OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand

Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase respons...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 33; no. 22; pp. 2676 - 2691
Main Authors Patten, David A, Wong, Jacob, Khacho, Mireille, Soubannier, Vincent, Mailloux, Ryan J, Pilon-Larose, Karine, MacLaurin, Jason G, Park, David S, McBride, Heidi M, Trinkle-Mulcahy, Laura, Harper, Mary-Ellen, Germain, Marc, Slack, Ruth S
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 18.11.2014
Nature Publishing Group UK
BlackWell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation‐induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein‐dependent manner. Synopsis Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability. OPA1 dynamically responds to energy substrate availability, mediating changes in cristae ultrastructure. OPA1‐mediated cristae changes are required for cell adaptation to metabolic demand, independently of OPA1 fusion activity. SLC25A proteins interact with OPA1 and modulate its function. OGC (SLC25A11) affects how OPA1 oligomerizes in response to starvation, mediating changes in mitochondrial function. Graphical Abstract Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability.
AbstractList Abstract Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 ( OPA 1) is the mitochondrial GTP ase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA 1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA 1's role in mitochondrial fusion, since an OPA 1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA 1 was required for resistance to starvation‐induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers ( SLC 25A) as OPA 1 interactors and show that their pharmacological and genetic blockade inhibited OPA 1 oligomerization and function. Thus, we propose a novel way in which OPA 1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC 25A protein‐dependent manner. Synopsis image Metabolic stress causes inner mitochondrial membrane fusion protein OPA 1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability. OPA 1 dynamically responds to energy substrate availability, mediating changes in cristae ultrastructure. OPA 1‐mediated cristae changes are required for cell adaptation to metabolic demand, independently of OPA 1 fusion activity. SLC 25A proteins interact with OPA 1 and modulate its function. OGC ( SLC 25A11) affects how OPA 1 oligomerizes in response to starvation, mediating changes in mitochondrial function.
Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation‐induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein‐dependent manner. Synopsis Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability. OPA1 dynamically responds to energy substrate availability, mediating changes in cristae ultrastructure. OPA1‐mediated cristae changes are required for cell adaptation to metabolic demand, independently of OPA1 fusion activity. SLC25A proteins interact with OPA1 and modulate its function. OGC (SLC25A11) affects how OPA1 oligomerizes in response to starvation, mediating changes in mitochondrial function. Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability.
Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.
Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner. Synopsis Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability. OPA1 dynamically responds to energy substrate availability, mediating changes in cristae ultrastructure. OPA1-mediated cristae changes are required for cell adaptation to metabolic demand, independently of OPA1 fusion activity. SLC25A proteins interact with OPA1 and modulate its function. OGC (SLC25A11) affects how OPA1 oligomerizes in response to starvation, mediating changes in mitochondrial function.
Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation‐induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein‐dependent manner. Synopsis Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability. OPA1 dynamically responds to energy substrate availability, mediating changes in cristae ultrastructure. OPA1‐mediated cristae changes are required for cell adaptation to metabolic demand, independently of OPA1 fusion activity. SLC25A proteins interact with OPA1 and modulate its function. OGC (SLC25A11) affects how OPA1 oligomerizes in response to starvation, mediating changes in mitochondrial function. Graphical Abstract Metabolic stress causes inner mitochondrial membrane fusion protein OPA1 to interact with solute carriers and to oligomerize to regulate cristae shape, thereby maintaining mitochondrial activity under low energy availability.
Author McBride, Heidi M
Trinkle‐Mulcahy, Laura
Khacho, Mireille
Wong, Jacob
Slack, Ruth S
Pilon‐Larose, Karine
Patten, David A
Mailloux, Ryan J
MacLaurin, Jason G
Soubannier, Vincent
Park, David S
Germain, Marc
Harper, Mary‐Ellen
Author_xml – sequence: 1
  givenname: David A
  surname: Patten
  fullname: Patten, David A
  organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada
– sequence: 2
  givenname: Jacob
  surname: Wong
  fullname: Wong, Jacob
  organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada
– sequence: 3
  givenname: Mireille
  surname: Khacho
  fullname: Khacho, Mireille
  organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada
– sequence: 4
  givenname: Vincent
  surname: Soubannier
  fullname: Soubannier, Vincent
  organization: Montreal Neurological Institute, McGill University, QC, Montreal, Canada
– sequence: 5
  givenname: Ryan J
  surname: Mailloux
  fullname: Mailloux, Ryan J
  organization: Department of Biochemistry, Microbiology & Immunology, University of Ottawa, ON, Ottawa, Canada
– sequence: 6
  givenname: Karine
  surname: Pilon-Larose
  fullname: Pilon-Larose, Karine
  organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada
– sequence: 7
  givenname: Jason G
  surname: MacLaurin
  fullname: MacLaurin, Jason G
  organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada
– sequence: 8
  givenname: David S
  surname: Park
  fullname: Park, David S
  organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada
– sequence: 9
  givenname: Heidi M
  surname: McBride
  fullname: McBride, Heidi M
  organization: Montreal Neurological Institute, McGill University, QC, Montreal, Canada
– sequence: 10
  givenname: Laura
  surname: Trinkle-Mulcahy
  fullname: Trinkle-Mulcahy, Laura
  organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada
– sequence: 11
  givenname: Mary-Ellen
  surname: Harper
  fullname: Harper, Mary-Ellen
  organization: Department of Biochemistry, Microbiology & Immunology, University of Ottawa, ON, Ottawa, Canada
– sequence: 12
  givenname: Marc
  surname: Germain
  fullname: Germain, Marc
  email: Corresponding author. Tel: +1 613 562 5800; , rslack@uottawa.ca, Corresponding author. Tel: +1 819 376 5011 x3330; , marc.germain1@uqtr.ca
  organization: Département de Biologie Médicale, Université du Québec à Trois-Rivières, QC, Trois-Rivières, Canada
– sequence: 13
  givenname: Ruth S
  surname: Slack
  fullname: Slack, Ruth S
  email: Corresponding author. Tel: +1 613 562 5800; , rslack@uottawa.ca, Corresponding author. Tel: +1 819 376 5011 x3330; , marc.germain1@uqtr.ca
  organization: Department of Cellular & Molecular Medicine, University of Ottawa, ON, Ottawa, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25298396$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAYhC1URLeFMzcUiQuXtLbjTw5I7VJaUKEcQCAulpO8KV4Se7EToP8eLymrBQlxyuF9ZjKj8QHa88EDQg8JPiKccnoMQ706opgwpSqm76AFYQKXFEu-hxaYClIyovQ-OkhphTHmSpJ7aD8rtaq0WKBPV29PSNnCGnwLfiya6NJooRhCO_V2dMEXLhWQUj462xddiEUDfZ-PsbCtXY8zNIZigNHWoXdN0cJgfXsf3e1sn-DB7fcQvX9x9m55UV5enb9cnlyWjSBSl7RRigjbsZrI2jLOBBNUaqwpwyzXqjWRgnNWqbrRrNaW4hqgE5g3mBAC1SF6Nvuup3qAtslJo-3NOrrBxhsTrDN_Xrz7bK7DN8OoolzybPDk1iCGrxOk0QwubUpaD2FKhuQ8WLIZffwXugpT9LnehuJcVZzpTB3PVBNDShG6bRiCza_dzGY3s90tKx7tdtjyv4fKwNMZ-O56uPmfnzl7ffpq1x3P4pR1_hriTup_BipnSX4O8GP7Pxu_GCEryc2HN-fm-ccLTfWSGlH9BA4MxQ8
CODEN EMJODG
CitedBy_id crossref_primary_10_1016_j_molcel_2023_02_012
crossref_primary_10_1016_j_neuroscience_2016_01_042
crossref_primary_10_1016_j_nbd_2015_10_011
crossref_primary_10_1007_s00018_016_2421_9
crossref_primary_10_1038_s41423_020_0480_1
crossref_primary_10_15252_embj_2023114054
crossref_primary_10_1111_apha_13466
crossref_primary_10_1002_humu_23639
crossref_primary_10_1016_j_cmet_2018_08_002
crossref_primary_10_1038_s41598_017_01109_4
crossref_primary_10_1073_pnas_2207471120
crossref_primary_10_1210_endrev_bnaa005
crossref_primary_10_1042_BCJ20160451
crossref_primary_10_1155_2017_7068567
crossref_primary_10_1002_1873_3468_12432
crossref_primary_10_1016_j_canlet_2018_09_002
crossref_primary_10_1038_cddis_2016_160
crossref_primary_10_3389_fnins_2021_746873
crossref_primary_10_1016_j_tem_2019_08_003
crossref_primary_10_1089_ars_2023_0268
crossref_primary_10_1096_fj_201500176
crossref_primary_10_1038_s41419_018_0579_9
crossref_primary_10_1073_pnas_1905924116
crossref_primary_10_7554_eLife_75531
crossref_primary_10_1091_mbc_E14_11_1559
crossref_primary_10_1371_journal_pcbi_1005612
crossref_primary_10_3390_ijms18081812
crossref_primary_10_1016_j_crphys_2021_03_005
crossref_primary_10_1021_acsnano_3c02768
crossref_primary_10_1016_j_bbabio_2015_10_015
crossref_primary_10_1016_j_cmet_2016_04_008
crossref_primary_10_1016_j_phrs_2018_02_018
crossref_primary_10_1038_s41431_022_01102_0
crossref_primary_10_1016_j_biocel_2016_09_010
crossref_primary_10_1016_j_mito_2019_06_003
crossref_primary_10_1007_s00395_023_00991_6
crossref_primary_10_1002_bies_201400188
crossref_primary_10_1074_jbc_M117_805069
crossref_primary_10_3390_cells8070686
crossref_primary_10_3390_ijms241713033
crossref_primary_10_1096_fj_202201026R
crossref_primary_10_1016_j_bbamcr_2018_12_012
crossref_primary_10_3390_ani10112160
crossref_primary_10_1038_s41467_023_42564_0
crossref_primary_10_3390_life10090164
crossref_primary_10_1016_j_freeradbiomed_2024_03_017
crossref_primary_10_1038_s41586_019_1498_3
crossref_primary_10_3389_fimmu_2021_673916
crossref_primary_10_1016_j_mito_2018_07_006
crossref_primary_10_1523_ENEURO_0390_17_2018
crossref_primary_10_1096_fj_201801483RR
crossref_primary_10_1016_j_bbabio_2016_04_002
crossref_primary_10_1016_j_mad_2023_111870
crossref_primary_10_3390_biom11071012
crossref_primary_10_1074_jbc_RA119_011110
crossref_primary_10_1016_j_cmet_2021_07_008
crossref_primary_10_1038_s41419_022_04869_8
crossref_primary_10_1002_stem_3425
crossref_primary_10_1080_10985549_2023_2253131
crossref_primary_10_1111_obr_13164
crossref_primary_10_4049_jimmunol_2300406
crossref_primary_10_1016_j_jbc_2024_107159
crossref_primary_10_1002_jimd_12369
crossref_primary_10_1016_j_bbabio_2019_148091
crossref_primary_10_1126_science_aad0116
crossref_primary_10_1089_rej_2017_1989
crossref_primary_10_3390_antiox7010001
crossref_primary_10_1038_s41467_022_28191_1
crossref_primary_10_1186_s12915_021_01192_0
crossref_primary_10_1016_j_freeradbiomed_2024_03_024
crossref_primary_10_1038_s41598_022_19723_2
crossref_primary_10_1002_jcp_31204
crossref_primary_10_1083_jcb_201508099
crossref_primary_10_3389_fgene_2018_00718
crossref_primary_10_1007_s00109_020_02004_8
crossref_primary_10_1242_jcs_218313
crossref_primary_10_1002_1873_3468_14089
crossref_primary_10_1002_oby_21654
crossref_primary_10_3390_cells9010121
crossref_primary_10_1186_s13048_022_00999_x
crossref_primary_10_15252_emmm_201506159
crossref_primary_10_18632_genesandcancer_176
crossref_primary_10_1007_s00109_015_1359_y
crossref_primary_10_1002_jcp_30461
crossref_primary_10_1158_2326_6066_CIR_22_0685
crossref_primary_10_1038_s44318_024_00027_2
crossref_primary_10_1016_j_mito_2019_11_006
crossref_primary_10_1089_ars_2017_7228
crossref_primary_10_1074_jbc_M116_762567
crossref_primary_10_3390_cells10030537
crossref_primary_10_1111_joim_13031
crossref_primary_10_3892_ijmm_2019_4189
crossref_primary_10_3390_ijms18050933
crossref_primary_10_1016_j_jlr_2024_100563
crossref_primary_10_1101_cshperspect_a036434
crossref_primary_10_1007_s11427_021_1962_0
crossref_primary_10_1074_jbc_RA118_003935
crossref_primary_10_1007_s00441_018_2975_y
crossref_primary_10_1096_fj_201901150R
crossref_primary_10_1089_ars_2021_0031
crossref_primary_10_1016_j_cmet_2018_02_018
crossref_primary_10_1016_j_bbrc_2017_04_088
crossref_primary_10_3389_fendo_2020_00319
crossref_primary_10_3390_genes14030627
crossref_primary_10_3389_fpls_2017_01543
crossref_primary_10_3389_fcell_2021_744838
crossref_primary_10_1016_j_redox_2020_101503
crossref_primary_10_1242_jcs_260986
crossref_primary_10_1016_j_biocel_2023_106492
crossref_primary_10_1111_febs_17130
crossref_primary_10_1038_s42003_024_06045_4
crossref_primary_10_1146_annurev_vision_082114_035651
crossref_primary_10_1038_s41598_017_05808_w
crossref_primary_10_1038_s41598_021_99118_x
crossref_primary_10_1038_s41598_024_65595_z
crossref_primary_10_1007_s10557_016_6710_1
crossref_primary_10_1016_j_bbamcr_2020_118854
crossref_primary_10_1038_s41419_020_2498_9
crossref_primary_10_1016_j_freeradbiomed_2019_01_027
crossref_primary_10_3389_fcell_2021_774108
crossref_primary_10_1089_ars_2018_7534
crossref_primary_10_1038_s41583_018_0091_3
crossref_primary_10_7717_peerj_7285
crossref_primary_10_1016_j_chemosphere_2018_10_043
crossref_primary_10_1016_j_bbabio_2019_06_015
crossref_primary_10_1074_jbc_RA119_010983
crossref_primary_10_3390_cells13060473
crossref_primary_10_1155_2019_2193019
crossref_primary_10_1089_dna_2021_0529
crossref_primary_10_3390_biom13081225
crossref_primary_10_1007_s12035_018_1028_6
crossref_primary_10_1126_sciadv_abo7956
crossref_primary_10_1515_hsz_2022_0309
crossref_primary_10_3390_genes9020109
crossref_primary_10_1007_s10565_021_09662_5
crossref_primary_10_18632_aging_205214
crossref_primary_10_3390_ijms25084566
crossref_primary_10_1371_journal_pbio_2003782
crossref_primary_10_1002_1873_3468_12384
crossref_primary_10_1016_j_redox_2021_101944
crossref_primary_10_1021_acs_molpharmaceut_3c00480
crossref_primary_10_3934_molsci_2015_2_161
crossref_primary_10_7554_eLife_51845
crossref_primary_10_1186_s12967_023_04141_3
crossref_primary_10_1016_j_bbamcr_2017_05_004
crossref_primary_10_1038_s41598_019_42554_7
crossref_primary_10_3390_antiox12081517
crossref_primary_10_1007_s12035_022_03149_y
crossref_primary_10_3390_antiox7120186
crossref_primary_10_1016_j_nutres_2020_09_006
crossref_primary_10_1083_jcb_202003131
crossref_primary_10_1038_s41467_018_05655_x
crossref_primary_10_1016_j_bbabio_2022_148914
crossref_primary_10_1093_hmg_ddac128
crossref_primary_10_3389_fcell_2021_626117
crossref_primary_10_1016_j_abb_2022_109172
crossref_primary_10_1038_s41590_020_0780_8
crossref_primary_10_1155_2018_4606752
crossref_primary_10_1016_j_redox_2022_102400
crossref_primary_10_1111_odi_13652
crossref_primary_10_1016_j_celrep_2016_11_049
crossref_primary_10_1038_s41556_018_0133_0
crossref_primary_10_3389_fcell_2021_781933
crossref_primary_10_1016_j_trecan_2017_10_006
crossref_primary_10_1074_jbc_M115_695825
crossref_primary_10_1186_s13045_022_01313_4
crossref_primary_10_3390_ijms241311003
crossref_primary_10_26508_lsa_202000711
crossref_primary_10_15252_emmm_202013579
crossref_primary_10_1530_ERC_22_0229
crossref_primary_10_1038_s12276_023_01125_7
crossref_primary_10_4049_jimmunol_1800705
crossref_primary_10_1083_jcb_201507022
crossref_primary_10_1097_FJC_0000000000001495
crossref_primary_10_1038_s41419_020_03152_y
crossref_primary_10_15252_embj_2019104105
crossref_primary_10_3389_ftox_2024_1357857
crossref_primary_10_1016_j_bbabio_2016_02_004
crossref_primary_10_1038_s41418_022_01076_y
crossref_primary_10_1038_s42003_020_0832_5
crossref_primary_10_1089_ars_2022_0124
crossref_primary_10_1038_s41598_020_76255_3
crossref_primary_10_1016_j_mito_2024_101933
crossref_primary_10_3389_fendo_2022_789008
crossref_primary_10_1038_s41580_022_00506_6
crossref_primary_10_1083_jcb_201709111
crossref_primary_10_1128_JVI_01183_19
crossref_primary_10_1016_j_ceca_2021_102517
crossref_primary_10_1016_j_abb_2021_108939
crossref_primary_10_1016_j_celrep_2016_02_011
crossref_primary_10_3389_fcell_2017_00106
crossref_primary_10_1016_j_pbi_2017_09_002
crossref_primary_10_1016_j_devcel_2020_01_014
crossref_primary_10_1371_journal_pbio_3002246
crossref_primary_10_1016_j_ceb_2016_03_013
crossref_primary_10_1038_s41580_020_0210_7
crossref_primary_10_3389_fphys_2020_00536
crossref_primary_10_1096_fj_15_272179
crossref_primary_10_1152_physrev_00009_2022
crossref_primary_10_1016_j_ceca_2020_102282
crossref_primary_10_1016_j_devcel_2021_03_033
crossref_primary_10_1016_j_jcjd_2018_05_007
crossref_primary_10_1186_s12951_021_01167_x
crossref_primary_10_1093_function_zqac039
crossref_primary_10_1371_journal_pgen_1008184
crossref_primary_10_1134_S1995078020010139
crossref_primary_10_4161_23723556_2014_982378
crossref_primary_10_1016_j_bbamcr_2016_05_020
crossref_primary_10_1210_endrev_bnad004
crossref_primary_10_3390_antiox12061163
crossref_primary_10_1038_s41598_024_64368_y
crossref_primary_10_1016_j_phrs_2018_08_010
crossref_primary_10_1038_s41467_023_41988_y
crossref_primary_10_3390_ijms24020922
crossref_primary_10_1016_j_cell_2016_05_035
crossref_primary_10_1016_j_isci_2024_109164
crossref_primary_10_1002_dvdy_24538
crossref_primary_10_3390_toxics9110270
crossref_primary_10_1096_fj_202000238RRR
crossref_primary_10_1016_j_tem_2024_05_005
crossref_primary_10_1074_jbc_M116_736793
crossref_primary_10_1007_s12035_021_02494_8
crossref_primary_10_3390_ijms19123930
crossref_primary_10_1155_2019_3836186
crossref_primary_10_15252_embj_201490446
crossref_primary_10_1089_ars_2022_0173
crossref_primary_10_1111_bph_15068
crossref_primary_10_1530_REP_18_0431
crossref_primary_10_1016_j_bbr_2019_112225
crossref_primary_10_1038_s41467_021_21984_w
crossref_primary_10_3390_ijms22031462
crossref_primary_10_1128_MCB_01047_14
crossref_primary_10_1038_nrendo_2016_104
crossref_primary_10_1038_s41418_019_0345_2
crossref_primary_10_15252_embr_201642931
crossref_primary_10_1016_j_tiv_2019_104597
crossref_primary_10_1039_c9mt00187e
crossref_primary_10_1242_jcs_159186
crossref_primary_10_1172_JCI164660
crossref_primary_10_1016_j_bbabio_2022_148949
crossref_primary_10_1016_j_acthis_2021_151841
crossref_primary_10_1111_apha_13430
crossref_primary_10_3390_antiox12051072
crossref_primary_10_1038_s42255_021_00497_2
crossref_primary_10_1016_j_isci_2023_107180
crossref_primary_10_1016_j_tcb_2020_08_008
crossref_primary_10_3389_fbioe_2021_786806
crossref_primary_10_1111_brv_12378
crossref_primary_10_3389_fendo_2023_1267170
crossref_primary_10_3390_biology12040529
crossref_primary_10_3390_cells12162017
crossref_primary_10_1016_j_brainres_2019_05_037
crossref_primary_10_1242_jcs_234435
crossref_primary_10_3389_fphar_2020_578599
crossref_primary_10_1016_j_ejphar_2020_172987
crossref_primary_10_3390_ijms232314741
crossref_primary_10_1016_j_celrep_2017_05_073
crossref_primary_10_1242_dev_200870
crossref_primary_10_1038_s41556_021_00837_0
crossref_primary_10_3390_ijms21093134
crossref_primary_10_1007_s00415_015_7849_6
crossref_primary_10_7554_eLife_15275
crossref_primary_10_1016_j_semcdb_2019_05_022
crossref_primary_10_1016_j_bbamem_2017_03_013
crossref_primary_10_1073_pnas_1920413117
crossref_primary_10_1016_j_freeradbiomed_2023_04_015
crossref_primary_10_1007_s11064_015_1579_0
crossref_primary_10_3390_biomedicines8040085
crossref_primary_10_1002_ana_25221
crossref_primary_10_31435_rsglobal_sr_30012021_7378
crossref_primary_10_1111_acel_14165
crossref_primary_10_1016_j_preteyeres_2020_100935
crossref_primary_10_26508_lsa_201900348
crossref_primary_10_1038_cddiscovery_2017_77
crossref_primary_10_1016_j_isci_2021_102119
crossref_primary_10_1113_JP284734
crossref_primary_10_1007_s10565_022_09712_6
crossref_primary_10_1038_ncb3560
crossref_primary_10_1371_journal_pgen_1006597
crossref_primary_10_1371_journal_pone_0160380
crossref_primary_10_1371_journal_pgen_1010055
crossref_primary_10_1038_s41598_022_10521_4
crossref_primary_10_1038_s41598_020_80425_8
crossref_primary_10_3389_fneur_2021_681326
Cites_doi 10.1007/978-1-4614-3573-0_5
10.1083/jcb.201107053
10.1038/ng1341
10.1136/jmg.2007.052084
10.1074/jbc.M109260200
10.1016/j.cell.2006.09.021
10.1016/j.cmet.2014.03.011
10.1016/j.cub.2012.04.054
10.1083/jcb.37.2.345
10.1074/jbc.M110.167155
10.1016/j.devcel.2011.08.026
10.1073/pnas.1107402108
10.1002/pmic.201100438
10.1016/j.febslet.2006.09.012
10.1083/jcb.200704110
10.1371/journal.pone.0075429
10.1016/j.cell.2010.02.026
10.1038/79936
10.1038/emboj.2011.379
10.1038/emboj.2009.89
10.1016/j.cell.2006.06.025
10.1016/j.cell.2013.11.037
10.1016/j.mito.2009.03.003
10.1038/nprot.2006.473
10.1016/j.bbabio.2008.12.016
10.1212/WNL.0b013e3182698d8d
10.1038/79944
10.1093/emboj/21.3.221
10.3945/ajcn.113.070086
10.1038/nprot.2006.62
10.1073/pnas.61.2.598
10.1016/j.cell.2013.08.032
10.1016/j.molcel.2008.07.010
10.1042/BJ20040566
10.1371/journal.pone.0028536
10.1083/jcb.200211046
10.1038/sj.emboj.7600592
10.1083/jcb.30.2.269
10.1016/j.bbamcr.2006.04.006
10.1016/j.mam.2012.05.005
10.1016/S1534-5807(01)00116-2
10.1083/jcb.200605138
10.1038/ncb2220
10.1038/nbt.1511
10.1093/hmg/dds500
10.1016/j.bbadis.2005.07.001
10.1371/journal.pone.0004604
ContentType Journal Article
Copyright The Author(s) 2014
2014 The Authors
2014 The Authors.
2014 EMBO
2014 The Authors 2014
Copyright_xml – notice: The Author(s) 2014
– notice: 2014 The Authors
– notice: 2014 The Authors.
– notice: 2014 EMBO
– notice: 2014 The Authors 2014
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.201488349
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef


Virology and AIDS Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1460-2075
EndPage 2691
ExternalDocumentID 3499312551
10_15252_embj_201488349
25298396
EMBJ201488349
ark_67375_WNG_DXH929C2_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Brain Canada/Krembil Foundation
– fundername: Shelby Hayter Pass the Baton Graduate Fellowship
– fundername: Heart and Stroke Foundation
– fundername: Heart and Stroke Foundation of Canada
  grantid: T7185
– fundername: Ontario Graduate Scholarship
– fundername: Parkinson's Society of Canada Research Fellowship
– fundername: Heart and Stroke Society of Canada
– fundername: Parkinson's Research Consortium
– fundername: Canadian Institutes of Health Research
  grantid: MOP50471; MOP57810
– fundername: Canadian Institutes of Health Research
  funderid: MOP50471; MOP57810
– fundername: Heart and Stroke Foundation of Canada
  funderid: T7185
– fundername: Canadian Institutes of Health Research
  grantid: MOP50471
– fundername: Canadian Institutes of Health Research
  grantid: MOP57810
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BSCLL
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
G-S
GODZA
GROUPED_DOAJ
GX1
H13
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RIG
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c6179-2c8816af4b17ba454646279092404488b917655438bc94b9a20beef605c0111e3
IEDL.DBID RPM
ISSN 0261-4189
IngestDate Tue Sep 17 21:25:36 EDT 2024
Fri Oct 25 06:08:20 EDT 2024
Thu Oct 10 21:06:53 EDT 2024
Fri Aug 23 03:16:13 EDT 2024
Sat Sep 28 07:56:43 EDT 2024
Sat Aug 24 01:15:44 EDT 2024
Fri Oct 25 01:30:29 EDT 2024
Wed Oct 30 09:59:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords cristae
ATP synthase
OPA1
SLC25A
mitochondria
Language English
License 2014 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6179-2c8816af4b17ba454646279092404488b917655438bc94b9a20beef605c0111e3
Notes istex:224723C1FD2F4D4A0DBCBA469A00DA9524219985
Shelby Hayter Pass the Baton Graduate Fellowship
Suplementary Figure S1Suplementary Figure S2Suplementary Figure S3Suplementary Figure S4Suplementary Figure S5Suplementary Figure S6Suplementary Figure S7Suplementary Figure S8Suplementary Figure S9Suplementary Table S1Suplementary Table S2Legends for Supplementary FiguresSource Data for Supplementary Figure S1Source Data for Supplementary Figure S7Review Process FileSource Data for Figure 1Source Data for Figure 2Source Data for Figure 3Source Data for Figure 4Source Data for Figure 5Source Data for Figure 6Source Data for Figure 7
Heart and Stroke Foundation
Heart and Stroke Society of Canada
ArticleID:EMBJ201488349
ark:/67375/WNG-DXH929C2-6
Heart and Stroke Foundation of Canada - No. T7185
Canadian Institutes of Health Research - No. MOP50471; No. MOP57810
Ontario Graduate Scholarship
Parkinson's Research Consortium
Parkinson's Society of Canada Research Fellowship
Brain Canada/Krembil Foundation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Subject Categories Membrane & Intracellular Transport; Metabolism
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282575
PMID 25298396
PQID 1625583549
PQPubID 35985
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4282575
proquest_miscellaneous_1627074575
proquest_journals_1625583549
crossref_primary_10_15252_embj_201488349
pubmed_primary_25298396
wiley_primary_10_15252_embj_201488349_EMBJ201488349
springer_journals_10_15252_embj_201488349
istex_primary_ark_67375_WNG_DXH929C2_6
PublicationCentury 2000
PublicationDate 18 November 2014
PublicationDateYYYYMMDD 2014-11-18
PublicationDate_xml – month: 11
  year: 2014
  text: 18 November 2014
  day: 18
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Heidelberg
– name: Oxford, UK
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
BlackWell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: BlackWell Publishing Ltd
References Jahani-Asl A, Pilon-Larose K, Xu W, MacLaurin JG, Park DS, McBride HM, Slack RS (2011) The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J Biol Chem 286: 4772-4782
Mishra P, Carelli V, Manfredi G, Chan DC (2014) Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab 19: 630-641
Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26: 211-215
Palmieri F (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 34: 465-484
Germain M, Mathai JP, McBride HM, Shore GC (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 24: 1546-1556
Taylor PM (2014) Role of amino acid transporters in amino acid sensing. Am J Clin Nutr 99: 223S-230S
Guo W, Jiang L, Bhasin S, Khan SM, Swerdlow RH (2009) DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 9: 261-265
Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke I, Merkwirth C, Ehses S, Krause F, Chan DC, Alexander C, Bauer C, Youle R, Langer T, Martinou JC (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28: 1589-1600
Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195: 323-340
Sukhorukov VM, Bereiter-Hahn J (2009) Anomalous diffusion induced by cristae geometry in the inner mitochondrial membrane. PLoS ONE 4: e4604
Yamaguchi R, Lartigue L, Perkins G, Scott RT, Dixit A, Kushnareva Y, Kuwana T, Ellisman MH, Newmeyer DD (2008) Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol Cell 31: 557-569
Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36: 449-451
Pitceathly RD, Murphy SM, Cottenie E, Chalasani A, Sweeney MG, Woodward C, Mudanohwo EE, Hargreaves I, Heales S, Land J, Holton JL, Houlden H, Blake J, Champion M, Flinter F, Robb SA, Page R, Rose M, Palace J, Crowe C et al (2012) Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease. Neurology 79: 1145-1154
Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 108: 10190-10195
Amutha B, Gordon DM, Gu Y, Pain D (2004) A novel role of Mgm1p, a dynamin-related GTPase, in ATP synthase assembly and cristae formation/maintenance. Biochem J 381: 19-23
Lenaz G, Genova ML (2012) Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation. Adv Exp Med Biol 748: 107-144
Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2: 55-67
Hackenbrock CR (1968a) Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. Proc Natl Acad Sci USA 61: 598-605
Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155: 160-171
Trinkle-Mulcahy L (2012) Resolving protein interactions and complexes by affinity purification followed by label-based quantitative mass spectrometry. Proteomics 12: 1623-1638
Germain M, Nguyen AP, Khacho M, Patten DA, Screaton RA, Park DS, Slack RS (2013) LKB1-regulated adaptive mechanisms are essential for neuronal survival following mitochondrial dysfunction. Hum Mol Genet 22: 952-962
Habersetzer J, Larrieu I, Priault M, Salin B, Rossignol R, Brethes D, Paumard P (2013) Human F1F0 ATP synthase, mitochondrial ultrastructure and OXPHOS impairment: a (super-)complex matter? PLoS ONE 8: e75429
Jonckheere AI, Hogeveen M, Nijtmans LG, van den Brand MA, Janssen AJ, Diepstra JH, van den Brandt FC, van den Heuvel LP, Hol FA, Hofste TG, Kapusta L, Dillmann U, Shamdeen MG, Smeitink JA, Rodenburg RJ (2008) A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. J Med Genet 45: 129-133
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160: 189-200
Wurm CA, Jakobs S (2006) Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast. FEBS Lett 580: 5628-5634
Wasilewski M, Semenzato M, Rafelski SM, Robbins J, Bakardjiev AI, Scorrano L (2012) Optic atrophy 1-dependent mitochondrial remodeling controls steroidogenesis in trophoblasts. Curr Biol 22: 1228-1234
von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D, Hutu DP, Zerbes RM, Schulze-Specking A, Meyer HE, Martinou JC, Rospert S, Rehling P, Meisinger C, Veenhuis M, Warscheid B et al (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21: 694-707
Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26: 207-210
Harner M, Korner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, Griffith J, Mann M, Reggiori F, Neupert W (2011) The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J 30: 4356-4370
Meeusen S, DeVay R, Block J, Cassidy-Stone A, Wayson S, McCaffery JM, Nunnari J (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127: 383-395
Tashiro A, Zhao C, Gage FH (2006) Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo. Nat Protoc 1: 3049-3055
Mannella CA (2006b) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763: 542-548
Aguer C, Gambarotta D, Mailloux RJ, Moffat C, Dent R, McPherson R, Harper ME (2011) Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS ONE 6: e28536
Song Z, Chen H, Fiket M, Alexander C, Chan DC (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178: 749-755
Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141: 280-289
Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126: 177-189
Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155: 1624-1638
Misaka T, Miyashita T, Kubo Y (2002) Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J Biol Chem 277: 15834-15842
Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1: 418-428
Wittig I, Schagger H (2009) Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim Biophys Acta 1787: 672-680
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367-1372
Hackenbrock CR (1966) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 30: 269-297
Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brethes D, di Rago JP, Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21: 221-230
Vogel F, Bornhovd C, Neupert W, Reichert AS (2006) Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175: 237-247
Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13: 589-598
Mannella CA (2006a) The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 1762: 140-147
Hackenbrock CR (1968b) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron
Gomes, Price, Ling, Moslehi, Montgomery, Rajman, White, Teodoro, Wrann, Hubbard, Mercken, Palmeira, de Cabo, Rolo, Turner, Bell, Sinclair (CR13) 2013; 155
Sukhorukov, Bereiter‐Hahn (CR36) 2009; 4
Alexander, Votruba, Pesch, Thiselton, Mayer, Moore, Rodriguez, Kellner, Leo‐Kottler, Auburger, Bhattacharya, Wissinger (CR2) 2000; 26
Hackenbrock (CR16) 1966; 30
Delettre, Lenaers, Griffoin, Gigarel, Lorenzo, Belenguer, Pelloquin, Grosgeorge, Turc‐Carel, Perret, Astarie‐Dequeker, Lasquellec, Arnaud, Ducommun, Kaplan, Hamel (CR8) 2000; 26
Chen, Vermulst, Wang, Chomyn, Prolla, McCaffery, Chan (CR5) 2010; 141
Jonckheere, Hogeveen, Nijtmans, van den Brand, Janssen, Diepstra, van den Brandt, van den Heuvel, Hol, Hofste, Kapusta, Dillmann, Shamdeen, Smeitink, Rodenburg (CR22) 2008; 45
Hoppins, Collins, Cassidy‐Stone, Hummel, Devay, Lackner, Westermann, Schuldiner, Weissman, Nunnari (CR20) 2011; 195
Amutha, Gordon, Gu, Pain (CR3) 2004; 381
Harner, Korner, Walther, Mokranjac, Kaesmacher, Welsch, Griffith, Mann, Reggiori, Neupert (CR19) 2011; 30
Misaka, Miyashita, Kubo (CR28) 2002; 277
Palmieri (CR30) 2013; 34
Wittig, Schagger (CR44) 2009; 1787
Guo, Jiang, Bhasin, Khan, Swerdlow (CR14) 2009; 9
Scorrano, Ashiya, Buttle, Weiler, Oakes, Mannella, Korsmeyer (CR34) 2002; 2
Yamaguchi, Lartigue, Perkins, Scott, Dixit, Kushnareva, Kuwana, Ellisman, Newmeyer (CR46) 2008; 31
Chen, Detmer, Ewald, Griffin, Fraser, Chan (CR4) 2003; 160
Habersetzer, Larrieu, Priault, Salin, Rossignol, Brethes, Paumard (CR15) 2013; 8
Jahani‐Asl, Pilon‐Larose, Xu, MacLaurin, Park, McBride, Slack (CR21) 2011; 286
Hackenbrock (CR18) 1968; 37
Tondera, Grandemange, Jourdain, Karbowski, Mattenberger, Herzig, Da Cruz, Clerc, Raschke, Merkwirth, Ehses, Krause, Chan, Alexander, Bauer, Youle, Langer, Martinou (CR39) 2009; 28
Germain, Mathai, McBride, Shore (CR10) 2005; 24
Paumard, Vaillier, Coulary, Schaeffer, Soubannier, Mueller, Brethes, di Rago, Velours (CR31) 2002; 21
Germain, Nguyen, Khacho, Patten, Screaton, Park, Slack (CR11) 2013; 22
Meeusen, DeVay, Block, Cassidy‐Stone, Wayson, McCaffery, Nunnari (CR27) 2006; 127
Tashiro, Zhao, Gage (CR37) 2006; 1
Hackenbrock (CR17) 1968; 61
Frezza, Cipolat, Martins de Brito, Micaroni, Beznoussenko, Rudka, Bartoli, Polishuck, Danial, De Strooper, Scorrano (CR9) 2006; 126
Taylor (CR38) 2014; 99
Wurm, Jakobs (CR45) 2006; 580
Aguer, Gambarotta, Mailloux, Moffat, Dent, McPherson, Harper (CR1) 2011; 6
Cogliati, Frezza, Soriano, Varanita, Quintana‐Cabrera, Corrado, Cipolat, Costa, Casarin, Gomes, Perales‐Clemente, Salviati, Fernandez‐Silva, Enriquez, Scorrano (CR6) 2013; 155
Gomes, Di Benedetto, Scorrano (CR12) 2011; 13
Wittig, Braun, Schagger (CR43) 2006; 1
Zuchner, Mersiyanova, Muglia, Bissar‐Tadmouri, Rochelle, Dadali, Zappia, Nelis, Patitucci, Senderek, Parman, Evgrafov, Jonghe, Takahashi, Tsuji, Pericak‐Vance, Quattrone, Battaloglu, Polyakov, Timmerman (CR47) 2004; 36
Song, Chen, Fiket, Alexander, Chan (CR35) 2007; 178
Mannella (CR26) 2006; 1763
Pitceathly, Murphy, Cottenie, Chalasani, Sweeney, Woodward, Mudanohwo, Hargreaves, Heales, Land, Holton, Houlden, Blake, Champion, Flinter, Robb, Page, Rose, Palace, Crowe (CR32) 2012; 79
Rambold, Kostelecky, Elia, Lippincott‐Schwartz (CR33) 2011; 108
Trinkle‐Mulcahy (CR40) 2012; 12
Cox, Mann (CR7) 2008; 26
Lenaz, Genova (CR23) 2012; 748
Mannella (CR25) 2006; 1762
Mishra, Carelli, Manfredi, Chan (CR29) 2014; 19
Vogel, Bornhovd, Neupert, Reichert (CR41) 2006; 175
von der Malsburg, Muller, Bohnert, Oeljeklaus, Kwiatkowska, Becker, Loniewska‐Lwowska, Wiese, Rao, Milenkovic, Hutu, Zerbes, Schulze‐Specking, Meyer, Martinou, Rospert, Rehling, Meisinger, Veenhuis, Warscheid (CR24) 2011; 21
Wasilewski, Semenzato, Rafelski, Robbins, Bakardjiev, Scorrano (CR42) 2012; 22
2009; 1787
2013; 22
2000; 26
2006a; 1762
2004; 381
2002; 277
2011; 30
2002; 2
2010; 141
2006; 175
2011; 13
2006; 1
2008; 31
2013; 8
2011; 195
2012; 79
2011; 6
2012; 12
1966; 30
2005; 24
2012; 748
2009; 28
2007; 178
2011; 108
2006b; 1763
2013; 34
2004; 36
2002; 21
2013; 155
2008; 26
2006; 580
2003; 160
2009; 9
2008; 45
2011; 21
2014; 19
2009; 4
2006; 127
2006; 126
1968a; 61
2012; 22
1968b; 37
2014; 99
2011; 286
5656397 - J Cell Biol. 1968 May;37(2):345-69
11823415 - EMBO J. 2002 Feb 1;21(3):221-30
19324101 - Mitochondrion. 2009 Jul;9(4):261-5
16730811 - Biochim Biophys Acta. 2006 May-Jun;1763(5-6):542-8
17055438 - Cell. 2006 Oct 20;127(2):383-95
22610586 - Proteomics. 2012 May;12(10):1623-38
11782314 - Dev Cell. 2002 Jan;2(1):55-67
4176482 - Proc Natl Acad Sci U S A. 1968 Oct;61(2):598-605
23266187 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):465-84
11017080 - Nat Genet. 2000 Oct;26(2):211-5
17043137 - J Cell Biol. 2006 Oct 23;175(2):237-47
21041314 - J Biol Chem. 2011 Feb 11;286(6):4772-82
21478857 - Nat Cell Biol. 2011 May;13(5):589-98
17406264 - Nat Protoc. 2006;1(1):418-28
17954552 - J Med Genet. 2008 Mar;45(3):129-33
19168025 - Biochim Biophys Acta. 2009 Jun;1787(6):672-80
19360003 - EMBO J. 2009 Jun 3;28(11):1589-600
21944719 - Dev Cell. 2011 Oct 18;21(4):694-707
15064763 - Nat Genet. 2004 May;36(5):449-51
24360282 - Cell. 2013 Dec 19;155(7):1624-38
19029910 - Nat Biotechnol. 2008 Dec;26(12):1367-72
16839885 - Cell. 2006 Jul 14;126(1):177-89
22933740 - Neurology. 2012 Sep 11;79(11):1145-54
23187960 - Hum Mol Genet. 2013 Mar 1;22(5):952-62
15125685 - Biochem J. 2004 Jul 1;381(Pt 1):19-23
17406567 - Nat Protoc. 2006;1(6):3049-55
21987634 - J Cell Biol. 2011 Oct 17;195(2):323-40
21646527 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10190-5
22009199 - EMBO J. 2011 Nov 2;30(21):4356-70
19242541 - PLoS One. 2009;4(2):e4604
22194845 - PLoS One. 2011;6(12):e28536
24055366 - Cell. 2013 Sep 26;155(1):160-71
12527753 - J Cell Biol. 2003 Jan 20;160(2):189-200
15791210 - EMBO J. 2005 Apr 20;24(8):1546-56
22729856 - Adv Exp Med Biol. 2012;748:107-44
11017079 - Nat Genet. 2000 Oct;26(2):207-10
17709429 - J Cell Biol. 2007 Aug 27;178(5):749-55
24703695 - Cell Metab. 2014 Apr 1;19(4):630-41
16997298 - FEBS Lett. 2006 Oct 16;580(24):5628-34
24284439 - Am J Clin Nutr. 2014 Jan;99(1):223S-230S
18691924 - Mol Cell. 2008 Aug 22;31(4):557-69
5968972 - J Cell Biol. 1966 Aug;30(2):269-97
24098383 - PLoS One. 2013;8(10):e75429
22658590 - Curr Biol. 2012 Jul 10;22(13):1228-34
16054341 - Biochim Biophys Acta. 2006 Feb;1762(2):140-7
11847212 - J Biol Chem. 2002 May 3;277(18):15834-42
20403324 - Cell. 2010 Apr 16;141(2):280-9
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 30
  start-page: 4356
  year: 2011
  end-page: 4370
  ident: CR19
  article-title: The mitochondrial contact site complex, a determinant of mitochondrial architecture
  publication-title: EMBO J
  contributor:
    fullname: Neupert
– volume: 31
  start-page: 557
  year: 2008
  end-page: 569
  ident: CR46
  article-title: Opa1‐mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization
  publication-title: Mol Cell
  contributor:
    fullname: Newmeyer
– volume: 22
  start-page: 1228
  year: 2012
  end-page: 1234
  ident: CR42
  article-title: Optic atrophy 1‐dependent mitochondrial remodeling controls steroidogenesis in trophoblasts
  publication-title: Curr Biol
  contributor:
    fullname: Scorrano
– volume: 748
  start-page: 107
  year: 2012
  end-page: 144
  ident: CR23
  article-title: Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation
  publication-title: Adv Exp Med Biol
  contributor:
    fullname: Genova
– volume: 99
  start-page: 223S
  year: 2014
  end-page: 230S
  ident: CR38
  article-title: Role of amino acid transporters in amino acid sensing
  publication-title: Am J Clin Nutr
  contributor:
    fullname: Taylor
– volume: 28
  start-page: 1589
  year: 2009
  end-page: 1600
  ident: CR39
  article-title: SLP‐2 is required for stress‐induced mitochondrial hyperfusion
  publication-title: EMBO J
  contributor:
    fullname: Martinou
– volume: 24
  start-page: 1546
  year: 2005
  end-page: 1556
  ident: CR10
  article-title: Endoplasmic reticulum BIK initiates DRP1‐regulated remodelling of mitochondrial cristae during apoptosis
  publication-title: EMBO J
  contributor:
    fullname: Shore
– volume: 1787
  start-page: 672
  year: 2009
  end-page: 680
  ident: CR44
  article-title: Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes
  publication-title: Biochim Biophys Acta
  contributor:
    fullname: Schagger
– volume: 37
  start-page: 345
  year: 1968
  end-page: 369
  ident: CR18
  article-title: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport‐linked ultrastructural transformations in mitochondria
  publication-title: J Cell Biol
  contributor:
    fullname: Hackenbrock
– volume: 34
  start-page: 465
  year: 2013
  end-page: 484
  ident: CR30
  article-title: The mitochondrial transporter family SLC25: identification, properties and physiopathology
  publication-title: Mol Aspects Med
  contributor:
    fullname: Palmieri
– volume: 580
  start-page: 5628
  year: 2006
  end-page: 5634
  ident: CR45
  article-title: Differential protein distributions define two sub‐compartments of the mitochondrial inner membrane in yeast
  publication-title: FEBS Lett
  contributor:
    fullname: Jakobs
– volume: 6
  start-page: e28536
  year: 2011
  ident: CR1
  article-title: Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells
  publication-title: PLoS ONE
  contributor:
    fullname: Harper
– volume: 178
  start-page: 749
  year: 2007
  end-page: 755
  ident: CR35
  article-title: OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L
  publication-title: J Cell Biol
  contributor:
    fullname: Chan
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  ident: CR7
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat Biotechnol
  contributor:
    fullname: Mann
– volume: 26
  start-page: 207
  year: 2000
  end-page: 210
  ident: CR8
  article-title: Nuclear gene OPA1, encoding a mitochondrial dynamin‐related protein, is mutated in dominant optic atrophy
  publication-title: Nat Genet
  contributor:
    fullname: Hamel
– volume: 195
  start-page: 323
  year: 2011
  end-page: 340
  ident: CR20
  article-title: A mitochondrial‐focused genetic interaction map reveals a scaffold‐like complex required for inner membrane organization in mitochondria
  publication-title: J Cell Biol
  contributor:
    fullname: Nunnari
– volume: 126
  start-page: 177
  year: 2006
  end-page: 189
  ident: CR9
  article-title: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion
  publication-title: Cell
  contributor:
    fullname: Scorrano
– volume: 1
  start-page: 3049
  year: 2006
  end-page: 3055
  ident: CR37
  article-title: Retrovirus‐mediated single‐cell gene knockout technique in adult newborn neurons in vivo
  publication-title: Nat Protoc
  contributor:
    fullname: Gage
– volume: 1762
  start-page: 140
  year: 2006
  end-page: 147
  ident: CR25
  article-title: The relevance of mitochondrial membrane topology to mitochondrial function
  publication-title: Biochim Biophys Acta
  contributor:
    fullname: Mannella
– volume: 175
  start-page: 237
  year: 2006
  end-page: 247
  ident: CR41
  article-title: Dynamic subcompartmentalization of the mitochondrial inner membrane
  publication-title: J Cell Biol
  contributor:
    fullname: Reichert
– volume: 26
  start-page: 211
  year: 2000
  end-page: 215
  ident: CR2
  article-title: OPA1, encoding a dynamin‐related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28
  publication-title: Nat Genet
  contributor:
    fullname: Wissinger
– volume: 1
  start-page: 418
  year: 2006
  end-page: 428
  ident: CR43
  article-title: Blue native PAGE
  publication-title: Nat Protoc
  contributor:
    fullname: Schagger
– volume: 155
  start-page: 160
  year: 2013
  end-page: 171
  ident: CR6
  article-title: Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
  publication-title: Cell
  contributor:
    fullname: Scorrano
– volume: 61
  start-page: 598
  year: 1968
  end-page: 605
  ident: CR17
  article-title: Chemical and physical fixation of isolated mitochondria in low‐energy and high‐energy states
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Hackenbrock
– volume: 12
  start-page: 1623
  year: 2012
  end-page: 1638
  ident: CR40
  article-title: Resolving protein interactions and complexes by affinity purification followed by label‐based quantitative mass spectrometry
  publication-title: Proteomics
  contributor:
    fullname: Trinkle‐Mulcahy
– volume: 8
  start-page: e75429
  year: 2013
  ident: CR15
  article-title: Human F1F0 ATP synthase, mitochondrial ultrastructure and OXPHOS impairment: a (super‐)complex matter?
  publication-title: PLoS ONE
  contributor:
    fullname: Paumard
– volume: 36
  start-page: 449
  year: 2004
  end-page: 451
  ident: CR47
  article-title: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot‐Marie‐Tooth neuropathy type 2A
  publication-title: Nat Genet
  contributor:
    fullname: Timmerman
– volume: 277
  start-page: 15834
  year: 2002
  end-page: 15842
  ident: CR28
  article-title: Primary structure of a dynamin‐related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology
  publication-title: J Biol Chem
  contributor:
    fullname: Kubo
– volume: 79
  start-page: 1145
  year: 2012
  end-page: 1154
  ident: CR32
  article-title: Genetic dysfunction of MT‐ATP6 causes axonal Charcot‐Marie‐Tooth disease
  publication-title: Neurology
  contributor:
    fullname: Crowe
– volume: 2
  start-page: 55
  year: 2002
  end-page: 67
  ident: CR34
  article-title: A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome during apoptosis
  publication-title: Dev Cell
  contributor:
    fullname: Korsmeyer
– volume: 19
  start-page: 630
  year: 2014
  end-page: 641
  ident: CR29
  article-title: Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation
  publication-title: Cell Metab
  contributor:
    fullname: Chan
– volume: 45
  start-page: 129
  year: 2008
  end-page: 133
  ident: CR22
  article-title: A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy
  publication-title: J Med Genet
  contributor:
    fullname: Rodenburg
– volume: 21
  start-page: 221
  year: 2002
  end-page: 230
  ident: CR31
  article-title: The ATP synthase is involved in generating mitochondrial cristae morphology
  publication-title: EMBO J
  contributor:
    fullname: Velours
– volume: 381
  start-page: 19
  year: 2004
  end-page: 23
  ident: CR3
  article-title: A novel role of Mgm1p, a dynamin‐related GTPase, in ATP synthase assembly and cristae formation/maintenance
  publication-title: Biochem J
  contributor:
    fullname: Pain
– volume: 108
  start-page: 10190
  year: 2011
  end-page: 10195
  ident: CR33
  article-title: Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Lippincott‐Schwartz
– volume: 286
  start-page: 4772
  year: 2011
  end-page: 4782
  ident: CR21
  article-title: The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity
  publication-title: J Biol Chem
  contributor:
    fullname: Slack
– volume: 155
  start-page: 1624
  year: 2013
  end-page: 1638
  ident: CR13
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear‐mitochondrial communication during aging
  publication-title: Cell
  contributor:
    fullname: Sinclair
– volume: 141
  start-page: 280
  year: 2010
  end-page: 289
  ident: CR5
  article-title: Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations
  publication-title: Cell
  contributor:
    fullname: Chan
– volume: 22
  start-page: 952
  year: 2013
  end-page: 962
  ident: CR11
  article-title: LKB1‐regulated adaptive mechanisms are essential for neuronal survival following mitochondrial dysfunction
  publication-title: Hum Mol Genet
  contributor:
    fullname: Slack
– volume: 4
  start-page: e4604
  year: 2009
  ident: CR36
  article-title: Anomalous diffusion induced by cristae geometry in the inner mitochondrial membrane
  publication-title: PLoS ONE
  contributor:
    fullname: Bereiter‐Hahn
– volume: 127
  start-page: 383
  year: 2006
  end-page: 395
  ident: CR27
  article-title: Mitochondrial inner‐membrane fusion and crista maintenance requires the dynamin‐related GTPase Mgm1
  publication-title: Cell
  contributor:
    fullname: Nunnari
– volume: 160
  start-page: 189
  year: 2003
  end-page: 200
  ident: CR4
  article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
  publication-title: J Cell Biol
  contributor:
    fullname: Chan
– volume: 30
  start-page: 269
  year: 1966
  end-page: 297
  ident: CR16
  article-title: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria
  publication-title: J Cell Biol
  contributor:
    fullname: Hackenbrock
– volume: 21
  start-page: 694
  year: 2011
  end-page: 707
  ident: CR24
  article-title: Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis
  publication-title: Dev Cell
  contributor:
    fullname: Warscheid
– volume: 9
  start-page: 261
  year: 2009
  end-page: 265
  ident: CR14
  article-title: DNA extraction procedures meaningfully influence qPCR‐based mtDNA copy number determination
  publication-title: Mitochondrion
  contributor:
    fullname: Swerdlow
– volume: 13
  start-page: 589
  year: 2011
  end-page: 598
  ident: CR12
  article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
  publication-title: Nat Cell Biol
  contributor:
    fullname: Scorrano
– volume: 1763
  start-page: 542
  year: 2006
  end-page: 548
  ident: CR26
  article-title: Structure and dynamics of the mitochondrial inner membrane cristae
  publication-title: Biochim Biophys Acta
  contributor:
    fullname: Mannella
– volume: 160
  start-page: 189
  year: 2003
  end-page: 200
  article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
  publication-title: J Cell Biol
– volume: 24
  start-page: 1546
  year: 2005
  end-page: 1556
  article-title: Endoplasmic reticulum BIK initiates DRP1‐regulated remodelling of mitochondrial cristae during apoptosis
  publication-title: EMBO J
– volume: 34
  start-page: 465
  year: 2013
  end-page: 484
  article-title: The mitochondrial transporter family SLC25: identification, properties and physiopathology
  publication-title: Mol Aspects Med
– volume: 28
  start-page: 1589
  year: 2009
  end-page: 1600
  article-title: SLP‐2 is required for stress‐induced mitochondrial hyperfusion
  publication-title: EMBO J
– volume: 178
  start-page: 749
  year: 2007
  end-page: 755
  article-title: OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L
  publication-title: J Cell Biol
– volume: 31
  start-page: 557
  year: 2008
  end-page: 569
  article-title: Opa1‐mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization
  publication-title: Mol Cell
– volume: 286
  start-page: 4772
  year: 2011
  end-page: 4782
  article-title: The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity
  publication-title: J Biol Chem
– volume: 748
  start-page: 107
  year: 2012
  end-page: 144
  article-title: Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation
  publication-title: Adv Exp Med Biol
– volume: 1
  start-page: 418
  year: 2006
  end-page: 428
  article-title: Blue native PAGE
  publication-title: Nat Protoc
– volume: 26
  start-page: 211
  year: 2000
  end-page: 215
  article-title: OPA1, encoding a dynamin‐related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28
  publication-title: Nat Genet
– volume: 9
  start-page: 261
  year: 2009
  end-page: 265
  article-title: DNA extraction procedures meaningfully influence qPCR‐based mtDNA copy number determination
  publication-title: Mitochondrion
– volume: 22
  start-page: 1228
  year: 2012
  end-page: 1234
  article-title: Optic atrophy 1‐dependent mitochondrial remodeling controls steroidogenesis in trophoblasts
  publication-title: Curr Biol
– volume: 22
  start-page: 952
  year: 2013
  end-page: 962
  article-title: LKB1‐regulated adaptive mechanisms are essential for neuronal survival following mitochondrial dysfunction
  publication-title: Hum Mol Genet
– volume: 277
  start-page: 15834
  year: 2002
  end-page: 15842
  article-title: Primary structure of a dynamin‐related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology
  publication-title: J Biol Chem
– volume: 126
  start-page: 177
  year: 2006
  end-page: 189
  article-title: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion
  publication-title: Cell
– volume: 1763
  start-page: 542
  year: 2006b
  end-page: 548
  article-title: Structure and dynamics of the mitochondrial inner membrane cristae
  publication-title: Biochim Biophys Acta
– volume: 1787
  start-page: 672
  year: 2009
  end-page: 680
  article-title: Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes
  publication-title: Biochim Biophys Acta
– volume: 21
  start-page: 221
  year: 2002
  end-page: 230
  article-title: The ATP synthase is involved in generating mitochondrial cristae morphology
  publication-title: EMBO J
– volume: 45
  start-page: 129
  year: 2008
  end-page: 133
  article-title: A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy
  publication-title: J Med Genet
– volume: 127
  start-page: 383
  year: 2006
  end-page: 395
  article-title: Mitochondrial inner‐membrane fusion and crista maintenance requires the dynamin‐related GTPase Mgm1
  publication-title: Cell
– volume: 1
  start-page: 3049
  year: 2006
  end-page: 3055
  article-title: Retrovirus‐mediated single‐cell gene knockout technique in adult newborn neurons in vivo
  publication-title: Nat Protoc
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat Biotechnol
– volume: 21
  start-page: 694
  year: 2011
  end-page: 707
  article-title: Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis
  publication-title: Dev Cell
– volume: 12
  start-page: 1623
  year: 2012
  end-page: 1638
  article-title: Resolving protein interactions and complexes by affinity purification followed by label‐based quantitative mass spectrometry
  publication-title: Proteomics
– volume: 580
  start-page: 5628
  year: 2006
  end-page: 5634
  article-title: Differential protein distributions define two sub‐compartments of the mitochondrial inner membrane in yeast
  publication-title: FEBS Lett
– volume: 61
  start-page: 598
  year: 1968a
  end-page: 605
  article-title: Chemical and physical fixation of isolated mitochondria in low‐energy and high‐energy states
  publication-title: Proc Natl Acad Sci USA
– volume: 155
  start-page: 160
  year: 2013
  end-page: 171
  article-title: Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
  publication-title: Cell
– volume: 30
  start-page: 269
  year: 1966
  end-page: 297
  article-title: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria
  publication-title: J Cell Biol
– volume: 30
  start-page: 4356
  year: 2011
  end-page: 4370
  article-title: The mitochondrial contact site complex, a determinant of mitochondrial architecture
  publication-title: EMBO J
– volume: 1762
  start-page: 140
  year: 2006a
  end-page: 147
  article-title: The relevance of mitochondrial membrane topology to mitochondrial function
  publication-title: Biochim Biophys Acta
– volume: 2
  start-page: 55
  year: 2002
  end-page: 67
  article-title: A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome during apoptosis
  publication-title: Dev Cell
– volume: 99
  start-page: 223S
  year: 2014
  end-page: 230S
  article-title: Role of amino acid transporters in amino acid sensing
  publication-title: Am J Clin Nutr
– volume: 36
  start-page: 449
  year: 2004
  end-page: 451
  article-title: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot‐Marie‐Tooth neuropathy type 2A
  publication-title: Nat Genet
– volume: 108
  start-page: 10190
  year: 2011
  end-page: 10195
  article-title: Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
  publication-title: Proc Natl Acad Sci USA
– volume: 19
  start-page: 630
  year: 2014
  end-page: 641
  article-title: Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation
  publication-title: Cell Metab
– volume: 6
  start-page: e28536
  year: 2011
  article-title: Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells
  publication-title: PLoS ONE
– volume: 155
  start-page: 1624
  year: 2013
  end-page: 1638
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear‐mitochondrial communication during aging
  publication-title: Cell
– volume: 13
  start-page: 589
  year: 2011
  end-page: 598
  article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
  publication-title: Nat Cell Biol
– volume: 195
  start-page: 323
  year: 2011
  end-page: 340
  article-title: A mitochondrial‐focused genetic interaction map reveals a scaffold‐like complex required for inner membrane organization in mitochondria
  publication-title: J Cell Biol
– volume: 26
  start-page: 207
  year: 2000
  end-page: 210
  article-title: Nuclear gene OPA1, encoding a mitochondrial dynamin‐related protein, is mutated in dominant optic atrophy
  publication-title: Nat Genet
– volume: 79
  start-page: 1145
  year: 2012
  end-page: 1154
  article-title: Genetic dysfunction of MT‐ATP6 causes axonal Charcot‐Marie‐Tooth disease
  publication-title: Neurology
– volume: 381
  start-page: 19
  year: 2004
  end-page: 23
  article-title: A novel role of Mgm1p, a dynamin‐related GTPase, in ATP synthase assembly and cristae formation/maintenance
  publication-title: Biochem J
– volume: 141
  start-page: 280
  year: 2010
  end-page: 289
  article-title: Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations
  publication-title: Cell
– volume: 37
  start-page: 345
  year: 1968b
  end-page: 369
  article-title: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport‐linked ultrastructural transformations in mitochondria
  publication-title: J Cell Biol
– volume: 175
  start-page: 237
  year: 2006
  end-page: 247
  article-title: Dynamic subcompartmentalization of the mitochondrial inner membrane
  publication-title: J Cell Biol
– volume: 8
  start-page: e75429
  year: 2013
  article-title: Human F1F0 ATP synthase, mitochondrial ultrastructure and OXPHOS impairment: a (super‐)complex matter?
  publication-title: PLoS ONE
– volume: 4
  start-page: e4604
  year: 2009
  article-title: Anomalous diffusion induced by cristae geometry in the inner mitochondrial membrane
  publication-title: PLoS ONE
– ident: e_1_2_8_24_1
  doi: 10.1007/978-1-4614-3573-0_5
– ident: e_1_2_8_21_1
  doi: 10.1083/jcb.201107053
– ident: e_1_2_8_48_1
  doi: 10.1038/ng1341
– ident: e_1_2_8_23_1
  doi: 10.1136/jmg.2007.052084
– ident: e_1_2_8_29_1
  doi: 10.1074/jbc.M109260200
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cell.2006.09.021
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cmet.2014.03.011
– ident: e_1_2_8_43_1
  doi: 10.1016/j.cub.2012.04.054
– ident: e_1_2_8_19_1
  doi: 10.1083/jcb.37.2.345
– ident: e_1_2_8_22_1
  doi: 10.1074/jbc.M110.167155
– ident: e_1_2_8_25_1
  doi: 10.1016/j.devcel.2011.08.026
– ident: e_1_2_8_34_1
  doi: 10.1073/pnas.1107402108
– ident: e_1_2_8_41_1
  doi: 10.1002/pmic.201100438
– ident: e_1_2_8_46_1
  doi: 10.1016/j.febslet.2006.09.012
– ident: e_1_2_8_36_1
  doi: 10.1083/jcb.200704110
– ident: e_1_2_8_16_1
  doi: 10.1371/journal.pone.0075429
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cell.2010.02.026
– ident: e_1_2_8_9_1
  doi: 10.1038/79936
– ident: e_1_2_8_20_1
  doi: 10.1038/emboj.2011.379
– ident: e_1_2_8_40_1
  doi: 10.1038/emboj.2009.89
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cell.2006.06.025
– ident: e_1_2_8_14_1
  doi: 10.1016/j.cell.2013.11.037
– ident: e_1_2_8_15_1
  doi: 10.1016/j.mito.2009.03.003
– ident: e_1_2_8_38_1
  doi: 10.1038/nprot.2006.473
– ident: e_1_2_8_45_1
  doi: 10.1016/j.bbabio.2008.12.016
– ident: e_1_2_8_33_1
  doi: 10.1212/WNL.0b013e3182698d8d
– ident: e_1_2_8_3_1
  doi: 10.1038/79944
– ident: e_1_2_8_32_1
  doi: 10.1093/emboj/21.3.221
– ident: e_1_2_8_39_1
  doi: 10.3945/ajcn.113.070086
– ident: e_1_2_8_44_1
  doi: 10.1038/nprot.2006.62
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.61.2.598
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cell.2013.08.032
– ident: e_1_2_8_47_1
  doi: 10.1016/j.molcel.2008.07.010
– ident: e_1_2_8_4_1
  doi: 10.1042/BJ20040566
– ident: e_1_2_8_2_1
  doi: 10.1371/journal.pone.0028536
– ident: e_1_2_8_5_1
  doi: 10.1083/jcb.200211046
– ident: e_1_2_8_11_1
  doi: 10.1038/sj.emboj.7600592
– ident: e_1_2_8_17_1
  doi: 10.1083/jcb.30.2.269
– ident: e_1_2_8_27_1
  doi: 10.1016/j.bbamcr.2006.04.006
– ident: e_1_2_8_31_1
  doi: 10.1016/j.mam.2012.05.005
– ident: e_1_2_8_35_1
  doi: 10.1016/S1534-5807(01)00116-2
– ident: e_1_2_8_42_1
  doi: 10.1083/jcb.200605138
– ident: e_1_2_8_13_1
  doi: 10.1038/ncb2220
– ident: e_1_2_8_8_1
  doi: 10.1038/nbt.1511
– ident: e_1_2_8_12_1
  doi: 10.1093/hmg/dds500
– ident: e_1_2_8_26_1
  doi: 10.1016/j.bbadis.2005.07.001
– ident: e_1_2_8_37_1
  doi: 10.1371/journal.pone.0004604
SSID ssj0005871
Score 2.631467
Snippet Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which...
Abstract Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2676
SubjectTerms Adaptation
Animals
Anion Transport Proteins - genetics
Anion Transport Proteins - metabolism
ATP synthase
Cellular biology
cristae
EMBO20
EMBO21
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
HeLa Cells
Humans
Metabolism
Mice
mitochondria
Mitochondria - enzymology
Mitochondria - ultrastructure
Mitochondrial DNA
Mitochondrial Dynamics - physiology
Mitochondrial Membranes - enzymology
Mitochondrial Membranes - ultrastructure
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
OPA1
Oxygen Consumption - physiology
Protein Multimerization - physiology
SLC25A
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BK0QvqJTXllIZCSE4RORhO_axDS2rSi0cqNgDkmU7XnWhm63aVIIbP4HfyC9hJq92RRHilijW2JkZy994XgAvbJbpqRY-QgVyEZ9Sm5cktlGaSZ-Rn89pync-PJLjY34wEZOuSBLlwlz334tUpG_C3H2hCCxUtIzr27CKB7Ci2K1CFlexHKqxrJrLFJ4o3dXwuYHA0vGzSpz8dhO2_DNEcvCTLqPY5hjaX4d7HX5kO63A78OtUG3Anbaj5PcNuFv0DdwewOf3H3aSXz9-9n1ua-ZpR9vA5ouy69rFZheMqodXuNFPGQJYRjf5FJrKbGnPWj89qxdsHmpUl9OZZ2WY26p8CMf7ex-LcdQ1U4g8ghQdpV6pRNopd0nuLBdccpnmOkb7K0YTTTm02yRii0w5r7nTNo1dCFO0djy1ow_ZI1ipFlV4AiygGSRjZ_O8FEiudF46bp0XTnlrpR_Bq57H5qytmWHI1iBxGBKHGcQxgpeNDIZx9vwrhZrlwnw6emfeTsYI34rUyBFs9UIy3S67MAkab4JurpDO8-EzcplYZauwuGzG5AiTEJWO4HEr02EyXI9GgIjE8yVpDwOo9vbyl2p20tTg5pTzSzRf93pxbVl_-9esUZx_8cTsHe4eDG-b_zHDU1ijZ0qVTNQWrNTnl-EZYqbabTf75TeMiA2M
  priority: 102
  providerName: Springer Nature
Title OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand
URI https://api.istex.fr/ark:/67375/WNG-DXH929C2-6/fulltext.pdf
https://link.springer.com/article/10.15252/embj.201488349
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201488349
https://www.ncbi.nlm.nih.gov/pubmed/25298396
https://www.proquest.com/docview/1625583549
https://search.proquest.com/docview/1627074575
https://pubmed.ncbi.nlm.nih.gov/PMC4282575
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51ixBcEJRXoFRGQggO6eZhO8mxpC1L0ZYeqFhxsWzHK7bdZFdtKsG_ZyYvsQKExGWlbCzHmfmsfJ89ngF4peM4m2fC-ggg4_M5lXkJA-1HsbQx7fOZjM47T0_l5JyfzMRsC0R_FqYJ2rdmsV8ty_1q8a2JrVyXdtzHiY3PpjmnA5eJGI9ghADtJXof15E2KqtZWOFhmnX5fEQkorErzQWFcyFqY04JQ_HPDCmC3Pgq3SIDf_8T5fw9cnLYPt0kt83X6fg-3OtoJTtoh_8Atly1A7fbQpM_duBO3td1ewhfP50dhH5f_LZmlqa5dqxcFV0pL7a4ZpRSvMLZv2TIahkt71O8KtOFXreb96xesdLViKHlwrLClboqHsH58dHnfOJ3FRZ8i8wl8yObpqHUc27CxGguuOQySrIARVmAui01KOYkEo44NTbjJtNRYJybowSyVKPexY9hu1pV7ikwh9pIBkYnSSGwu8JYabg2VpjUai2tB296C6t1m0hDkQAhvyjyixr84sHrxgNDO311SfFniVBfTt-rw9kEOV0eKenBbu8i1U29axWiohO0nIX9vBxuo43JVLpyq5umTYLcCTHkwZPWo8PDekh4kGz4emhACbk37yBOm8TcHS49eNuj4pdh_e1d4wY2_7KJOpq-Oxmunv332J7DXeqFTlOG6S5s11c37gXSqtrswSiXOf4efvi410ypn4eqHg0
link.rule.ids 230,315,730,783,787,888,27936,27937,41132,42201,51588,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTWi8IBhfgQFGQggesubDdpLHUTbKWMseNlHtxbIdV3Rr0mrLJPjvucuXqAAh8djEcpO73ym_n32-A3it4zibZcL6CCDj8xm1eQkD7UextDHt85mMzjuPJ3J0xo-mYroBojsLUyftWzPfKxfFXjn_VudWrgo76PLEBifjIacDl4kY3IItjNeAdyK9y-xIa51VL63wMM3aij4iEtHAFeaCEroQtzGnkqF4MUOSINe-S1tk4u9_Ip2_5072G6jr9Lb-Ph3eg7stsWT7zQvchw1X7sDtptXkjx3YHnad3R7A-ZeT_dDv2t9WzFKga8eKZd4282Lza0ZFxUuM_wVDXstogZ8yVpnO9arZvmfVkhWuQhQt5pblrtBl_hDODg9OhyO_7bHgW-QumR_ZNA2lnnETJkZzwSWXUZIFKMsCVG6pQTknkXLEqbEZN5mOAuPcDEWQpS71Ln4Em-WydE-AOVRHMjA6SXKB0-XGSsO1scKkVmtpPXjbWVitmlIaiiQI-UWRX1TvFw_e1B7ox-mrS8pAS4T6OvmoPkxHyOqGkZIe7HYuUm3wXasQNZ2gBS2c51V_G21MptKlW97UYxJkT4giDx43Hu3_rIOEB8mar_sBVJJ7_Q4itS7N3SLTg3cdKn55rL-9a1zD5l82UQfj90f9r6f__WwvYXt0Oj5Wx58mn5_BHZqRzlaG6S5sVlc37jmSrMq8qEPqJ0d3H40
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFY8LgvIKFDASQnBI87Kd5Fi2XZbCLnugYsXFsh1HLGyyqzaV4N8z4zzUFSAkjkksJ5n5nHyfPZ4h5IVKkrzMufEBQNpnJZZ5iULlx4kwCa7z6Rz3O09nYnLKThZ8canUlwvaN3p5UK-qg3r51cVWbioT9HFiwXw6YrjhMuXBpiiDq2QXxmwoeqHeR3dkTmu56RUWZXmX1YfHPA5spb9hUBdgN2GYNhRO5kAUxNa_aRfN_ONPxPP3-MlhEXWb4rp_1Pg2udWRS3rYvsQdcsXWe-RaW27y5x65Meqru90lXz7ODyO_L4HbUIODXVlarYuuoBddnlNMLF7DN2BFgdtSnOTHqFWqCrVpl_Bps6aVbQBJq6Whha1UXdwjp-PjT6OJ39VZ8A3wl9yPTZZFQpVMR6lWjDPBRJzmIUizENRbpkHSCaAdSaZNznSu4lBbW4IQMlip3ib3yU69ru1DQi0oJBFqlaYFh-4KbYRmShuuM6OUMB551VtYbtp0GhJlCPpFol_k4BePvHQeGNqps-8YhZZy-Xn2Vh4tJsDsRrEUHtnvXSS7AXguI9B1HCe1oJ_nw2WwMZpK1XZ94dqkwKAASR550Hp0uFkPCY-kW74eGmBa7u0rgFaXnrtDp0de96i49Fh_e9fEweZfNpHH0zcnw9Gj_362Z-T6_GgsP7ybvX9MbmKHuL0yyvbJTnN2YZ8Az2r0UzeifgF3FCCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OPA1-dependent+cristae+modulation+is+essential+for+cellular+adaptation+to+metabolic+demand&rft.jtitle=The+EMBO+journal&rft.au=Patten%2C+David+A&rft.au=Wong%2C+Jacob&rft.au=Khacho%2C+Mireille&rft.au=Soubannier%2C+Vincent&rft.date=2014-11-18&rft.pub=BlackWell+Publishing+Ltd&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=33&rft.issue=22&rft.spage=2676&rft.epage=2691&rft_id=info:doi/10.15252%2Fembj.201488349&rft_id=info%3Apmid%2F25298396&rft.externalDBID=PMC4282575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon