3bel7BrgukQNLaMSsSlZj1q2UievD0ev3b4bUSucopd2YbrsTGYjBncQHMqKA00Gb44GQ1qMMFPvEqZGE5S4rhtKCBA6U6t_UOloHI1Kv9ubVF8I3i0EiYn4Iw5yH4JYf_v6_-z945J9-4TdoLRxE5zdzykIS7A8gsq7EDz2f3dCiZjDKU7hFHM4xSmc8AvRANot
CitedBy_id crossref_primary_10_1186_s12885_024_11928_0
crossref_primary_10_1186_s12889_021_12095_8
crossref_primary_10_1515_spp_2022_0022
crossref_primary_10_1007_s10708_024_11133_3
crossref_primary_10_2174_0118749445304594240425112633
crossref_primary_10_18332_tid_169683
crossref_primary_10_2139_ssrn_4735326
crossref_primary_10_1111_hiv_13601
Cites_doi 10.1371/journal.pone.0070770
10.1055/s-0034-1390027
10.1080/00949650601141811
10.1093/heapol/czx066
10.1371/journal.pone.0212445
10.1016/j.socscimed.2006.04.011
10.1093/ije/28.4.756
10.1080/01621459.1988.10478561
10.1111/j.1467-7679.2012.00578.x
10.1002/bimj.201600128
10.1016/j.jclinepi.2011.08.002
10.1097/00002030-200203080-00017
10.1007/BF02595419
10.1186/s12889-017-4166-2
10.1136/bmjopen-2015-008669
10.1111/rssa.12364
10.1371/journal.pone.0006470
10.1111/rssa.12069
10.1186/s12889-020-8436-z
10.1097/00002030-200012010-00014
10.1186/1472-6947-14-40
10.1177/0956462414538006
10.1371/journal.pone.0148502
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Ouma et al 2021 Ouma et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Ouma et al 2021 Ouma et al
DBID AAYXX
CITATION
IOV
ISR
5PM
DOA
DOI 10.1371/journal.pone.0253375
DatabaseName CrossRef
Opposing Viewpoints Resource Center
Science in Context
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList





Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Model-based small area estimation methods and precise district-level HIV prevalence estimates in Uganda
EISSN 1932-6203
Editor Ortega, José Antonio
Editor_xml – sequence: 1
  givenname: José Antonio
  surname: Ortega
  fullname: Ortega, José Antonio
ExternalDocumentID oai_doaj_org_article_cc6f94ab738d4ed3921aee742feda9ad
A671003011
10_1371_journal_pone_0253375
GeographicLocations Uganda
GeographicLocations_xml – name: Uganda
GrantInformation_xml – fundername: ;
  grantid: U2GGH001226
– fundername: ;
  grantid: 107754/Z/15/Z
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
AEAQA
AENEX
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BBORY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
P2P
P62
PATMY
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
AFPKN
5PM
ID FETCH-LOGICAL-c617t-8e4d1282e863730b30f59e109f4fe8bd8c4275c20c8bf5a19bf327de8936d9503
IEDL.DBID RPM
ISSN 1932-6203
IngestDate Tue Oct 22 14:38:43 EDT 2024
Tue Sep 17 20:58:57 EDT 2024
Tue Nov 19 21:13:12 EST 2024
Tue Nov 12 22:40:17 EST 2024
Thu Aug 01 19:18:05 EDT 2024
Thu Aug 01 19:59:18 EDT 2024
Tue Aug 20 22:13:45 EDT 2024
Thu Nov 21 23:40:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c617t-8e4d1282e863730b30f59e109f4fe8bd8c4275c20c8bf5a19bf327de8936d9503
Notes Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-5249-7440
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345831/
PMID 34358233
PageCount e0253375
ParticipantIDs doaj_primary_oai_doaj_org_article_cc6f94ab738d4ed3921aee742feda9ad
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8345831
gale_infotracmisc_A671003011
gale_infotracacademiconefile_A671003011
gale_incontextgauss_ISR_A671003011
gale_incontextgauss_IOV_A671003011
gale_healthsolutions_A671003011
crossref_primary_10_1371_journal_pone_0253375
PublicationCentury 2000
PublicationDate 2021-08-06
PublicationDateYYYYMMDD 2021-08-06
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-06
  day: 06
PublicationDecade 2020
PublicationPlace San Francisco, CA USA
PublicationPlace_xml – name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References C Van Walraven (pone.0253375.ref004) 2012; 65
CP Lindan (pone.0253375.ref009) 2015; 26
Y Lakew (pone.0253375.ref012) 2015; 5
GE Battese (pone.0253375.ref017) 1988; 83
pone.0253375.ref028
pone.0253375.ref025
pone.0253375.ref024
FA Johnson (pone.0253375.ref021) 2010; 26
J Ouma (pone.0253375.ref005) 2020; 20
PN Amornkul (pone.0253375.ref010) 2009; 4
V Saphonn (pone.0253375.ref037) 2002; 31
JNK Rao (pone.0253375.ref001) 2015; 16
FA Johnson (pone.0253375.ref022) 2012; 4728
J Ouma (pone.0253375.ref006) 2020
H Chandra (pone.0253375.ref032) 2018; 60
VM Kiberu (pone.0253375.ref029) 2014; 14
C Asiedu (pone.0253375.ref011) 2012; 30
I Molina (pone.0253375.ref031) 2015; 7
A Opio (pone.0253375.ref039) 2013; 8
W González-Manteiga (pone.0253375.ref034) 2008; 78
pone.0253375.ref016
C Jeffery (pone.0253375.ref007) 2016
pone.0253375.ref015
SE Robertson (pone.0253375.ref027) 2006; 63
R Hashimoto (pone.0253375.ref003) 2014; 05
pone.0253375.ref035
S Gregson (pone.0253375.ref036) 2002; 16
E Giorgi (pone.0253375.ref020) 2015; 178
BW Zaba (pone.0253375.ref038) 2000; 14
HK Hegdahl (pone.0253375.ref040) 2016; 11
A Moretti (pone.0253375.ref033) 2018
GR Weitoft (pone.0253375.ref002) 1999; 28
R Mafigiri (pone.0253375.ref008) 2017; 17
S Gutreuter (pone.0253375.ref023) 2019; 14
S Lemeshow (pone.0253375.ref014) 1991; 44
N Tzavidis (pone.0253375.ref019) 2018; 181
CF Lanata (pone.0253375.ref013) 1991; 44
JNK Rao (pone.0253375.ref018) 2015
J Hage (pone.0253375.ref026) 2017; 32
J Jiang (pone.0253375.ref030) 2006; 15
References_xml – volume: 8
  issue: 8
  year: 2013
  ident: pone.0253375.ref039
  article-title: HIV Infection in Fishing Communities of Lake Victoria Basin of Uganda–A Cross-Sectional Sero-Behavioral Survey
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0070770
  contributor:
    fullname: A Opio
– volume: 05
  start-page: 074
  issue: 02
  year: 2014
  ident: pone.0253375.ref003
  article-title: Administrative Database Studies: Goldmine or Goose Chase?
  publication-title: Evid Based Spine Care J
  doi: 10.1055/s-0034-1390027
  contributor:
    fullname: R Hashimoto
– year: 2015
  ident: pone.0253375.ref018
  article-title: Small Area Estimation
  publication-title: Wiley
  contributor:
    fullname: JNK Rao
– volume: 78
  start-page: 443
  issue: 5
  year: 2008
  ident: pone.0253375.ref034
  article-title: Bootstrap mean squared error of a small-area EBLUP
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949650601141811
  contributor:
    fullname: W González-Manteiga
– volume: 32
  start-page: 1248
  issue: 9
  year: 2017
  ident: pone.0253375.ref026
  article-title: Institutionalizing and sustaining social change in health systems: The case of Uganda
  publication-title: Health Policy Plan
  doi: 10.1093/heapol/czx066
  contributor:
    fullname: J Hage
– volume: 14
  start-page: 1
  issue: 2
  year: 2019
  ident: pone.0253375.ref023
  article-title: Improving estimates of district HIV prevalence and burden in South Africa using small area estimation techniques
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0212445
  contributor:
    fullname: S Gutreuter
– ident: pone.0253375.ref024
– volume: 63
  start-page: 1648
  issue: 6
  year: 2006
  ident: pone.0253375.ref027
  article-title: Global review of health care surveys using lot quality assurance sampling (LQAS), 1984–2004
  publication-title: Soc Sci Med
  doi: 10.1016/j.socscimed.2006.04.011
  contributor:
    fullname: SE Robertson
– volume: 28
  start-page: 756
  issue: 4
  year: 1999
  ident: pone.0253375.ref002
  article-title: Mortality statistics in immigrant research: Method for adjusting underestimation of mortality
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/28.4.756
  contributor:
    fullname: GR Weitoft
– volume: 83
  start-page: 28
  issue: 401
  year: 1988
  ident: pone.0253375.ref017
  article-title: An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1988.10478561
  contributor:
    fullname: GE Battese
– volume: 30
  start-page: 305
  issue: 3
  year: 2012
  ident: pone.0253375.ref011
  article-title: The Socio-Economic Determinants of HIV/AIDS Infection Rates in Lesotho, Malawi, Swaziland and Zimbabwe
  publication-title: Dev Policy Rev
  doi: 10.1111/j.1467-7679.2012.00578.x
  contributor:
    fullname: C Asiedu
– volume: 60
  start-page: 395
  issue: 2
  year: 2018
  ident: pone.0253375.ref032
  article-title: Small area estimation of proportions with different levels of auxiliary data
  publication-title: Biometrical J
  doi: 10.1002/bimj.201600128
  contributor:
    fullname: H Chandra
– volume: 65
  start-page: 126
  issue: 2
  year: 2012
  ident: pone.0253375.ref004
  article-title: Administrative database research has unique characteristics that can risk biased results
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2011.08.002
  contributor:
    fullname: C Van Walraven
– ident: pone.0253375.ref015
– volume: 16
  start-page: 643
  issue: 4
  year: 2002
  ident: pone.0253375.ref036
  article-title: Study of bias in antenatal clinic HIV-1 surveillance data in a high contraceptive prevalence population in sub-Saharan Africa
  publication-title: AIDS
  doi: 10.1097/00002030-200203080-00017
  contributor:
    fullname: S Gregson
– start-page: 1
  year: 2016
  ident: pone.0253375.ref007
  article-title: Associations with HIV testing in Uganda: an analysis of the Lot Quality Assurance Sampling database 2003–2012
  publication-title: AIDS Care
  contributor:
    fullname: C Jeffery
– volume: 31
  start-page: 449
  issue: 2
  year: 2002
  ident: pone.0253375.ref037
  article-title: How well do antenatal clinic (ANC) attendees represent the general population? A comparison of HIV prevalence from ANC sentinel surveillance sites with a population-based survey of women aged 15–49 in Cambodia
  publication-title: Int J Epidemiol
  contributor:
    fullname: V Saphonn
– volume: 16
  start-page: 491
  issue: 4
  year: 2015
  ident: pone.0253375.ref001
  article-title: Inferential issues in model-based small area estimation: Some new developments
  publication-title: Stat Transit
  contributor:
    fullname: JNK Rao
– volume: 15
  start-page: 1
  issue: 1
  year: 2006
  ident: pone.0253375.ref030
  article-title: Mixed model prediction and small area estimation
  publication-title: Test
  doi: 10.1007/BF02595419
  contributor:
    fullname: J Jiang
– volume: 44
  start-page: 133
  year: 1991
  ident: pone.0253375.ref013
  article-title: Lot quality assurance sampling techniques in health surveys in developing countries: advantages and current constraints
  publication-title: World Health Stat Q
  contributor:
    fullname: CF Lanata
– volume: 17
  start-page: 251
  issue: 1
  year: 2017
  ident: pone.0253375.ref008
  article-title: HIV prevalence and uptake of HIV/AIDS services among youths (15–24 Years) in fishing and neighboring communities of Kasensero, Rakai District, South Western Uganda
  publication-title: BMC Public Health
  doi: 10.1186/s12889-017-4166-2
  contributor:
    fullname: R Mafigiri
– volume: 5
  start-page: e008669
  issue: 11
  year: 2015
  ident: pone.0253375.ref012
  article-title: Social determinants of HIV infection, hotspot areas and subpopulation groups in Ethiopia: evidence from the National Demographic and Health Survey in 2011
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2015-008669
  contributor:
    fullname: Y Lakew
– volume: 181
  start-page: 927
  issue: 4
  year: 2018
  ident: pone.0253375.ref019
  article-title: From start to finish: a framework for the production of small area official statistics
  publication-title: J R Stat Soc Ser A Stat Soc
  doi: 10.1111/rssa.12364
  contributor:
    fullname: N Tzavidis
– ident: pone.0253375.ref028
– volume: 4
  issue: 7
  year: 2009
  ident: pone.0253375.ref010
  article-title: HIV prevalence and associated risk factors among individuals aged 13–34 years in rural Western Kenya
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006470
  contributor:
    fullname: PN Amornkul
– ident: pone.0253375.ref025
– volume: 178
  start-page: 445
  issue: 2
  year: 2015
  ident: pone.0253375.ref020
  article-title: Combining data from multiple spatially referenced prevalence surveys using generalized linear geostatistical models
  publication-title: J R Stat Soc Ser A Stat Soc
  doi: 10.1111/rssa.12069
  contributor:
    fullname: E Giorgi
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: pone.0253375.ref005
  article-title: Combining national survey with facility-based HIV testing data to obtain more accurate estimate of HIV prevalence in districts in Uganda
  publication-title: BMC Public Health
  doi: 10.1186/s12889-020-8436-z
  contributor:
    fullname: J Ouma
– volume: 7
  start-page: 81
  issue: June
  year: 2015
  ident: pone.0253375.ref031
  publication-title: sae: An R Package for Small Area Estimation
  contributor:
    fullname: I Molina
– volume: 14
  start-page: 2741
  issue: 17
  year: 2000
  ident: pone.0253375.ref038
  article-title: Adjusting ante-natal clinic data for improved estimates of HIV prevalence among women in sub-Saharan Africa
  publication-title: AIDS
  doi: 10.1097/00002030-200012010-00014
  contributor:
    fullname: BW Zaba
– volume: 44
  start-page: 115
  issue: 3
  year: 1991
  ident: pone.0253375.ref014
  article-title: Lot quality assurance sampling: single- and double-sampling plans
  publication-title: World Health Stat Q
  contributor:
    fullname: S Lemeshow
– volume: 14
  start-page: 40
  issue: 1
  year: 2014
  ident: pone.0253375.ref029
  article-title: Strengthening district-based health reporting through the district health management information software system: the Ugandan experience
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-14-40
  contributor:
    fullname: VM Kiberu
– start-page: 1
  year: 2020
  ident: pone.0253375.ref006
  article-title: Difference in HIV prevalence by testing venue: results from population level survey in Uganda survey in Uganda
  publication-title: AIDS Care
  contributor:
    fullname: J Ouma
– volume: 4728
  issue: May
  year: 2012
  ident: pone.0253375.ref022
  publication-title: Estimating unmet need for contraception by district within Ghana: An application of small-area estimation techniques
  contributor:
    fullname: FA Johnson
– volume: 26
  start-page: 341
  issue: 2
  year: 2010
  ident: pone.0253375.ref021
  publication-title: District-level Estimates of Institutional Births in Ghana: Application of Small Area Estimation Technique Using Census and DHS Data
  contributor:
    fullname: FA Johnson
– volume: 26
  start-page: 336
  issue: 5
  year: 2015
  ident: pone.0253375.ref009
  article-title: High-risk motorcycle taxi drivers in the HIV/AIDS era: a respondent-driven sampling survey in Kampala, Uganda
  publication-title: Int J STD AIDS
  doi: 10.1177/0956462414538006
  contributor:
    fullname: CP Lindan
– volume: 11
  start-page: 1
  issue: 2
  year: 2016
  ident: pone.0253375.ref040
  article-title: Sex differences in HIV prevalence persist over time: Evidence from 18 countries in Sub-Saharan Africa
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0148502
  contributor:
    fullname: HK Hegdahl
– ident: pone.0253375.ref035
– start-page: 1
  year: 2018
  ident: pone.0253375.ref033
  article-title: Parametric bootstrap mean squared error of a small area multivariate EBLUP
  publication-title: Commun Stat—Simul Comput
  contributor:
    fullname: A Moretti
– ident: pone.0253375.ref016
SSID ssj0053866
Score 2.4370902
Snippet Background Model-based small area estimation methods can help generate parameter estimates at the district level, where planned population survey sample sizes...
Model-based small area estimation methods can help generate parameter estimates at the district level, where planned population survey sample sizes are not...
BackgroundModel-based small area estimation methods can help generate parameter estimates at the district level, where planned population survey sample sizes...
SourceID doaj
pubmedcentral
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage e0253375
SubjectTerms Biology and Life Sciences
Diagnosis
Engineering and Technology
Evaluation
HIV infection
Medicine and Health Sciences
People and Places
Prevalence studies (Epidemiology)
Research and Analysis Methods
Social Sciences
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5SEWClgICTi4TeLEj2NBVFskQAK26s3yc1lpSVdk-_-Zib2rzQkOXOOJknzjeTie-UzIax2DcJZ7Bqltx1qnLHOKc1YnqaIOjoeRge_zFzFftJ-uu-uDo76wJizTA2fgzrwXSbfWSa5CGwOE89rGCAu6FIPVNozet2p2i6nsg8GKhSiNclzWZ0Uvp5ubPp5ClOcc6woPAtHI17_3ytPyyIN4c3Gf3CuJIj3PL3hM7sT-ATkupjjQt4Uv-t1DssTzzNYM41Ggwy-7XlMLqSBF_ozcmEjzOdEDtX2gG-SzGCINSJm78lu2xrohOr-8wiGYePiA3c3wpFVPF0v83_CILC4-_vgwZ-X8BOYhL9kyFdsA4aeJSnAwZMer1OlYVzq1KSoXlG8b2fmm8sqlztbaJd7IECGFEUF3FX9MjnpA7AmhdSOFl0ErlSykAMGCoxS2lTY0SiRZzwjbgWk2mSbDjHtlEpYXGTCD4JsC_oy8R8T3skhyPV4A1ZuievM31c_IS9SXyR2je1M15wIpi9BzzcirUQKJLnqspFna22Ewl1-v_kHo-7eJ0JsilG5gUnhbuhfgm5BAayJ5MpEEc_WTYTmZXRMIpiP96ufI9604bm7XT_8HZs_I3QarcrDoRZyQo-3v2_gc0qqtezFa0B9WJiV8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA7n-eKLeP7A1VODCOpDljZpk_RB5BSPPeEU1D3ureTnulC763YP9L93ps0uFhT0tZm09Gsm86WZfEPIsyp4aY1wDKhtyQqrDbNaCJZHpUPlrfC9At_5BzmbF-8vy8sDsqvZmgDs_ri0w3pS800z_fH952tw-Fd91QaV7zpN16s2TCGGC6HKa-Q6h9iISV7nxX5fAby7371E1sIkz0Q6TPe3u4yCVa_pv5-5xymUv8Wk01vkZiKT9GT4-kfkILS3yVFy146-SJrSL--QBdY8axjGLE-7b6ZpqAG6SFFjYzi8SIda0h01radr1LzoAvUoq7t0W9ZgbhGdnV1gEwxOfMCuMzxp2dL5Av9J3CXz03df3s5YqrHAHHCXLdOh8BCieNBSgLNbkcWyCnlWxSIGbb12BVel45nTNpYmr2wUXPkANEf6qszEPXLYAmL3Cc25kk75SutogCZ4A5OpNIUynmsZVT4hbAdmvR6kNOp-P03BEmQArEbw6wT-hLxBxPe2KITdX1htFnXyq9o5GavCWCW0L4IHtpebEGC9H4M3lfET8gS_Vz2cKt27c30iUdYIZ7cJedpboBhGi9k2C3PVdfXZx4t_MPr8aWT0PBnFFQwKZ9IJB3gnFNkaWR6PLMGl3ahZjUbXCIJxS7v82muCa4Eb4PmD_8T4IbnBMUkHc2DkMTncbq7CI2BZW_u4d5xfSUko5w
  priority: 102
  providerName: Scholars Portal
Title Model-based small area estimation methods and precise district-level HIV prevalence estimates in Uganda
URI https://pubmed.ncbi.nlm.nih.gov/PMC8345831
https://doaj.org/article/cc6f94ab738d4ed3921aee742feda9ad
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2ceGCGB-iMIqFkIBD2iZ2bOe4TZs6pI5p0Gm3yJ9dpTStlu7_573ErcgNcckhfpaT9-H3bL_3MyFfCu-E0cwmENrmCTdKJ0YxlqRBKl84w1yLwDe7FtM5_3Gf3x-QfFcL0ybtW7Mc1dVqVC8f2tzKzcqOd3li45vZuWJ42peOD8khuN_dEr2bfsGAhYg1ckym4yiS0WZd-xE4eMYk3lbDOJaIMtZzRy1q_35u7idJ_uV1Ll-SFzFcpKfdZx2TA1-_IsfRIBv6LaJGf39NFnirWZWgV3K0WemqohoCQoooGl15Iu1ui26orh3dIKpF46lD4Nyl3SYVZg_R6dUdNoH64QC7zjDSsqbzBe46vCHzy4vf59Mk3qKQWIhOtony3IETyrwSDMzZsEnIC59OisCDV8YpyzOZ22xilQm5TgsTWCadh0BGuCKfsLfkqAbmvSM0zaSw0hVKBQ2BgNMwXQrNpXaZEkGmA5LsmFluOrCMsj0xk7DI6BhWohzKKIcBOUOO72kR6rp9sX5clFHgpbUiFFwbyZTj3kE8l2rvYUUfvNOFdgPyCeVVdnWje4MtTwUCF-H8NSCfWwqEu6gxn2ahn5qmvPp59w9Ev257RF8jUViDUlgdaxjgnxBGq0d50qMEo7W9ZtnTrh4L-i1gBC3qd1T69__d8wN5nmFCDua7iBNytH188h8hotqaIXl2dnF9cztsdyTgOeNq2FrVH0ITJ1o
link.rule.ids 230,314,727,780,784,864,885,2102,2221,24318,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGOMAFMT5EYTALIQGHtE2c2M5xTEwtrAPBOu1m-bOrlKbV0v3_vJe4FbkhrvGznLxvx-_9TMiH0jtuNLMJpLZFkhupEyMZS9IgpC-dYa5F4Jtd8sk8_3ZT3ByQYtcL0xbtW7Mc1tVqWC9v29rKzcqOdnVio5-zM8nwtC8dPSAPCybKdLdJ7xwwmDDnsUuOiXQUhTLcrGs_hBDPmMD7aliOTaKM9QJSi9u_9879Msm_4s75U_IkJoz0tHuxI3Lg62fkKJpkQz9F3OjPz8kC7zWrEoxLjjYrXVVUQ0pIEUeja1Ck3X3RDdW1oxvEtWg8dQidu7TbpML6ITqZXuMQKCAusJsMKy1rOl_gf4cXZH7-9epsksR7FBIL-ck2kT53EIYyLzkDgzZsHIrSp-My5MFL46TNM1HYbGylCYVOSxNYJpyHVIa7shizl-SwBua9IjTNBLfClVIGDamA0-Awuc6FdpnkQaQDkuyYqTYdXIZqz8wEbDM6himUg4pyGJAvyPE9LYJdtw_WdwsVRa6s5aHMtRFMutw7yOhS7T3s6YN3utRuQE5QXqrrHN2brDrlCF2EHmxA3rcUCHhRY0XNQt83jZr-uP4Hot-_ekQfI1FYg1JYHbsY4JsQSKtHedyjBLO1vWHR064eC_ojYAYt7ndU-9f_PfOEPJpczS7UxfTy-xvyOMPyHKx-4cfkcHt3799CfrU171pr-gPEBCdG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSIgXxPgQhcEshAQ8pGnixHYex6BqgY0J6LS3yJ9dpTSNlu7_5y5xq-UN8Rqf5eQ-fOf47neEvC-c5VoxE0Fom0eZlirSkrEo8UK6wmpmOwS-s3M-W2TfrvKrO62-uqR9o1fjulqP69V1l1vZrE28yxOLL85OJcPbviRurI_vkwc5AyXbHdT7TRjMmPNQKcdEEgfBjJtN7cbg5hkT2LOGZVgoytjAKXXY_fsdepgqecf3TJ-QxyFopCf9yx2Se65-Sg6DWbb0Y8CO_vSMLLG3WRWhb7K0XauqogrCQopYGn2RIu17RrdU1ZY2iG3ROmoRPndltlGFOUR0Nr_EIVBCXGA3GVZa1XSxxH8Pz8li-vXP6SwKvRQiAzHKNpIus-CKUic5A6PWbOLzwiWTwmfeSW2lyVKRm3RipPa5SgrtWSqsg3CG2yKfsBfkoAbmvSQ0SQU3whZSegXhgFWwaXKVCWVTyb1IRiTaMbNsesiMsrs3E3DU6BlWohzKIIcR-Ywc39Mi4HX3YHOzLIPYS2O4LzKlBZM2cxaiukQ5B-d676wqlB2RY5RX2VeP7s22POEIX4S72Ii86ygQ9KLGrJqlum3bcv7z8h-Ifv8aEH0IRH4DSmFUqGSAb0IwrQHl0YASTNcMhsVAuwYsGI6AKXTY30H1X_33zGPy8OLLtPwxP__-mjxKMUMHE2D4ETnY3ty6NxBibfXbzpj-AudiKFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+small+area+estimation+methods+and+precise+district-level+HIV+prevalence+estimates+in+Uganda&rft.jtitle=PloS+one&rft.au=Ouma%2C+Joseph&rft.au=Jeffery%2C+Caroline&rft.au=Awor%2C+Colletar+Anna&rft.au=Muruta%2C+Allan&rft.date=2021-08-06&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=8&rft.spage=e0253375&rft_id=info:doi/10.1371%2Fjournal.pone.0253375&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0253375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon