Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat

Aegilops variabilis (UUSvSv), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between Ae. umbellulata (UU) with Ae. longissima (SlSl). The Ae. variabilis karyotype was poorly characterized by fluorescent in situ hybridization (FISH). The FISH probe...

Full description

Saved in:
Bibliographic Details
Published inBreeding Science Vol. 66; no. 4; pp. 522 - 529
Main Authors Zhao, Laibin, Ning, Shunzong, Yu, Jianjun, Hao, Ming, Zhang, Lianquan, Yuan, Zhongwei, Zheng, Youliang, Liu, Dengcai
Format Journal Article
LanguageEnglish
Published Japan Japanese Society of Breeding 2016
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aegilops variabilis (UUSvSv), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between Ae. umbellulata (UU) with Ae. longissima (SlSl). The Ae. variabilis karyotype was poorly characterized by fluorescent in situ hybridization (FISH). The FISH probe combination of pSc119.2, pTa71 and pTa-713 identified each of the 14 pairs of Ae. variabilis chromosomes. Our FISH ideogram was further used to detect an Ae. variabilis chromosome carrying stripe rust resistance in the background of wheat lines developed from crosses of the stripe rust susceptible bread wheat cultivar Yiyuan 2 with a resistant Ae. variabilis accession. Among the 15 resistant BC1F7 lines, three were 2Sv + 4Sv addition lines (2n = 46) and 12 were 2Sv(2B) or 2Sv(2D) substitution lines that were confirmed with SSR markers. SSR marker gwm148 can be used to trace 2Sv in common wheat background. Chromosome 2Sv probably carries gametocidal(Gc) gene(s) since cytological instability and chromosome structural variations, including non-homologous translocations, were observed in some lines with this chromosome. Due to the effects of photoperiod genes, substitution lines 2Sv(2D) and 2Sv(2B) exhibited late heading with 2Sv(2D) lines being later than 2Sv(2B) lines. 2Sv(2D) substitution lines were also taller and exhibited higher spikelet numbers and longer spikes.
AbstractList Aegilops variabilis (UUSvSv), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between Ae. umbellulata (UU) with Ae. longissima (SlSl). The Ae. variabilis karyotype was poorly characterized by fluorescent in situ hybridization (FISH). The FISH probe combination of pSc119.2, pTa71 and pTa-713 identified each of the 14 pairs of Ae. variabilis chromosomes. Our FISH ideogram was further used to detect an Ae. variabilis chromosome carrying stripe rust resistance in the background of wheat lines developed from crosses of the stripe rust susceptible bread wheat cultivar Yiyuan 2 with a resistant Ae. variabilis accession. Among the 15 resistant BC1F7 lines, three were 2Sv + 4Sv addition lines (2n = 46) and 12 were 2Sv(2B) or 2Sv(2D) substitution lines that were confirmed with SSR markers. SSR marker gwm148 can be used to trace 2Sv in common wheat background. Chromosome 2Sv probably carries gametocidal(Gc) gene(s) since cytological instability and chromosome structural variations, including non-homologous translocations, were observed in some lines with this chromosome. Due to the effects of photoperiod genes, substitution lines 2Sv(2D) and 2Sv(2B) exhibited late heading with 2Sv(2D) lines being later than 2Sv(2B) lines. 2Sv(2D) substitution lines were also taller and exhibited higher spikelet numbers and longer spikes.
(UUS S ), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between (UU) with (S S ). The karyotype was poorly characterized by fluorescent in situ hybridization (FISH). The FISH probe combination of pSc119.2, pTa71 and pTa-713 identified each of the 14 pairs of chromosomes. Our FISH ideogram was further used to detect an chromosome carrying stripe rust resistance in the background of wheat lines developed from crosses of the stripe rust susceptible bread wheat cultivar Yiyuan 2 with a resistant accession. Among the 15 resistant BC F lines, three were 2S + 4S addition lines (2n = 46) and 12 were 2S (2B) or 2S (2D) substitution lines that were confirmed with SSR markers. SSR marker can be used to trace 2S in common wheat background. Chromosome 2S probably carries gametocidal( ) gene(s) since cytological instability and chromosome structural variations, including non-homologous translocations, were observed in some lines with this chromosome. Due to the effects of photoperiod genes, substitution lines 2S (2D) and 2S (2B) exhibited late heading with 2S (2D) lines being later than 2S (2B) lines. 2S (2D) substitution lines were also taller and exhibited higher spikelet numbers and longer spikes.
Aegilops variabilis (UUS v S v ), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between Ae. umbellulata (UU) with Ae. longissima (S l S l ). The Ae. variabilis karyotype was poorly characterized by fluorescent in situ hybridization (FISH). The FISH probe combination of pSc119.2, pTa71 and pTa-713 identified each of the 14 pairs of Ae. variabilis chromosomes. Our FISH ideogram was further used to detect an Ae. variabilis chromosome carrying stripe rust resistance in the background of wheat lines developed from crosses of the stripe rust susceptible bread wheat cultivar Yiyuan 2 with a resistant Ae. variabilis accession. Among the 15 resistant BC 1 F 7 lines, three were 2S v + 4S v addition lines (2n = 46) and 12 were 2S v (2B) or 2S v (2D) substitution lines that were confirmed with SSR markers. SSR marker gwm148 can be used to trace 2S v in common wheat background. Chromosome 2S v probably carries gametocidal( Gc ) gene(s) since cytological instability and chromosome structural variations, including non-homologous translocations, were observed in some lines with this chromosome. Due to the effects of photoperiod genes, substitution lines 2S v (2D) and 2S v (2B) exhibited late heading with 2S v (2D) lines being later than 2S v (2B) lines. 2S v (2D) substitution lines were also taller and exhibited higher spikelet numbers and longer spikes.
Author Zhang, Lianquan
Zhao, Laibin
Liu, Dengcai
Yu, Jianjun
Yuan, Zhongwei
Zheng, Youliang
Ning, Shunzong
Hao, Ming
Author_xml – sequence: 1
  fullname: Zhao, Laibin
  organization: Triticeae Research Institute, Sichuan Agricultural University
– sequence: 2
  fullname: Ning, Shunzong
  organization: Triticeae Research Institute, Sichuan Agricultural University
– sequence: 3
  fullname: Yu, Jianjun
  organization: Triticeae Research Institute, Sichuan Agricultural University
– sequence: 4
  fullname: Hao, Ming
  organization: Triticeae Research Institute, Sichuan Agricultural University
– sequence: 5
  fullname: Zhang, Lianquan
  organization: Triticeae Research Institute, Sichuan Agricultural University
– sequence: 6
  fullname: Yuan, Zhongwei
  organization: Triticeae Research Institute, Sichuan Agricultural University
– sequence: 7
  fullname: Zheng, Youliang
  organization: Triticeae Research Institute, Sichuan Agricultural University
– sequence: 8
  fullname: Liu, Dengcai
  organization: Triticeae Research Institute, Sichuan Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27795677$$D View this record in MEDLINE/PubMed
BookMark eNpdkc2r1DAUxYM88X3oyr0E3AjS502TJp2NMAx-wQM3ug5p5rbN0CZjkr7H_Pe2M-OgbpJLzo_DuTm35MoHj4S8ZnDPSgUfdqlp0j2TwNgzcsO4UAVXvLo6zqJQksE1uU1pB1BWIKoX5LpUalVJpW5IvznkMITOWTNQt0WfXTvP2QVPQ0uNp2vs3BD2iT6a6EzjBpeo7WMYQwojUmtiPDjf0ZSj2yONU8o0YnIpG2-ROk-fejT5JXnemiHhq_N9R35-_vRj87V4-P7l22b9UFjJVC4UNJWoDTIpG1VvRc0RLIMVxxJaaeRKihUvS74Vcn6qpWqlKEvRrGYVeF3zO_Lx5LufmhG3dt4omkHvoxtNPOhgnP5X8a7XXXjUFTDgIGaDd2eDGH5NmLIeXbI4DMZjmJJmNa8AuJQL-vY_dBem6Of1FkqBLFW1JHp_omwMKUVsL2EY6KVBfWxQHxuc6Td_57-wfyqbgfUJ2M0_3OEFMDE7O-DZTEotluNoetFsb6JGz38Dbiyx1w
CitedBy_id crossref_primary_10_1007_s10722_018_0649_y
crossref_primary_10_1007_s00122_024_04616_x
crossref_primary_10_1186_s12870_024_05110_8
crossref_primary_10_3389_fpls_2021_654382
crossref_primary_10_1093_pcp_pcaa152
crossref_primary_10_1111_tpj_15316
crossref_primary_10_3389_fpls_2018_01040
crossref_primary_10_1139_gen_2019_0148
crossref_primary_10_1017_S1479262118000175
crossref_primary_10_3389_fpls_2018_01104
crossref_primary_10_1007_s13353_020_00555_7
crossref_primary_10_1007_s11032_021_01253_w
crossref_primary_10_3389_fpls_2018_00526
crossref_primary_10_1007_s00122_019_03344_x
crossref_primary_10_1038_s41586_020_2961_x
crossref_primary_10_3389_fpls_2018_01756
crossref_primary_10_1007_s10722_018_0639_0
crossref_primary_10_1186_s12864_017_4384_0
crossref_primary_10_3389_fpls_2020_00710
crossref_primary_10_1007_s11738_018_2721_9
crossref_primary_10_1186_s12864_022_08516_6
crossref_primary_10_1186_s13039_019_0428_2
crossref_primary_10_3897_CompCytogen_v13i1_30673
Cites_doi 10.1508/cytologia.19.336
10.1007/s00122-008-0716-4
10.1073/pnas.1319598110
10.1007/s10142-004-0106-1
10.1270/jsbbs.59.513
10.1007/BF00261506
10.1094/PDIS.2004.88.8.896
10.1007/s11032-006-9070-x
10.1266/jjg.65.135
10.1111/j.1439-0523.1992.tb00133.x
10.1080/07060660509507230
10.1139/g97-077
10.1360/aps040073
10.1139/gen-2013-0003
10.1007/s00606-003-0072-4
10.1139/g05-062
10.1007/s13353-014-0215-z
10.1007/BF00025259
10.1111/j.1439-0523.2008.01513.x
10.1111/jse.12084
10.1007/s11032-010-9514-1
10.1023/A:1002904123885
10.1093/molbev/msl151
10.1007/s00122-015-2489-x
10.1016/j.ympev.2006.01.023
10.1266/jjg.60.125
10.1139/g11-062
10.1007/s10681-013-0930-2
10.1038/hdy.1980.33
10.1093/aob/mcq215
10.3109/10520299909047968
10.1139/G08-065
10.1007/s00122-012-1979-3
10.1139/G06-050
10.1146/annurev.ge.10.120176.000335
10.1071/AR06142
10.1007/BF00015718
10.1094/PDIS-93-11-1093
10.1093/genetics/120.4.1085
10.1007/s13353-013-0133-5
10.1094/PDIS-94-9-1163C
ContentType Journal Article
Copyright 2016 by JAPANESE SOCIETY OF BREEDING
Copyright Japan Science and Technology Agency 2016
Copyright © 2016 by JAPANESE SOCIETY OF BREEDING 2016
Copyright_xml – notice: 2016 by JAPANESE SOCIETY OF BREEDING
– notice: Copyright Japan Science and Technology Agency 2016
– notice: Copyright © 2016 by JAPANESE SOCIETY OF BREEDING 2016
DBID NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1270/jsbbs.16011
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1347-3735
EndPage 529
ExternalDocumentID 10_1270_jsbbs_16011
27795677
article_jsbbs_66_4_66_16011_article_char_en
Genre Journal Article
GroupedDBID 23N
2WC
5GY
A8Z
ABDBF
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBD
EBS
ECGQY
EJD
ESTFP
ESX
EYRJQ
GX1
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
QF4
QN7
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
XSB
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c617t-70b548ae166b78d483e0c1093e20f6a696493223d463e2867f64224b90f603883
IEDL.DBID RPM
ISSN 1344-7610
IngestDate Tue Apr 09 21:52:20 EDT 2024
Sat Aug 17 05:49:17 EDT 2024
Fri Sep 13 05:10:49 EDT 2024
Fri Aug 23 02:50:26 EDT 2024
Tue Aug 27 13:47:21 EDT 2024
Sun Jul 28 05:07:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Puccinia striiformis
FISH
additional line
translocation line
Aegilops variabilis
substitution line
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c617t-70b548ae166b78d483e0c1093e20f6a696493223d463e2867f64224b90f603883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
Communicated by N. Mori
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010304/
PMID 27795677
PQID 1837062758
PQPubID 1966357
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5010304
proquest_miscellaneous_1835003664
proquest_journals_1837062758
crossref_primary_10_1270_jsbbs_16011
pubmed_primary_27795677
jstage_primary_article_jsbbs_66_4_66_16011_article_char_en
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Breeding Science
PublicationTitleAlternate Breeding Science
PublicationYear 2016
Publisher Japanese Society of Breeding
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society of Breeding
– name: Japan Science and Technology Agency
References Knight, E., A. Binnie, T. Draeger, M.D. Moscou, M. Rey, J. Sucher, S. Mehra, I. King and G. Moore (2015) Mapping the ‘breaker’ element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis. Theor. Appl. Genet. 128: 1049–1059.
Marais, G.F., B. McCallum and A.S. Marais (2008) Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina. Plant Breed. 127: 340–345.
Petersen, G., O. Seberg, M. Yde and K. Berthelsen (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 39: 70–82.
Wang, R.R. and B. Lu (2014) Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. J. Syst. Evol. 52: 697–705.
Zhang, H., Y. Bian, X.W. Gou, Y.Z. Dong, S. Rustgi, B.J. Zhang, C.M. Xu, N. Li, B. Qi, F.P. Han et al. (2013) Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation. Proc. Natl. Acad. Sci USA 110: 19466–19471.
Liu, D.C., Z.G. Xiang, L.Q. Zhang, Y.L. Zheng, W.Y. Yang, G.Y. Chen, C.J. Wan and H.G. Zhang (2011) Transfer of stripe rust resistance from Aegilops variabilis to bread wheat. Afr. J. Biotechnol. 10: 136–139.
Barloy, D., J. Lemoine, P. Abelard, A.M. Tanguy, R. Rivoal and J. Jahier (2007) Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol. Breed. 20: 31–40.
Dennis, E.S., W.L. Gerlach and W.J. Peacock (1980) Identical polypyrimidine-polypurine satellite DNAs in wheat and barley. Heredity 44: 349–366.
Yen, C. and J.L. Yang (2009) Historical review and prospect of taxonomy of tribe Triticeae Dumortier (Poaceae). Breed. Sci. 59: 513–518.
Salina, E.A., K.Y. Lim, E.D. Badaeva, A.B. Shcherban, I.G. Adonina, A.V. Amosova, T.E. Samatadze, T.Y. Vatolina, S.A. Zoshchuk and A.R. Leitch (2006) Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 49: 1023–1035.
Endo, T.R. (1990) Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn. J. Genet. 65: 135–152.
Kilian, B., H. Ozkan, O. Deusch, S. Effgen, A. Brandolini, J. Kohl, W. Martin and F. Salamini (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol. Biol. Evol. 24: 217–227.
Liu, T.G., Y.L. Peng, W.Q. Chen and Z.Y. Zhang (2010) First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42. Plant Dis. 94: 1163.
Miralles, D.J., R.A. Richards and G.A. Slafer (2000) Duration of stem elongation period influences the number of fertile florets in wheat and barley. Aust. J. Plant Physiol. 27: 931–940.
Badaeva, E.D., A.V. Amosova, T.E. Samatadze, S.A. Zoshchuk, N.G. Shostak, N.N. Chikida, A.V. Zelenin, W.J. Raupp, B. Friebe and B.S. Gill (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst. Evol. 246: 45–76.
Kwiatek, M., H. Wiśniewska and B. Apolinarska (2013) Cytogenetic analysis of Aegilops chromosomes, potentially usable in triticale (X Triticosecale Witt.) breeding. J. Appl. Genet. 54: 147–155.
Kihara, H. (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric. Hortic. 19: 889–890.
Cuadrado, A., M. Cardoso and N. Jouve (2008) Increasing the physical markers of wheat chromosomes using SSRs as FISH probes. Genome 51: 809–815.
Liu, J., Z.J. Chang, X.J. Zhang, Z.J. Yang, X. Li, J.Q. Jia, H.X. Zhan, H.J. Guo and J.M. Wang (2013) Putative Thinopyrum intermedium derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor. Appl. Genet. 126: 265–274.
Pedersen, C. and P. Langridge (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40: 589–593.
Yu, M.Q. and J. Jahier (1992) Origin of Sv genome of Aegilops variabilis and utilization of the Sv as analyser of the S genome of the Aegilops species in the Sitopsis section. Plant Breed. 108: 290–295.
Kato, A. (1999) Air drying method using nitrous oxide for chromosome counting in maize. Biotech. Histochem. 74: 160–166.
Worland, A. (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89: 49–57.
Sepsi, A., I. Molnár, D. Szalay and M. Molnár-Láng (2008) Characterization of a leaf rust-resistant wheat–Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor. Appl. Genet. 116: 825–834.
Chen, W.Q., L.R. Wu, T.G. Liu, S.C. Xu, S.L. Jin, Y.L. Peng and B.T. Wang (2009) Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis. 93: 1093–1101.
Wan, A., Z. Zhao, X. Chen, Z. He, S. Jin, Q. Jia, G. Yao, J. Yang, B. Wang, G. Li et al. (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. Tritici in China in 2002. Plant Dis. 88: 896–904.
Yu, M.Q., F. Person-Dedryver, J. Jahier, D. Pannetier, A.M. Tanguy and P. Abelard (1990) Resistance to root knot nematode, Meloidogyne naasi (Franklin) transferred from Aegilops variabilis Eig to bread wheat. Agronomie 6: 451–456.
Yu, M.Q., J. Jahier and F. Person-Dedryver (1992) Genetics of two mechanisms of resistance to Meloidogyne naasi (FRANKLIN) in an Aegilops variabilis Eig. Accession. Euphytica 58: 267–273.
Komuro, S., R. Endo, K. Shikata and A. Kato (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56: 131–137.
Neelam, K., N. Rawat, V.K. Tiwari, S. Kumar, P. Chhuneja, K. Singh, S. Randhawa and H.S. Dhaliwal (2011) Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density. Mol. Breed. 28: 623–634.
Sourdille, P., S. Singh, T. Cadalen, G.L. Brown-Guedira, G. Gay, L.L. Qi, B.S. Gill, P. Dufour, A. Murigneux and M. Bernard (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct. Integr. Genomics 4: 12–25.
Tang, Z.X., Z.J. Yang and S.L. Fu (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J. Appl. Genet. 55: 313–318.
Kota, R.S. and J. Dvorak (1988) Genomic instability in wheat induced by chromosome 6BS of Triticum speltoides. Genetics 120: 1085–1094.
McNeal, F.H., C.F. Koznak, E.P. Smith, W.S. Tate and T.S. Russell (1971) A uniform system for recording and processing cereal research data. USDA-ARS Bull. 42: 34–121.
Hao, M., J.T. Luo, L.Q. Zhang, Z.W. Yuan, Y.W. Yang, M. Wu, W.J. Chen, Y.L. Zheng, H.G. Zhang and D.C. Liu (2013) Production of hexaploid triticale by a synthetic hexaploid wheat–rye hybrid method. Euphytica 193: 347–357.
Tsujimoto, H. (2005) Gametocidal genes in wheat as the inducer of chromosome breakage. In: Tsunewaki, K. (ed.) Frontiers of Wheat Bioscience. Memorial issue, Wheat Information Service No. 100. Kihara Memorial Yokohama Foundation, Yokohama, pp. 33–48.
Schneider, A., G. Linc, I. Molnár and M. Molnár-Láng (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheats – Aegilops biuncialis disomic addition lines. Genome 48: 1070–1082.
Chen, X.M. (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol. 27: 314–337.
McFadden, E.S. and E.R. Sears (1944) The artificial synthesis of Triticum spleta. Rec. Genet. Soc. Am. 13: 26–27.
Spetsov, P., D. Mingeot, J.M. Jacquemin, K. Samardjieva and E. Marinova (1997) Transfer of powdery mildew resistance from Aegilops variabilis into bread wheat. Euphytica 93: 49–54.
Hao, M., J.T. Luo, M. Yang, L.Q. Zhang, Z.H. Yan, Z.W. Yuan, Y.L. Zheng, H.G. Zhang and D.C. Liu (2011) Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye. Genome 54: 959–964.
van Slageren, M.W. (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University, Wageningen; International Center for Agricultural Research in Dry Areas, Aleppo, Syria.
Kihara, H. (1954) Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia 19: 336–357.
Miller, T.E., J. Hutchinson and V. Chapman (1982) Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theor. Appl. Genet. 61: 27–33.
Molnár, I., M. Cifuentes, A. Schneider, E. Benavente and M. Molnár-Láng (2011) Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann. Bot. 107: 65–76.
Sears, E.R. (1976) Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10: 31–51.
Wan, A.M., X.M. Chen and Z.H. He (2007) Wheat stripe rust in China. Aust. J. Agric. Res. 58: 605–619.
Mujeeb-Kazi, A., A. Gul, M. Farooq, S. Rizwan and J.I. Mirza (2007) Genetic diversity of Aegilops variabilis (2n = 4x = 28; UUSS) for wheat improvement: morpho-cytogentic characterization of some derived amphiploids and their practical significance. Pak. J. Bot. 39: 57–66.
Yen, C., J.L. Yang and Y. Yen (2005) Hitoshi Kihara, Askell Löve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phytotaxon. Sin. 43: 82–93.
Endo, T.R. (1985) Two types of gametocidal chromosomes of Aegilops sharonensis and Ae. longissima. Jpn. J. Genet. 60: 125–135.
44
45
46
48
49
50
10
11
12
13
14
15
16
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
M.Q. Yu (47) 1990; 6
R.S. Kota (17) 1988; 120
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 13
  doi: 10.1508/cytologia.19.336
– ident: 35
  doi: 10.1007/s00122-008-0716-4
– ident: 50
  doi: 10.1073/pnas.1319598110
– ident: 39
– ident: 12
– ident: 36
  doi: 10.1007/s10142-004-0106-1
– ident: 46
  doi: 10.1270/jsbbs.59.513
– ident: 25
  doi: 10.1007/BF00261506
– ident: 41
  doi: 10.1094/PDIS.2004.88.8.896
– ident: 26
– ident: 2
  doi: 10.1007/s11032-006-9070-x
– ident: 8
  doi: 10.1266/jjg.65.135
– volume: 6
  start-page: 451
  issn: 0249-5627
  year: 1990
  ident: 47
  publication-title: Agronomie
  contributor:
    fullname: M.Q. Yu
– ident: 48
  doi: 10.1111/j.1439-0523.1992.tb00133.x
– ident: 4
  doi: 10.1080/07060660509507230
– ident: 30
  doi: 10.1139/g97-077
– ident: 45
  doi: 10.1360/aps040073
– ident: 16
  doi: 10.1139/gen-2013-0003
– ident: 1
  doi: 10.1007/s00606-003-0072-4
– ident: 33
  doi: 10.1139/g05-062
– ident: 38
  doi: 10.1007/s13353-014-0215-z
– ident: 49
  doi: 10.1007/BF00025259
– ident: 22
  doi: 10.1111/j.1439-0523.2008.01513.x
– ident: 43
  doi: 10.1111/jse.12084
– ident: 23
– ident: 40
– ident: 29
  doi: 10.1007/s11032-010-9514-1
– ident: 37
  doi: 10.1023/A:1002904123885
– ident: 14
  doi: 10.1093/molbev/msl151
– ident: 15
  doi: 10.1007/s00122-015-2489-x
– ident: 31
  doi: 10.1016/j.ympev.2006.01.023
– ident: 7
  doi: 10.1266/jjg.60.125
– ident: 9
  doi: 10.1139/g11-062
– ident: 10
  doi: 10.1007/s10681-013-0930-2
– ident: 6
  doi: 10.1038/hdy.1980.33
– ident: 27
  doi: 10.1093/aob/mcq215
– ident: 28
– ident: 24
– ident: 11
  doi: 10.3109/10520299909047968
– ident: 5
  doi: 10.1139/G08-065
– ident: 20
  doi: 10.1007/s00122-012-1979-3
– ident: 32
  doi: 10.1139/G06-050
– ident: 34
  doi: 10.1146/annurev.ge.10.120176.000335
– ident: 42
  doi: 10.1071/AR06142
– ident: 44
  doi: 10.1007/BF00015718
– ident: 19
– ident: 3
  doi: 10.1094/PDIS-93-11-1093
– volume: 120
  start-page: 1085
  issn: 0016-6731
  year: 1988
  ident: 17
  publication-title: Genetics
  doi: 10.1093/genetics/120.4.1085
  contributor:
    fullname: R.S. Kota
– ident: 18
  doi: 10.1007/s13353-013-0133-5
– ident: 21
  doi: 10.1094/PDIS-94-9-1163C
SSID ssj0025045
Score 2.2421193
Snippet Aegilops variabilis (UUSvSv), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between Ae. umbellulata (UU)...
(UUS S ), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between (UU) with (S S ). The karyotype was...
Aegilops variabilis (UUS v S v ), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between Ae. umbellulata...
SourceID pubmedcentral
proquest
crossref
pubmed
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 522
SubjectTerms additional line
Aegilops
Aegilops variabilis
Chromosome translocations
Chromosomes
FISH
Fluorescence
Fluorescence in situ hybridization
Goat grass
Homology
Markers
Puccinia striiformis
Research Paper
Stripe rust
Structural stability
Substitutes
substitution line
translocation line
Wheat
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5VhQMcEG9SCjJSr4E8JnaChNCqoqqQyomVeoscx9ndqk2WZEvpv2fG60RsVXHJITNRoplxPJ_t-QbgqDEGs0yZMKljDGmGtmFh8iKUmgIoblBXrhfB2Q95Osfv59n5HozNOL0Bh3uhHfeTmveXH__8uv1KA_6L40ZQ0aeLoaoGXibhGt8HCabIoX6G03YC03RlDnkhhoTbI1-od-fhnanp4QVlZwt7X-J59_zkPxPSyVN44jNJMdu6_hns2fY5PJ4tes-mYV_A8vh2M_7cxKr2B4OcL0TXCN2KmV2sLrv1IH4TZnZku4MwSz6iN3RXVhjd91wHJbi7x9oKLtAQBNA56aRoEatW3PDf_CXMT779PD4NfWuF0FDKsglVVBFU0TaWslJ5jXlqI8PMUjaJGqllIZESuyStUdKtXKqGcEqCVUFS5o9JX8F-27X2DYg8RmMyk5KowESbIrexVVpxR486ym0AR6NVy_WWQaNk5EHGL53xS2f8AD5vLT4p-aHjlaQskS9OeZJxaRqN7wAORy-VYwiVMfP6MAlzHsCHSUyjh7dEdGu7a6eTMSWPxABeb506vT9RisCjUgGoHXdPCszMvStpV0vH0J1x94wID_7_WW_hEaVffkHnEPY3_bV9RynOpnrvwvcvKXX9sg
  priority: 102
  providerName: Scholars Portal
Title Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat
URI https://www.jstage.jst.go.jp/article/jsbbs/66/4/66_16011/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/27795677
https://www.proquest.com/docview/1837062758/abstract/
https://search.proquest.com/docview/1835003664
https://pubmed.ncbi.nlm.nih.gov/PMC5010304
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Breeding Science, 2016, Vol.66(4), pp.522-529
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaaYoftMOxdb12hAb268UOW5N2CYF0xIMMOK5CbIcty4qKxgzjdsH8_UpGNZdhpFx1M-gGTkvjZ5EeAy9oYnmXShEkV8xB3aBvmRuWh0OhAcc116XoRLL6Km1v-ZZktTyAbamFc0r4pm6v2fnPVNmuXW7ndmOmQJzb9tphn1Jwg4tMJTGSaDhDdo6wscp2J45TzEDF65IvyEhlN7_qy7Ol7SkwNYhIpERxIebQjPbrDoGxl_xVv_p02-cc-dP0MnvoAks0OD_ocTmz7Ap7MVjtPomFfwnr-az-saaypfD6QMwHraqZbNrOr5r7b9uwHQmXHsdszs6bMvL7bWGb0bkflT4yaemwto7oMhricYk10Eta07Cct4q_g9vrT9_lN6DsqhAYjlX0ooxIRiraxEKVUFVepjQwRStkkqoUWueAYzyVpxQUeUkLWCE8SXuYoJdqY9DWctl1rz4CpmBuTmRRFOU-0yZWNrdSSGnlUkbIBXA5vtdgeiDMKAhxoh8LZoXB2CODj4Y2PSt7QXkmIgtPglEcZVaThtA7gfLBS4aceXpbofIh7WQXwYRTjpKE_Ibq13YPTyYiJR_AA3hyMOt5_cIsA5JG5RwUi5D6WoJ86Ym7vl2__-8x38BgDMv-J5xxO97sH-x6Dnn15AZPPyxjHBVcXzuF_A2L9BdI
link.rule.ids 230,315,733,786,790,891,2236,4043,24346,27956,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VggQ98CzUUGCRenXix3rX5hZFVAGaikOLerPs9TpJaewocUDw65lZry1ScYGLD56xrfXMeudbz3wDcFIqxaNIKjcofO7iCq3dRMWJKzJ0IL_kWW56EUzPxeSSf7qKrvYg6mphTNK-yheD6mY5qBZzk1u5Wqphlyc2_DIdR9ScwOPDO3AX52sgO5BucVbkmd7Efsi5iyjds2V5gfSG15s839COik8tYgIpER5IubMm3bvGsGym_xZx3k6c_GMlOn0EX7sxtAko3wbbJh-oX7foHf95kI_hoY1N2agVP4E9XT2Fg9Fsbfk59DOYj3823eeSLQqbamSsy-qSZRUb6dnipl5t2HdE4Ya-d8PUnJL-NvVSM5Wt11RZxahfyEozKvlgCPkpjEX_Y4uK_aD14RAuTz9cjCeubdbgKgyCGld6OYKfTPtC5DIueBxqTxFXlQ68UmQiERxDxSAsuMBTsZAlIp-A5wlKiZEmfA77VV3pI2Cxz5WKVIiihAeZSmLta5lJ6hFSeLF24KQzV7pqOTlSwjJo4NQYODUGduB9a8peyb5eqyREyulglHsZFbvhF8OB4878qZ3VeFtiCiJa59iBd70Y5yP9ZMkqXW-NTkQkP4I78KL1lv75nb85IHf8qFcgru9dCXqH4fy23vDyv698C_cnF9Oz9Ozj-edX8ADjPruTdAz7zXqrX2Ns1eRvzEz6DfbFJew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BQQgOPAsYCixSr45f612bWxSIyqNVD1SquFj2ep24NI4VOyD49cxs1lFTcerFB8_Y1npmvfOtZ74BOKyU4nEslRuWAXdxhdZuqpLUFTk6UFDxvDC9CI5PxNEZ_3Ien19p9WWS9lVRj5rLxaip5ya3sl0ob8gT806PJzE1J_C515aVdxvu4JwN0wGoW6wV-6Y_cRBx7iJS921pXih976Irio52VQJqExNKiRBByp116e4FhmYz_b-o83ry5JXVaPoIfgzj2CSh_Byt-2Kk_l6jeLzRQB_DQxujsvFG5Qnc0s1TeDCerSxPh34G88mffvhssrq0KUfGymxZsbxhYz2rL5dtx34hGjc0vh1Tc0r-65YLzVS-WlGFFaO-Ia1mVPrBEPpTOIt-yOqG_aZ1Yh_Opp--T45c27TBVRgM9a70CwRBuQ6EKGRS8iTSviLOKh36lchFKjiGjGFUcoGnEiErREAhL1KUEjNN9Bz2mmWjXwJLAq5UrCIUpTzMVZroQMtcUq-Q0k-0A4eDybJ2w82REaZBI2fGyJkxsgMfNubcKtlXbJWEyDgdjPJWRkVv-OVw4GBwgczObrwtMQYRvXPiwPutGOcl_WzJG71cG52YyH4Ed-DFxmO2zx98zgG540tbBeL83pWghxjub-sRr2585Tu4d_pxmn37fPL1NdzH8M9uKB3AXr9a6zcYYvXFWzOZ_gEOcChs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytological+identification+of+an+Aegilops+variabilis+chromosome+carrying+stripe+rust+resistance+in+wheat&rft.jtitle=Breeding+science&rft.au=Zhao%2C+Laibin&rft.au=Shunzong+Ning&rft.au=Yu%2C+Jianjun&rft.au=Hao%2C+Ming&rft.date=2016&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1344-7610&rft.eissn=1347-3735&rft.volume=66&rft.issue=4&rft.spage=522&rft_id=info:doi/10.1270%2Fjsbbs.16011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-7610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-7610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-7610&client=summon