OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand
Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase respons...
Saved in:
Published in | The EMBO journal Vol. 33; no. 22; pp. 2676 - 2691 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Blackwell Publishing Ltd
18.11.2014
Nature Publishing Group UK BlackWell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation‐induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein‐dependent manner.
Synopsis
Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability.
OPA1 dynamically responds to energy substrate availability, mediating changes in cristae ultrastructure.
OPA1‐mediated cristae changes are required for cell adaptation to metabolic demand, independently of OPA1 fusion activity.
SLC25A proteins interact with OPA1 and modulate its function.
OGC (SLC25A11) affects how OPA1 oligomerizes in response to starvation, mediating changes in mitochondrial function.
Graphical Abstract
Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability. |
---|---|
AbstractList | Abstract
Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (
OPA
1) is the mitochondrial
GTP
ase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that
OPA
1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of
OPA
1's role in mitochondrial fusion, since an
OPA
1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly,
OPA
1 was required for resistance to starvation‐induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of
ATP
synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (
SLC
25A) as
OPA
1 interactors and show that their pharmacological and genetic blockade inhibited
OPA
1 oligomerization and function. Thus, we propose a novel way in which
OPA
1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a
SLC
25A protein‐dependent manner.
Synopsis
image
Metabolic stress causes inner mitochondrial membrane fusion protein
OPA
1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability.
OPA
1 dynamically responds to energy substrate availability, mediating changes in cristae ultrastructure.
OPA
1‐mediated cristae changes are required for cell adaptation to metabolic demand, independently of
OPA
1 fusion activity.
SLC
25A proteins interact with
OPA
1 and modulate its function.
OGC
(
SLC
25A11) affects how
OPA
1 oligomerizes in response to starvation, mediating changes in mitochondrial function. Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation‐induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein‐dependent manner. Synopsis Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability. OPA1 dynamically responds to energy substrate availability, mediating changes in cristae ultrastructure. OPA1‐mediated cristae changes are required for cell adaptation to metabolic demand, independently of OPA1 fusion activity. SLC25A proteins interact with OPA1 and modulate its function. OGC (SLC25A11) affects how OPA1 oligomerizes in response to starvation, mediating changes in mitochondrial function. Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability. Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner. Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner. Synopsis Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability. OPA1 dynamically responds to energy substrate availability, mediating changes in cristae ultrastructure. OPA1-mediated cristae changes are required for cell adaptation to metabolic demand, independently of OPA1 fusion activity. SLC25A proteins interact with OPA1 and modulate its function. OGC (SLC25A11) affects how OPA1 oligomerizes in response to starvation, mediating changes in mitochondrial function. Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation‐induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein‐dependent manner. Synopsis Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability. OPA1 dynamically responds to energy substrate availability, mediating changes in cristae ultrastructure. OPA1‐mediated cristae changes are required for cell adaptation to metabolic demand, independently of OPA1 fusion activity. SLC25A proteins interact with OPA1 and modulate its function. OGC (SLC25A11) affects how OPA1 oligomerizes in response to starvation, mediating changes in mitochondrial function. Graphical Abstract Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability. |
Author | McBride, Heidi M Trinkle‐Mulcahy, Laura Khacho, Mireille Wong, Jacob Slack, Ruth S Pilon‐Larose, Karine Patten, David A Mailloux, Ryan J MacLaurin, Jason G Soubannier, Vincent Park, David S Germain, Marc Harper, Mary‐Ellen |
Author_xml | – sequence: 1 givenname: David A surname: Patten fullname: Patten, David A organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada – sequence: 2 givenname: Jacob surname: Wong fullname: Wong, Jacob organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada – sequence: 3 givenname: Mireille surname: Khacho fullname: Khacho, Mireille organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada – sequence: 4 givenname: Vincent surname: Soubannier fullname: Soubannier, Vincent organization: Montreal Neurological Institute, McGill University, QC, Montreal, Canada – sequence: 5 givenname: Ryan J surname: Mailloux fullname: Mailloux, Ryan J organization: Department of Biochemistry, Microbiology & Immunology, University of Ottawa, ON, Ottawa, Canada – sequence: 6 givenname: Karine surname: Pilon-Larose fullname: Pilon-Larose, Karine organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada – sequence: 7 givenname: Jason G surname: MacLaurin fullname: MacLaurin, Jason G organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada – sequence: 8 givenname: David S surname: Park fullname: Park, David S organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada – sequence: 9 givenname: Heidi M surname: McBride fullname: McBride, Heidi M organization: Montreal Neurological Institute, McGill University, QC, Montreal, Canada – sequence: 10 givenname: Laura surname: Trinkle-Mulcahy fullname: Trinkle-Mulcahy, Laura organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada – sequence: 11 givenname: Mary-Ellen surname: Harper fullname: Harper, Mary-Ellen organization: Department of Biochemistry, Microbiology & Immunology, University of Ottawa, ON, Ottawa, Canada – sequence: 12 givenname: Marc surname: Germain fullname: Germain, Marc email: Corresponding author. Tel: +1 613 562 5800; , rslack@uottawa.ca, Corresponding author. Tel: +1 819 376 5011 x3330; , marc.germain1@uqtr.ca organization: Département de Biologie Médicale, Université du Québec à Trois-Rivières, QC, Trois-Rivières, Canada – sequence: 13 givenname: Ruth S surname: Slack fullname: Slack, Ruth S email: Corresponding author. Tel: +1 613 562 5800; , rslack@uottawa.ca, Corresponding author. Tel: +1 819 376 5011 x3330; , marc.germain1@uqtr.ca organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25298396$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAYhC1URLeFMzcUiQuXtLbjTw5I7VJaUKEcQCAulpO8KV4Se7EToP8eLymrBQlxyuF9ZjKj8QHa88EDQg8JPiKccnoMQ706opgwpSqm76AFYQKXFEu-hxaYClIyovQ-OkhphTHmSpJ7aD8rtaq0WKBPV29PSNnCGnwLfiya6NJooRhCO_V2dMEXLhWQUj462xddiEUDfZ-PsbCtXY8zNIZigNHWoXdN0cJgfXsf3e1sn-DB7fcQvX9x9m55UV5enb9cnlyWjSBSl7RRigjbsZrI2jLOBBNUaqwpwyzXqjWRgnNWqbrRrNaW4hqgE5g3mBAC1SF6Nvuup3qAtslJo-3NOrrBxhsTrDN_Xrz7bK7DN8OoolzybPDk1iCGrxOk0QwubUpaD2FKhuQ8WLIZffwXugpT9LnehuJcVZzpTB3PVBNDShG6bRiCza_dzGY3s90tKx7tdtjyv4fKwNMZ-O56uPmfnzl7ffpq1x3P4pR1_hriTup_BipnSX4O8GP7Pxu_GCEryc2HN-fm-ccLTfWSGlH9BA4MxQ8 |
CODEN | EMJODG |
CitedBy_id | crossref_primary_10_1016_j_molcel_2023_02_012 crossref_primary_10_1016_j_neuroscience_2016_01_042 crossref_primary_10_1016_j_nbd_2015_10_011 crossref_primary_10_1007_s00018_016_2421_9 crossref_primary_10_1038_s41423_020_0480_1 crossref_primary_10_15252_embj_2023114054 crossref_primary_10_1111_apha_13466 crossref_primary_10_1002_humu_23639 crossref_primary_10_1016_j_cmet_2018_08_002 crossref_primary_10_1038_s41598_017_01109_4 crossref_primary_10_1073_pnas_2207471120 crossref_primary_10_1210_endrev_bnaa005 crossref_primary_10_1042_BCJ20160451 crossref_primary_10_1155_2017_7068567 crossref_primary_10_1002_1873_3468_12432 crossref_primary_10_1016_j_canlet_2018_09_002 crossref_primary_10_1038_cddis_2016_160 crossref_primary_10_3389_fnins_2021_746873 crossref_primary_10_1016_j_tem_2019_08_003 crossref_primary_10_1089_ars_2023_0268 crossref_primary_10_1096_fj_201500176 crossref_primary_10_1038_s41419_018_0579_9 crossref_primary_10_1073_pnas_1905924116 crossref_primary_10_7554_eLife_75531 crossref_primary_10_1091_mbc_E14_11_1559 crossref_primary_10_1371_journal_pcbi_1005612 crossref_primary_10_3390_ijms18081812 crossref_primary_10_1016_j_crphys_2021_03_005 crossref_primary_10_1021_acsnano_3c02768 crossref_primary_10_1016_j_bbabio_2015_10_015 crossref_primary_10_1016_j_cmet_2016_04_008 crossref_primary_10_1016_j_phrs_2018_02_018 crossref_primary_10_1038_s41431_022_01102_0 crossref_primary_10_1016_j_biocel_2016_09_010 crossref_primary_10_1016_j_mito_2019_06_003 crossref_primary_10_1007_s00395_023_00991_6 crossref_primary_10_1002_bies_201400188 crossref_primary_10_1074_jbc_M117_805069 crossref_primary_10_3390_cells8070686 crossref_primary_10_3390_ijms241713033 crossref_primary_10_1096_fj_202201026R crossref_primary_10_1016_j_bbamcr_2018_12_012 crossref_primary_10_3390_ani10112160 crossref_primary_10_1038_s41467_023_42564_0 crossref_primary_10_3390_life10090164 crossref_primary_10_1016_j_freeradbiomed_2024_03_017 crossref_primary_10_1038_s41586_019_1498_3 crossref_primary_10_3389_fimmu_2021_673916 crossref_primary_10_1016_j_mito_2018_07_006 crossref_primary_10_1523_ENEURO_0390_17_2018 crossref_primary_10_1096_fj_201801483RR crossref_primary_10_1016_j_bbabio_2016_04_002 crossref_primary_10_1016_j_mad_2023_111870 crossref_primary_10_3390_biom11071012 crossref_primary_10_1074_jbc_RA119_011110 crossref_primary_10_1016_j_cmet_2021_07_008 crossref_primary_10_1038_s41419_022_04869_8 crossref_primary_10_1002_stem_3425 crossref_primary_10_1080_10985549_2023_2253131 crossref_primary_10_1111_obr_13164 crossref_primary_10_4049_jimmunol_2300406 crossref_primary_10_1016_j_jbc_2024_107159 crossref_primary_10_1002_jimd_12369 crossref_primary_10_1016_j_bbabio_2019_148091 crossref_primary_10_1126_science_aad0116 crossref_primary_10_1089_rej_2017_1989 crossref_primary_10_3390_antiox7010001 crossref_primary_10_1038_s41467_022_28191_1 crossref_primary_10_1186_s12915_021_01192_0 crossref_primary_10_1016_j_freeradbiomed_2024_03_024 crossref_primary_10_1038_s41598_022_19723_2 crossref_primary_10_1002_jcp_31204 crossref_primary_10_1083_jcb_201508099 crossref_primary_10_3389_fgene_2018_00718 crossref_primary_10_1007_s00109_020_02004_8 crossref_primary_10_1242_jcs_218313 crossref_primary_10_1002_1873_3468_14089 crossref_primary_10_1002_oby_21654 crossref_primary_10_3390_cells9010121 crossref_primary_10_1186_s13048_022_00999_x crossref_primary_10_15252_emmm_201506159 crossref_primary_10_18632_genesandcancer_176 crossref_primary_10_1007_s00109_015_1359_y crossref_primary_10_1002_jcp_30461 crossref_primary_10_1158_2326_6066_CIR_22_0685 crossref_primary_10_1038_s44318_024_00027_2 crossref_primary_10_1016_j_mito_2019_11_006 crossref_primary_10_1089_ars_2017_7228 crossref_primary_10_1074_jbc_M116_762567 crossref_primary_10_3390_cells10030537 crossref_primary_10_1111_joim_13031 crossref_primary_10_3892_ijmm_2019_4189 crossref_primary_10_3390_ijms18050933 crossref_primary_10_1016_j_jlr_2024_100563 crossref_primary_10_1101_cshperspect_a036434 crossref_primary_10_1007_s11427_021_1962_0 crossref_primary_10_1074_jbc_RA118_003935 crossref_primary_10_1007_s00441_018_2975_y crossref_primary_10_1096_fj_201901150R crossref_primary_10_1089_ars_2021_0031 crossref_primary_10_1016_j_cmet_2018_02_018 crossref_primary_10_1016_j_bbrc_2017_04_088 crossref_primary_10_3389_fendo_2020_00319 crossref_primary_10_3390_genes14030627 crossref_primary_10_3389_fpls_2017_01543 crossref_primary_10_3389_fcell_2021_744838 crossref_primary_10_1016_j_redox_2020_101503 crossref_primary_10_1242_jcs_260986 crossref_primary_10_1016_j_biocel_2023_106492 crossref_primary_10_1111_febs_17130 crossref_primary_10_1038_s42003_024_06045_4 crossref_primary_10_1146_annurev_vision_082114_035651 crossref_primary_10_1038_s41598_017_05808_w crossref_primary_10_1038_s41598_021_99118_x crossref_primary_10_1038_s41598_024_65595_z crossref_primary_10_1007_s10557_016_6710_1 crossref_primary_10_1016_j_bbamcr_2020_118854 crossref_primary_10_1038_s41419_020_2498_9 crossref_primary_10_1016_j_freeradbiomed_2019_01_027 crossref_primary_10_3389_fcell_2021_774108 crossref_primary_10_1089_ars_2018_7534 crossref_primary_10_1038_s41583_018_0091_3 crossref_primary_10_7717_peerj_7285 crossref_primary_10_1016_j_chemosphere_2018_10_043 crossref_primary_10_1016_j_bbabio_2019_06_015 crossref_primary_10_1074_jbc_RA119_010983 crossref_primary_10_3390_cells13060473 crossref_primary_10_1155_2019_2193019 crossref_primary_10_1089_dna_2021_0529 crossref_primary_10_3390_biom13081225 crossref_primary_10_1007_s12035_018_1028_6 crossref_primary_10_1126_sciadv_abo7956 crossref_primary_10_1515_hsz_2022_0309 crossref_primary_10_3390_genes9020109 crossref_primary_10_1007_s10565_021_09662_5 crossref_primary_10_18632_aging_205214 crossref_primary_10_3390_ijms25084566 crossref_primary_10_1371_journal_pbio_2003782 crossref_primary_10_1002_1873_3468_12384 crossref_primary_10_1016_j_redox_2021_101944 crossref_primary_10_1021_acs_molpharmaceut_3c00480 crossref_primary_10_3934_molsci_2015_2_161 crossref_primary_10_7554_eLife_51845 crossref_primary_10_1186_s12967_023_04141_3 crossref_primary_10_1016_j_bbamcr_2017_05_004 crossref_primary_10_1038_s41598_019_42554_7 crossref_primary_10_3390_antiox12081517 crossref_primary_10_1007_s12035_022_03149_y crossref_primary_10_3390_antiox7120186 crossref_primary_10_1016_j_nutres_2020_09_006 crossref_primary_10_1083_jcb_202003131 crossref_primary_10_1038_s41467_018_05655_x crossref_primary_10_1016_j_bbabio_2022_148914 crossref_primary_10_1093_hmg_ddac128 crossref_primary_10_3389_fcell_2021_626117 crossref_primary_10_1016_j_abb_2022_109172 crossref_primary_10_1038_s41590_020_0780_8 crossref_primary_10_1155_2018_4606752 crossref_primary_10_1016_j_redox_2022_102400 crossref_primary_10_1111_odi_13652 crossref_primary_10_1016_j_celrep_2016_11_049 crossref_primary_10_1038_s41556_018_0133_0 crossref_primary_10_3389_fcell_2021_781933 crossref_primary_10_1016_j_trecan_2017_10_006 crossref_primary_10_1074_jbc_M115_695825 crossref_primary_10_1186_s13045_022_01313_4 crossref_primary_10_3390_ijms241311003 crossref_primary_10_26508_lsa_202000711 crossref_primary_10_15252_emmm_202013579 crossref_primary_10_1530_ERC_22_0229 crossref_primary_10_1038_s12276_023_01125_7 crossref_primary_10_4049_jimmunol_1800705 crossref_primary_10_1083_jcb_201507022 crossref_primary_10_1097_FJC_0000000000001495 crossref_primary_10_1038_s41419_020_03152_y crossref_primary_10_15252_embj_2019104105 crossref_primary_10_3389_ftox_2024_1357857 crossref_primary_10_1016_j_bbabio_2016_02_004 crossref_primary_10_1038_s41418_022_01076_y crossref_primary_10_1038_s42003_020_0832_5 crossref_primary_10_1089_ars_2022_0124 crossref_primary_10_1038_s41598_020_76255_3 crossref_primary_10_1016_j_mito_2024_101933 crossref_primary_10_3389_fendo_2022_789008 crossref_primary_10_1038_s41580_022_00506_6 crossref_primary_10_1083_jcb_201709111 crossref_primary_10_1128_JVI_01183_19 crossref_primary_10_1016_j_ceca_2021_102517 crossref_primary_10_1016_j_abb_2021_108939 crossref_primary_10_1016_j_celrep_2016_02_011 crossref_primary_10_3389_fcell_2017_00106 crossref_primary_10_1016_j_pbi_2017_09_002 crossref_primary_10_1016_j_devcel_2020_01_014 crossref_primary_10_1371_journal_pbio_3002246 crossref_primary_10_1016_j_ceb_2016_03_013 crossref_primary_10_1038_s41580_020_0210_7 crossref_primary_10_3389_fphys_2020_00536 crossref_primary_10_1096_fj_15_272179 crossref_primary_10_1152_physrev_00009_2022 crossref_primary_10_1016_j_ceca_2020_102282 crossref_primary_10_1016_j_devcel_2021_03_033 crossref_primary_10_1016_j_jcjd_2018_05_007 crossref_primary_10_1186_s12951_021_01167_x crossref_primary_10_1093_function_zqac039 crossref_primary_10_1371_journal_pgen_1008184 crossref_primary_10_1134_S1995078020010139 crossref_primary_10_4161_23723556_2014_982378 crossref_primary_10_1016_j_bbamcr_2016_05_020 crossref_primary_10_1210_endrev_bnad004 crossref_primary_10_3390_antiox12061163 crossref_primary_10_1038_s41598_024_64368_y crossref_primary_10_1016_j_phrs_2018_08_010 crossref_primary_10_1038_s41467_023_41988_y crossref_primary_10_3390_ijms24020922 crossref_primary_10_1016_j_cell_2016_05_035 crossref_primary_10_1016_j_isci_2024_109164 crossref_primary_10_1002_dvdy_24538 crossref_primary_10_3390_toxics9110270 crossref_primary_10_1096_fj_202000238RRR crossref_primary_10_1016_j_tem_2024_05_005 crossref_primary_10_1074_jbc_M116_736793 crossref_primary_10_1007_s12035_021_02494_8 crossref_primary_10_3390_ijms19123930 crossref_primary_10_1155_2019_3836186 crossref_primary_10_15252_embj_201490446 crossref_primary_10_1089_ars_2022_0173 crossref_primary_10_1111_bph_15068 crossref_primary_10_1530_REP_18_0431 crossref_primary_10_1016_j_bbr_2019_112225 crossref_primary_10_1038_s41467_021_21984_w crossref_primary_10_3390_ijms22031462 crossref_primary_10_1128_MCB_01047_14 crossref_primary_10_1038_nrendo_2016_104 crossref_primary_10_1038_s41418_019_0345_2 crossref_primary_10_15252_embr_201642931 crossref_primary_10_1016_j_tiv_2019_104597 crossref_primary_10_1039_c9mt00187e crossref_primary_10_1242_jcs_159186 crossref_primary_10_1172_JCI164660 crossref_primary_10_1016_j_bbabio_2022_148949 crossref_primary_10_1016_j_acthis_2021_151841 crossref_primary_10_1111_apha_13430 crossref_primary_10_3390_antiox12051072 crossref_primary_10_1038_s42255_021_00497_2 crossref_primary_10_1016_j_isci_2023_107180 crossref_primary_10_1016_j_tcb_2020_08_008 crossref_primary_10_3389_fbioe_2021_786806 crossref_primary_10_1111_brv_12378 crossref_primary_10_3389_fendo_2023_1267170 crossref_primary_10_3390_biology12040529 crossref_primary_10_3390_cells12162017 crossref_primary_10_1016_j_brainres_2019_05_037 crossref_primary_10_1242_jcs_234435 crossref_primary_10_3389_fphar_2020_578599 crossref_primary_10_1016_j_ejphar_2020_172987 crossref_primary_10_3390_ijms232314741 crossref_primary_10_1016_j_celrep_2017_05_073 crossref_primary_10_1242_dev_200870 crossref_primary_10_1038_s41556_021_00837_0 crossref_primary_10_3390_ijms21093134 crossref_primary_10_1007_s00415_015_7849_6 crossref_primary_10_7554_eLife_15275 crossref_primary_10_1016_j_semcdb_2019_05_022 crossref_primary_10_1016_j_bbamem_2017_03_013 crossref_primary_10_1073_pnas_1920413117 crossref_primary_10_1016_j_freeradbiomed_2023_04_015 crossref_primary_10_1007_s11064_015_1579_0 crossref_primary_10_3390_biomedicines8040085 crossref_primary_10_1002_ana_25221 crossref_primary_10_31435_rsglobal_sr_30012021_7378 crossref_primary_10_1111_acel_14165 crossref_primary_10_1016_j_preteyeres_2020_100935 crossref_primary_10_26508_lsa_201900348 crossref_primary_10_1038_cddiscovery_2017_77 crossref_primary_10_1016_j_isci_2021_102119 crossref_primary_10_1113_JP284734 crossref_primary_10_1007_s10565_022_09712_6 crossref_primary_10_1038_ncb3560 crossref_primary_10_1371_journal_pgen_1006597 crossref_primary_10_1371_journal_pone_0160380 crossref_primary_10_1371_journal_pgen_1010055 crossref_primary_10_1038_s41598_022_10521_4 crossref_primary_10_1038_s41598_020_80425_8 crossref_primary_10_3389_fneur_2021_681326 |
Cites_doi | 10.1007/978-1-4614-3573-0_5 10.1083/jcb.201107053 10.1038/ng1341 10.1136/jmg.2007.052084 10.1074/jbc.M109260200 10.1016/j.cell.2006.09.021 10.1016/j.cmet.2014.03.011 10.1016/j.cub.2012.04.054 10.1083/jcb.37.2.345 10.1074/jbc.M110.167155 10.1016/j.devcel.2011.08.026 10.1073/pnas.1107402108 10.1002/pmic.201100438 10.1016/j.febslet.2006.09.012 10.1083/jcb.200704110 10.1371/journal.pone.0075429 10.1016/j.cell.2010.02.026 10.1038/79936 10.1038/emboj.2011.379 10.1038/emboj.2009.89 10.1016/j.cell.2006.06.025 10.1016/j.cell.2013.11.037 10.1016/j.mito.2009.03.003 10.1038/nprot.2006.473 10.1016/j.bbabio.2008.12.016 10.1212/WNL.0b013e3182698d8d 10.1038/79944 10.1093/emboj/21.3.221 10.3945/ajcn.113.070086 10.1038/nprot.2006.62 10.1073/pnas.61.2.598 10.1016/j.cell.2013.08.032 10.1016/j.molcel.2008.07.010 10.1042/BJ20040566 10.1371/journal.pone.0028536 10.1083/jcb.200211046 10.1038/sj.emboj.7600592 10.1083/jcb.30.2.269 10.1016/j.bbamcr.2006.04.006 10.1016/j.mam.2012.05.005 10.1016/S1534-5807(01)00116-2 10.1083/jcb.200605138 10.1038/ncb2220 10.1038/nbt.1511 10.1093/hmg/dds500 10.1016/j.bbadis.2005.07.001 10.1371/journal.pone.0004604 |
ContentType | Journal Article |
Copyright | The Author(s) 2014 2014 The Authors 2014 The Authors. 2014 EMBO 2014 The Authors 2014 |
Copyright_xml | – notice: The Author(s) 2014 – notice: 2014 The Authors – notice: 2014 The Authors. – notice: 2014 EMBO – notice: 2014 The Authors 2014 |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embj.201488349 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1460-2075 |
EndPage | 2691 |
ExternalDocumentID | 3499312551 10_15252_embj_201488349 25298396 EMBJ201488349 ark_67375_WNG_DXH929C2_6 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Brain Canada/Krembil Foundation – fundername: Shelby Hayter Pass the Baton Graduate Fellowship – fundername: Heart and Stroke Foundation – fundername: Heart and Stroke Foundation of Canada grantid: T7185 – fundername: Ontario Graduate Scholarship – fundername: Parkinson's Society of Canada Research Fellowship – fundername: Heart and Stroke Society of Canada – fundername: Parkinson's Research Consortium – fundername: Canadian Institutes of Health Research grantid: MOP50471; MOP57810 – fundername: Canadian Institutes of Health Research funderid: MOP50471; MOP57810 – fundername: Heart and Stroke Foundation of Canada funderid: T7185 – fundername: Canadian Institutes of Health Research grantid: MOP50471 – fundername: Canadian Institutes of Health Research grantid: MOP57810 |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSMW ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BSCLL BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P G-S GODZA GROUPED_DOAJ GX1 H13 HH5 HK~ HYE KQ8 LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RIG RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c6179-2c8816af4b17ba454646279092404488b917655438bc94b9a20beef605c0111e3 |
IEDL.DBID | RPM |
ISSN | 0261-4189 |
IngestDate | Tue Sep 17 21:25:36 EDT 2024 Fri Oct 25 06:08:20 EDT 2024 Thu Oct 10 21:06:53 EDT 2024 Fri Aug 23 03:16:13 EDT 2024 Sat Sep 28 07:56:43 EDT 2024 Sat Aug 24 01:15:44 EDT 2024 Fri Oct 25 01:30:29 EDT 2024 Wed Oct 30 09:59:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | cristae ATP synthase OPA1 SLC25A mitochondria |
Language | English |
License | 2014 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6179-2c8816af4b17ba454646279092404488b917655438bc94b9a20beef605c0111e3 |
Notes | istex:224723C1FD2F4D4A0DBCBA469A00DA9524219985 Shelby Hayter Pass the Baton Graduate Fellowship Suplementary Figure S1Suplementary Figure S2Suplementary Figure S3Suplementary Figure S4Suplementary Figure S5Suplementary Figure S6Suplementary Figure S7Suplementary Figure S8Suplementary Figure S9Suplementary Table S1Suplementary Table S2Legends for Supplementary FiguresSource Data for Supplementary Figure S1Source Data for Supplementary Figure S7Review Process FileSource Data for Figure 1Source Data for Figure 2Source Data for Figure 3Source Data for Figure 4Source Data for Figure 5Source Data for Figure 6Source Data for Figure 7 Heart and Stroke Foundation Heart and Stroke Society of Canada ArticleID:EMBJ201488349 ark:/67375/WNG-DXH929C2-6 Heart and Stroke Foundation of Canada - No. T7185 Canadian Institutes of Health Research - No. MOP50471; No. MOP57810 Ontario Graduate Scholarship Parkinson's Research Consortium Parkinson's Society of Canada Research Fellowship Brain Canada/Krembil Foundation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Subject Categories Membrane & Intracellular Transport; Metabolism |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282575 |
PMID | 25298396 |
PQID | 1625583549 |
PQPubID | 35985 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4282575 proquest_miscellaneous_1627074575 proquest_journals_1625583549 crossref_primary_10_15252_embj_201488349 pubmed_primary_25298396 wiley_primary_10_15252_embj_201488349_EMBJ201488349 springer_journals_10_15252_embj_201488349 istex_primary_ark_67375_WNG_DXH929C2_6 |
PublicationCentury | 2000 |
PublicationDate | 18 November 2014 |
PublicationDateYYYYMMDD | 2014-11-18 |
PublicationDate_xml | – month: 11 year: 2014 text: 18 November 2014 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Heidelberg – name: Oxford, UK |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Nature Publishing Group UK BlackWell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nature Publishing Group UK – name: BlackWell Publishing Ltd |
References | Jahani-Asl A, Pilon-Larose K, Xu W, MacLaurin JG, Park DS, McBride HM, Slack RS (2011) The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J Biol Chem 286: 4772-4782 Mishra P, Carelli V, Manfredi G, Chan DC (2014) Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab 19: 630-641 Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26: 211-215 Palmieri F (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 34: 465-484 Germain M, Mathai JP, McBride HM, Shore GC (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 24: 1546-1556 Taylor PM (2014) Role of amino acid transporters in amino acid sensing. Am J Clin Nutr 99: 223S-230S Guo W, Jiang L, Bhasin S, Khan SM, Swerdlow RH (2009) DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 9: 261-265 Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke I, Merkwirth C, Ehses S, Krause F, Chan DC, Alexander C, Bauer C, Youle R, Langer T, Martinou JC (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28: 1589-1600 Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195: 323-340 Sukhorukov VM, Bereiter-Hahn J (2009) Anomalous diffusion induced by cristae geometry in the inner mitochondrial membrane. PLoS ONE 4: e4604 Yamaguchi R, Lartigue L, Perkins G, Scott RT, Dixit A, Kushnareva Y, Kuwana T, Ellisman MH, Newmeyer DD (2008) Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol Cell 31: 557-569 Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36: 449-451 Pitceathly RD, Murphy SM, Cottenie E, Chalasani A, Sweeney MG, Woodward C, Mudanohwo EE, Hargreaves I, Heales S, Land J, Holton JL, Houlden H, Blake J, Champion M, Flinter F, Robb SA, Page R, Rose M, Palace J, Crowe C et al (2012) Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease. Neurology 79: 1145-1154 Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 108: 10190-10195 Amutha B, Gordon DM, Gu Y, Pain D (2004) A novel role of Mgm1p, a dynamin-related GTPase, in ATP synthase assembly and cristae formation/maintenance. Biochem J 381: 19-23 Lenaz G, Genova ML (2012) Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation. Adv Exp Med Biol 748: 107-144 Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2: 55-67 Hackenbrock CR (1968a) Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. Proc Natl Acad Sci USA 61: 598-605 Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155: 160-171 Trinkle-Mulcahy L (2012) Resolving protein interactions and complexes by affinity purification followed by label-based quantitative mass spectrometry. Proteomics 12: 1623-1638 Germain M, Nguyen AP, Khacho M, Patten DA, Screaton RA, Park DS, Slack RS (2013) LKB1-regulated adaptive mechanisms are essential for neuronal survival following mitochondrial dysfunction. Hum Mol Genet 22: 952-962 Habersetzer J, Larrieu I, Priault M, Salin B, Rossignol R, Brethes D, Paumard P (2013) Human F1F0 ATP synthase, mitochondrial ultrastructure and OXPHOS impairment: a (super-)complex matter? PLoS ONE 8: e75429 Jonckheere AI, Hogeveen M, Nijtmans LG, van den Brand MA, Janssen AJ, Diepstra JH, van den Brandt FC, van den Heuvel LP, Hol FA, Hofste TG, Kapusta L, Dillmann U, Shamdeen MG, Smeitink JA, Rodenburg RJ (2008) A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. J Med Genet 45: 129-133 Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160: 189-200 Wurm CA, Jakobs S (2006) Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast. FEBS Lett 580: 5628-5634 Wasilewski M, Semenzato M, Rafelski SM, Robbins J, Bakardjiev AI, Scorrano L (2012) Optic atrophy 1-dependent mitochondrial remodeling controls steroidogenesis in trophoblasts. Curr Biol 22: 1228-1234 von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D, Hutu DP, Zerbes RM, Schulze-Specking A, Meyer HE, Martinou JC, Rospert S, Rehling P, Meisinger C, Veenhuis M, Warscheid B et al (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21: 694-707 Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26: 207-210 Harner M, Korner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, Griffith J, Mann M, Reggiori F, Neupert W (2011) The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J 30: 4356-4370 Meeusen S, DeVay R, Block J, Cassidy-Stone A, Wayson S, McCaffery JM, Nunnari J (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127: 383-395 Tashiro A, Zhao C, Gage FH (2006) Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo. Nat Protoc 1: 3049-3055 Mannella CA (2006b) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763: 542-548 Aguer C, Gambarotta D, Mailloux RJ, Moffat C, Dent R, McPherson R, Harper ME (2011) Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS ONE 6: e28536 Song Z, Chen H, Fiket M, Alexander C, Chan DC (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178: 749-755 Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141: 280-289 Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126: 177-189 Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155: 1624-1638 Misaka T, Miyashita T, Kubo Y (2002) Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J Biol Chem 277: 15834-15842 Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1: 418-428 Wittig I, Schagger H (2009) Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim Biophys Acta 1787: 672-680 Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367-1372 Hackenbrock CR (1966) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 30: 269-297 Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brethes D, di Rago JP, Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21: 221-230 Vogel F, Bornhovd C, Neupert W, Reichert AS (2006) Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175: 237-247 Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13: 589-598 Mannella CA (2006a) The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 1762: 140-147 Hackenbrock CR (1968b) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron Gomes, Price, Ling, Moslehi, Montgomery, Rajman, White, Teodoro, Wrann, Hubbard, Mercken, Palmeira, de Cabo, Rolo, Turner, Bell, Sinclair (CR13) 2013; 155 Sukhorukov, Bereiter‐Hahn (CR36) 2009; 4 Alexander, Votruba, Pesch, Thiselton, Mayer, Moore, Rodriguez, Kellner, Leo‐Kottler, Auburger, Bhattacharya, Wissinger (CR2) 2000; 26 Hackenbrock (CR16) 1966; 30 Delettre, Lenaers, Griffoin, Gigarel, Lorenzo, Belenguer, Pelloquin, Grosgeorge, Turc‐Carel, Perret, Astarie‐Dequeker, Lasquellec, Arnaud, Ducommun, Kaplan, Hamel (CR8) 2000; 26 Chen, Vermulst, Wang, Chomyn, Prolla, McCaffery, Chan (CR5) 2010; 141 Jonckheere, Hogeveen, Nijtmans, van den Brand, Janssen, Diepstra, van den Brandt, van den Heuvel, Hol, Hofste, Kapusta, Dillmann, Shamdeen, Smeitink, Rodenburg (CR22) 2008; 45 Hoppins, Collins, Cassidy‐Stone, Hummel, Devay, Lackner, Westermann, Schuldiner, Weissman, Nunnari (CR20) 2011; 195 Amutha, Gordon, Gu, Pain (CR3) 2004; 381 Harner, Korner, Walther, Mokranjac, Kaesmacher, Welsch, Griffith, Mann, Reggiori, Neupert (CR19) 2011; 30 Misaka, Miyashita, Kubo (CR28) 2002; 277 Palmieri (CR30) 2013; 34 Wittig, Schagger (CR44) 2009; 1787 Guo, Jiang, Bhasin, Khan, Swerdlow (CR14) 2009; 9 Scorrano, Ashiya, Buttle, Weiler, Oakes, Mannella, Korsmeyer (CR34) 2002; 2 Yamaguchi, Lartigue, Perkins, Scott, Dixit, Kushnareva, Kuwana, Ellisman, Newmeyer (CR46) 2008; 31 Chen, Detmer, Ewald, Griffin, Fraser, Chan (CR4) 2003; 160 Habersetzer, Larrieu, Priault, Salin, Rossignol, Brethes, Paumard (CR15) 2013; 8 Jahani‐Asl, Pilon‐Larose, Xu, MacLaurin, Park, McBride, Slack (CR21) 2011; 286 Hackenbrock (CR18) 1968; 37 Tondera, Grandemange, Jourdain, Karbowski, Mattenberger, Herzig, Da Cruz, Clerc, Raschke, Merkwirth, Ehses, Krause, Chan, Alexander, Bauer, Youle, Langer, Martinou (CR39) 2009; 28 Germain, Mathai, McBride, Shore (CR10) 2005; 24 Paumard, Vaillier, Coulary, Schaeffer, Soubannier, Mueller, Brethes, di Rago, Velours (CR31) 2002; 21 Germain, Nguyen, Khacho, Patten, Screaton, Park, Slack (CR11) 2013; 22 Meeusen, DeVay, Block, Cassidy‐Stone, Wayson, McCaffery, Nunnari (CR27) 2006; 127 Tashiro, Zhao, Gage (CR37) 2006; 1 Hackenbrock (CR17) 1968; 61 Frezza, Cipolat, Martins de Brito, Micaroni, Beznoussenko, Rudka, Bartoli, Polishuck, Danial, De Strooper, Scorrano (CR9) 2006; 126 Taylor (CR38) 2014; 99 Wurm, Jakobs (CR45) 2006; 580 Aguer, Gambarotta, Mailloux, Moffat, Dent, McPherson, Harper (CR1) 2011; 6 Cogliati, Frezza, Soriano, Varanita, Quintana‐Cabrera, Corrado, Cipolat, Costa, Casarin, Gomes, Perales‐Clemente, Salviati, Fernandez‐Silva, Enriquez, Scorrano (CR6) 2013; 155 Gomes, Di Benedetto, Scorrano (CR12) 2011; 13 Wittig, Braun, Schagger (CR43) 2006; 1 Zuchner, Mersiyanova, Muglia, Bissar‐Tadmouri, Rochelle, Dadali, Zappia, Nelis, Patitucci, Senderek, Parman, Evgrafov, Jonghe, Takahashi, Tsuji, Pericak‐Vance, Quattrone, Battaloglu, Polyakov, Timmerman (CR47) 2004; 36 Song, Chen, Fiket, Alexander, Chan (CR35) 2007; 178 Mannella (CR26) 2006; 1763 Pitceathly, Murphy, Cottenie, Chalasani, Sweeney, Woodward, Mudanohwo, Hargreaves, Heales, Land, Holton, Houlden, Blake, Champion, Flinter, Robb, Page, Rose, Palace, Crowe (CR32) 2012; 79 Rambold, Kostelecky, Elia, Lippincott‐Schwartz (CR33) 2011; 108 Trinkle‐Mulcahy (CR40) 2012; 12 Cox, Mann (CR7) 2008; 26 Lenaz, Genova (CR23) 2012; 748 Mannella (CR25) 2006; 1762 Mishra, Carelli, Manfredi, Chan (CR29) 2014; 19 Vogel, Bornhovd, Neupert, Reichert (CR41) 2006; 175 von der Malsburg, Muller, Bohnert, Oeljeklaus, Kwiatkowska, Becker, Loniewska‐Lwowska, Wiese, Rao, Milenkovic, Hutu, Zerbes, Schulze‐Specking, Meyer, Martinou, Rospert, Rehling, Meisinger, Veenhuis, Warscheid (CR24) 2011; 21 Wasilewski, Semenzato, Rafelski, Robbins, Bakardjiev, Scorrano (CR42) 2012; 22 2009; 1787 2013; 22 2000; 26 2006a; 1762 2004; 381 2002; 277 2011; 30 2002; 2 2010; 141 2006; 175 2011; 13 2006; 1 2008; 31 2013; 8 2011; 195 2012; 79 2011; 6 2012; 12 1966; 30 2005; 24 2012; 748 2009; 28 2007; 178 2011; 108 2006b; 1763 2013; 34 2004; 36 2002; 21 2013; 155 2008; 26 2006; 580 2003; 160 2009; 9 2008; 45 2011; 21 2014; 19 2009; 4 2006; 127 2006; 126 1968a; 61 2012; 22 1968b; 37 2014; 99 2011; 286 5656397 - J Cell Biol. 1968 May;37(2):345-69 11823415 - EMBO J. 2002 Feb 1;21(3):221-30 19324101 - Mitochondrion. 2009 Jul;9(4):261-5 16730811 - Biochim Biophys Acta. 2006 May-Jun;1763(5-6):542-8 17055438 - Cell. 2006 Oct 20;127(2):383-95 22610586 - Proteomics. 2012 May;12(10):1623-38 11782314 - Dev Cell. 2002 Jan;2(1):55-67 4176482 - Proc Natl Acad Sci U S A. 1968 Oct;61(2):598-605 23266187 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):465-84 11017080 - Nat Genet. 2000 Oct;26(2):211-5 17043137 - J Cell Biol. 2006 Oct 23;175(2):237-47 21041314 - J Biol Chem. 2011 Feb 11;286(6):4772-82 21478857 - Nat Cell Biol. 2011 May;13(5):589-98 17406264 - Nat Protoc. 2006;1(1):418-28 17954552 - J Med Genet. 2008 Mar;45(3):129-33 19168025 - Biochim Biophys Acta. 2009 Jun;1787(6):672-80 19360003 - EMBO J. 2009 Jun 3;28(11):1589-600 21944719 - Dev Cell. 2011 Oct 18;21(4):694-707 15064763 - Nat Genet. 2004 May;36(5):449-51 24360282 - Cell. 2013 Dec 19;155(7):1624-38 19029910 - Nat Biotechnol. 2008 Dec;26(12):1367-72 16839885 - Cell. 2006 Jul 14;126(1):177-89 22933740 - Neurology. 2012 Sep 11;79(11):1145-54 23187960 - Hum Mol Genet. 2013 Mar 1;22(5):952-62 15125685 - Biochem J. 2004 Jul 1;381(Pt 1):19-23 17406567 - Nat Protoc. 2006;1(6):3049-55 21987634 - J Cell Biol. 2011 Oct 17;195(2):323-40 21646527 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10190-5 22009199 - EMBO J. 2011 Nov 2;30(21):4356-70 19242541 - PLoS One. 2009;4(2):e4604 22194845 - PLoS One. 2011;6(12):e28536 24055366 - Cell. 2013 Sep 26;155(1):160-71 12527753 - J Cell Biol. 2003 Jan 20;160(2):189-200 15791210 - EMBO J. 2005 Apr 20;24(8):1546-56 22729856 - Adv Exp Med Biol. 2012;748:107-44 11017079 - Nat Genet. 2000 Oct;26(2):207-10 17709429 - J Cell Biol. 2007 Aug 27;178(5):749-55 24703695 - Cell Metab. 2014 Apr 1;19(4):630-41 16997298 - FEBS Lett. 2006 Oct 16;580(24):5628-34 24284439 - Am J Clin Nutr. 2014 Jan;99(1):223S-230S 18691924 - Mol Cell. 2008 Aug 22;31(4):557-69 5968972 - J Cell Biol. 1966 Aug;30(2):269-97 24098383 - PLoS One. 2013;8(10):e75429 22658590 - Curr Biol. 2012 Jul 10;22(13):1228-34 16054341 - Biochim Biophys Acta. 2006 Feb;1762(2):140-7 11847212 - J Biol Chem. 2002 May 3;277(18):15834-42 20403324 - Cell. 2010 Apr 16;141(2):280-9 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 30 start-page: 4356 year: 2011 end-page: 4370 ident: CR19 article-title: The mitochondrial contact site complex, a determinant of mitochondrial architecture publication-title: EMBO J contributor: fullname: Neupert – volume: 31 start-page: 557 year: 2008 end-page: 569 ident: CR46 article-title: Opa1‐mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization publication-title: Mol Cell contributor: fullname: Newmeyer – volume: 22 start-page: 1228 year: 2012 end-page: 1234 ident: CR42 article-title: Optic atrophy 1‐dependent mitochondrial remodeling controls steroidogenesis in trophoblasts publication-title: Curr Biol contributor: fullname: Scorrano – volume: 748 start-page: 107 year: 2012 end-page: 144 ident: CR23 article-title: Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation publication-title: Adv Exp Med Biol contributor: fullname: Genova – volume: 99 start-page: 223S year: 2014 end-page: 230S ident: CR38 article-title: Role of amino acid transporters in amino acid sensing publication-title: Am J Clin Nutr contributor: fullname: Taylor – volume: 28 start-page: 1589 year: 2009 end-page: 1600 ident: CR39 article-title: SLP‐2 is required for stress‐induced mitochondrial hyperfusion publication-title: EMBO J contributor: fullname: Martinou – volume: 24 start-page: 1546 year: 2005 end-page: 1556 ident: CR10 article-title: Endoplasmic reticulum BIK initiates DRP1‐regulated remodelling of mitochondrial cristae during apoptosis publication-title: EMBO J contributor: fullname: Shore – volume: 1787 start-page: 672 year: 2009 end-page: 680 ident: CR44 article-title: Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes publication-title: Biochim Biophys Acta contributor: fullname: Schagger – volume: 37 start-page: 345 year: 1968 end-page: 369 ident: CR18 article-title: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport‐linked ultrastructural transformations in mitochondria publication-title: J Cell Biol contributor: fullname: Hackenbrock – volume: 34 start-page: 465 year: 2013 end-page: 484 ident: CR30 article-title: The mitochondrial transporter family SLC25: identification, properties and physiopathology publication-title: Mol Aspects Med contributor: fullname: Palmieri – volume: 580 start-page: 5628 year: 2006 end-page: 5634 ident: CR45 article-title: Differential protein distributions define two sub‐compartments of the mitochondrial inner membrane in yeast publication-title: FEBS Lett contributor: fullname: Jakobs – volume: 6 start-page: e28536 year: 2011 ident: CR1 article-title: Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells publication-title: PLoS ONE contributor: fullname: Harper – volume: 178 start-page: 749 year: 2007 end-page: 755 ident: CR35 article-title: OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L publication-title: J Cell Biol contributor: fullname: Chan – volume: 26 start-page: 1367 year: 2008 end-page: 1372 ident: CR7 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification publication-title: Nat Biotechnol contributor: fullname: Mann – volume: 26 start-page: 207 year: 2000 end-page: 210 ident: CR8 article-title: Nuclear gene OPA1, encoding a mitochondrial dynamin‐related protein, is mutated in dominant optic atrophy publication-title: Nat Genet contributor: fullname: Hamel – volume: 195 start-page: 323 year: 2011 end-page: 340 ident: CR20 article-title: A mitochondrial‐focused genetic interaction map reveals a scaffold‐like complex required for inner membrane organization in mitochondria publication-title: J Cell Biol contributor: fullname: Nunnari – volume: 126 start-page: 177 year: 2006 end-page: 189 ident: CR9 article-title: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion publication-title: Cell contributor: fullname: Scorrano – volume: 1 start-page: 3049 year: 2006 end-page: 3055 ident: CR37 article-title: Retrovirus‐mediated single‐cell gene knockout technique in adult newborn neurons in vivo publication-title: Nat Protoc contributor: fullname: Gage – volume: 1762 start-page: 140 year: 2006 end-page: 147 ident: CR25 article-title: The relevance of mitochondrial membrane topology to mitochondrial function publication-title: Biochim Biophys Acta contributor: fullname: Mannella – volume: 175 start-page: 237 year: 2006 end-page: 247 ident: CR41 article-title: Dynamic subcompartmentalization of the mitochondrial inner membrane publication-title: J Cell Biol contributor: fullname: Reichert – volume: 26 start-page: 211 year: 2000 end-page: 215 ident: CR2 article-title: OPA1, encoding a dynamin‐related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 publication-title: Nat Genet contributor: fullname: Wissinger – volume: 1 start-page: 418 year: 2006 end-page: 428 ident: CR43 article-title: Blue native PAGE publication-title: Nat Protoc contributor: fullname: Schagger – volume: 155 start-page: 160 year: 2013 end-page: 171 ident: CR6 article-title: Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency publication-title: Cell contributor: fullname: Scorrano – volume: 61 start-page: 598 year: 1968 end-page: 605 ident: CR17 article-title: Chemical and physical fixation of isolated mitochondria in low‐energy and high‐energy states publication-title: Proc Natl Acad Sci USA contributor: fullname: Hackenbrock – volume: 12 start-page: 1623 year: 2012 end-page: 1638 ident: CR40 article-title: Resolving protein interactions and complexes by affinity purification followed by label‐based quantitative mass spectrometry publication-title: Proteomics contributor: fullname: Trinkle‐Mulcahy – volume: 8 start-page: e75429 year: 2013 ident: CR15 article-title: Human F1F0 ATP synthase, mitochondrial ultrastructure and OXPHOS impairment: a (super‐)complex matter? publication-title: PLoS ONE contributor: fullname: Paumard – volume: 36 start-page: 449 year: 2004 end-page: 451 ident: CR47 article-title: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot‐Marie‐Tooth neuropathy type 2A publication-title: Nat Genet contributor: fullname: Timmerman – volume: 277 start-page: 15834 year: 2002 end-page: 15842 ident: CR28 article-title: Primary structure of a dynamin‐related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology publication-title: J Biol Chem contributor: fullname: Kubo – volume: 79 start-page: 1145 year: 2012 end-page: 1154 ident: CR32 article-title: Genetic dysfunction of MT‐ATP6 causes axonal Charcot‐Marie‐Tooth disease publication-title: Neurology contributor: fullname: Crowe – volume: 2 start-page: 55 year: 2002 end-page: 67 ident: CR34 article-title: A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome during apoptosis publication-title: Dev Cell contributor: fullname: Korsmeyer – volume: 19 start-page: 630 year: 2014 end-page: 641 ident: CR29 article-title: Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation publication-title: Cell Metab contributor: fullname: Chan – volume: 45 start-page: 129 year: 2008 end-page: 133 ident: CR22 article-title: A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy publication-title: J Med Genet contributor: fullname: Rodenburg – volume: 21 start-page: 221 year: 2002 end-page: 230 ident: CR31 article-title: The ATP synthase is involved in generating mitochondrial cristae morphology publication-title: EMBO J contributor: fullname: Velours – volume: 381 start-page: 19 year: 2004 end-page: 23 ident: CR3 article-title: A novel role of Mgm1p, a dynamin‐related GTPase, in ATP synthase assembly and cristae formation/maintenance publication-title: Biochem J contributor: fullname: Pain – volume: 108 start-page: 10190 year: 2011 end-page: 10195 ident: CR33 article-title: Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation publication-title: Proc Natl Acad Sci USA contributor: fullname: Lippincott‐Schwartz – volume: 286 start-page: 4772 year: 2011 end-page: 4782 ident: CR21 article-title: The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity publication-title: J Biol Chem contributor: fullname: Slack – volume: 155 start-page: 1624 year: 2013 end-page: 1638 ident: CR13 article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear‐mitochondrial communication during aging publication-title: Cell contributor: fullname: Sinclair – volume: 141 start-page: 280 year: 2010 end-page: 289 ident: CR5 article-title: Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations publication-title: Cell contributor: fullname: Chan – volume: 22 start-page: 952 year: 2013 end-page: 962 ident: CR11 article-title: LKB1‐regulated adaptive mechanisms are essential for neuronal survival following mitochondrial dysfunction publication-title: Hum Mol Genet contributor: fullname: Slack – volume: 4 start-page: e4604 year: 2009 ident: CR36 article-title: Anomalous diffusion induced by cristae geometry in the inner mitochondrial membrane publication-title: PLoS ONE contributor: fullname: Bereiter‐Hahn – volume: 127 start-page: 383 year: 2006 end-page: 395 ident: CR27 article-title: Mitochondrial inner‐membrane fusion and crista maintenance requires the dynamin‐related GTPase Mgm1 publication-title: Cell contributor: fullname: Nunnari – volume: 160 start-page: 189 year: 2003 end-page: 200 ident: CR4 article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development publication-title: J Cell Biol contributor: fullname: Chan – volume: 30 start-page: 269 year: 1966 end-page: 297 ident: CR16 article-title: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria publication-title: J Cell Biol contributor: fullname: Hackenbrock – volume: 21 start-page: 694 year: 2011 end-page: 707 ident: CR24 article-title: Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis publication-title: Dev Cell contributor: fullname: Warscheid – volume: 9 start-page: 261 year: 2009 end-page: 265 ident: CR14 article-title: DNA extraction procedures meaningfully influence qPCR‐based mtDNA copy number determination publication-title: Mitochondrion contributor: fullname: Swerdlow – volume: 13 start-page: 589 year: 2011 end-page: 598 ident: CR12 article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability publication-title: Nat Cell Biol contributor: fullname: Scorrano – volume: 1763 start-page: 542 year: 2006 end-page: 548 ident: CR26 article-title: Structure and dynamics of the mitochondrial inner membrane cristae publication-title: Biochim Biophys Acta contributor: fullname: Mannella – volume: 160 start-page: 189 year: 2003 end-page: 200 article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development publication-title: J Cell Biol – volume: 24 start-page: 1546 year: 2005 end-page: 1556 article-title: Endoplasmic reticulum BIK initiates DRP1‐regulated remodelling of mitochondrial cristae during apoptosis publication-title: EMBO J – volume: 34 start-page: 465 year: 2013 end-page: 484 article-title: The mitochondrial transporter family SLC25: identification, properties and physiopathology publication-title: Mol Aspects Med – volume: 28 start-page: 1589 year: 2009 end-page: 1600 article-title: SLP‐2 is required for stress‐induced mitochondrial hyperfusion publication-title: EMBO J – volume: 178 start-page: 749 year: 2007 end-page: 755 article-title: OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L publication-title: J Cell Biol – volume: 31 start-page: 557 year: 2008 end-page: 569 article-title: Opa1‐mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization publication-title: Mol Cell – volume: 286 start-page: 4772 year: 2011 end-page: 4782 article-title: The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity publication-title: J Biol Chem – volume: 748 start-page: 107 year: 2012 end-page: 144 article-title: Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation publication-title: Adv Exp Med Biol – volume: 1 start-page: 418 year: 2006 end-page: 428 article-title: Blue native PAGE publication-title: Nat Protoc – volume: 26 start-page: 211 year: 2000 end-page: 215 article-title: OPA1, encoding a dynamin‐related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 publication-title: Nat Genet – volume: 9 start-page: 261 year: 2009 end-page: 265 article-title: DNA extraction procedures meaningfully influence qPCR‐based mtDNA copy number determination publication-title: Mitochondrion – volume: 22 start-page: 1228 year: 2012 end-page: 1234 article-title: Optic atrophy 1‐dependent mitochondrial remodeling controls steroidogenesis in trophoblasts publication-title: Curr Biol – volume: 22 start-page: 952 year: 2013 end-page: 962 article-title: LKB1‐regulated adaptive mechanisms are essential for neuronal survival following mitochondrial dysfunction publication-title: Hum Mol Genet – volume: 277 start-page: 15834 year: 2002 end-page: 15842 article-title: Primary structure of a dynamin‐related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology publication-title: J Biol Chem – volume: 126 start-page: 177 year: 2006 end-page: 189 article-title: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion publication-title: Cell – volume: 1763 start-page: 542 year: 2006b end-page: 548 article-title: Structure and dynamics of the mitochondrial inner membrane cristae publication-title: Biochim Biophys Acta – volume: 1787 start-page: 672 year: 2009 end-page: 680 article-title: Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes publication-title: Biochim Biophys Acta – volume: 21 start-page: 221 year: 2002 end-page: 230 article-title: The ATP synthase is involved in generating mitochondrial cristae morphology publication-title: EMBO J – volume: 45 start-page: 129 year: 2008 end-page: 133 article-title: A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy publication-title: J Med Genet – volume: 127 start-page: 383 year: 2006 end-page: 395 article-title: Mitochondrial inner‐membrane fusion and crista maintenance requires the dynamin‐related GTPase Mgm1 publication-title: Cell – volume: 1 start-page: 3049 year: 2006 end-page: 3055 article-title: Retrovirus‐mediated single‐cell gene knockout technique in adult newborn neurons in vivo publication-title: Nat Protoc – volume: 26 start-page: 1367 year: 2008 end-page: 1372 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification publication-title: Nat Biotechnol – volume: 21 start-page: 694 year: 2011 end-page: 707 article-title: Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis publication-title: Dev Cell – volume: 12 start-page: 1623 year: 2012 end-page: 1638 article-title: Resolving protein interactions and complexes by affinity purification followed by label‐based quantitative mass spectrometry publication-title: Proteomics – volume: 580 start-page: 5628 year: 2006 end-page: 5634 article-title: Differential protein distributions define two sub‐compartments of the mitochondrial inner membrane in yeast publication-title: FEBS Lett – volume: 61 start-page: 598 year: 1968a end-page: 605 article-title: Chemical and physical fixation of isolated mitochondria in low‐energy and high‐energy states publication-title: Proc Natl Acad Sci USA – volume: 155 start-page: 160 year: 2013 end-page: 171 article-title: Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency publication-title: Cell – volume: 30 start-page: 269 year: 1966 end-page: 297 article-title: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria publication-title: J Cell Biol – volume: 30 start-page: 4356 year: 2011 end-page: 4370 article-title: The mitochondrial contact site complex, a determinant of mitochondrial architecture publication-title: EMBO J – volume: 1762 start-page: 140 year: 2006a end-page: 147 article-title: The relevance of mitochondrial membrane topology to mitochondrial function publication-title: Biochim Biophys Acta – volume: 2 start-page: 55 year: 2002 end-page: 67 article-title: A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome during apoptosis publication-title: Dev Cell – volume: 99 start-page: 223S year: 2014 end-page: 230S article-title: Role of amino acid transporters in amino acid sensing publication-title: Am J Clin Nutr – volume: 36 start-page: 449 year: 2004 end-page: 451 article-title: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot‐Marie‐Tooth neuropathy type 2A publication-title: Nat Genet – volume: 108 start-page: 10190 year: 2011 end-page: 10195 article-title: Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation publication-title: Proc Natl Acad Sci USA – volume: 19 start-page: 630 year: 2014 end-page: 641 article-title: Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation publication-title: Cell Metab – volume: 6 start-page: e28536 year: 2011 article-title: Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells publication-title: PLoS ONE – volume: 155 start-page: 1624 year: 2013 end-page: 1638 article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear‐mitochondrial communication during aging publication-title: Cell – volume: 13 start-page: 589 year: 2011 end-page: 598 article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability publication-title: Nat Cell Biol – volume: 195 start-page: 323 year: 2011 end-page: 340 article-title: A mitochondrial‐focused genetic interaction map reveals a scaffold‐like complex required for inner membrane organization in mitochondria publication-title: J Cell Biol – volume: 26 start-page: 207 year: 2000 end-page: 210 article-title: Nuclear gene OPA1, encoding a mitochondrial dynamin‐related protein, is mutated in dominant optic atrophy publication-title: Nat Genet – volume: 79 start-page: 1145 year: 2012 end-page: 1154 article-title: Genetic dysfunction of MT‐ATP6 causes axonal Charcot‐Marie‐Tooth disease publication-title: Neurology – volume: 381 start-page: 19 year: 2004 end-page: 23 article-title: A novel role of Mgm1p, a dynamin‐related GTPase, in ATP synthase assembly and cristae formation/maintenance publication-title: Biochem J – volume: 141 start-page: 280 year: 2010 end-page: 289 article-title: Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations publication-title: Cell – volume: 37 start-page: 345 year: 1968b end-page: 369 article-title: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport‐linked ultrastructural transformations in mitochondria publication-title: J Cell Biol – volume: 175 start-page: 237 year: 2006 end-page: 247 article-title: Dynamic subcompartmentalization of the mitochondrial inner membrane publication-title: J Cell Biol – volume: 8 start-page: e75429 year: 2013 article-title: Human F1F0 ATP synthase, mitochondrial ultrastructure and OXPHOS impairment: a (super‐)complex matter? publication-title: PLoS ONE – volume: 4 start-page: e4604 year: 2009 article-title: Anomalous diffusion induced by cristae geometry in the inner mitochondrial membrane publication-title: PLoS ONE – ident: e_1_2_8_24_1 doi: 10.1007/978-1-4614-3573-0_5 – ident: e_1_2_8_21_1 doi: 10.1083/jcb.201107053 – ident: e_1_2_8_48_1 doi: 10.1038/ng1341 – ident: e_1_2_8_23_1 doi: 10.1136/jmg.2007.052084 – ident: e_1_2_8_29_1 doi: 10.1074/jbc.M109260200 – ident: e_1_2_8_28_1 doi: 10.1016/j.cell.2006.09.021 – ident: e_1_2_8_30_1 doi: 10.1016/j.cmet.2014.03.011 – ident: e_1_2_8_43_1 doi: 10.1016/j.cub.2012.04.054 – ident: e_1_2_8_19_1 doi: 10.1083/jcb.37.2.345 – ident: e_1_2_8_22_1 doi: 10.1074/jbc.M110.167155 – ident: e_1_2_8_25_1 doi: 10.1016/j.devcel.2011.08.026 – ident: e_1_2_8_34_1 doi: 10.1073/pnas.1107402108 – ident: e_1_2_8_41_1 doi: 10.1002/pmic.201100438 – ident: e_1_2_8_46_1 doi: 10.1016/j.febslet.2006.09.012 – ident: e_1_2_8_36_1 doi: 10.1083/jcb.200704110 – ident: e_1_2_8_16_1 doi: 10.1371/journal.pone.0075429 – ident: e_1_2_8_6_1 doi: 10.1016/j.cell.2010.02.026 – ident: e_1_2_8_9_1 doi: 10.1038/79936 – ident: e_1_2_8_20_1 doi: 10.1038/emboj.2011.379 – ident: e_1_2_8_40_1 doi: 10.1038/emboj.2009.89 – ident: e_1_2_8_10_1 doi: 10.1016/j.cell.2006.06.025 – ident: e_1_2_8_14_1 doi: 10.1016/j.cell.2013.11.037 – ident: e_1_2_8_15_1 doi: 10.1016/j.mito.2009.03.003 – ident: e_1_2_8_38_1 doi: 10.1038/nprot.2006.473 – ident: e_1_2_8_45_1 doi: 10.1016/j.bbabio.2008.12.016 – ident: e_1_2_8_33_1 doi: 10.1212/WNL.0b013e3182698d8d – ident: e_1_2_8_3_1 doi: 10.1038/79944 – ident: e_1_2_8_32_1 doi: 10.1093/emboj/21.3.221 – ident: e_1_2_8_39_1 doi: 10.3945/ajcn.113.070086 – ident: e_1_2_8_44_1 doi: 10.1038/nprot.2006.62 – ident: e_1_2_8_18_1 doi: 10.1073/pnas.61.2.598 – ident: e_1_2_8_7_1 doi: 10.1016/j.cell.2013.08.032 – ident: e_1_2_8_47_1 doi: 10.1016/j.molcel.2008.07.010 – ident: e_1_2_8_4_1 doi: 10.1042/BJ20040566 – ident: e_1_2_8_2_1 doi: 10.1371/journal.pone.0028536 – ident: e_1_2_8_5_1 doi: 10.1083/jcb.200211046 – ident: e_1_2_8_11_1 doi: 10.1038/sj.emboj.7600592 – ident: e_1_2_8_17_1 doi: 10.1083/jcb.30.2.269 – ident: e_1_2_8_27_1 doi: 10.1016/j.bbamcr.2006.04.006 – ident: e_1_2_8_31_1 doi: 10.1016/j.mam.2012.05.005 – ident: e_1_2_8_35_1 doi: 10.1016/S1534-5807(01)00116-2 – ident: e_1_2_8_42_1 doi: 10.1083/jcb.200605138 – ident: e_1_2_8_13_1 doi: 10.1038/ncb2220 – ident: e_1_2_8_8_1 doi: 10.1038/nbt.1511 – ident: e_1_2_8_12_1 doi: 10.1093/hmg/dds500 – ident: e_1_2_8_26_1 doi: 10.1016/j.bbadis.2005.07.001 – ident: e_1_2_8_37_1 doi: 10.1371/journal.pone.0004604 |
SSID | ssj0005871 |
Score | 2.631467 |
Snippet | Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which... Abstract Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by... |
SourceID | pubmedcentral proquest crossref pubmed wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2676 |
SubjectTerms | Adaptation Animals Anion Transport Proteins - genetics Anion Transport Proteins - metabolism ATP synthase Cellular biology cristae EMBO20 EMBO21 GTP Phosphohydrolases - genetics GTP Phosphohydrolases - metabolism HeLa Cells Humans Metabolism Mice mitochondria Mitochondria - enzymology Mitochondria - ultrastructure Mitochondrial DNA Mitochondrial Dynamics - physiology Mitochondrial Membranes - enzymology Mitochondrial Membranes - ultrastructure Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism OPA1 Oxygen Consumption - physiology Protein Multimerization - physiology SLC25A |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BK0QvqJTXllIZCSE4RORhO_axDS2rSi0cqNgDkmU7XnWhm63aVIIbP4HfyC9hJq92RRHilijW2JkZy994XgAvbJbpqRY-QgVyEZ9Sm5cktlGaSZ-Rn89pync-PJLjY34wEZOuSBLlwlz334tUpG_C3H2hCCxUtIzr27CKB7Ci2K1CFlexHKqxrJrLFJ4o3dXwuYHA0vGzSpz8dhO2_DNEcvCTLqPY5hjaX4d7HX5kO63A78OtUG3Anbaj5PcNuFv0DdwewOf3H3aSXz9-9n1ua-ZpR9vA5ouy69rFZheMqodXuNFPGQJYRjf5FJrKbGnPWj89qxdsHmpUl9OZZ2WY26p8CMf7ex-LcdQ1U4g8ghQdpV6pRNopd0nuLBdccpnmOkb7K0YTTTm02yRii0w5r7nTNo1dCFO0djy1ow_ZI1ipFlV4AiygGSRjZ_O8FEiudF46bp0XTnlrpR_Bq57H5qytmWHI1iBxGBKHGcQxgpeNDIZx9vwrhZrlwnw6emfeTsYI34rUyBFs9UIy3S67MAkab4JurpDO8-EzcplYZauwuGzG5AiTEJWO4HEr02EyXI9GgIjE8yVpDwOo9vbyl2p20tTg5pTzSzRf93pxbVl_-9esUZx_8cTsHe4eDG-b_zHDU1ijZ0qVTNQWrNTnl-EZYqbabTf75TeMiA2M priority: 102 providerName: Springer Nature |
Title | OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand |
URI | https://api.istex.fr/ark:/67375/WNG-DXH929C2-6/fulltext.pdf https://link.springer.com/article/10.15252/embj.201488349 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201488349 https://www.ncbi.nlm.nih.gov/pubmed/25298396 https://www.proquest.com/docview/1625583549 https://search.proquest.com/docview/1627074575 https://pubmed.ncbi.nlm.nih.gov/PMC4282575 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51ixBcEJRXoFRGQggO6eZhO8mxpC1L0ZYeqFhxsWzHK7bdZFdtKsG_ZyYvsQKExGWlbCzHmfmsfJ89ngF4peM4m2fC-ggg4_M5lXkJA-1HsbQx7fOZjM47T0_l5JyfzMRsC0R_FqYJ2rdmsV8ty_1q8a2JrVyXdtzHiY3PpjmnA5eJGI9ghADtJXof15E2KqtZWOFhmnX5fEQkorErzQWFcyFqY04JQ_HPDCmC3Pgq3SIDf_8T5fw9cnLYPt0kt83X6fg-3OtoJTtoh_8Atly1A7fbQpM_duBO3td1ewhfP50dhH5f_LZmlqa5dqxcFV0pL7a4ZpRSvMLZv2TIahkt71O8KtOFXreb96xesdLViKHlwrLClboqHsH58dHnfOJ3FRZ8i8wl8yObpqHUc27CxGguuOQySrIARVmAui01KOYkEo44NTbjJtNRYJybowSyVKPexY9hu1pV7ikwh9pIBkYnSSGwu8JYabg2VpjUai2tB296C6t1m0hDkQAhvyjyixr84sHrxgNDO311SfFniVBfTt-rw9kEOV0eKenBbu8i1U29axWiohO0nIX9vBxuo43JVLpyq5umTYLcCTHkwZPWo8PDekh4kGz4emhACbk37yBOm8TcHS49eNuj4pdh_e1d4wY2_7KJOpq-Oxmunv332J7DXeqFTlOG6S5s11c37gXSqtrswSiXOf4efvi410ypn4eqHg0 |
link.rule.ids | 230,315,730,783,787,888,27936,27937,41132,42201,51588,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTWi8IBhfgQFGQggesubDdpLHUTbKWMseNlHtxbIdV3Rr0mrLJPjvucuXqAAh8djEcpO73ym_n32-A3it4zibZcL6CCDj8xm1eQkD7UextDHt85mMzjuPJ3J0xo-mYroBojsLUyftWzPfKxfFXjn_VudWrgo76PLEBifjIacDl4kY3IItjNeAdyK9y-xIa51VL63wMM3aij4iEtHAFeaCEroQtzGnkqF4MUOSINe-S1tk4u9_Ip2_5072G6jr9Lb-Ph3eg7stsWT7zQvchw1X7sDtptXkjx3YHnad3R7A-ZeT_dDv2t9WzFKga8eKZd4282Lza0ZFxUuM_wVDXstogZ8yVpnO9arZvmfVkhWuQhQt5pblrtBl_hDODg9OhyO_7bHgW-QumR_ZNA2lnnETJkZzwSWXUZIFKMsCVG6pQTknkXLEqbEZN5mOAuPcDEWQpS71Ln4Em-WydE-AOVRHMjA6SXKB0-XGSsO1scKkVmtpPXjbWVitmlIaiiQI-UWRX1TvFw_e1B7ox-mrS8pAS4T6OvmoPkxHyOqGkZIe7HYuUm3wXasQNZ2gBS2c51V_G21MptKlW97UYxJkT4giDx43Hu3_rIOEB8mar_sBVJJ7_Q4itS7N3SLTg3cdKn55rL-9a1zD5l82UQfj90f9r6f__WwvYXt0Oj5Wx58mn5_BHZqRzlaG6S5sVlc37jmSrMq8qEPqJ0d3H40 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFY8LgvIKFDASQnBI87Kd5Fi2XZbCLnugYsXFsh1HLGyyqzaV4N8z4zzUFSAkjkksJ5n5nHyfPZ4h5IVKkrzMufEBQNpnJZZ5iULlx4kwCa7z6Rz3O09nYnLKThZ8canUlwvaN3p5UK-qg3r51cVWbioT9HFiwXw6YrjhMuXBpiiDq2QXxmwoeqHeR3dkTmu56RUWZXmX1YfHPA5spb9hUBdgN2GYNhRO5kAUxNa_aRfN_ONPxPP3-MlhEXWb4rp_1Pg2udWRS3rYvsQdcsXWe-RaW27y5x65Meqru90lXz7ODyO_L4HbUIODXVlarYuuoBddnlNMLF7DN2BFgdtSnOTHqFWqCrVpl_Bps6aVbQBJq6Whha1UXdwjp-PjT6OJ39VZ8A3wl9yPTZZFQpVMR6lWjDPBRJzmIUizENRbpkHSCaAdSaZNznSu4lBbW4IQMlip3ib3yU69ru1DQi0oJBFqlaYFh-4KbYRmShuuM6OUMB551VtYbtp0GhJlCPpFol_k4BePvHQeGNqps-8YhZZy-Xn2Vh4tJsDsRrEUHtnvXSS7AXguI9B1HCe1oJ_nw2WwMZpK1XZ94dqkwKAASR550Hp0uFkPCY-kW74eGmBa7u0rgFaXnrtDp0de96i49Fh_e9fEweZfNpHH0zcnw9Gj_362Z-T6_GgsP7ybvX9MbmKHuL0yyvbJTnN2YZ8Az2r0UzeifgF3FCCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OPA1-dependent+cristae+modulation+is+essential+for+cellular+adaptation+to+metabolic+demand&rft.jtitle=The+EMBO+journal&rft.au=Patten%2C+David+A&rft.au=Wong%2C+Jacob&rft.au=Khacho%2C+Mireille&rft.au=Soubannier%2C+Vincent&rft.date=2014-11-18&rft.pub=BlackWell+Publishing+Ltd&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=33&rft.issue=22&rft.spage=2676&rft.epage=2691&rft_id=info:doi/10.15252%2Fembj.201488349&rft_id=info%3Apmid%2F25298396&rft.externalDBID=PMC4282575 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |