Soil carbon sequestration and biochar as negative emission technologies

Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated as...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 22; no. 3; pp. 1315 - 1324
Main Author Smith, Pete
Format Journal Article
LanguageEnglish
Published England Blackwell Science 01.03.2016
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large‐scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr⁻¹) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.
AbstractList Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr-1) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.
Despite 20 years of effort to curb emissions, greenhouse gas ( GHG ) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large‐scale deployment of negative emissions technologies ( NET s) to reach the 2 °C target. A recent analysis of NET s, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NET s have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr −1 ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NET s. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NET s, efforts should be made to include these options within IAM s, so that their potential can be explored further in comparison with other NET s for climate stabilization.
Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large‐scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr−1) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.
Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.
Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large‐scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr⁻¹) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.
Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.
Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large‐scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr⁻¹) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.
Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 degree C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 degree C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr super(-1)) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.
Author Smith, Pete
Author_xml – sequence: 1
  givenname: Pete
  surname: Smith
  fullname: Smith, Pete
  email: pete.smith@abdn.ac.uk
  organization: Institute of Biological and Environmental Sciences, Scottish Food Security Alliance-Crops & ClimateXChange, University of Aberdeen, 23 St Machar Drive, AB24 3UU, Aberdeen, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26732128$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB-w4A9AJDawSOu3M8sygoA6KotSurQc52bqkomLnQH677mZabuoRMEbX1vfPTrXx_tkZ4gDEPKS0UOG62jpm0MmmKmekD0mtCq5rPTOVCtZMsrELtnP-YpSKjjVz8gu10Zwxqs9Up_F0BfepSYORYYfa8hjcmPAkxvaognRX7pUuFwMsMT7n1DAKuQ8ASP4yyH2cRkgPydPO9dneHG7H5Dzjx--zj-Viy_15_nxovQa_ZW6BeN9SyuuBNAZpwDGad8JKY2WlaCzjsmuaqADbygFylveqFZRXzHBGyMOyNut7nWKG7MW3XjoezdAXGfLKooiQmv-b9QYrZVWs_9BtWJMSjmhbx6gV3GdBpx5onAEhpJIvbql1s0KWnudwsqlG3v38Ai82wI-xZwTdPcIo3YK1WKodhMqskcPWB_GTUYYVegf6_gVerj5u7St5-_vOsptR8gj_L7vcOm7RctG2YvT2vL5ibqoTxf2G_Kvt3znonXLFLI9P-OUaYrfTWMh_gAirsfb
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_150342
crossref_primary_10_1002_jeq2_20475
crossref_primary_10_1111_ejss_70007
crossref_primary_10_1016_j_biombioe_2018_07_004
crossref_primary_10_1016_j_chemosphere_2024_142478
crossref_primary_10_1016_j_enpol_2017_01_050
crossref_primary_10_1016_j_enconman_2020_112701
crossref_primary_10_1038_s41467_022_31540_9
crossref_primary_10_1002_jeq2_20111
crossref_primary_10_2134_agronj2018_02_0074
crossref_primary_10_1002_agg2_20236
crossref_primary_10_1016_j_rser_2019_01_032
crossref_primary_10_3390_land9090309
crossref_primary_10_5194_soil_10_619_2024
crossref_primary_10_1111_gcbb_12952
crossref_primary_10_1007_s11027_019_09881_6
crossref_primary_10_1021_acs_est_0c07390
crossref_primary_10_1002_ente_201900467
crossref_primary_10_1007_s42729_023_01215_5
crossref_primary_10_1016_j_scitotenv_2021_150337
crossref_primary_10_1088_1757_899X_553_1_012031
crossref_primary_10_1080_14693062_2021_1969883
crossref_primary_10_1111_gcb_14878
crossref_primary_10_1038_s41558_019_0591_9
crossref_primary_10_1038_s41598_020_76470_y
crossref_primary_10_1016_j_fuel_2021_122852
crossref_primary_10_1016_j_geoderma_2018_04_022
crossref_primary_10_1002_2016EF000469
crossref_primary_10_1016_j_jcou_2024_102892
crossref_primary_10_3390_pr13010279
crossref_primary_10_1016_j_geoderma_2022_115711
crossref_primary_10_1080_19397038_2023_2256379
crossref_primary_10_1016_j_jenvman_2019_109466
crossref_primary_10_1016_j_fcr_2021_108421
crossref_primary_10_3390_pr12112418
crossref_primary_10_7717_peerj_17513
crossref_primary_10_1016_j_jenvman_2019_110002
crossref_primary_10_1016_j_scitotenv_2023_168530
crossref_primary_10_1021_acs_langmuir_4c02076
crossref_primary_10_1002_er_4902
crossref_primary_10_1111_gcb_14787
crossref_primary_10_1007_s42773_020_00072_0
crossref_primary_10_1039_D4EN00802B
crossref_primary_10_1021_acs_est_3c02620
crossref_primary_10_1007_s10113_021_01818_7
crossref_primary_10_3390_land11050639
crossref_primary_10_1371_journal_pclm_0000124
crossref_primary_10_1016_j_enceco_2024_10_002
crossref_primary_10_1016_j_spc_2022_06_028
crossref_primary_10_1016_j_bcab_2020_101829
crossref_primary_10_1111_sum_12328
crossref_primary_10_1016_j_jclepro_2019_04_282
crossref_primary_10_1038_s41597_023_02867_9
crossref_primary_10_3390_su11154038
crossref_primary_10_1021_acs_est_3c03609
crossref_primary_10_1016_j_jclepro_2020_120267
crossref_primary_10_1111_1365_2664_13747
crossref_primary_10_1007_s11027_020_09916_3
crossref_primary_10_1016_j_resconrec_2024_107968
crossref_primary_10_1007_s10661_019_7400_9
crossref_primary_10_1016_j_geoderma_2022_115971
crossref_primary_10_1093_nsr_nwz045
crossref_primary_10_1108_EOR_10_2023_0011
crossref_primary_10_1088_1748_9326_aabff4
crossref_primary_10_1111_gcbb_12915
crossref_primary_10_5194_soil_3_1_2017
crossref_primary_10_1016_j_jenvman_2022_114704
crossref_primary_10_1098_rsta_2016_0456
crossref_primary_10_1016_j_geoderma_2017_10_010
crossref_primary_10_1038_s41598_025_86636_1
crossref_primary_10_1016_j_agee_2017_01_006
crossref_primary_10_1016_j_scitotenv_2023_166224
crossref_primary_10_1016_j_biortech_2024_131374
crossref_primary_10_5194_soil_6_597_2020
crossref_primary_10_1016_j_jmrt_2023_02_009
crossref_primary_10_1016_j_agwat_2022_107880
crossref_primary_10_1088_1742_6596_2685_1_012031
crossref_primary_10_1016_j_ijggc_2018_06_021
crossref_primary_10_1016_j_scitotenv_2023_166171
crossref_primary_10_1111_gcb_14844
crossref_primary_10_1016_j_oneear_2022_07_001
crossref_primary_10_3390_ijerph16111976
crossref_primary_10_1016_j_biocon_2020_108619
crossref_primary_10_1002_jpln_201800496
crossref_primary_10_1038_s43247_022_00394_w
crossref_primary_10_1088_1748_9326_aa8c83
crossref_primary_10_3390_su8090841
crossref_primary_10_4236_as_2017_89065
crossref_primary_10_1007_s11270_018_3708_2
crossref_primary_10_1007_s13399_020_00943_3
crossref_primary_10_1016_j_biombioe_2018_06_007
crossref_primary_10_1016_j_soilbio_2022_108697
crossref_primary_10_1016_j_jclepro_2023_137625
crossref_primary_10_5194_bg_19_3021_2022
crossref_primary_10_1111_ejss_13488
crossref_primary_10_1080_17583004_2022_2074314
crossref_primary_10_1016_j_cemconcomp_2017_07_012
crossref_primary_10_1088_1748_9326_aa5ee5
crossref_primary_10_3846_16486897_2017_1326924
crossref_primary_10_1029_2023EF003986
crossref_primary_10_1038_530153a
crossref_primary_10_1016_j_still_2022_105360
crossref_primary_10_3390_f16030474
crossref_primary_10_1002_jpln_202200007
crossref_primary_10_2136_sssaj2019_03_0089
crossref_primary_10_1016_j_scitotenv_2022_157473
crossref_primary_10_1016_j_agee_2021_107779
crossref_primary_10_1016_j_scitotenv_2022_159773
crossref_primary_10_1186_s43170_021_00063_6
crossref_primary_10_1016_j_jece_2025_116062
crossref_primary_10_1016_j_scitotenv_2021_150789
crossref_primary_10_1016_j_gloenvcha_2022_102550
crossref_primary_10_1016_j_enconman_2019_112111
crossref_primary_10_1071_SR17039
crossref_primary_10_1016_j_eja_2024_127168
crossref_primary_10_1016_j_scitotenv_2019_134266
crossref_primary_10_1021_acs_est_3c02543
crossref_primary_10_1016_j_scitotenv_2022_160644
crossref_primary_10_1016_j_futures_2016_12_003
crossref_primary_10_1038_s43247_022_00636_x
crossref_primary_10_1093_nsr_nwad254
crossref_primary_10_1007_s12649_023_02351_w
crossref_primary_10_5572_ajae_2022_117
crossref_primary_10_1111_sum_12401
crossref_primary_10_1111_gcb_14860
crossref_primary_10_1016_j_egycc_2023_100112
crossref_primary_10_1021_acsenvironau_2c00028
crossref_primary_10_1016_j_chemosphere_2018_04_056
crossref_primary_10_1111_gcb_14613
crossref_primary_10_3390_land13020179
crossref_primary_10_1038_s41467_018_05938_3
crossref_primary_10_1080_14735903_2020_1750254
crossref_primary_10_5194_esd_8_577_2017
crossref_primary_10_3390_land10111256
crossref_primary_10_1111_ejss_13221
crossref_primary_10_1016_j_biortech_2017_08_122
crossref_primary_10_1016_j_jenvman_2021_112154
crossref_primary_10_1016_j_foreco_2021_119672
crossref_primary_10_1016_j_jclepro_2020_120063
crossref_primary_10_1007_s11356_020_09755_4
crossref_primary_10_1021_acs_iecr_4c00082
crossref_primary_10_1021_acs_iecr_8b04094
crossref_primary_10_1098_rstb_2021_0084
crossref_primary_10_1016_j_jenvman_2025_125059
crossref_primary_10_1021_acssuschemeng_8b05871
crossref_primary_10_1093_oxfclm_kgab006
crossref_primary_10_1139_cjss_2024_0039
crossref_primary_10_1016_j_jclepro_2019_117824
crossref_primary_10_1016_j_jclepro_2022_131791
crossref_primary_10_3389_fsufs_2024_1386680
crossref_primary_10_1098_rspb_2017_2798
crossref_primary_10_1016_j_apgeochem_2024_106054
crossref_primary_10_1016_j_jenvman_2022_117155
crossref_primary_10_3389_fenvs_2023_1238810
crossref_primary_10_1002_saj2_70008
crossref_primary_10_1098_rsos_202305
crossref_primary_10_1016_j_jes_2023_05_043
crossref_primary_10_1038_s41467_019_11057_4
crossref_primary_10_1016_j_jenvman_2022_117151
crossref_primary_10_3389_fenrg_2024_1347373
crossref_primary_10_1016_j_still_2019_03_022
crossref_primary_10_1080_17583004_2023_2244456
crossref_primary_10_3390_agriculture12030320
crossref_primary_10_1016_j_geoderma_2020_114454
crossref_primary_10_20517_cf_2023_35
crossref_primary_10_3390_agriculture15050458
crossref_primary_10_3390_land7040133
crossref_primary_10_1038_s41598_018_26396_3
crossref_primary_10_1002_bbb_2544
crossref_primary_10_1080_09064710_2020_1853214
crossref_primary_10_1111_gcbb_12553
crossref_primary_10_1080_00038628_2021_1896471
crossref_primary_10_1007_s41247_020_00080_5
crossref_primary_10_1002_cjce_24426
crossref_primary_10_3390_ijerph20020927
crossref_primary_10_1007_s00267_023_01821_0
crossref_primary_10_1038_s41598_018_25039_x
crossref_primary_10_1071_SR19149
crossref_primary_10_3390_su9071131
crossref_primary_10_1111_gcb_14478
crossref_primary_10_1038_ncomms13160
crossref_primary_10_1088_1748_9326_ac0a11
crossref_primary_10_1016_j_geoderma_2022_116080
crossref_primary_10_1039_D2VA00168C
crossref_primary_10_1039_D1EE03523A
crossref_primary_10_1590_1678_4499_20210313
crossref_primary_10_1016_j_geosus_2022_11_004
crossref_primary_10_1038_s43016_024_01039_1
crossref_primary_10_4081_ija_2017_794
crossref_primary_10_1016_j_heliyon_2024_e27055
crossref_primary_10_1080_00380768_2017_1373599
crossref_primary_10_3390_agronomy12123065
crossref_primary_10_3390_agronomy11010157
crossref_primary_10_1111_gcbb_12783
crossref_primary_10_1111_ejss_12500
crossref_primary_10_1007_s10705_024_10356_7
crossref_primary_10_1016_j_still_2025_106462
crossref_primary_10_1038_s43247_023_01002_1
crossref_primary_10_1080_10889868_2019_1603139
crossref_primary_10_1016_j_geoderma_2024_116974
crossref_primary_10_3390_f10060487
crossref_primary_10_1016_j_geodrs_2023_e00669
crossref_primary_10_2139_ssrn_3985462
crossref_primary_10_1080_03066150_2022_2117032
crossref_primary_10_2478_msp_2024_0022
crossref_primary_10_1038_s41558_023_01604_9
crossref_primary_10_1016_j_apsoil_2021_103996
crossref_primary_10_3389_frsus_2023_1200094
crossref_primary_10_1080_19648189_2022_2068658
crossref_primary_10_1111_gcbb_12773
crossref_primary_10_1186_s13007_019_0387_y
crossref_primary_10_3390_microorganisms11030641
crossref_primary_10_1016_j_jhazmat_2022_130449
crossref_primary_10_3390_agronomy11050882
crossref_primary_10_1111_sum_12966
crossref_primary_10_1016_j_jenvman_2023_119745
crossref_primary_10_3390_w13162296
crossref_primary_10_1016_j_rser_2022_113042
crossref_primary_10_1088_1755_1315_896_1_012022
crossref_primary_10_3389_fenvs_2020_514701
crossref_primary_10_1007_s10533_019_00571_8
crossref_primary_10_1146_annurev_environ_101718_033129
crossref_primary_10_1088_1748_9326_acacb3
crossref_primary_10_1016_j_still_2021_105125
crossref_primary_10_3390_agronomy12071661
crossref_primary_10_1016_j_jenvman_2025_124681
crossref_primary_10_5194_bg_19_957_2022
crossref_primary_10_1111_gcbb_12885
crossref_primary_10_1111_gcbb_12763
crossref_primary_10_4236_ojss_2022_1210021
crossref_primary_10_1016_j_jenvman_2023_119979
crossref_primary_10_1016_j_wasman_2022_05_023
crossref_primary_10_1111_ejss_12966
crossref_primary_10_1016_j_scitotenv_2019_05_051
crossref_primary_10_1016_j_ecolecon_2022_107636
crossref_primary_10_1111_gcb_15897
crossref_primary_10_3390_agronomy10091446
crossref_primary_10_3390_w13121615
crossref_primary_10_3390_su11184817
crossref_primary_10_1016_j_geoderma_2019_114110
crossref_primary_10_1007_s11104_016_3031_x
crossref_primary_10_1016_j_scitotenv_2023_169607
crossref_primary_10_1038_s41586_019_1681_6
crossref_primary_10_1111_gcbb_12878
crossref_primary_10_1016_j_resconrec_2021_105910
crossref_primary_10_1016_j_scitotenv_2019_04_004
crossref_primary_10_1007_s13412_017_0445_6
crossref_primary_10_1016_j_clet_2021_100141
crossref_primary_10_1016_j_erss_2022_102512
crossref_primary_10_1039_C7EN00211D
crossref_primary_10_1016_j_jece_2024_114785
crossref_primary_10_3390_horticulturae6030037
crossref_primary_10_1016_j_biortech_2023_129588
crossref_primary_10_1002_cssc_202100786
crossref_primary_10_1029_2020GH000311
crossref_primary_10_1016_j_jclepro_2024_140591
crossref_primary_10_1016_j_enconman_2022_116323
crossref_primary_10_1016_j_jclepro_2020_125494
crossref_primary_10_1016_j_seta_2022_102991
crossref_primary_10_1038_s41893_020_0491_z
crossref_primary_10_1088_1748_9326_aabf9f
crossref_primary_10_1016_j_anres_2017_04_001
crossref_primary_10_3389_fclim_2019_00006
crossref_primary_10_1016_j_agwat_2019_105729
crossref_primary_10_1007_s10584_018_2142_1
crossref_primary_10_54112_basrj_v2023i1_13
crossref_primary_10_1016_j_geoderma_2019_07_025
crossref_primary_10_1111_ejss_13515
crossref_primary_10_1093_biosci_biab126
crossref_primary_10_1016_j_scitotenv_2018_03_382
crossref_primary_10_1038_nclimate3276
crossref_primary_10_1038_srep35984
crossref_primary_10_1016_j_agee_2021_107352
crossref_primary_10_1016_j_crsust_2023_100239
crossref_primary_10_3390_en16072964
crossref_primary_10_1016_j_chemosphere_2022_134112
crossref_primary_10_1016_j_jenvman_2021_113644
crossref_primary_10_1007_s40641_018_0104_3
crossref_primary_10_1016_j_apsoil_2020_103674
crossref_primary_10_1016_j_fuel_2022_124777
crossref_primary_10_3390_horticulturae10040368
crossref_primary_10_1016_j_soisec_2024_100160
crossref_primary_10_1038_s41467_018_03489_1
crossref_primary_10_1111_gcb_13254
crossref_primary_10_1007_s11104_019_04062_5
crossref_primary_10_5194_gmd_11_1133_2018
crossref_primary_10_1371_journal_pone_0220247
crossref_primary_10_3390_su16156553
crossref_primary_10_1016_j_geodrs_2023_e00738
crossref_primary_10_1039_D4GC03071K
crossref_primary_10_1016_j_fuel_2020_118637
crossref_primary_10_1016_j_scitotenv_2021_145021
crossref_primary_10_1016_j_biombioe_2024_107531
crossref_primary_10_1002_jpln_202000113
crossref_primary_10_1016_j_jhydrol_2023_129188
crossref_primary_10_1002_2016EF000449
crossref_primary_10_1146_annurev_environ_102017_025817
crossref_primary_10_1186_s13213_024_01775_6
crossref_primary_10_4491_eer_2023_105
crossref_primary_10_1080_17583004_2024_2372318
crossref_primary_10_1016_j_jece_2022_108403
crossref_primary_10_5194_soil_8_199_2022
crossref_primary_10_3390_land8120179
crossref_primary_10_1016_j_scitotenv_2020_139880
crossref_primary_10_1111_gcbb_12842
crossref_primary_10_1111_gcbb_12720
crossref_primary_10_1007_s13399_020_00936_2
crossref_primary_10_1111_gcb_16631
crossref_primary_10_1007_s10333_020_00821_8
crossref_primary_10_1080_17583004_2021_1962409
crossref_primary_10_1016_j_scitotenv_2024_175801
crossref_primary_10_1016_j_chemosphere_2020_127510
crossref_primary_10_1016_j_ijggc_2024_104297
crossref_primary_10_1016_j_egycc_2024_100141
crossref_primary_10_1088_1748_9326_ad52ab
crossref_primary_10_3390_soilsystems7020048
crossref_primary_10_3390_su152115396
crossref_primary_10_1002_er_4361
crossref_primary_10_3390_cli8060075
crossref_primary_10_1016_j_envpol_2019_02_072
crossref_primary_10_1016_j_geoderma_2020_114613
crossref_primary_10_1016_j_geoderma_2022_116117
crossref_primary_10_3390_su14127026
crossref_primary_10_1016_j_crope_2022_03_005
crossref_primary_10_1039_C7EE02342A
crossref_primary_10_3389_fsufs_2018_00054
crossref_primary_10_1111_gcbb_13116
crossref_primary_10_1038_nclimate3286
crossref_primary_10_1016_j_apenergy_2019_03_183
crossref_primary_10_1016_j_cemconcomp_2017_12_009
crossref_primary_10_1016_j_scitotenv_2023_166917
crossref_primary_10_3390_agronomy12061440
crossref_primary_10_1002_bbb_2280
crossref_primary_10_1016_j_eng_2024_12_021
crossref_primary_10_1016_j_rser_2020_109895
crossref_primary_10_1007_s13399_024_05789_7
crossref_primary_10_1016_j_scitotenv_2022_158920
crossref_primary_10_1016_j_soilbio_2016_05_020
crossref_primary_10_1007_s11356_022_21623_x
crossref_primary_10_1021_acsenvironau_1c00018
crossref_primary_10_1016_j_rser_2023_113614
crossref_primary_10_1016_j_enconman_2020_113258
crossref_primary_10_1016_j_scitotenv_2017_12_343
crossref_primary_10_1016_j_agee_2017_12_008
crossref_primary_10_1016_j_soilbio_2021_108432
crossref_primary_10_3389_fsoil_2023_1136327
crossref_primary_10_1039_C9EE02627D
crossref_primary_10_1029_2022EF003246
crossref_primary_10_3390_suschem2020016
crossref_primary_10_1021_acs_energyfuels_2c01201
crossref_primary_10_21601_ejosdr_11433
crossref_primary_10_1016_j_biortech_2024_130718
crossref_primary_10_3389_fenrg_2022_826227
crossref_primary_10_3389_fclim_2022_928403
crossref_primary_10_3390_en16093850
crossref_primary_10_1016_j_agsy_2023_103663
crossref_primary_10_1016_j_ijggc_2023_103935
crossref_primary_10_1016_j_scitotenv_2020_138752
crossref_primary_10_1016_j_scitotenv_2020_137422
crossref_primary_10_1016_j_apsusc_2020_148785
crossref_primary_10_1016_j_jclepro_2019_119120
crossref_primary_10_1021_acs_est_9b01615
crossref_primary_10_1111_gcbb_12365
crossref_primary_10_1016_j_jenvman_2024_121032
crossref_primary_10_1016_j_trgeo_2024_101370
crossref_primary_10_1088_1748_9326_aab89c
crossref_primary_10_1080_03650340_2022_2093860
crossref_primary_10_3390_agronomy11020336
crossref_primary_10_1002_eap_1984
crossref_primary_10_1080_17583004_2025_2465328
crossref_primary_10_1016_j_apenergy_2017_08_090
crossref_primary_10_1007_s13762_021_03766_5
crossref_primary_10_3389_fenrg_2022_803756
crossref_primary_10_1016_j_geoderma_2019_114079
crossref_primary_10_1016_j_envadv_2023_100395
crossref_primary_10_1088_1748_9326_aca037
crossref_primary_10_1016_j_jwpe_2024_106498
crossref_primary_10_1007_s00374_022_01649_6
crossref_primary_10_1111_sum_13154
crossref_primary_10_1016_j_agee_2020_106831
crossref_primary_10_1016_j_susmat_2021_e00253
crossref_primary_10_1080_14693062_2018_1427537
crossref_primary_10_1016_j_geoderma_2017_05_005
crossref_primary_10_1111_gcbb_12474
crossref_primary_10_1371_journal_pone_0184383
crossref_primary_10_1016_j_resconrec_2021_106030
crossref_primary_10_1016_j_jenvman_2023_117740
crossref_primary_10_1002_wer_10962
crossref_primary_10_1016_j_anifeedsci_2024_116127
crossref_primary_10_1016_j_erss_2018_04_031
crossref_primary_10_3390_en16010355
crossref_primary_10_3390_agronomy13051394
crossref_primary_10_1016_j_cej_2020_124999
crossref_primary_10_3390_soilsystems5010004
crossref_primary_10_1016_j_joule_2021_09_004
crossref_primary_10_1016_j_tree_2018_12_003
crossref_primary_10_3389_fenrg_2020_549615
crossref_primary_10_3390_su142214722
crossref_primary_10_1016_j_cosust_2020_09_009
crossref_primary_10_4000_vertigo_20433
crossref_primary_10_1016_j_ecmx_2019_100007
crossref_primary_10_3390_su12072599
crossref_primary_10_1016_j_jenvman_2024_122140
crossref_primary_10_1111_gcb_16570
crossref_primary_10_3390_agronomy14102356
crossref_primary_10_1016_j_soilbio_2018_09_001
crossref_primary_10_1016_j_gloenvcha_2020_102075
crossref_primary_10_1126_sciadv_aaq0932
crossref_primary_10_3934_energy_2024014
crossref_primary_10_1016_j_envsci_2019_10_007
crossref_primary_10_1016_j_jclepro_2020_120855
crossref_primary_10_1016_j_sajb_2024_10_026
crossref_primary_10_1007_s10668_020_00809_8
crossref_primary_10_1080_03650340_2024_2419506
crossref_primary_10_3390_w10020182
crossref_primary_10_1016_j_soilbio_2024_109689
crossref_primary_10_1039_D0CS01363C
crossref_primary_10_5194_gmd_17_4871_2024
crossref_primary_10_1007_s11356_022_23699_x
crossref_primary_10_1111_sum_70039
crossref_primary_10_1016_j_jenvman_2019_109856
crossref_primary_10_1111_gcb_14066
crossref_primary_10_1038_s41598_021_93407_1
crossref_primary_10_1111_gcbb_12450
crossref_primary_10_1016_j_scitotenv_2019_134829
crossref_primary_10_1038_s41598_019_41953_0
crossref_primary_10_1007_s10098_018_1512_8
crossref_primary_10_1016_S1002_0160_20_60094_7
crossref_primary_10_1002_adsu_202300054
crossref_primary_10_1016_j_agee_2023_108535
crossref_primary_10_1016_j_agee_2023_108777
crossref_primary_10_1002_ep_13529
crossref_primary_10_1016_j_wasman_2023_08_026
crossref_primary_10_1016_j_rser_2021_110756
crossref_primary_10_1007_s11056_024_10074_6
crossref_primary_10_1007_s11270_022_05902_4
crossref_primary_10_1080_17583004_2024_2410823
crossref_primary_10_1016_j_egyr_2021_06_027
crossref_primary_10_1016_j_fuel_2022_123857
crossref_primary_10_1016_j_scitotenv_2020_138955
crossref_primary_10_1007_s42832_024_0267_x
crossref_primary_10_1111_gcbb_12561
crossref_primary_10_1111_gcbb_12682
crossref_primary_10_1016_j_biombioe_2020_105470
crossref_primary_10_3390_en14010009
crossref_primary_10_1061_JOEEDU_EEENG_7487
crossref_primary_10_3389_fagro_2021_731184
crossref_primary_10_3390_geosciences8110420
crossref_primary_10_1088_1748_9326_ad7479
crossref_primary_10_1016_j_jece_2023_111489
crossref_primary_10_1016_j_agee_2020_106882
crossref_primary_10_1007_s11104_021_05159_6
crossref_primary_10_1016_j_apenergy_2018_09_135
crossref_primary_10_3390_su131810097
crossref_primary_10_1007_s42729_023_01547_2
crossref_primary_10_3389_fmars_2023_1178014
crossref_primary_10_1016_j_scitotenv_2022_159169
crossref_primary_10_1111_sum_13113
crossref_primary_10_3390_su141710655
crossref_primary_10_3390_su15032384
crossref_primary_10_5194_soil_6_435_2020
crossref_primary_10_1016_j_envsci_2023_103651
crossref_primary_10_3390_soilsystems6040073
crossref_primary_10_35241_emeraldopenres_14307_1
crossref_primary_10_1080_10643389_2016_1212368
crossref_primary_10_1080_10643389_2023_2290947
crossref_primary_10_3390_ma17112646
crossref_primary_10_1038_s41598_017_07224_6
crossref_primary_10_1016_j_jclepro_2019_117913
crossref_primary_10_1016_j_scitotenv_2021_152495
crossref_primary_10_1016_j_scitotenv_2021_151044
crossref_primary_10_1016_j_biteb_2019_03_009
crossref_primary_10_1016_j_still_2019_104437
crossref_primary_10_1002_wer_10926
crossref_primary_10_1016_j_still_2018_05_016
crossref_primary_10_1086_733661
crossref_primary_10_1016_j_scitotenv_2018_07_089
crossref_primary_10_1016_j_scitotenv_2017_07_028
crossref_primary_10_1371_journal_pstr_0000059
crossref_primary_10_1088_1748_9326_aac0c1
crossref_primary_10_1016_j_jclepro_2023_137138
crossref_primary_10_1029_2019EF001310
crossref_primary_10_1111_gcb_13975
crossref_primary_10_1002_ldr_2906
crossref_primary_10_1039_D5SU00021A
crossref_primary_10_18393_ejss_599760
crossref_primary_10_1016_j_scitotenv_2021_152022
crossref_primary_10_1111_gcb_14940
crossref_primary_10_1088_1748_9326_ace91f
crossref_primary_10_1002_agg2_20171
crossref_primary_10_3389_fsufs_2022_994364
crossref_primary_10_1016_j_scitotenv_2021_146821
crossref_primary_10_1038_s41558_018_0358_8
crossref_primary_10_1016_j_biosystemseng_2017_06_020
crossref_primary_10_1088_1748_9326_11_11_115007
crossref_primary_10_55529_jeimp_41_8_21
crossref_primary_10_1016_j_jclepro_2019_01_002
crossref_primary_10_1016_j_fuel_2020_119096
crossref_primary_10_1016_j_cartre_2024_100361
crossref_primary_10_3390_soilsystems3010005
crossref_primary_10_1007_s11708_017_0498_y
crossref_primary_10_1111_ejss_13145
crossref_primary_10_1111_gcb_13720
crossref_primary_10_1016_j_eneco_2023_106804
crossref_primary_10_1007_s13280_019_01165_2
crossref_primary_10_1111_gcb_14815
crossref_primary_10_1016_j_agee_2019_106654
crossref_primary_10_1111_ejss_13380
crossref_primary_10_1111_ejss_70074
crossref_primary_10_1126_science_aal2610
crossref_primary_10_1016_j_jenvman_2021_113039
crossref_primary_10_1039_D0EE03757E
crossref_primary_10_1016_j_cscm_2024_e02859
crossref_primary_10_1029_2021EF002324
crossref_primary_10_1038_s43247_022_00436_3
crossref_primary_10_1016_j_jclepro_2022_135174
crossref_primary_10_1016_j_jenvman_2022_115211
crossref_primary_10_1007_s42773_024_00409_z
crossref_primary_10_1093_pnasnexus_pgad448
crossref_primary_10_1016_j_rser_2020_110035
crossref_primary_10_1016_j_energy_2022_124000
crossref_primary_10_1016_j_still_2018_10_009
crossref_primary_10_3390_en14217371
crossref_primary_10_1016_j_soilbio_2018_04_018
crossref_primary_10_1144_sjg2019_007
crossref_primary_10_1016_j_scitotenv_2018_11_312
crossref_primary_10_1016_j_chemosphere_2021_133203
crossref_primary_10_1016_j_biortech_2024_131387
crossref_primary_10_1016_j_geoderma_2023_116717
crossref_primary_10_1016_j_jcou_2020_101217
crossref_primary_10_1016_j_heliyon_2023_e15169
crossref_primary_10_1016_j_scitotenv_2018_06_009
crossref_primary_10_1111_gcbb_13031
crossref_primary_10_1111_nph_17651
crossref_primary_10_1016_j_jclepro_2020_124969
crossref_primary_10_1002_cben_201700006
crossref_primary_10_1016_j_geoderma_2018_09_041
crossref_primary_10_1021_acs_est_4c09102
crossref_primary_10_1016_j_enconman_2023_117114
crossref_primary_10_1016_j_geoderma_2024_117093
crossref_primary_10_1038_s43247_023_01155_z
crossref_primary_10_1007_s11368_020_02705_0
crossref_primary_10_3390_su14148267
crossref_primary_10_1016_j_jafr_2025_101719
crossref_primary_10_1016_j_fcr_2024_109611
crossref_primary_10_1016_j_erss_2018_06_024
crossref_primary_10_5194_bg_19_5125_2022
crossref_primary_10_5194_esd_12_1037_2021
crossref_primary_10_1111_sum_12579
crossref_primary_10_1016_j_jclepro_2023_138425
crossref_primary_10_1007_s42773_022_00200_y
crossref_primary_10_1016_j_scitotenv_2022_154845
crossref_primary_10_1111_gcbb_13142
crossref_primary_10_1126_science_aah4567
crossref_primary_10_1016_j_jece_2023_110572
crossref_primary_10_1016_j_apsoil_2023_104975
crossref_primary_10_1111_1467_8489_12330
crossref_primary_10_1007_s42250_022_00512_3
crossref_primary_10_3390_su141912901
crossref_primary_10_1016_j_scitotenv_2020_144318
crossref_primary_10_3390_agriculture13081557
crossref_primary_10_1016_j_scitotenv_2020_143114
crossref_primary_10_1016_j_rser_2022_112609
crossref_primary_10_1016_j_jhazmat_2023_132422
crossref_primary_10_1016_j_resconrec_2022_106501
crossref_primary_10_1016_j_resconrec_2020_105174
crossref_primary_10_1016_j_agrformet_2022_108978
crossref_primary_10_3390_pr8070764
crossref_primary_10_1016_j_jenvman_2021_113080
crossref_primary_10_1039_D2GC03172H
crossref_primary_10_1007_s42773_023_00279_x
crossref_primary_10_1016_j_cesys_2021_100024
crossref_primary_10_1016_j_jenvman_2019_02_044
crossref_primary_10_1016_j_scitotenv_2020_143219
crossref_primary_10_1016_j_scitotenv_2020_142249
crossref_primary_10_1016_j_jclepro_2018_08_041
crossref_primary_10_1016_j_applthermaleng_2018_04_115
crossref_primary_10_3846_16486897_2016_1254640
crossref_primary_10_1038_s41570_024_00587_1
crossref_primary_10_3390_agronomy10122016
Cites_doi 10.1016/j.cosust.2012.06.005
10.1098/rstb.2007.2184
10.1021/es201792c
10.1007/s10584-012-0680-5
10.1126/science.1097396
10.1038/nclimate2475
10.1038/ncomms1053
10.1016/j.agrformet.2006.08.021
10.1126/science.1155458
10.1038/nature02127
10.1038/349772a0
10.1038/NCLIMATE2870
10.1111/1365-2664.12016
10.1007/s10584-013-0947-5
10.1016/j.still.2005.11.013
10.1088/1748-9326/7/1/014025
10.1021/es2034729
10.4324/9780203762264
10.4155/cmt.11.22
10.1007/s11104-011-0759-1
10.1007/s10584-007-9334-4
10.1007/978-1-4684-1467-7_6
10.1073/pnas.1000545107
10.1007/s10584-005-3485-y
10.1016/j.agee.2010.09.003
10.1126/science.1168475
10.1038/srep09665
10.1046/j.1365-2486.1998.00185.x
10.1098/rstb.2010.0127
10.1111/gcbb.12205
10.5194/essd-5-165-2013
10.1038/nature11787
10.1016/j.techfore.2013.09.016
10.1126/science.1175680
10.1073/pnas.0805794105
10.1007/s10584-012-0678-z
10.2136/sssaj1993.03615995005700010036x
10.1016/j.soilbio.2011.02.005
10.1088/1748-9326/3/4/044006
10.1038/nclimate1783
10.1007/s10584-010-9832-7
10.1002/jpln.200625199
10.1016/j.chemosphere.2011.08.031
10.1142/S2010007813400083
10.1021/es500474q
10.1038/nclimate2196
10.1007/s00114-008-0434-4
10.1023/A:1022833116184
10.1038/nclimate2292
10.1016/j.rse.2010.04.024
10.1016/0360-5442(95)00035-F
10.1007/s10584-013-0897-y
10.1111/gcbb.12180
10.1088/1748-9326/9/6/064029
10.1126/science.294.5543.786b
10.1021/es302302g
10.1038/ngeo1182
10.1038/nclimate2392
ContentType Journal Article
Copyright 2016 John Wiley & Sons Ltd
2016 John Wiley & Sons Ltd.
Copyright © 2016 John Wiley & Sons Ltd
Copyright_xml – notice: 2016 John Wiley & Sons Ltd
– notice: 2016 John Wiley & Sons Ltd.
– notice: Copyright © 2016 John Wiley & Sons Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7U6
SOI
7S9
L.6
DOI 10.1111/gcb.13178
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

MEDLINE
AGRICOLA
MEDLINE - Academic

Ecology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 1324
ExternalDocumentID 3951349671
26732128
10_1111_gcb_13178
GCB13178
ark_67375_WNG_2CK5WGNL_V
US201600136201
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MaGNET programme
– fundername: DEVIL project
  funderid: NE/M021327/1
– fundername: EU FP7 SmartSoil project
  funderid: 289694
– fundername: Global Carbon Project
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7X8
7ST
7U6
SOI
7S9
L.6
ID FETCH-LOGICAL-c6178-6de7ccd08253e0920ee7a6cf3447648309f14f8befec700e02d2b5d50c8132b73
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:31:34 EDT 2025
Fri Jul 11 10:20:32 EDT 2025
Thu Jul 10 21:42:06 EDT 2025
Fri Jul 25 10:58:42 EDT 2025
Wed Feb 19 02:41:30 EST 2025
Tue Jul 01 03:52:54 EDT 2025
Thu Apr 24 23:12:23 EDT 2025
Wed Jan 22 16:21:23 EST 2025
Wed Oct 30 09:51:09 EDT 2024
Wed Dec 27 19:15:06 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords negative emission technology
soil
biochar
carbon
sequestration
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6178-6de7ccd08253e0920ee7a6cf3447648309f14f8befec700e02d2b5d50c8132b73
Notes http://dx.doi.org/10.1111/gcb.13178
ark:/67375/WNG-2CK5WGNL-V
istex:35FC2F0B6B6653D3A2FE517E94E5CF1C4DC2F3DE
ArticleID:GCB13178
Global Carbon Project
MaGNET programme
EU FP7 SmartSoil project - No. 289694
DEVIL project - No. NE/M021327/1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26732128
PQID 1764831565
PQPubID 30327
PageCount 10
ParticipantIDs proquest_miscellaneous_1803093662
proquest_miscellaneous_1776656592
proquest_miscellaneous_1765114442
proquest_journals_1764831565
pubmed_primary_26732128
crossref_primary_10_1111_gcb_13178
crossref_citationtrail_10_1111_gcb_13178
wiley_primary_10_1111_gcb_13178_GCB13178
istex_primary_ark_67375_WNG_2CK5WGNL_V
fao_agris_US201600136201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2016
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2016
Publisher Blackwell Science
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
References Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, Cassman KG (2014) Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4, 678-683.
Smith P, Gregory P, van Vuuren D et al. (2010) Competition for land. Philosophical Transactions of the Royal Society, B, 365, 2941-2957.
Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Global Change Biology, 4, 679-685.
UK National Ecosystem Assessment (2011) The UK National Ecosystem Assessment Technical Report. UNEP-WCMC, Cambridge.
Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science, 320, 1456-1457.
Scheer C, Grace PR, Rowlings DW, Kimber S, Zwieten LV (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant and Soil, 345, 47-58.
Dickinson D, Balduccio L, Buysse J, Ronsse F, van Huylenbroeck G, Prins W (2014) Cost-benefit analysis of using biochar to improve cereals agriculture. Global Change Biology Bioenergy, 7, 850-864.
Hartmann J, Kempe S (2008) What is the maximum potential for CO2 sequestration by 'stimulated' weathering on the global scale? Naturwissenschaften, 95, 1159-1164.
Azar C, Lindgren K, Obersteiner M et al. (2010) The feasibility of low CO2 concentration targets and the role of bio-energy carbon-capture and storage. Climatic Change, 100, 195-202.
Roberts DA, Paul NA, Dworjanyn SA, Bird MI, de Nys R (2015) Biochar from commercially cultivated seaweed for soil amelioration. Scientific Reports, 5, 9665.
Peters GP, Andrew RM, Boden T et al. (2013) The challenge to keep global warming below 2 °C. Nature Climate Change, 3, 4-6.
Castaldi S, Riondino M, Baronti S et al. (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere, 85, 1464-1471.
Arora VK, Montenegro A (2011) Small temperature benefits provided by realistic afforestation efforts. Nature Geoscience, 4, 514-518.
Krey V, Luderer G, Clarke L, Kriegler E (2014) Getting from here to there - energy technology transformation pathways in the EMF27 scenarios. Climatic Change, 123, 369-382.
Rogelj J, McCollum DL, Reisinger A, Meinshausen M, Riahi K (2013) Probabilistic cost estimates for climate change mitigation. Nature, 493, 79-83.
Smith P (2012) Soils and climate change. Current Opinion in Environmental Sustainability, 4, 539-544.
Meyer S, Bright RM, Fischer D, Schulz H, Glaser B (2012) Albedo impact on the suitability of biochar systems to mitigate global warming. Environmental Science and Technology, 46, 12726-12734.
Wise M, Calvin K, Thomson A et al. (2009) Implications of limiting CO2 concentrations for land use and energy. Science, 324, 1183-1186.
Kern JS, Johnson SE (1993) Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Science Society of America Journal, 57, 200-210.
Kheshgi HS (1995) Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy, 20, 915-922.
Fuss S, Canadell JG, Peters GP et al. (2014) Betting on negative emissions. Nature Climate Change, 4, 850-853.
Pacheco A, McNairn H (2010) Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping. Remote Sensing of the Environment, 114, 2219-2228.
Genesio L, Miglietta F, Lugato E, Baronti S, Pieri M, Vaccari FP (2012) Surface albedo following biochar application in durum wheat. Environmental Research Letters, 7, 014025.
Kelemen PB, Matter JM (2008) In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences of the United States of America, 105, 17295-17300.
Köhler P, Hartmann J, Wolf-Gladrow DA (2010) Geoengineering potential of artificially enhanced silicate weathering of olivine. Proceedings of the National Academy of Sciences of the United States of America, 107, 20228-20233.
IPCC (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories Workbook, vol. 2. Cambridge University Press, Cambridge, UK.
Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature, 349, 772-775.
Woolf D, Amonette JE, Street-Perrott A, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nature Communications, 1. Article 56, doi:10.1038/ncomms1053 (2010).
Obersteiner M, Azar C, Kauppi PE et al. (2001) Managing climate risk. Science, 294, 786-787.
Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 56-60.
IPCC (2006) Revised 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 3. Cambridge University Press, Cambridge, UK.
Jackson RB, Randerson JT, Canadell JG et al. (2008) Protecting climate with forests. Environmental Research Letters, 3, 044006.
Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environmental Science and Technology, 45, 9473-9483.
Woolf D, Lehmann J, Fisher EM, Angenent LT (2014) Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. Environmental Science and Technology, 48, 6492-6499.
Daughtry CST, Doraiswamy PC, Hunt ER, Stern AJ, McMurtrey JE, Prueger JH (2006) Remote sensing of crop residue cover and soil tillage intensity. Soil and Tillage Research, 91, 101-108.
Socolow R, Desmond M, Aines R et al. (2011) Direct air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs. American Physical Society, Washington, DC.
Smith P, Martinio D, Cai Z et al. (2008) Greenhouse gas mitigation in agriculture. Philosophiocal Transactions of the Royal Society B, 363, 789-813.
Creutzig F, Ravindranath NH, Berndes G et al. (2015) Bioenergy and climate change mitigation: an assessment. Global Change Biology Bioenergy, 7, 916-944.
Humpenöder F, Popp A, Dietrich JP et al. (2014) Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 9, 064029. (13 pp).
Lehmann J, Joseph S (2009) Biochar for Environmental Management: Science and Technology. Earthscan Books Ltd., London, UK.
Luyssaert S, Jammet M, Stoy PC et al. (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Climate Change, 4, 389-393.
Betts RA, Falloon PD, Goldewijk KK, Ramankutty N (2007) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agricultural and Forest Meteorology, 142, 216-233.
Smith P, Ashmore M, Black H et al. (2013) The role of ecosystems and their management in regulating climate, and soil, water and air quality. Journal of Applied Ecology, 50, 812-829.
Tavoni M, Kriegler E, Riahi K et al. (2015) Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Climate Change, 5, 119-126.
Zimmerman A, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43, 1169-1179.
Reilly J, Melillo J, Cai Y et al. (2012) Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environmental Science and Technology, 46, 5672-5679.
Zhang A, Cui LQ, Pan G et al. (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China. Agriculture, Ecosystems and Environment, 139, 469-475.
Keith D (2009) Why capture CO2 from the atmosphere. Science, 325, 1654-1655.
Kriegler E, Tavoni M, Aboumahboub T et al. (2013) What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Climate Change Economics, 04, 1340008.
Smith P, Davis SJ, Creutzig F et al. (2015) Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, doi:10.1038/NCLIMATE2870
Strengers BJ, Minnen JGV, Eickhout B (2008) The role of carbon plantations in mitigating climate change: potentials and costs. Climatic Change, 88, 343-366.
Edmonds J, Luckow P, Calvin K et al. (2013) Can radiative forcing be limited to 2.6 Wm−2 without negative emissions from bioenergy and CO2 capture and storage? Climatic Change, 118, 29-43.
Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 171, 893-899.
Riahi K, Kriegler E, Johnson N et al. (2015) Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change Part A, 90, 8-23.
Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627.
Schuiling RD, Krijgsman P (2006) Enhanced weathering: an effective and cheap tool to sequester CO2. Climatic Change, 74, 349-354.
van Vuuren DP, Deetman S, van Vliet J, van den Berg M, van Ruijven BJ, Koelbl B (2013) The role of negative CO2 emissions for reaching 2 °C - insights from integrated assessment modelling. Climatic Change, 118, 15-27.
Le Quéré C, Andres RJ, Boden T et al. (2013) The global carbon budget 1959-2011. Earth System Science Data, 5, 165-185.
Shackley S, Hammond J, Gaunt J, Ibarrola R (2011) The feasibility and costs of biochar deployment in the UK. Carbon Management, 2, 335-356.
Lehmann J, da Silva JP Jr, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343-357.
Edenhofer O, Pichs-Madruga R, Sokona Y et al. (ed
2013; 3
2006; 74
2010; 107
2007; 142
2010; 100
2008; 105
1997; 2
2008; 3
2013; 5
1995; 20
2001; 294
2014; 4
2003; 249
2010; 1
2010; 114
2013; 50
2013; 118
1984
2015; 90
2014; 9
1991; 349
2014; 7
2009; 324
2014; 123
2009; 325
2006; 91
2013; 04
2015; 5
2011; 2
2011
2010; 365
2009
2014; 48
2006; 3
2011; 4
2008; 320
2008; 95
2004; 427
2008; 363
2015; 7
2004; 304
1993; 57
2011; 345
2010; 139
2011; 85
2011; 43
2013; 493
2015
2011; 45
2008; 88
2014
2012; 7
2012; 46
2012; 4
1998; 4
2008; 171
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_30_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_41_1
e_1_2_6_60_1
Clark L (e_1_2_6_8_1) 2014
e_1_2_6_9_1
IPCC (e_1_2_6_20_1) 2006
e_1_2_6_5_1
e_1_2_6_7_1
Socolow R (e_1_2_6_57_1) 2011
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
Lehmann J (e_1_2_6_32_1) 2009
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
IPCC (e_1_2_6_19_1) 1997
UK National Ecosystem Assessment (e_1_2_6_61_1) 2011
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
Edenhofer O (e_1_2_6_12_1) 2014
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
26896375 - Glob Chang Biol. 2016 Jul;22(7):2313-4
References_xml – reference: Kern JS, Johnson SE (1993) Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Science Society of America Journal, 57, 200-210.
– reference: Smith P, Ashmore M, Black H et al. (2013) The role of ecosystems and their management in regulating climate, and soil, water and air quality. Journal of Applied Ecology, 50, 812-829.
– reference: IPCC (2006) Revised 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 3. Cambridge University Press, Cambridge, UK.
– reference: Luyssaert S, Jammet M, Stoy PC et al. (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Climate Change, 4, 389-393.
– reference: Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627.
– reference: Smith P (2012) Soils and climate change. Current Opinion in Environmental Sustainability, 4, 539-544.
– reference: Kheshgi HS (1995) Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy, 20, 915-922.
– reference: Genesio L, Miglietta F, Lugato E, Baronti S, Pieri M, Vaccari FP (2012) Surface albedo following biochar application in durum wheat. Environmental Research Letters, 7, 014025.
– reference: Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature, 349, 772-775.
– reference: Kelemen PB, Matter JM (2008) In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences of the United States of America, 105, 17295-17300.
– reference: Betts RA, Falloon PD, Goldewijk KK, Ramankutty N (2007) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agricultural and Forest Meteorology, 142, 216-233.
– reference: Zhang A, Cui LQ, Pan G et al. (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China. Agriculture, Ecosystems and Environment, 139, 469-475.
– reference: Scheer C, Grace PR, Rowlings DW, Kimber S, Zwieten LV (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant and Soil, 345, 47-58.
– reference: Socolow R, Desmond M, Aines R et al. (2011) Direct air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs. American Physical Society, Washington, DC.
– reference: Creutzig F, Ravindranath NH, Berndes G et al. (2015) Bioenergy and climate change mitigation: an assessment. Global Change Biology Bioenergy, 7, 916-944.
– reference: Le Quéré C, Andres RJ, Boden T et al. (2013) The global carbon budget 1959-2011. Earth System Science Data, 5, 165-185.
– reference: UK National Ecosystem Assessment (2011) The UK National Ecosystem Assessment Technical Report. UNEP-WCMC, Cambridge.
– reference: Edmonds J, Luckow P, Calvin K et al. (2013) Can radiative forcing be limited to 2.6 Wm−2 without negative emissions from bioenergy and CO2 capture and storage? Climatic Change, 118, 29-43.
– reference: Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science, 320, 1456-1457.
– reference: Castaldi S, Riondino M, Baronti S et al. (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere, 85, 1464-1471.
– reference: Wise M, Calvin K, Thomson A et al. (2009) Implications of limiting CO2 concentrations for land use and energy. Science, 324, 1183-1186.
– reference: Azar C, Lindgren K, Obersteiner M et al. (2010) The feasibility of low CO2 concentration targets and the role of bio-energy carbon-capture and storage. Climatic Change, 100, 195-202.
– reference: Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 171, 893-899.
– reference: Zimmerman A, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43, 1169-1179.
– reference: Jackson RB, Randerson JT, Canadell JG et al. (2008) Protecting climate with forests. Environmental Research Letters, 3, 044006.
– reference: Meyer S, Bright RM, Fischer D, Schulz H, Glaser B (2012) Albedo impact on the suitability of biochar systems to mitigate global warming. Environmental Science and Technology, 46, 12726-12734.
– reference: Riahi K, Kriegler E, Johnson N et al. (2015) Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change Part A, 90, 8-23.
– reference: Roberts DA, Paul NA, Dworjanyn SA, Bird MI, de Nys R (2015) Biochar from commercially cultivated seaweed for soil amelioration. Scientific Reports, 5, 9665.
– reference: Hartmann J, Kempe S (2008) What is the maximum potential for CO2 sequestration by 'stimulated' weathering on the global scale? Naturwissenschaften, 95, 1159-1164.
– reference: Tavoni M, Kriegler E, Riahi K et al. (2015) Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Climate Change, 5, 119-126.
– reference: Edenhofer O, Pichs-Madruga R, Sokona Y et al. (eds) (2014) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.
– reference: Smith P, Davis SJ, Creutzig F et al. (2015) Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, doi:10.1038/NCLIMATE2870
– reference: Humpenöder F, Popp A, Dietrich JP et al. (2014) Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 9, 064029. (13 pp).
– reference: Calvin K, Wise M, Kyle P, Patel P, Clarke L, Edmonds J (2014) Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Climatic Change, 123, 691-704.
– reference: Woolf D, Lehmann J, Fisher EM, Angenent LT (2014) Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. Environmental Science and Technology, 48, 6492-6499.
– reference: Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, Cassman KG (2014) Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4, 678-683.
– reference: Obersteiner M, Azar C, Kauppi PE et al. (2001) Managing climate risk. Science, 294, 786-787.
– reference: Köhler P, Hartmann J, Wolf-Gladrow DA (2010) Geoengineering potential of artificially enhanced silicate weathering of olivine. Proceedings of the National Academy of Sciences of the United States of America, 107, 20228-20233.
– reference: Krey V, Luderer G, Clarke L, Kriegler E (2014) Getting from here to there - energy technology transformation pathways in the EMF27 scenarios. Climatic Change, 123, 369-382.
– reference: Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environmental Science and Technology, 45, 9473-9483.
– reference: Lehmann J, da Silva JP Jr, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343-357.
– reference: Shackley S, Hammond J, Gaunt J, Ibarrola R (2011) The feasibility and costs of biochar deployment in the UK. Carbon Management, 2, 335-356.
– reference: Daughtry CST, Doraiswamy PC, Hunt ER, Stern AJ, McMurtrey JE, Prueger JH (2006) Remote sensing of crop residue cover and soil tillage intensity. Soil and Tillage Research, 91, 101-108.
– reference: Dickinson D, Balduccio L, Buysse J, Ronsse F, van Huylenbroeck G, Prins W (2014) Cost-benefit analysis of using biochar to improve cereals agriculture. Global Change Biology Bioenergy, 7, 850-864.
– reference: Kriegler E, Tavoni M, Aboumahboub T et al. (2013) What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Climate Change Economics, 04, 1340008.
– reference: Smith P, Martinio D, Cai Z et al. (2008) Greenhouse gas mitigation in agriculture. Philosophiocal Transactions of the Royal Society B, 363, 789-813.
– reference: Arora VK, Montenegro A (2011) Small temperature benefits provided by realistic afforestation efforts. Nature Geoscience, 4, 514-518.
– reference: Reilly J, Melillo J, Cai Y et al. (2012) Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environmental Science and Technology, 46, 5672-5679.
– reference: Peters GP, Andrew RM, Boden T et al. (2013) The challenge to keep global warming below 2 °C. Nature Climate Change, 3, 4-6.
– reference: Woolf D, Amonette JE, Street-Perrott A, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nature Communications, 1. Article 56, doi:10.1038/ncomms1053 (2010).
– reference: Rogelj J, McCollum DL, Reisinger A, Meinshausen M, Riahi K (2013) Probabilistic cost estimates for climate change mitigation. Nature, 493, 79-83.
– reference: van Vuuren DP, Deetman S, van Vliet J, van den Berg M, van Ruijven BJ, Koelbl B (2013) The role of negative CO2 emissions for reaching 2 °C - insights from integrated assessment modelling. Climatic Change, 118, 15-27.
– reference: Lehmann J, Joseph S (2009) Biochar for Environmental Management: Science and Technology. Earthscan Books Ltd., London, UK.
– reference: Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 56-60.
– reference: IPCC (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories Workbook, vol. 2. Cambridge University Press, Cambridge, UK.
– reference: Smith P, Gregory P, van Vuuren D et al. (2010) Competition for land. Philosophical Transactions of the Royal Society, B, 365, 2941-2957.
– reference: Strengers BJ, Minnen JGV, Eickhout B (2008) The role of carbon plantations in mitigating climate change: potentials and costs. Climatic Change, 88, 343-366.
– reference: Fuss S, Canadell JG, Peters GP et al. (2014) Betting on negative emissions. Nature Climate Change, 4, 850-853.
– reference: Pacheco A, McNairn H (2010) Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping. Remote Sensing of the Environment, 114, 2219-2228.
– reference: Schuiling RD, Krijgsman P (2006) Enhanced weathering: an effective and cheap tool to sequester CO2. Climatic Change, 74, 349-354.
– reference: Keith D (2009) Why capture CO2 from the atmosphere. Science, 325, 1654-1655.
– reference: Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Global Change Biology, 4, 679-685.
– year: 2011
– volume: 123
  start-page: 691
  year: 2014
  end-page: 704
  article-title: Trade‐offs of different land and bioenergy policies on the path to achieving climate targets
  publication-title: Climatic Change
– volume: 2
  start-page: 335
  year: 2011
  end-page: 356
  article-title: The feasibility and costs of biochar deployment in the UK
  publication-title: Carbon Management
– year: 2009
– volume: 249
  start-page: 343
  year: 2003
  end-page: 357
  article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments
  publication-title: Plant and Soil
– start-page: 235
  year: 2015
  end-page: 282
– volume: 320
  start-page: 1456
  year: 2008
  end-page: 1457
  article-title: Managing forests for climate change mitigation
  publication-title: Science
– volume: 7
  start-page: 916
  year: 2015
  end-page: 944
  article-title: Bioenergy and climate change mitigation: an assessment
  publication-title: Global Change Biology Bioenergy
– volume: 493
  start-page: 79
  year: 2013
  end-page: 83
  article-title: Probabilistic cost estimates for climate change mitigation
  publication-title: Nature
– volume: 363
  start-page: 789
  year: 2008
  end-page: 813
  article-title: Greenhouse gas mitigation in agriculture
  publication-title: Philosophiocal Transactions of the Royal Society B
– volume: 50
  start-page: 812
  year: 2013
  end-page: 829
  article-title: The role of ecosystems and their management in regulating climate, and soil, water and air quality
  publication-title: Journal of Applied Ecology
– volume: 20
  start-page: 915
  year: 1995
  end-page: 922
  article-title: Sequestering atmospheric carbon dioxide by increasing ocean alkalinity
  publication-title: Energy
– volume: 114
  start-page: 2219
  year: 2010
  end-page: 2228
  article-title: Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping
  publication-title: Remote Sensing of the Environment
– volume: 345
  start-page: 47
  year: 2011
  end-page: 58
  article-title: Effect of biochar amendment on the soil‐atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia
  publication-title: Plant and Soil
– volume: 171
  start-page: 893
  year: 2008
  end-page: 899
  article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 46
  start-page: 12726
  year: 2012
  end-page: 12734
  article-title: Albedo impact on the suitability of biochar systems to mitigate global warming
  publication-title: Environmental Science and Technology
– volume: 365
  start-page: 2941
  year: 2010
  end-page: 2957
  article-title: Competition for land
  publication-title: Philosophical Transactions of the Royal Society, B
– volume: 7
  start-page: 850
  year: 2014
  end-page: 864
  article-title: Cost‐benefit analysis of using biochar to improve cereals agriculture
  publication-title: Global Change Biology Bioenergy
– volume: 118
  start-page: 29
  year: 2013
  end-page: 43
  article-title: Can radiative forcing be limited to 2.6 Wm without negative emissions from bioenergy and CO capture and storage?
  publication-title: Climatic Change
– volume: 45
  start-page: 9473
  year: 2011
  end-page: 9483
  article-title: Technical, economical, and climate‐related aspects of biochar production technologies: a literature review
  publication-title: Environmental Science and Technology
– start-page: 413
  year: 2014
  end-page: 510
– year: 2014
– volume: 427
  start-page: 56
  year: 2004
  end-page: 60
  article-title: High‐latitude controls of thermocline nutrients and low latitude biological productivity
  publication-title: Nature
– volume: 5
  start-page: 9665
  year: 2015
  article-title: Biochar from commercially cultivated seaweed for soil amelioration
  publication-title: Scientific Reports
– volume: 5
  start-page: 165
  year: 2013
  end-page: 185
  article-title: The global carbon budget 1959–2011
  publication-title: Earth System Science Data
– volume: 74
  start-page: 349
  year: 2006
  end-page: 354
  article-title: Enhanced weathering: an effective and cheap tool to sequester CO
  publication-title: Climatic Change
– volume: 142
  start-page: 216
  year: 2007
  end-page: 233
  article-title: Biogeophysical effects of land use on climate: model simulations of radiative forcing and large‐scale temperature change
  publication-title: Agricultural and Forest Meteorology
– volume: 7
  start-page: 014025
  year: 2012
  article-title: Surface albedo following biochar application in durum wheat
  publication-title: Environmental Research Letters
– start-page: 127
  year: 1984
  end-page: 151
– volume: 4
  start-page: 389
  year: 2014
  end-page: 393
  article-title: Land management and land‐cover change have impacts of similar magnitude on surface temperature
  publication-title: Nature Climate Change
– volume: 88
  start-page: 343
  year: 2008
  end-page: 366
  article-title: The role of carbon plantations in mitigating climate change: potentials and costs
  publication-title: Climatic Change
– volume: 118
  start-page: 15
  year: 2013
  end-page: 27
  article-title: The role of negative CO2 emissions for reaching 2 °C ‐ insights from integrated assessment modelling
  publication-title: Climatic Change
– volume: 95
  start-page: 1159
  year: 2008
  end-page: 1164
  article-title: What is the maximum potential for CO sequestration by ‘stimulated’ weathering on the global scale?
  publication-title: Naturwissenschaften
– volume: 2
  year: 1997
– volume: 3
  year: 2006
– volume: 57
  start-page: 200
  year: 1993
  end-page: 210
  article-title: Conservation tillage impacts on national soil and atmospheric carbon levels
  publication-title: Soil Science Society of America Journal
– volume: 04
  start-page: 1340008
  year: 2013
  article-title: What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios
  publication-title: Climate Change Economics
– volume: 4
  start-page: 678
  year: 2014
  end-page: 683
  article-title: Limited potential of no‐till agriculture for climate change mitigation
  publication-title: Nature Climate Change
– volume: 105
  start-page: 17295
  year: 2008
  end-page: 17300
  article-title: carbonation of peridotite for CO storage
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 4
  start-page: 539
  year: 2012
  end-page: 544
  article-title: Soils and climate change
  publication-title: Current Opinion in Environmental Sustainability
– volume: 48
  start-page: 6492
  year: 2014
  end-page: 6499
  article-title: Biofuels from pyrolysis in perspective: trade‐offs between energy yields and soil‐carbon additions
  publication-title: Environmental Science and Technology
– volume: 324
  start-page: 1183
  year: 2009
  end-page: 1186
  article-title: Implications of limiting CO concentrations for land use and energy
  publication-title: Science
– volume: 123
  start-page: 369
  year: 2014
  end-page: 382
  article-title: Getting from here to there – energy technology transformation pathways in the EMF27 scenarios
  publication-title: Climatic Change
– volume: 4
  start-page: 679
  year: 1998
  end-page: 685
  article-title: Preliminary estimates of the potential for carbon mitigation in European soils through no‐till farming
  publication-title: Global Change Biology
– volume: 4
  start-page: 514
  year: 2011
  end-page: 518
  article-title: Small temperature benefits provided by realistic afforestation efforts
  publication-title: Nature Geoscience
– volume: 85
  start-page: 1464
  year: 2011
  end-page: 1471
  article-title: Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes
  publication-title: Chemosphere
– volume: 3
  start-page: 044006
  year: 2008
  article-title: Protecting climate with forests
  publication-title: Environmental Research Letters
– volume: 90
  start-page: 8
  year: 2015
  end-page: 23
  article-title: Locked into Copenhagen pledges ‐ Implications of short‐term emission targets for the cost and feasibility of long‐term climate goals
  publication-title: Technological Forecasting and Social Change Part A
– volume: 349
  start-page: 772
  year: 1991
  end-page: 775
  article-title: Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO concentrations
  publication-title: Nature
– volume: 294
  start-page: 786
  year: 2001
  end-page: 787
  article-title: Managing climate risk
  publication-title: Science
– year: 2015
  article-title: Biophysical and economic limits to negative CO emissions
  publication-title: Nature Climate Change
– volume: 1
  year: 2010
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nature Communications
– volume: 100
  start-page: 195
  year: 2010
  end-page: 202
  article-title: The feasibility of low CO concentration targets and the role of bio‐energy carbon‐capture and storage
  publication-title: Climatic Change
– volume: 91
  start-page: 101
  year: 2006
  end-page: 108
  article-title: Remote sensing of crop residue cover and soil tillage intensity
  publication-title: Soil and Tillage Research
– volume: 107
  start-page: 20228
  year: 2010
  end-page: 20233
  article-title: Geoengineering potential of artificially enhanced silicate weathering of olivine
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 4
  start-page: 850
  year: 2014
  end-page: 853
  article-title: Betting on negative emissions
  publication-title: Nature Climate Change
– volume: 3
  start-page: 4
  year: 2013
  end-page: 6
  article-title: The challenge to keep global warming below 2 °C
  publication-title: Nature Climate Change
– volume: 139
  start-page: 469
  year: 2010
  end-page: 475
  article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China
  publication-title: Agriculture, Ecosystems and Environment
– volume: 325
  start-page: 1654
  year: 2009
  end-page: 1655
  article-title: Why capture CO from the atmosphere
  publication-title: Science
– volume: 43
  start-page: 1169
  year: 2011
  end-page: 1179
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar‐amended soils
  publication-title: Soil Biology and Biochemistry
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 46
  start-page: 5672
  year: 2012
  end-page: 5679
  article-title: Using land to mitigate climate change: hitting the target, recognizing the trade‐offs
  publication-title: Environmental Science and Technology
– volume: 5
  start-page: 119
  year: 2015
  end-page: 126
  article-title: Post‐2020 climate agreements in the major economies assessed in the light of global models
  publication-title: Nature Climate Change
– volume: 9
  start-page: 064029
  year: 2014
  article-title: Investigating afforestation and bioenergy CCS as climate change mitigation strategies
  publication-title: Environmental Research Letters
– volume-title: Biochar for Environmental Management: Science and Technology
  year: 2009
  ident: e_1_2_6_32_1
– ident: e_1_2_6_51_1
  doi: 10.1016/j.cosust.2012.06.005
– ident: e_1_2_6_53_1
  doi: 10.1098/rstb.2007.2184
– ident: e_1_2_6_37_1
  doi: 10.1021/es201792c
– ident: e_1_2_6_62_1
  doi: 10.1007/s10584-012-0680-5
– ident: e_1_2_6_30_1
  doi: 10.1126/science.1097396
– ident: e_1_2_6_60_1
  doi: 10.1038/nclimate2475
– ident: e_1_2_6_64_1
  doi: 10.1038/ncomms1053
– ident: e_1_2_6_4_1
  doi: 10.1016/j.agrformet.2006.08.021
– ident: e_1_2_6_6_1
  doi: 10.1126/science.1155458
– ident: e_1_2_6_47_1
  doi: 10.1038/nature02127
– ident: e_1_2_6_22_1
  doi: 10.1038/349772a0
– ident: e_1_2_6_36_1
– ident: e_1_2_6_56_1
  doi: 10.1038/NCLIMATE2870
– volume-title: Revised 2006 IPCC Guidelines for National Greenhouse Gas Inventories
  year: 2006
  ident: e_1_2_6_20_1
– ident: e_1_2_6_55_1
  doi: 10.1111/1365-2664.12016
– volume-title: The UK National Ecosystem Assessment Technical Report
  year: 2011
  ident: e_1_2_6_61_1
– ident: e_1_2_6_28_1
  doi: 10.1007/s10584-013-0947-5
– ident: e_1_2_6_10_1
  doi: 10.1016/j.still.2005.11.013
– ident: e_1_2_6_16_1
  doi: 10.1088/1748-9326/7/1/014025
– ident: e_1_2_6_43_1
  doi: 10.1021/es2034729
– ident: e_1_2_6_34_1
  doi: 10.4324/9780203762264
– ident: e_1_2_6_50_1
  doi: 10.4155/cmt.11.22
– ident: e_1_2_6_48_1
  doi: 10.1007/s11104-011-0759-1
– ident: e_1_2_6_59_1
  doi: 10.1007/s10584-007-9334-4
– ident: e_1_2_6_14_1
  doi: 10.1007/978-1-4684-1467-7_6
– volume-title: Direct air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs
  year: 2011
  ident: e_1_2_6_57_1
– volume-title: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories Workbook
  year: 1997
  ident: e_1_2_6_19_1
– ident: e_1_2_6_27_1
  doi: 10.1073/pnas.1000545107
– ident: e_1_2_6_49_1
  doi: 10.1007/s10584-005-3485-y
– ident: e_1_2_6_66_1
  doi: 10.1016/j.agee.2010.09.003
– ident: e_1_2_6_63_1
  doi: 10.1126/science.1168475
– ident: e_1_2_6_45_1
  doi: 10.1038/srep09665
– ident: e_1_2_6_52_1
  doi: 10.1046/j.1365-2486.1998.00185.x
– ident: e_1_2_6_54_1
  doi: 10.1098/rstb.2010.0127
– ident: e_1_2_6_9_1
  doi: 10.1111/gcbb.12205
– ident: e_1_2_6_31_1
  doi: 10.5194/essd-5-165-2013
– ident: e_1_2_6_46_1
  doi: 10.1038/nature11787
– ident: e_1_2_6_44_1
  doi: 10.1016/j.techfore.2013.09.016
– ident: e_1_2_6_23_1
  doi: 10.1126/science.1175680
– ident: e_1_2_6_24_1
  doi: 10.1073/pnas.0805794105
– ident: e_1_2_6_13_1
  doi: 10.1007/s10584-012-0678-z
– ident: e_1_2_6_25_1
  doi: 10.2136/sssaj1993.03615995005700010036x
– ident: e_1_2_6_67_1
  doi: 10.1016/j.soilbio.2011.02.005
– ident: e_1_2_6_21_1
  doi: 10.1088/1748-9326/3/4/044006
– ident: e_1_2_6_41_1
  doi: 10.1038/nclimate1783
– ident: e_1_2_6_3_1
  doi: 10.1007/s10584-010-9832-7
– ident: e_1_2_6_58_1
  doi: 10.1002/jpln.200625199
– ident: e_1_2_6_7_1
  doi: 10.1016/j.chemosphere.2011.08.031
– ident: e_1_2_6_29_1
  doi: 10.1142/S2010007813400083
– ident: e_1_2_6_65_1
  doi: 10.1021/es500474q
– start-page: 413
  volume-title: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: e_1_2_6_8_1
– ident: e_1_2_6_35_1
  doi: 10.1038/nclimate2196
– ident: e_1_2_6_17_1
  doi: 10.1007/s00114-008-0434-4
– ident: e_1_2_6_33_1
  doi: 10.1023/A:1022833116184
– ident: e_1_2_6_42_1
  doi: 10.1038/nclimate2292
– ident: e_1_2_6_40_1
  doi: 10.1016/j.rse.2010.04.024
– ident: e_1_2_6_26_1
  doi: 10.1016/0360-5442(95)00035-F
– volume-title: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: e_1_2_6_12_1
– ident: e_1_2_6_5_1
  doi: 10.1007/s10584-013-0897-y
– ident: e_1_2_6_11_1
  doi: 10.1111/gcbb.12180
– ident: e_1_2_6_18_1
  doi: 10.1088/1748-9326/9/6/064029
– ident: e_1_2_6_39_1
  doi: 10.1126/science.294.5543.786b
– ident: e_1_2_6_38_1
  doi: 10.1021/es302302g
– ident: e_1_2_6_2_1
  doi: 10.1038/ngeo1182
– ident: e_1_2_6_15_1
  doi: 10.1038/nclimate2392
– reference: 26896375 - Glob Chang Biol. 2016 Jul;22(7):2313-4
SSID ssj0003206
Score 2.653631
Snippet Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge...
Despite 20 years of effort to curb emissions, greenhouse gas ( GHG ) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge...
Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1315
SubjectTerms afforestation
air
Air Pollutants - analysis
Albedo
biochar
bioenergy
Biomass
carbon
Carbon Sequestration
Charcoal
Charcoal - chemistry
Climate
Climate Change
Deforestation
Emissions
energy
energy costs
energy requirements
Environmental Monitoring
Greenhouse Effect
greenhouse gas emissions
Greenhouse gases
Land use
negative emission technology
Nutrients
sequestration
soil
Soil - chemistry
Soils
Water use
weathering
Title Soil carbon sequestration and biochar as negative emission technologies
URI https://api.istex.fr/ark:/67375/WNG-2CK5WGNL-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13178
https://www.ncbi.nlm.nih.gov/pubmed/26732128
https://www.proquest.com/docview/1764831565
https://www.proquest.com/docview/1765114442
https://www.proquest.com/docview/1776656592
https://www.proquest.com/docview/1803093662
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSkhcKCyUBgoyCFW9ZJU4tpOIE6zarYDugbK0ByTLdpzVqqsE7UMCfj1j51GKSoW4JcpEsifj8TfOzDcArxHEl6qMs7DgkQ7R-7FQM4xSXJMkK3JmIl8-djoRJ1P2_oJfbMGbrham4YfoD9zcyvD-2i1wpVe_LfKZ0cMYdz9X6OtytRwg-nRFHZVQ31czTjhDVxMnLauQy-Lp37y2F90pVY0I1Sn3-01w8zp69dvP8Q587QbeZJ1cDjdrPTQ__-B0_M-ZPYD7LSwlbxs7eghbthrA3aZR5Y8B7B5d1cOhWOsQVgMIThF010svRg7IaDFHBOzvHsH4rJ4viFFLXVfEp2x3HL1EVQXR89qVfBG1IpWdef5x4prPueM7su5O_DGQfwzT46PPo5Ow7dsQGldwGIrCpsYULvhMbJTTyNpUCVM6ckHBsiTKy5iVmbalNWkU2YgWVHM0FpNhbKzTZBe2q7qye0BoboRKuWJpJpgtVU5NkYrSclMKw4oigMPuC0rTkpq73hoL2QU3qEzplRnAq170W8PkcZPQHpqBVDP0sHJ6Rh3_nmO1w4sADrxt9C-r5aXLiku5PJ-MJR194OfjyUf5JYD9znhk6xBWMvYzx2CZB_Cyf4xKdf9nVGXrjZdB-MsYo7fJpAIhOM9vk8n8_20hUOZJY7z9oCmOGNEKTvTQm-DfVSHHo3f-4um_iz6De05lTY7ePmyvlxv7HEHbWr_wq_MX5uU4tQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQwheBhTGAgMMQtNeUuXDdhKJF6i2Ftb2ga1sL5PlOE5VrUqmfkjAX8_Z-RhDY0K8JcpFsi_n8--cu98BvEcQn8vcj92MeamL3o-6KcUoxTRJ0jyhyrPlY6MxH0zol3N2vgEfmlqYih-iPXAzK8P6a7PAzYH0b6t8qtKuj9tfvAn3TEdvG1B9vSaPCgPbWdMPGUVn44c1r5DJ42lfvbEbbeayRIxq1Pv9NsB5E7_aDejoEVw0Q6_yTi6761XaVT__YHX837k9hu0amZKPlSk9gQ1ddOB-1avyRwd2Dq9L4lCs9gnLDjgjxN3lwoqRfdKbzxAE27un0D8pZ3Oi5CItC2KzthuaXiKLjKSz0lR9EbkkhZ5aCnJi-s-ZEzyyag79MZZ_BpOjw9PewK1bN7jK1By6PNORUpmJP0PtJYGndSS5yg2_IKdx6CW5T_M41blWkedpL8iClKG9qBjD4zQKd2CrKAu9CyRIFJcRkzSKOdW5TAKVRTzXTOVc0Sxz4KD5hELVvOamvcZcNPENKlNYZTrwrhW9qsg8bhPaRTsQcopOVkxOAkPBZ4jt8MKBfWsc7ctycWkS4yImzsZ9EfSO2Vl_PBTfHNhrrEfUPmEpfDtzjJeZA2_bx6hU84tGFrpcWxlEwJTS4C6ZiCMKZ8ldMrH9xc05yjyvrLcddIAjRsCCEz2wNvh3VYh-75O9ePHvom_gweB0NBTDz-Pjl_DQqK9K2duDrdVirV8hhlulr-1S_QVZATzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RSAuPBZKAwUMQlUvWeXhOIl6KtvuFtquEGVpD0iW49irVVdJtQ8J-us7dh6lqFSIW6JMJHsyHn_jzHwD8AFBvBbaT9w88jIXvR91M4pRimmSpFhKpWfLx46H7GBEP59FZyuw09TCVPwQ7YGbWRnWX5sFfpHr3xb5WGZdH3e_ZBXuUeYlxqT3vl5zR4WBbazphxFFX-OHNa2QSeNpX72xGa1qUSJENdr9eRvevAlf7f7Tfww_mpFXaSfn3eUi68rLP0gd_3NqT-BRjUvJbmVIT2FFFR24X3Wq_NWB9f3rgjgUqz3CvAPOMaLucmbFyBbpTScIge3dMxiclJMpkWKWlQWxOdsNSS8RRU6ySWlqvoiYk0KNLQE5Md3nzPkdWTRH_hjJP4dRf_9b78CtGze40lQcuixXsZS5iT5D5aWBp1QsmNSGXZDRJPRS7VOdZEorGXue8oI8yCK0FplgcJzF4TqsFWWhNoAEqWQijgSNE0aVFmkg85hpFUnNJM1zB7abL8hlzWpummtMeRPdoDK5VaYD71vRi4rK4zahDTQDLsboYvnoJDAEfIbWDi8c2LK20b4sZucmLS6O-OlwwIPeYXQ6GB7x7w5sNsbDa48w576dOUbLkQPv2seoVPODRhSqXFoZxL-U0uAumZghBo_Su2QS-4ObMZR5URlvO-gAR4xwBSe6bU3w76rgg95He_Hy30XfwoMve31-9Gl4-AoeGu1V-XqbsLaYLdVrBHCL7I1dqFeMpDuI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+carbon+sequestration+and+biochar+as+negative+emission+technologies&rft.jtitle=Global+change+biology&rft.au=Smith%2C+Pete&rft.date=2016-03-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=22&rft.issue=3&rft.spage=1315&rft.epage=1324&rft_id=info:doi/10.1111%2Fgcb.13178&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gcb_13178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon