Soil carbon sequestration and biochar as negative emission technologies
Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated as...
Saved in:
Published in | Global change biology Vol. 22; no. 3; pp. 1315 - 1324 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Science
01.03.2016
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large‐scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr⁻¹) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. |
---|---|
AbstractList | Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr-1) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. Despite 20 years of effort to curb emissions, greenhouse gas ( GHG ) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large‐scale deployment of negative emissions technologies ( NET s) to reach the 2 °C target. A recent analysis of NET s, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NET s have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr −1 ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NET s. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NET s, efforts should be made to include these options within IAM s, so that their potential can be explored further in comparison with other NET s for climate stabilization. Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large‐scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr−1) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large‐scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr⁻¹) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large‐scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr⁻¹) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 degree C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 degree C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr super(-1)) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. |
Author | Smith, Pete |
Author_xml | – sequence: 1 givenname: Pete surname: Smith fullname: Smith, Pete email: pete.smith@abdn.ac.uk organization: Institute of Biological and Environmental Sciences, Scottish Food Security Alliance-Crops & ClimateXChange, University of Aberdeen, 23 St Machar Drive, AB24 3UU, Aberdeen, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26732128$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URB-w4A9AJDawSOu3M8sygoA6KotSurQc52bqkomLnQH677mZabuoRMEbX1vfPTrXx_tkZ4gDEPKS0UOG62jpm0MmmKmekD0mtCq5rPTOVCtZMsrELtnP-YpSKjjVz8gu10Zwxqs9Up_F0BfepSYORYYfa8hjcmPAkxvaognRX7pUuFwMsMT7n1DAKuQ8ASP4yyH2cRkgPydPO9dneHG7H5Dzjx--zj-Viy_15_nxovQa_ZW6BeN9SyuuBNAZpwDGad8JKY2WlaCzjsmuaqADbygFylveqFZRXzHBGyMOyNut7nWKG7MW3XjoezdAXGfLKooiQmv-b9QYrZVWs_9BtWJMSjmhbx6gV3GdBpx5onAEhpJIvbql1s0KWnudwsqlG3v38Ai82wI-xZwTdPcIo3YK1WKodhMqskcPWB_GTUYYVegf6_gVerj5u7St5-_vOsptR8gj_L7vcOm7RctG2YvT2vL5ibqoTxf2G_Kvt3znonXLFLI9P-OUaYrfTWMh_gAirsfb |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_150342 crossref_primary_10_1002_jeq2_20475 crossref_primary_10_1111_ejss_70007 crossref_primary_10_1016_j_biombioe_2018_07_004 crossref_primary_10_1016_j_chemosphere_2024_142478 crossref_primary_10_1016_j_enpol_2017_01_050 crossref_primary_10_1016_j_enconman_2020_112701 crossref_primary_10_1038_s41467_022_31540_9 crossref_primary_10_1002_jeq2_20111 crossref_primary_10_2134_agronj2018_02_0074 crossref_primary_10_1002_agg2_20236 crossref_primary_10_1016_j_rser_2019_01_032 crossref_primary_10_3390_land9090309 crossref_primary_10_5194_soil_10_619_2024 crossref_primary_10_1111_gcbb_12952 crossref_primary_10_1007_s11027_019_09881_6 crossref_primary_10_1021_acs_est_0c07390 crossref_primary_10_1002_ente_201900467 crossref_primary_10_1007_s42729_023_01215_5 crossref_primary_10_1016_j_scitotenv_2021_150337 crossref_primary_10_1088_1757_899X_553_1_012031 crossref_primary_10_1080_14693062_2021_1969883 crossref_primary_10_1111_gcb_14878 crossref_primary_10_1038_s41558_019_0591_9 crossref_primary_10_1038_s41598_020_76470_y crossref_primary_10_1016_j_fuel_2021_122852 crossref_primary_10_1016_j_geoderma_2018_04_022 crossref_primary_10_1002_2016EF000469 crossref_primary_10_1016_j_jcou_2024_102892 crossref_primary_10_3390_pr13010279 crossref_primary_10_1016_j_geoderma_2022_115711 crossref_primary_10_1080_19397038_2023_2256379 crossref_primary_10_1016_j_jenvman_2019_109466 crossref_primary_10_1016_j_fcr_2021_108421 crossref_primary_10_3390_pr12112418 crossref_primary_10_7717_peerj_17513 crossref_primary_10_1016_j_jenvman_2019_110002 crossref_primary_10_1016_j_scitotenv_2023_168530 crossref_primary_10_1021_acs_langmuir_4c02076 crossref_primary_10_1002_er_4902 crossref_primary_10_1111_gcb_14787 crossref_primary_10_1007_s42773_020_00072_0 crossref_primary_10_1039_D4EN00802B crossref_primary_10_1021_acs_est_3c02620 crossref_primary_10_1007_s10113_021_01818_7 crossref_primary_10_3390_land11050639 crossref_primary_10_1371_journal_pclm_0000124 crossref_primary_10_1016_j_enceco_2024_10_002 crossref_primary_10_1016_j_spc_2022_06_028 crossref_primary_10_1016_j_bcab_2020_101829 crossref_primary_10_1111_sum_12328 crossref_primary_10_1016_j_jclepro_2019_04_282 crossref_primary_10_1038_s41597_023_02867_9 crossref_primary_10_3390_su11154038 crossref_primary_10_1021_acs_est_3c03609 crossref_primary_10_1016_j_jclepro_2020_120267 crossref_primary_10_1111_1365_2664_13747 crossref_primary_10_1007_s11027_020_09916_3 crossref_primary_10_1016_j_resconrec_2024_107968 crossref_primary_10_1007_s10661_019_7400_9 crossref_primary_10_1016_j_geoderma_2022_115971 crossref_primary_10_1093_nsr_nwz045 crossref_primary_10_1108_EOR_10_2023_0011 crossref_primary_10_1088_1748_9326_aabff4 crossref_primary_10_1111_gcbb_12915 crossref_primary_10_5194_soil_3_1_2017 crossref_primary_10_1016_j_jenvman_2022_114704 crossref_primary_10_1098_rsta_2016_0456 crossref_primary_10_1016_j_geoderma_2017_10_010 crossref_primary_10_1038_s41598_025_86636_1 crossref_primary_10_1016_j_agee_2017_01_006 crossref_primary_10_1016_j_scitotenv_2023_166224 crossref_primary_10_1016_j_biortech_2024_131374 crossref_primary_10_5194_soil_6_597_2020 crossref_primary_10_1016_j_jmrt_2023_02_009 crossref_primary_10_1016_j_agwat_2022_107880 crossref_primary_10_1088_1742_6596_2685_1_012031 crossref_primary_10_1016_j_ijggc_2018_06_021 crossref_primary_10_1016_j_scitotenv_2023_166171 crossref_primary_10_1111_gcb_14844 crossref_primary_10_1016_j_oneear_2022_07_001 crossref_primary_10_3390_ijerph16111976 crossref_primary_10_1016_j_biocon_2020_108619 crossref_primary_10_1002_jpln_201800496 crossref_primary_10_1038_s43247_022_00394_w crossref_primary_10_1088_1748_9326_aa8c83 crossref_primary_10_3390_su8090841 crossref_primary_10_4236_as_2017_89065 crossref_primary_10_1007_s11270_018_3708_2 crossref_primary_10_1007_s13399_020_00943_3 crossref_primary_10_1016_j_biombioe_2018_06_007 crossref_primary_10_1016_j_soilbio_2022_108697 crossref_primary_10_1016_j_jclepro_2023_137625 crossref_primary_10_5194_bg_19_3021_2022 crossref_primary_10_1111_ejss_13488 crossref_primary_10_1080_17583004_2022_2074314 crossref_primary_10_1016_j_cemconcomp_2017_07_012 crossref_primary_10_1088_1748_9326_aa5ee5 crossref_primary_10_3846_16486897_2017_1326924 crossref_primary_10_1029_2023EF003986 crossref_primary_10_1038_530153a crossref_primary_10_1016_j_still_2022_105360 crossref_primary_10_3390_f16030474 crossref_primary_10_1002_jpln_202200007 crossref_primary_10_2136_sssaj2019_03_0089 crossref_primary_10_1016_j_scitotenv_2022_157473 crossref_primary_10_1016_j_agee_2021_107779 crossref_primary_10_1016_j_scitotenv_2022_159773 crossref_primary_10_1186_s43170_021_00063_6 crossref_primary_10_1016_j_jece_2025_116062 crossref_primary_10_1016_j_scitotenv_2021_150789 crossref_primary_10_1016_j_gloenvcha_2022_102550 crossref_primary_10_1016_j_enconman_2019_112111 crossref_primary_10_1071_SR17039 crossref_primary_10_1016_j_eja_2024_127168 crossref_primary_10_1016_j_scitotenv_2019_134266 crossref_primary_10_1021_acs_est_3c02543 crossref_primary_10_1016_j_scitotenv_2022_160644 crossref_primary_10_1016_j_futures_2016_12_003 crossref_primary_10_1038_s43247_022_00636_x crossref_primary_10_1093_nsr_nwad254 crossref_primary_10_1007_s12649_023_02351_w crossref_primary_10_5572_ajae_2022_117 crossref_primary_10_1111_sum_12401 crossref_primary_10_1111_gcb_14860 crossref_primary_10_1016_j_egycc_2023_100112 crossref_primary_10_1021_acsenvironau_2c00028 crossref_primary_10_1016_j_chemosphere_2018_04_056 crossref_primary_10_1111_gcb_14613 crossref_primary_10_3390_land13020179 crossref_primary_10_1038_s41467_018_05938_3 crossref_primary_10_1080_14735903_2020_1750254 crossref_primary_10_5194_esd_8_577_2017 crossref_primary_10_3390_land10111256 crossref_primary_10_1111_ejss_13221 crossref_primary_10_1016_j_biortech_2017_08_122 crossref_primary_10_1016_j_jenvman_2021_112154 crossref_primary_10_1016_j_foreco_2021_119672 crossref_primary_10_1016_j_jclepro_2020_120063 crossref_primary_10_1007_s11356_020_09755_4 crossref_primary_10_1021_acs_iecr_4c00082 crossref_primary_10_1021_acs_iecr_8b04094 crossref_primary_10_1098_rstb_2021_0084 crossref_primary_10_1016_j_jenvman_2025_125059 crossref_primary_10_1021_acssuschemeng_8b05871 crossref_primary_10_1093_oxfclm_kgab006 crossref_primary_10_1139_cjss_2024_0039 crossref_primary_10_1016_j_jclepro_2019_117824 crossref_primary_10_1016_j_jclepro_2022_131791 crossref_primary_10_3389_fsufs_2024_1386680 crossref_primary_10_1098_rspb_2017_2798 crossref_primary_10_1016_j_apgeochem_2024_106054 crossref_primary_10_1016_j_jenvman_2022_117155 crossref_primary_10_3389_fenvs_2023_1238810 crossref_primary_10_1002_saj2_70008 crossref_primary_10_1098_rsos_202305 crossref_primary_10_1016_j_jes_2023_05_043 crossref_primary_10_1038_s41467_019_11057_4 crossref_primary_10_1016_j_jenvman_2022_117151 crossref_primary_10_3389_fenrg_2024_1347373 crossref_primary_10_1016_j_still_2019_03_022 crossref_primary_10_1080_17583004_2023_2244456 crossref_primary_10_3390_agriculture12030320 crossref_primary_10_1016_j_geoderma_2020_114454 crossref_primary_10_20517_cf_2023_35 crossref_primary_10_3390_agriculture15050458 crossref_primary_10_3390_land7040133 crossref_primary_10_1038_s41598_018_26396_3 crossref_primary_10_1002_bbb_2544 crossref_primary_10_1080_09064710_2020_1853214 crossref_primary_10_1111_gcbb_12553 crossref_primary_10_1080_00038628_2021_1896471 crossref_primary_10_1007_s41247_020_00080_5 crossref_primary_10_1002_cjce_24426 crossref_primary_10_3390_ijerph20020927 crossref_primary_10_1007_s00267_023_01821_0 crossref_primary_10_1038_s41598_018_25039_x crossref_primary_10_1071_SR19149 crossref_primary_10_3390_su9071131 crossref_primary_10_1111_gcb_14478 crossref_primary_10_1038_ncomms13160 crossref_primary_10_1088_1748_9326_ac0a11 crossref_primary_10_1016_j_geoderma_2022_116080 crossref_primary_10_1039_D2VA00168C crossref_primary_10_1039_D1EE03523A crossref_primary_10_1590_1678_4499_20210313 crossref_primary_10_1016_j_geosus_2022_11_004 crossref_primary_10_1038_s43016_024_01039_1 crossref_primary_10_4081_ija_2017_794 crossref_primary_10_1016_j_heliyon_2024_e27055 crossref_primary_10_1080_00380768_2017_1373599 crossref_primary_10_3390_agronomy12123065 crossref_primary_10_3390_agronomy11010157 crossref_primary_10_1111_gcbb_12783 crossref_primary_10_1111_ejss_12500 crossref_primary_10_1007_s10705_024_10356_7 crossref_primary_10_1016_j_still_2025_106462 crossref_primary_10_1038_s43247_023_01002_1 crossref_primary_10_1080_10889868_2019_1603139 crossref_primary_10_1016_j_geoderma_2024_116974 crossref_primary_10_3390_f10060487 crossref_primary_10_1016_j_geodrs_2023_e00669 crossref_primary_10_2139_ssrn_3985462 crossref_primary_10_1080_03066150_2022_2117032 crossref_primary_10_2478_msp_2024_0022 crossref_primary_10_1038_s41558_023_01604_9 crossref_primary_10_1016_j_apsoil_2021_103996 crossref_primary_10_3389_frsus_2023_1200094 crossref_primary_10_1080_19648189_2022_2068658 crossref_primary_10_1111_gcbb_12773 crossref_primary_10_1186_s13007_019_0387_y crossref_primary_10_3390_microorganisms11030641 crossref_primary_10_1016_j_jhazmat_2022_130449 crossref_primary_10_3390_agronomy11050882 crossref_primary_10_1111_sum_12966 crossref_primary_10_1016_j_jenvman_2023_119745 crossref_primary_10_3390_w13162296 crossref_primary_10_1016_j_rser_2022_113042 crossref_primary_10_1088_1755_1315_896_1_012022 crossref_primary_10_3389_fenvs_2020_514701 crossref_primary_10_1007_s10533_019_00571_8 crossref_primary_10_1146_annurev_environ_101718_033129 crossref_primary_10_1088_1748_9326_acacb3 crossref_primary_10_1016_j_still_2021_105125 crossref_primary_10_3390_agronomy12071661 crossref_primary_10_1016_j_jenvman_2025_124681 crossref_primary_10_5194_bg_19_957_2022 crossref_primary_10_1111_gcbb_12885 crossref_primary_10_1111_gcbb_12763 crossref_primary_10_4236_ojss_2022_1210021 crossref_primary_10_1016_j_jenvman_2023_119979 crossref_primary_10_1016_j_wasman_2022_05_023 crossref_primary_10_1111_ejss_12966 crossref_primary_10_1016_j_scitotenv_2019_05_051 crossref_primary_10_1016_j_ecolecon_2022_107636 crossref_primary_10_1111_gcb_15897 crossref_primary_10_3390_agronomy10091446 crossref_primary_10_3390_w13121615 crossref_primary_10_3390_su11184817 crossref_primary_10_1016_j_geoderma_2019_114110 crossref_primary_10_1007_s11104_016_3031_x crossref_primary_10_1016_j_scitotenv_2023_169607 crossref_primary_10_1038_s41586_019_1681_6 crossref_primary_10_1111_gcbb_12878 crossref_primary_10_1016_j_resconrec_2021_105910 crossref_primary_10_1016_j_scitotenv_2019_04_004 crossref_primary_10_1007_s13412_017_0445_6 crossref_primary_10_1016_j_clet_2021_100141 crossref_primary_10_1016_j_erss_2022_102512 crossref_primary_10_1039_C7EN00211D crossref_primary_10_1016_j_jece_2024_114785 crossref_primary_10_3390_horticulturae6030037 crossref_primary_10_1016_j_biortech_2023_129588 crossref_primary_10_1002_cssc_202100786 crossref_primary_10_1029_2020GH000311 crossref_primary_10_1016_j_jclepro_2024_140591 crossref_primary_10_1016_j_enconman_2022_116323 crossref_primary_10_1016_j_jclepro_2020_125494 crossref_primary_10_1016_j_seta_2022_102991 crossref_primary_10_1038_s41893_020_0491_z crossref_primary_10_1088_1748_9326_aabf9f crossref_primary_10_1016_j_anres_2017_04_001 crossref_primary_10_3389_fclim_2019_00006 crossref_primary_10_1016_j_agwat_2019_105729 crossref_primary_10_1007_s10584_018_2142_1 crossref_primary_10_54112_basrj_v2023i1_13 crossref_primary_10_1016_j_geoderma_2019_07_025 crossref_primary_10_1111_ejss_13515 crossref_primary_10_1093_biosci_biab126 crossref_primary_10_1016_j_scitotenv_2018_03_382 crossref_primary_10_1038_nclimate3276 crossref_primary_10_1038_srep35984 crossref_primary_10_1016_j_agee_2021_107352 crossref_primary_10_1016_j_crsust_2023_100239 crossref_primary_10_3390_en16072964 crossref_primary_10_1016_j_chemosphere_2022_134112 crossref_primary_10_1016_j_jenvman_2021_113644 crossref_primary_10_1007_s40641_018_0104_3 crossref_primary_10_1016_j_apsoil_2020_103674 crossref_primary_10_1016_j_fuel_2022_124777 crossref_primary_10_3390_horticulturae10040368 crossref_primary_10_1016_j_soisec_2024_100160 crossref_primary_10_1038_s41467_018_03489_1 crossref_primary_10_1111_gcb_13254 crossref_primary_10_1007_s11104_019_04062_5 crossref_primary_10_5194_gmd_11_1133_2018 crossref_primary_10_1371_journal_pone_0220247 crossref_primary_10_3390_su16156553 crossref_primary_10_1016_j_geodrs_2023_e00738 crossref_primary_10_1039_D4GC03071K crossref_primary_10_1016_j_fuel_2020_118637 crossref_primary_10_1016_j_scitotenv_2021_145021 crossref_primary_10_1016_j_biombioe_2024_107531 crossref_primary_10_1002_jpln_202000113 crossref_primary_10_1016_j_jhydrol_2023_129188 crossref_primary_10_1002_2016EF000449 crossref_primary_10_1146_annurev_environ_102017_025817 crossref_primary_10_1186_s13213_024_01775_6 crossref_primary_10_4491_eer_2023_105 crossref_primary_10_1080_17583004_2024_2372318 crossref_primary_10_1016_j_jece_2022_108403 crossref_primary_10_5194_soil_8_199_2022 crossref_primary_10_3390_land8120179 crossref_primary_10_1016_j_scitotenv_2020_139880 crossref_primary_10_1111_gcbb_12842 crossref_primary_10_1111_gcbb_12720 crossref_primary_10_1007_s13399_020_00936_2 crossref_primary_10_1111_gcb_16631 crossref_primary_10_1007_s10333_020_00821_8 crossref_primary_10_1080_17583004_2021_1962409 crossref_primary_10_1016_j_scitotenv_2024_175801 crossref_primary_10_1016_j_chemosphere_2020_127510 crossref_primary_10_1016_j_ijggc_2024_104297 crossref_primary_10_1016_j_egycc_2024_100141 crossref_primary_10_1088_1748_9326_ad52ab crossref_primary_10_3390_soilsystems7020048 crossref_primary_10_3390_su152115396 crossref_primary_10_1002_er_4361 crossref_primary_10_3390_cli8060075 crossref_primary_10_1016_j_envpol_2019_02_072 crossref_primary_10_1016_j_geoderma_2020_114613 crossref_primary_10_1016_j_geoderma_2022_116117 crossref_primary_10_3390_su14127026 crossref_primary_10_1016_j_crope_2022_03_005 crossref_primary_10_1039_C7EE02342A crossref_primary_10_3389_fsufs_2018_00054 crossref_primary_10_1111_gcbb_13116 crossref_primary_10_1038_nclimate3286 crossref_primary_10_1016_j_apenergy_2019_03_183 crossref_primary_10_1016_j_cemconcomp_2017_12_009 crossref_primary_10_1016_j_scitotenv_2023_166917 crossref_primary_10_3390_agronomy12061440 crossref_primary_10_1002_bbb_2280 crossref_primary_10_1016_j_eng_2024_12_021 crossref_primary_10_1016_j_rser_2020_109895 crossref_primary_10_1007_s13399_024_05789_7 crossref_primary_10_1016_j_scitotenv_2022_158920 crossref_primary_10_1016_j_soilbio_2016_05_020 crossref_primary_10_1007_s11356_022_21623_x crossref_primary_10_1021_acsenvironau_1c00018 crossref_primary_10_1016_j_rser_2023_113614 crossref_primary_10_1016_j_enconman_2020_113258 crossref_primary_10_1016_j_scitotenv_2017_12_343 crossref_primary_10_1016_j_agee_2017_12_008 crossref_primary_10_1016_j_soilbio_2021_108432 crossref_primary_10_3389_fsoil_2023_1136327 crossref_primary_10_1039_C9EE02627D crossref_primary_10_1029_2022EF003246 crossref_primary_10_3390_suschem2020016 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_21601_ejosdr_11433 crossref_primary_10_1016_j_biortech_2024_130718 crossref_primary_10_3389_fenrg_2022_826227 crossref_primary_10_3389_fclim_2022_928403 crossref_primary_10_3390_en16093850 crossref_primary_10_1016_j_agsy_2023_103663 crossref_primary_10_1016_j_ijggc_2023_103935 crossref_primary_10_1016_j_scitotenv_2020_138752 crossref_primary_10_1016_j_scitotenv_2020_137422 crossref_primary_10_1016_j_apsusc_2020_148785 crossref_primary_10_1016_j_jclepro_2019_119120 crossref_primary_10_1021_acs_est_9b01615 crossref_primary_10_1111_gcbb_12365 crossref_primary_10_1016_j_jenvman_2024_121032 crossref_primary_10_1016_j_trgeo_2024_101370 crossref_primary_10_1088_1748_9326_aab89c crossref_primary_10_1080_03650340_2022_2093860 crossref_primary_10_3390_agronomy11020336 crossref_primary_10_1002_eap_1984 crossref_primary_10_1080_17583004_2025_2465328 crossref_primary_10_1016_j_apenergy_2017_08_090 crossref_primary_10_1007_s13762_021_03766_5 crossref_primary_10_3389_fenrg_2022_803756 crossref_primary_10_1016_j_geoderma_2019_114079 crossref_primary_10_1016_j_envadv_2023_100395 crossref_primary_10_1088_1748_9326_aca037 crossref_primary_10_1016_j_jwpe_2024_106498 crossref_primary_10_1007_s00374_022_01649_6 crossref_primary_10_1111_sum_13154 crossref_primary_10_1016_j_agee_2020_106831 crossref_primary_10_1016_j_susmat_2021_e00253 crossref_primary_10_1080_14693062_2018_1427537 crossref_primary_10_1016_j_geoderma_2017_05_005 crossref_primary_10_1111_gcbb_12474 crossref_primary_10_1371_journal_pone_0184383 crossref_primary_10_1016_j_resconrec_2021_106030 crossref_primary_10_1016_j_jenvman_2023_117740 crossref_primary_10_1002_wer_10962 crossref_primary_10_1016_j_anifeedsci_2024_116127 crossref_primary_10_1016_j_erss_2018_04_031 crossref_primary_10_3390_en16010355 crossref_primary_10_3390_agronomy13051394 crossref_primary_10_1016_j_cej_2020_124999 crossref_primary_10_3390_soilsystems5010004 crossref_primary_10_1016_j_joule_2021_09_004 crossref_primary_10_1016_j_tree_2018_12_003 crossref_primary_10_3389_fenrg_2020_549615 crossref_primary_10_3390_su142214722 crossref_primary_10_1016_j_cosust_2020_09_009 crossref_primary_10_4000_vertigo_20433 crossref_primary_10_1016_j_ecmx_2019_100007 crossref_primary_10_3390_su12072599 crossref_primary_10_1016_j_jenvman_2024_122140 crossref_primary_10_1111_gcb_16570 crossref_primary_10_3390_agronomy14102356 crossref_primary_10_1016_j_soilbio_2018_09_001 crossref_primary_10_1016_j_gloenvcha_2020_102075 crossref_primary_10_1126_sciadv_aaq0932 crossref_primary_10_3934_energy_2024014 crossref_primary_10_1016_j_envsci_2019_10_007 crossref_primary_10_1016_j_jclepro_2020_120855 crossref_primary_10_1016_j_sajb_2024_10_026 crossref_primary_10_1007_s10668_020_00809_8 crossref_primary_10_1080_03650340_2024_2419506 crossref_primary_10_3390_w10020182 crossref_primary_10_1016_j_soilbio_2024_109689 crossref_primary_10_1039_D0CS01363C crossref_primary_10_5194_gmd_17_4871_2024 crossref_primary_10_1007_s11356_022_23699_x crossref_primary_10_1111_sum_70039 crossref_primary_10_1016_j_jenvman_2019_109856 crossref_primary_10_1111_gcb_14066 crossref_primary_10_1038_s41598_021_93407_1 crossref_primary_10_1111_gcbb_12450 crossref_primary_10_1016_j_scitotenv_2019_134829 crossref_primary_10_1038_s41598_019_41953_0 crossref_primary_10_1007_s10098_018_1512_8 crossref_primary_10_1016_S1002_0160_20_60094_7 crossref_primary_10_1002_adsu_202300054 crossref_primary_10_1016_j_agee_2023_108535 crossref_primary_10_1016_j_agee_2023_108777 crossref_primary_10_1002_ep_13529 crossref_primary_10_1016_j_wasman_2023_08_026 crossref_primary_10_1016_j_rser_2021_110756 crossref_primary_10_1007_s11056_024_10074_6 crossref_primary_10_1007_s11270_022_05902_4 crossref_primary_10_1080_17583004_2024_2410823 crossref_primary_10_1016_j_egyr_2021_06_027 crossref_primary_10_1016_j_fuel_2022_123857 crossref_primary_10_1016_j_scitotenv_2020_138955 crossref_primary_10_1007_s42832_024_0267_x crossref_primary_10_1111_gcbb_12561 crossref_primary_10_1111_gcbb_12682 crossref_primary_10_1016_j_biombioe_2020_105470 crossref_primary_10_3390_en14010009 crossref_primary_10_1061_JOEEDU_EEENG_7487 crossref_primary_10_3389_fagro_2021_731184 crossref_primary_10_3390_geosciences8110420 crossref_primary_10_1088_1748_9326_ad7479 crossref_primary_10_1016_j_jece_2023_111489 crossref_primary_10_1016_j_agee_2020_106882 crossref_primary_10_1007_s11104_021_05159_6 crossref_primary_10_1016_j_apenergy_2018_09_135 crossref_primary_10_3390_su131810097 crossref_primary_10_1007_s42729_023_01547_2 crossref_primary_10_3389_fmars_2023_1178014 crossref_primary_10_1016_j_scitotenv_2022_159169 crossref_primary_10_1111_sum_13113 crossref_primary_10_3390_su141710655 crossref_primary_10_3390_su15032384 crossref_primary_10_5194_soil_6_435_2020 crossref_primary_10_1016_j_envsci_2023_103651 crossref_primary_10_3390_soilsystems6040073 crossref_primary_10_35241_emeraldopenres_14307_1 crossref_primary_10_1080_10643389_2016_1212368 crossref_primary_10_1080_10643389_2023_2290947 crossref_primary_10_3390_ma17112646 crossref_primary_10_1038_s41598_017_07224_6 crossref_primary_10_1016_j_jclepro_2019_117913 crossref_primary_10_1016_j_scitotenv_2021_152495 crossref_primary_10_1016_j_scitotenv_2021_151044 crossref_primary_10_1016_j_biteb_2019_03_009 crossref_primary_10_1016_j_still_2019_104437 crossref_primary_10_1002_wer_10926 crossref_primary_10_1016_j_still_2018_05_016 crossref_primary_10_1086_733661 crossref_primary_10_1016_j_scitotenv_2018_07_089 crossref_primary_10_1016_j_scitotenv_2017_07_028 crossref_primary_10_1371_journal_pstr_0000059 crossref_primary_10_1088_1748_9326_aac0c1 crossref_primary_10_1016_j_jclepro_2023_137138 crossref_primary_10_1029_2019EF001310 crossref_primary_10_1111_gcb_13975 crossref_primary_10_1002_ldr_2906 crossref_primary_10_1039_D5SU00021A crossref_primary_10_18393_ejss_599760 crossref_primary_10_1016_j_scitotenv_2021_152022 crossref_primary_10_1111_gcb_14940 crossref_primary_10_1088_1748_9326_ace91f crossref_primary_10_1002_agg2_20171 crossref_primary_10_3389_fsufs_2022_994364 crossref_primary_10_1016_j_scitotenv_2021_146821 crossref_primary_10_1038_s41558_018_0358_8 crossref_primary_10_1016_j_biosystemseng_2017_06_020 crossref_primary_10_1088_1748_9326_11_11_115007 crossref_primary_10_55529_jeimp_41_8_21 crossref_primary_10_1016_j_jclepro_2019_01_002 crossref_primary_10_1016_j_fuel_2020_119096 crossref_primary_10_1016_j_cartre_2024_100361 crossref_primary_10_3390_soilsystems3010005 crossref_primary_10_1007_s11708_017_0498_y crossref_primary_10_1111_ejss_13145 crossref_primary_10_1111_gcb_13720 crossref_primary_10_1016_j_eneco_2023_106804 crossref_primary_10_1007_s13280_019_01165_2 crossref_primary_10_1111_gcb_14815 crossref_primary_10_1016_j_agee_2019_106654 crossref_primary_10_1111_ejss_13380 crossref_primary_10_1111_ejss_70074 crossref_primary_10_1126_science_aal2610 crossref_primary_10_1016_j_jenvman_2021_113039 crossref_primary_10_1039_D0EE03757E crossref_primary_10_1016_j_cscm_2024_e02859 crossref_primary_10_1029_2021EF002324 crossref_primary_10_1038_s43247_022_00436_3 crossref_primary_10_1016_j_jclepro_2022_135174 crossref_primary_10_1016_j_jenvman_2022_115211 crossref_primary_10_1007_s42773_024_00409_z crossref_primary_10_1093_pnasnexus_pgad448 crossref_primary_10_1016_j_rser_2020_110035 crossref_primary_10_1016_j_energy_2022_124000 crossref_primary_10_1016_j_still_2018_10_009 crossref_primary_10_3390_en14217371 crossref_primary_10_1016_j_soilbio_2018_04_018 crossref_primary_10_1144_sjg2019_007 crossref_primary_10_1016_j_scitotenv_2018_11_312 crossref_primary_10_1016_j_chemosphere_2021_133203 crossref_primary_10_1016_j_biortech_2024_131387 crossref_primary_10_1016_j_geoderma_2023_116717 crossref_primary_10_1016_j_jcou_2020_101217 crossref_primary_10_1016_j_heliyon_2023_e15169 crossref_primary_10_1016_j_scitotenv_2018_06_009 crossref_primary_10_1111_gcbb_13031 crossref_primary_10_1111_nph_17651 crossref_primary_10_1016_j_jclepro_2020_124969 crossref_primary_10_1002_cben_201700006 crossref_primary_10_1016_j_geoderma_2018_09_041 crossref_primary_10_1021_acs_est_4c09102 crossref_primary_10_1016_j_enconman_2023_117114 crossref_primary_10_1016_j_geoderma_2024_117093 crossref_primary_10_1038_s43247_023_01155_z crossref_primary_10_1007_s11368_020_02705_0 crossref_primary_10_3390_su14148267 crossref_primary_10_1016_j_jafr_2025_101719 crossref_primary_10_1016_j_fcr_2024_109611 crossref_primary_10_1016_j_erss_2018_06_024 crossref_primary_10_5194_bg_19_5125_2022 crossref_primary_10_5194_esd_12_1037_2021 crossref_primary_10_1111_sum_12579 crossref_primary_10_1016_j_jclepro_2023_138425 crossref_primary_10_1007_s42773_022_00200_y crossref_primary_10_1016_j_scitotenv_2022_154845 crossref_primary_10_1111_gcbb_13142 crossref_primary_10_1126_science_aah4567 crossref_primary_10_1016_j_jece_2023_110572 crossref_primary_10_1016_j_apsoil_2023_104975 crossref_primary_10_1111_1467_8489_12330 crossref_primary_10_1007_s42250_022_00512_3 crossref_primary_10_3390_su141912901 crossref_primary_10_1016_j_scitotenv_2020_144318 crossref_primary_10_3390_agriculture13081557 crossref_primary_10_1016_j_scitotenv_2020_143114 crossref_primary_10_1016_j_rser_2022_112609 crossref_primary_10_1016_j_jhazmat_2023_132422 crossref_primary_10_1016_j_resconrec_2022_106501 crossref_primary_10_1016_j_resconrec_2020_105174 crossref_primary_10_1016_j_agrformet_2022_108978 crossref_primary_10_3390_pr8070764 crossref_primary_10_1016_j_jenvman_2021_113080 crossref_primary_10_1039_D2GC03172H crossref_primary_10_1007_s42773_023_00279_x crossref_primary_10_1016_j_cesys_2021_100024 crossref_primary_10_1016_j_jenvman_2019_02_044 crossref_primary_10_1016_j_scitotenv_2020_143219 crossref_primary_10_1016_j_scitotenv_2020_142249 crossref_primary_10_1016_j_jclepro_2018_08_041 crossref_primary_10_1016_j_applthermaleng_2018_04_115 crossref_primary_10_3846_16486897_2016_1254640 crossref_primary_10_1038_s41570_024_00587_1 crossref_primary_10_3390_agronomy10122016 |
Cites_doi | 10.1016/j.cosust.2012.06.005 10.1098/rstb.2007.2184 10.1021/es201792c 10.1007/s10584-012-0680-5 10.1126/science.1097396 10.1038/nclimate2475 10.1038/ncomms1053 10.1016/j.agrformet.2006.08.021 10.1126/science.1155458 10.1038/nature02127 10.1038/349772a0 10.1038/NCLIMATE2870 10.1111/1365-2664.12016 10.1007/s10584-013-0947-5 10.1016/j.still.2005.11.013 10.1088/1748-9326/7/1/014025 10.1021/es2034729 10.4324/9780203762264 10.4155/cmt.11.22 10.1007/s11104-011-0759-1 10.1007/s10584-007-9334-4 10.1007/978-1-4684-1467-7_6 10.1073/pnas.1000545107 10.1007/s10584-005-3485-y 10.1016/j.agee.2010.09.003 10.1126/science.1168475 10.1038/srep09665 10.1046/j.1365-2486.1998.00185.x 10.1098/rstb.2010.0127 10.1111/gcbb.12205 10.5194/essd-5-165-2013 10.1038/nature11787 10.1016/j.techfore.2013.09.016 10.1126/science.1175680 10.1073/pnas.0805794105 10.1007/s10584-012-0678-z 10.2136/sssaj1993.03615995005700010036x 10.1016/j.soilbio.2011.02.005 10.1088/1748-9326/3/4/044006 10.1038/nclimate1783 10.1007/s10584-010-9832-7 10.1002/jpln.200625199 10.1016/j.chemosphere.2011.08.031 10.1142/S2010007813400083 10.1021/es500474q 10.1038/nclimate2196 10.1007/s00114-008-0434-4 10.1023/A:1022833116184 10.1038/nclimate2292 10.1016/j.rse.2010.04.024 10.1016/0360-5442(95)00035-F 10.1007/s10584-013-0897-y 10.1111/gcbb.12180 10.1088/1748-9326/9/6/064029 10.1126/science.294.5543.786b 10.1021/es302302g 10.1038/ngeo1182 10.1038/nclimate2392 |
ContentType | Journal Article |
Copyright | 2016 John Wiley & Sons Ltd 2016 John Wiley & Sons Ltd. Copyright © 2016 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2016 John Wiley & Sons Ltd – notice: 2016 John Wiley & Sons Ltd. – notice: Copyright © 2016 John Wiley & Sons Ltd |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7U6 SOI 7S9 L.6 |
DOI | 10.1111/gcb.13178 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE AGRICOLA MEDLINE - Academic Ecology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 1324 |
ExternalDocumentID | 3951349671 26732128 10_1111_gcb_13178 GCB13178 ark_67375_WNG_2CK5WGNL_V US201600136201 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MaGNET programme – fundername: DEVIL project funderid: NE/M021327/1 – fundername: EU FP7 SmartSoil project funderid: 289694 – fundername: Global Carbon Project |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H97 L.G 7X8 7ST 7U6 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c6178-6de7ccd08253e0920ee7a6cf3447648309f14f8befec700e02d2b5d50c8132b73 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:31:34 EDT 2025 Fri Jul 11 10:20:32 EDT 2025 Thu Jul 10 21:42:06 EDT 2025 Fri Jul 25 10:58:42 EDT 2025 Wed Feb 19 02:41:30 EST 2025 Tue Jul 01 03:52:54 EDT 2025 Thu Apr 24 23:12:23 EDT 2025 Wed Jan 22 16:21:23 EST 2025 Wed Oct 30 09:51:09 EDT 2024 Wed Dec 27 19:15:06 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | negative emission technology soil biochar carbon sequestration |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6178-6de7ccd08253e0920ee7a6cf3447648309f14f8befec700e02d2b5d50c8132b73 |
Notes | http://dx.doi.org/10.1111/gcb.13178 ark:/67375/WNG-2CK5WGNL-V istex:35FC2F0B6B6653D3A2FE517E94E5CF1C4DC2F3DE ArticleID:GCB13178 Global Carbon Project MaGNET programme EU FP7 SmartSoil project - No. 289694 DEVIL project - No. NE/M021327/1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26732128 |
PQID | 1764831565 |
PQPubID | 30327 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1803093662 proquest_miscellaneous_1776656592 proquest_miscellaneous_1765114442 proquest_journals_1764831565 pubmed_primary_26732128 crossref_primary_10_1111_gcb_13178 crossref_citationtrail_10_1111_gcb_13178 wiley_primary_10_1111_gcb_13178_GCB13178 istex_primary_ark_67375_WNG_2CK5WGNL_V fao_agris_US201600136201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2016 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: March 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2016 |
Publisher | Blackwell Science Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd |
References | Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, Cassman KG (2014) Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4, 678-683. Smith P, Gregory P, van Vuuren D et al. (2010) Competition for land. Philosophical Transactions of the Royal Society, B, 365, 2941-2957. Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Global Change Biology, 4, 679-685. UK National Ecosystem Assessment (2011) The UK National Ecosystem Assessment Technical Report. UNEP-WCMC, Cambridge. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science, 320, 1456-1457. Scheer C, Grace PR, Rowlings DW, Kimber S, Zwieten LV (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant and Soil, 345, 47-58. Dickinson D, Balduccio L, Buysse J, Ronsse F, van Huylenbroeck G, Prins W (2014) Cost-benefit analysis of using biochar to improve cereals agriculture. Global Change Biology Bioenergy, 7, 850-864. Hartmann J, Kempe S (2008) What is the maximum potential for CO2 sequestration by 'stimulated' weathering on the global scale? Naturwissenschaften, 95, 1159-1164. Azar C, Lindgren K, Obersteiner M et al. (2010) The feasibility of low CO2 concentration targets and the role of bio-energy carbon-capture and storage. Climatic Change, 100, 195-202. Roberts DA, Paul NA, Dworjanyn SA, Bird MI, de Nys R (2015) Biochar from commercially cultivated seaweed for soil amelioration. Scientific Reports, 5, 9665. Peters GP, Andrew RM, Boden T et al. (2013) The challenge to keep global warming below 2 °C. Nature Climate Change, 3, 4-6. Castaldi S, Riondino M, Baronti S et al. (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere, 85, 1464-1471. Arora VK, Montenegro A (2011) Small temperature benefits provided by realistic afforestation efforts. Nature Geoscience, 4, 514-518. Krey V, Luderer G, Clarke L, Kriegler E (2014) Getting from here to there - energy technology transformation pathways in the EMF27 scenarios. Climatic Change, 123, 369-382. Rogelj J, McCollum DL, Reisinger A, Meinshausen M, Riahi K (2013) Probabilistic cost estimates for climate change mitigation. Nature, 493, 79-83. Smith P (2012) Soils and climate change. Current Opinion in Environmental Sustainability, 4, 539-544. Meyer S, Bright RM, Fischer D, Schulz H, Glaser B (2012) Albedo impact on the suitability of biochar systems to mitigate global warming. Environmental Science and Technology, 46, 12726-12734. Wise M, Calvin K, Thomson A et al. (2009) Implications of limiting CO2 concentrations for land use and energy. Science, 324, 1183-1186. Kern JS, Johnson SE (1993) Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Science Society of America Journal, 57, 200-210. Kheshgi HS (1995) Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy, 20, 915-922. Fuss S, Canadell JG, Peters GP et al. (2014) Betting on negative emissions. Nature Climate Change, 4, 850-853. Pacheco A, McNairn H (2010) Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping. Remote Sensing of the Environment, 114, 2219-2228. Genesio L, Miglietta F, Lugato E, Baronti S, Pieri M, Vaccari FP (2012) Surface albedo following biochar application in durum wheat. Environmental Research Letters, 7, 014025. Kelemen PB, Matter JM (2008) In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences of the United States of America, 105, 17295-17300. Köhler P, Hartmann J, Wolf-Gladrow DA (2010) Geoengineering potential of artificially enhanced silicate weathering of olivine. Proceedings of the National Academy of Sciences of the United States of America, 107, 20228-20233. IPCC (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories Workbook, vol. 2. Cambridge University Press, Cambridge, UK. Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature, 349, 772-775. Woolf D, Amonette JE, Street-Perrott A, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nature Communications, 1. Article 56, doi:10.1038/ncomms1053 (2010). Obersteiner M, Azar C, Kauppi PE et al. (2001) Managing climate risk. Science, 294, 786-787. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 56-60. IPCC (2006) Revised 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 3. Cambridge University Press, Cambridge, UK. Jackson RB, Randerson JT, Canadell JG et al. (2008) Protecting climate with forests. Environmental Research Letters, 3, 044006. Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environmental Science and Technology, 45, 9473-9483. Woolf D, Lehmann J, Fisher EM, Angenent LT (2014) Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. Environmental Science and Technology, 48, 6492-6499. Daughtry CST, Doraiswamy PC, Hunt ER, Stern AJ, McMurtrey JE, Prueger JH (2006) Remote sensing of crop residue cover and soil tillage intensity. Soil and Tillage Research, 91, 101-108. Socolow R, Desmond M, Aines R et al. (2011) Direct air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs. American Physical Society, Washington, DC. Smith P, Martinio D, Cai Z et al. (2008) Greenhouse gas mitigation in agriculture. Philosophiocal Transactions of the Royal Society B, 363, 789-813. Creutzig F, Ravindranath NH, Berndes G et al. (2015) Bioenergy and climate change mitigation: an assessment. Global Change Biology Bioenergy, 7, 916-944. Humpenöder F, Popp A, Dietrich JP et al. (2014) Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 9, 064029. (13 pp). Lehmann J, Joseph S (2009) Biochar for Environmental Management: Science and Technology. Earthscan Books Ltd., London, UK. Luyssaert S, Jammet M, Stoy PC et al. (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Climate Change, 4, 389-393. Betts RA, Falloon PD, Goldewijk KK, Ramankutty N (2007) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agricultural and Forest Meteorology, 142, 216-233. Smith P, Ashmore M, Black H et al. (2013) The role of ecosystems and their management in regulating climate, and soil, water and air quality. Journal of Applied Ecology, 50, 812-829. Tavoni M, Kriegler E, Riahi K et al. (2015) Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Climate Change, 5, 119-126. Zimmerman A, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43, 1169-1179. Reilly J, Melillo J, Cai Y et al. (2012) Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environmental Science and Technology, 46, 5672-5679. Zhang A, Cui LQ, Pan G et al. (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China. Agriculture, Ecosystems and Environment, 139, 469-475. Keith D (2009) Why capture CO2 from the atmosphere. Science, 325, 1654-1655. Kriegler E, Tavoni M, Aboumahboub T et al. (2013) What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Climate Change Economics, 04, 1340008. Smith P, Davis SJ, Creutzig F et al. (2015) Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, doi:10.1038/NCLIMATE2870 Strengers BJ, Minnen JGV, Eickhout B (2008) The role of carbon plantations in mitigating climate change: potentials and costs. Climatic Change, 88, 343-366. Edmonds J, Luckow P, Calvin K et al. (2013) Can radiative forcing be limited to 2.6 Wm−2 without negative emissions from bioenergy and CO2 capture and storage? Climatic Change, 118, 29-43. Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 171, 893-899. Riahi K, Kriegler E, Johnson N et al. (2015) Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change Part A, 90, 8-23. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627. Schuiling RD, Krijgsman P (2006) Enhanced weathering: an effective and cheap tool to sequester CO2. Climatic Change, 74, 349-354. van Vuuren DP, Deetman S, van Vliet J, van den Berg M, van Ruijven BJ, Koelbl B (2013) The role of negative CO2 emissions for reaching 2 °C - insights from integrated assessment modelling. Climatic Change, 118, 15-27. Le Quéré C, Andres RJ, Boden T et al. (2013) The global carbon budget 1959-2011. Earth System Science Data, 5, 165-185. Shackley S, Hammond J, Gaunt J, Ibarrola R (2011) The feasibility and costs of biochar deployment in the UK. Carbon Management, 2, 335-356. Lehmann J, da Silva JP Jr, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343-357. Edenhofer O, Pichs-Madruga R, Sokona Y et al. (ed 2013; 3 2006; 74 2010; 107 2007; 142 2010; 100 2008; 105 1997; 2 2008; 3 2013; 5 1995; 20 2001; 294 2014; 4 2003; 249 2010; 1 2010; 114 2013; 50 2013; 118 1984 2015; 90 2014; 9 1991; 349 2014; 7 2009; 324 2014; 123 2009; 325 2006; 91 2013; 04 2015; 5 2011; 2 2011 2010; 365 2009 2014; 48 2006; 3 2011; 4 2008; 320 2008; 95 2004; 427 2008; 363 2015; 7 2004; 304 1993; 57 2011; 345 2010; 139 2011; 85 2011; 43 2013; 493 2015 2011; 45 2008; 88 2014 2012; 7 2012; 46 2012; 4 1998; 4 2008; 171 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_30_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_41_1 e_1_2_6_60_1 Clark L (e_1_2_6_8_1) 2014 e_1_2_6_9_1 IPCC (e_1_2_6_20_1) 2006 e_1_2_6_5_1 e_1_2_6_7_1 Socolow R (e_1_2_6_57_1) 2011 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 Lehmann J (e_1_2_6_32_1) 2009 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 IPCC (e_1_2_6_19_1) 1997 UK National Ecosystem Assessment (e_1_2_6_61_1) 2011 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 Edenhofer O (e_1_2_6_12_1) 2014 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 26896375 - Glob Chang Biol. 2016 Jul;22(7):2313-4 |
References_xml | – reference: Kern JS, Johnson SE (1993) Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Science Society of America Journal, 57, 200-210. – reference: Smith P, Ashmore M, Black H et al. (2013) The role of ecosystems and their management in regulating climate, and soil, water and air quality. Journal of Applied Ecology, 50, 812-829. – reference: IPCC (2006) Revised 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 3. Cambridge University Press, Cambridge, UK. – reference: Luyssaert S, Jammet M, Stoy PC et al. (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Climate Change, 4, 389-393. – reference: Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627. – reference: Smith P (2012) Soils and climate change. Current Opinion in Environmental Sustainability, 4, 539-544. – reference: Kheshgi HS (1995) Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy, 20, 915-922. – reference: Genesio L, Miglietta F, Lugato E, Baronti S, Pieri M, Vaccari FP (2012) Surface albedo following biochar application in durum wheat. Environmental Research Letters, 7, 014025. – reference: Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature, 349, 772-775. – reference: Kelemen PB, Matter JM (2008) In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences of the United States of America, 105, 17295-17300. – reference: Betts RA, Falloon PD, Goldewijk KK, Ramankutty N (2007) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agricultural and Forest Meteorology, 142, 216-233. – reference: Zhang A, Cui LQ, Pan G et al. (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China. Agriculture, Ecosystems and Environment, 139, 469-475. – reference: Scheer C, Grace PR, Rowlings DW, Kimber S, Zwieten LV (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant and Soil, 345, 47-58. – reference: Socolow R, Desmond M, Aines R et al. (2011) Direct air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs. American Physical Society, Washington, DC. – reference: Creutzig F, Ravindranath NH, Berndes G et al. (2015) Bioenergy and climate change mitigation: an assessment. Global Change Biology Bioenergy, 7, 916-944. – reference: Le Quéré C, Andres RJ, Boden T et al. (2013) The global carbon budget 1959-2011. Earth System Science Data, 5, 165-185. – reference: UK National Ecosystem Assessment (2011) The UK National Ecosystem Assessment Technical Report. UNEP-WCMC, Cambridge. – reference: Edmonds J, Luckow P, Calvin K et al. (2013) Can radiative forcing be limited to 2.6 Wm−2 without negative emissions from bioenergy and CO2 capture and storage? Climatic Change, 118, 29-43. – reference: Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science, 320, 1456-1457. – reference: Castaldi S, Riondino M, Baronti S et al. (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere, 85, 1464-1471. – reference: Wise M, Calvin K, Thomson A et al. (2009) Implications of limiting CO2 concentrations for land use and energy. Science, 324, 1183-1186. – reference: Azar C, Lindgren K, Obersteiner M et al. (2010) The feasibility of low CO2 concentration targets and the role of bio-energy carbon-capture and storage. Climatic Change, 100, 195-202. – reference: Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 171, 893-899. – reference: Zimmerman A, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43, 1169-1179. – reference: Jackson RB, Randerson JT, Canadell JG et al. (2008) Protecting climate with forests. Environmental Research Letters, 3, 044006. – reference: Meyer S, Bright RM, Fischer D, Schulz H, Glaser B (2012) Albedo impact on the suitability of biochar systems to mitigate global warming. Environmental Science and Technology, 46, 12726-12734. – reference: Riahi K, Kriegler E, Johnson N et al. (2015) Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change Part A, 90, 8-23. – reference: Roberts DA, Paul NA, Dworjanyn SA, Bird MI, de Nys R (2015) Biochar from commercially cultivated seaweed for soil amelioration. Scientific Reports, 5, 9665. – reference: Hartmann J, Kempe S (2008) What is the maximum potential for CO2 sequestration by 'stimulated' weathering on the global scale? Naturwissenschaften, 95, 1159-1164. – reference: Tavoni M, Kriegler E, Riahi K et al. (2015) Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Climate Change, 5, 119-126. – reference: Edenhofer O, Pichs-Madruga R, Sokona Y et al. (eds) (2014) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. – reference: Smith P, Davis SJ, Creutzig F et al. (2015) Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, doi:10.1038/NCLIMATE2870 – reference: Humpenöder F, Popp A, Dietrich JP et al. (2014) Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 9, 064029. (13 pp). – reference: Calvin K, Wise M, Kyle P, Patel P, Clarke L, Edmonds J (2014) Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Climatic Change, 123, 691-704. – reference: Woolf D, Lehmann J, Fisher EM, Angenent LT (2014) Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. Environmental Science and Technology, 48, 6492-6499. – reference: Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, Cassman KG (2014) Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4, 678-683. – reference: Obersteiner M, Azar C, Kauppi PE et al. (2001) Managing climate risk. Science, 294, 786-787. – reference: Köhler P, Hartmann J, Wolf-Gladrow DA (2010) Geoengineering potential of artificially enhanced silicate weathering of olivine. Proceedings of the National Academy of Sciences of the United States of America, 107, 20228-20233. – reference: Krey V, Luderer G, Clarke L, Kriegler E (2014) Getting from here to there - energy technology transformation pathways in the EMF27 scenarios. Climatic Change, 123, 369-382. – reference: Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environmental Science and Technology, 45, 9473-9483. – reference: Lehmann J, da Silva JP Jr, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343-357. – reference: Shackley S, Hammond J, Gaunt J, Ibarrola R (2011) The feasibility and costs of biochar deployment in the UK. Carbon Management, 2, 335-356. – reference: Daughtry CST, Doraiswamy PC, Hunt ER, Stern AJ, McMurtrey JE, Prueger JH (2006) Remote sensing of crop residue cover and soil tillage intensity. Soil and Tillage Research, 91, 101-108. – reference: Dickinson D, Balduccio L, Buysse J, Ronsse F, van Huylenbroeck G, Prins W (2014) Cost-benefit analysis of using biochar to improve cereals agriculture. Global Change Biology Bioenergy, 7, 850-864. – reference: Kriegler E, Tavoni M, Aboumahboub T et al. (2013) What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Climate Change Economics, 04, 1340008. – reference: Smith P, Martinio D, Cai Z et al. (2008) Greenhouse gas mitigation in agriculture. Philosophiocal Transactions of the Royal Society B, 363, 789-813. – reference: Arora VK, Montenegro A (2011) Small temperature benefits provided by realistic afforestation efforts. Nature Geoscience, 4, 514-518. – reference: Reilly J, Melillo J, Cai Y et al. (2012) Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environmental Science and Technology, 46, 5672-5679. – reference: Peters GP, Andrew RM, Boden T et al. (2013) The challenge to keep global warming below 2 °C. Nature Climate Change, 3, 4-6. – reference: Woolf D, Amonette JE, Street-Perrott A, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nature Communications, 1. Article 56, doi:10.1038/ncomms1053 (2010). – reference: Rogelj J, McCollum DL, Reisinger A, Meinshausen M, Riahi K (2013) Probabilistic cost estimates for climate change mitigation. Nature, 493, 79-83. – reference: van Vuuren DP, Deetman S, van Vliet J, van den Berg M, van Ruijven BJ, Koelbl B (2013) The role of negative CO2 emissions for reaching 2 °C - insights from integrated assessment modelling. Climatic Change, 118, 15-27. – reference: Lehmann J, Joseph S (2009) Biochar for Environmental Management: Science and Technology. Earthscan Books Ltd., London, UK. – reference: Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 56-60. – reference: IPCC (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories Workbook, vol. 2. Cambridge University Press, Cambridge, UK. – reference: Smith P, Gregory P, van Vuuren D et al. (2010) Competition for land. Philosophical Transactions of the Royal Society, B, 365, 2941-2957. – reference: Strengers BJ, Minnen JGV, Eickhout B (2008) The role of carbon plantations in mitigating climate change: potentials and costs. Climatic Change, 88, 343-366. – reference: Fuss S, Canadell JG, Peters GP et al. (2014) Betting on negative emissions. Nature Climate Change, 4, 850-853. – reference: Pacheco A, McNairn H (2010) Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping. Remote Sensing of the Environment, 114, 2219-2228. – reference: Schuiling RD, Krijgsman P (2006) Enhanced weathering: an effective and cheap tool to sequester CO2. Climatic Change, 74, 349-354. – reference: Keith D (2009) Why capture CO2 from the atmosphere. Science, 325, 1654-1655. – reference: Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Global Change Biology, 4, 679-685. – year: 2011 – volume: 123 start-page: 691 year: 2014 end-page: 704 article-title: Trade‐offs of different land and bioenergy policies on the path to achieving climate targets publication-title: Climatic Change – volume: 2 start-page: 335 year: 2011 end-page: 356 article-title: The feasibility and costs of biochar deployment in the UK publication-title: Carbon Management – year: 2009 – volume: 249 start-page: 343 year: 2003 end-page: 357 article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant and Soil – start-page: 235 year: 2015 end-page: 282 – volume: 320 start-page: 1456 year: 2008 end-page: 1457 article-title: Managing forests for climate change mitigation publication-title: Science – volume: 7 start-page: 916 year: 2015 end-page: 944 article-title: Bioenergy and climate change mitigation: an assessment publication-title: Global Change Biology Bioenergy – volume: 493 start-page: 79 year: 2013 end-page: 83 article-title: Probabilistic cost estimates for climate change mitigation publication-title: Nature – volume: 363 start-page: 789 year: 2008 end-page: 813 article-title: Greenhouse gas mitigation in agriculture publication-title: Philosophiocal Transactions of the Royal Society B – volume: 50 start-page: 812 year: 2013 end-page: 829 article-title: The role of ecosystems and their management in regulating climate, and soil, water and air quality publication-title: Journal of Applied Ecology – volume: 20 start-page: 915 year: 1995 end-page: 922 article-title: Sequestering atmospheric carbon dioxide by increasing ocean alkalinity publication-title: Energy – volume: 114 start-page: 2219 year: 2010 end-page: 2228 article-title: Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping publication-title: Remote Sensing of the Environment – volume: 345 start-page: 47 year: 2011 end-page: 58 article-title: Effect of biochar amendment on the soil‐atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia publication-title: Plant and Soil – volume: 171 start-page: 893 year: 2008 end-page: 899 article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal publication-title: Journal of Plant Nutrition and Soil Science – volume: 46 start-page: 12726 year: 2012 end-page: 12734 article-title: Albedo impact on the suitability of biochar systems to mitigate global warming publication-title: Environmental Science and Technology – volume: 365 start-page: 2941 year: 2010 end-page: 2957 article-title: Competition for land publication-title: Philosophical Transactions of the Royal Society, B – volume: 7 start-page: 850 year: 2014 end-page: 864 article-title: Cost‐benefit analysis of using biochar to improve cereals agriculture publication-title: Global Change Biology Bioenergy – volume: 118 start-page: 29 year: 2013 end-page: 43 article-title: Can radiative forcing be limited to 2.6 Wm without negative emissions from bioenergy and CO capture and storage? publication-title: Climatic Change – volume: 45 start-page: 9473 year: 2011 end-page: 9483 article-title: Technical, economical, and climate‐related aspects of biochar production technologies: a literature review publication-title: Environmental Science and Technology – start-page: 413 year: 2014 end-page: 510 – year: 2014 – volume: 427 start-page: 56 year: 2004 end-page: 60 article-title: High‐latitude controls of thermocline nutrients and low latitude biological productivity publication-title: Nature – volume: 5 start-page: 9665 year: 2015 article-title: Biochar from commercially cultivated seaweed for soil amelioration publication-title: Scientific Reports – volume: 5 start-page: 165 year: 2013 end-page: 185 article-title: The global carbon budget 1959–2011 publication-title: Earth System Science Data – volume: 74 start-page: 349 year: 2006 end-page: 354 article-title: Enhanced weathering: an effective and cheap tool to sequester CO publication-title: Climatic Change – volume: 142 start-page: 216 year: 2007 end-page: 233 article-title: Biogeophysical effects of land use on climate: model simulations of radiative forcing and large‐scale temperature change publication-title: Agricultural and Forest Meteorology – volume: 7 start-page: 014025 year: 2012 article-title: Surface albedo following biochar application in durum wheat publication-title: Environmental Research Letters – start-page: 127 year: 1984 end-page: 151 – volume: 4 start-page: 389 year: 2014 end-page: 393 article-title: Land management and land‐cover change have impacts of similar magnitude on surface temperature publication-title: Nature Climate Change – volume: 88 start-page: 343 year: 2008 end-page: 366 article-title: The role of carbon plantations in mitigating climate change: potentials and costs publication-title: Climatic Change – volume: 118 start-page: 15 year: 2013 end-page: 27 article-title: The role of negative CO2 emissions for reaching 2 °C ‐ insights from integrated assessment modelling publication-title: Climatic Change – volume: 95 start-page: 1159 year: 2008 end-page: 1164 article-title: What is the maximum potential for CO sequestration by ‘stimulated’ weathering on the global scale? publication-title: Naturwissenschaften – volume: 2 year: 1997 – volume: 3 year: 2006 – volume: 57 start-page: 200 year: 1993 end-page: 210 article-title: Conservation tillage impacts on national soil and atmospheric carbon levels publication-title: Soil Science Society of America Journal – volume: 04 start-page: 1340008 year: 2013 article-title: What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios publication-title: Climate Change Economics – volume: 4 start-page: 678 year: 2014 end-page: 683 article-title: Limited potential of no‐till agriculture for climate change mitigation publication-title: Nature Climate Change – volume: 105 start-page: 17295 year: 2008 end-page: 17300 article-title: carbonation of peridotite for CO storage publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 4 start-page: 539 year: 2012 end-page: 544 article-title: Soils and climate change publication-title: Current Opinion in Environmental Sustainability – volume: 48 start-page: 6492 year: 2014 end-page: 6499 article-title: Biofuels from pyrolysis in perspective: trade‐offs between energy yields and soil‐carbon additions publication-title: Environmental Science and Technology – volume: 324 start-page: 1183 year: 2009 end-page: 1186 article-title: Implications of limiting CO concentrations for land use and energy publication-title: Science – volume: 123 start-page: 369 year: 2014 end-page: 382 article-title: Getting from here to there – energy technology transformation pathways in the EMF27 scenarios publication-title: Climatic Change – volume: 4 start-page: 679 year: 1998 end-page: 685 article-title: Preliminary estimates of the potential for carbon mitigation in European soils through no‐till farming publication-title: Global Change Biology – volume: 4 start-page: 514 year: 2011 end-page: 518 article-title: Small temperature benefits provided by realistic afforestation efforts publication-title: Nature Geoscience – volume: 85 start-page: 1464 year: 2011 end-page: 1471 article-title: Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes publication-title: Chemosphere – volume: 3 start-page: 044006 year: 2008 article-title: Protecting climate with forests publication-title: Environmental Research Letters – volume: 90 start-page: 8 year: 2015 end-page: 23 article-title: Locked into Copenhagen pledges ‐ Implications of short‐term emission targets for the cost and feasibility of long‐term climate goals publication-title: Technological Forecasting and Social Change Part A – volume: 349 start-page: 772 year: 1991 end-page: 775 article-title: Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO concentrations publication-title: Nature – volume: 294 start-page: 786 year: 2001 end-page: 787 article-title: Managing climate risk publication-title: Science – year: 2015 article-title: Biophysical and economic limits to negative CO emissions publication-title: Nature Climate Change – volume: 1 year: 2010 article-title: Sustainable biochar to mitigate global climate change publication-title: Nature Communications – volume: 100 start-page: 195 year: 2010 end-page: 202 article-title: The feasibility of low CO concentration targets and the role of bio‐energy carbon‐capture and storage publication-title: Climatic Change – volume: 91 start-page: 101 year: 2006 end-page: 108 article-title: Remote sensing of crop residue cover and soil tillage intensity publication-title: Soil and Tillage Research – volume: 107 start-page: 20228 year: 2010 end-page: 20233 article-title: Geoengineering potential of artificially enhanced silicate weathering of olivine publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 4 start-page: 850 year: 2014 end-page: 853 article-title: Betting on negative emissions publication-title: Nature Climate Change – volume: 3 start-page: 4 year: 2013 end-page: 6 article-title: The challenge to keep global warming below 2 °C publication-title: Nature Climate Change – volume: 139 start-page: 469 year: 2010 end-page: 475 article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China publication-title: Agriculture, Ecosystems and Environment – volume: 325 start-page: 1654 year: 2009 end-page: 1655 article-title: Why capture CO from the atmosphere publication-title: Science – volume: 43 start-page: 1169 year: 2011 end-page: 1179 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar‐amended soils publication-title: Soil Biology and Biochemistry – volume: 304 start-page: 1623 year: 2004 end-page: 1627 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 46 start-page: 5672 year: 2012 end-page: 5679 article-title: Using land to mitigate climate change: hitting the target, recognizing the trade‐offs publication-title: Environmental Science and Technology – volume: 5 start-page: 119 year: 2015 end-page: 126 article-title: Post‐2020 climate agreements in the major economies assessed in the light of global models publication-title: Nature Climate Change – volume: 9 start-page: 064029 year: 2014 article-title: Investigating afforestation and bioenergy CCS as climate change mitigation strategies publication-title: Environmental Research Letters – volume-title: Biochar for Environmental Management: Science and Technology year: 2009 ident: e_1_2_6_32_1 – ident: e_1_2_6_51_1 doi: 10.1016/j.cosust.2012.06.005 – ident: e_1_2_6_53_1 doi: 10.1098/rstb.2007.2184 – ident: e_1_2_6_37_1 doi: 10.1021/es201792c – ident: e_1_2_6_62_1 doi: 10.1007/s10584-012-0680-5 – ident: e_1_2_6_30_1 doi: 10.1126/science.1097396 – ident: e_1_2_6_60_1 doi: 10.1038/nclimate2475 – ident: e_1_2_6_64_1 doi: 10.1038/ncomms1053 – ident: e_1_2_6_4_1 doi: 10.1016/j.agrformet.2006.08.021 – ident: e_1_2_6_6_1 doi: 10.1126/science.1155458 – ident: e_1_2_6_47_1 doi: 10.1038/nature02127 – ident: e_1_2_6_22_1 doi: 10.1038/349772a0 – ident: e_1_2_6_36_1 – ident: e_1_2_6_56_1 doi: 10.1038/NCLIMATE2870 – volume-title: Revised 2006 IPCC Guidelines for National Greenhouse Gas Inventories year: 2006 ident: e_1_2_6_20_1 – ident: e_1_2_6_55_1 doi: 10.1111/1365-2664.12016 – volume-title: The UK National Ecosystem Assessment Technical Report year: 2011 ident: e_1_2_6_61_1 – ident: e_1_2_6_28_1 doi: 10.1007/s10584-013-0947-5 – ident: e_1_2_6_10_1 doi: 10.1016/j.still.2005.11.013 – ident: e_1_2_6_16_1 doi: 10.1088/1748-9326/7/1/014025 – ident: e_1_2_6_43_1 doi: 10.1021/es2034729 – ident: e_1_2_6_34_1 doi: 10.4324/9780203762264 – ident: e_1_2_6_50_1 doi: 10.4155/cmt.11.22 – ident: e_1_2_6_48_1 doi: 10.1007/s11104-011-0759-1 – ident: e_1_2_6_59_1 doi: 10.1007/s10584-007-9334-4 – ident: e_1_2_6_14_1 doi: 10.1007/978-1-4684-1467-7_6 – volume-title: Direct air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs year: 2011 ident: e_1_2_6_57_1 – volume-title: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories Workbook year: 1997 ident: e_1_2_6_19_1 – ident: e_1_2_6_27_1 doi: 10.1073/pnas.1000545107 – ident: e_1_2_6_49_1 doi: 10.1007/s10584-005-3485-y – ident: e_1_2_6_66_1 doi: 10.1016/j.agee.2010.09.003 – ident: e_1_2_6_63_1 doi: 10.1126/science.1168475 – ident: e_1_2_6_45_1 doi: 10.1038/srep09665 – ident: e_1_2_6_52_1 doi: 10.1046/j.1365-2486.1998.00185.x – ident: e_1_2_6_54_1 doi: 10.1098/rstb.2010.0127 – ident: e_1_2_6_9_1 doi: 10.1111/gcbb.12205 – ident: e_1_2_6_31_1 doi: 10.5194/essd-5-165-2013 – ident: e_1_2_6_46_1 doi: 10.1038/nature11787 – ident: e_1_2_6_44_1 doi: 10.1016/j.techfore.2013.09.016 – ident: e_1_2_6_23_1 doi: 10.1126/science.1175680 – ident: e_1_2_6_24_1 doi: 10.1073/pnas.0805794105 – ident: e_1_2_6_13_1 doi: 10.1007/s10584-012-0678-z – ident: e_1_2_6_25_1 doi: 10.2136/sssaj1993.03615995005700010036x – ident: e_1_2_6_67_1 doi: 10.1016/j.soilbio.2011.02.005 – ident: e_1_2_6_21_1 doi: 10.1088/1748-9326/3/4/044006 – ident: e_1_2_6_41_1 doi: 10.1038/nclimate1783 – ident: e_1_2_6_3_1 doi: 10.1007/s10584-010-9832-7 – ident: e_1_2_6_58_1 doi: 10.1002/jpln.200625199 – ident: e_1_2_6_7_1 doi: 10.1016/j.chemosphere.2011.08.031 – ident: e_1_2_6_29_1 doi: 10.1142/S2010007813400083 – ident: e_1_2_6_65_1 doi: 10.1021/es500474q – start-page: 413 volume-title: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2014 ident: e_1_2_6_8_1 – ident: e_1_2_6_35_1 doi: 10.1038/nclimate2196 – ident: e_1_2_6_17_1 doi: 10.1007/s00114-008-0434-4 – ident: e_1_2_6_33_1 doi: 10.1023/A:1022833116184 – ident: e_1_2_6_42_1 doi: 10.1038/nclimate2292 – ident: e_1_2_6_40_1 doi: 10.1016/j.rse.2010.04.024 – ident: e_1_2_6_26_1 doi: 10.1016/0360-5442(95)00035-F – volume-title: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2014 ident: e_1_2_6_12_1 – ident: e_1_2_6_5_1 doi: 10.1007/s10584-013-0897-y – ident: e_1_2_6_11_1 doi: 10.1111/gcbb.12180 – ident: e_1_2_6_18_1 doi: 10.1088/1748-9326/9/6/064029 – ident: e_1_2_6_39_1 doi: 10.1126/science.294.5543.786b – ident: e_1_2_6_38_1 doi: 10.1021/es302302g – ident: e_1_2_6_2_1 doi: 10.1038/ngeo1182 – ident: e_1_2_6_15_1 doi: 10.1038/nclimate2392 – reference: 26896375 - Glob Chang Biol. 2016 Jul;22(7):2313-4 |
SSID | ssj0003206 |
Score | 2.653631 |
Snippet | Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge... Despite 20 years of effort to curb emissions, greenhouse gas ( GHG ) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge... Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1315 |
SubjectTerms | afforestation air Air Pollutants - analysis Albedo biochar bioenergy Biomass carbon Carbon Sequestration Charcoal Charcoal - chemistry Climate Climate Change Deforestation Emissions energy energy costs energy requirements Environmental Monitoring Greenhouse Effect greenhouse gas emissions Greenhouse gases Land use negative emission technology Nutrients sequestration soil Soil - chemistry Soils Water use weathering |
Title | Soil carbon sequestration and biochar as negative emission technologies |
URI | https://api.istex.fr/ark:/67375/WNG-2CK5WGNL-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13178 https://www.ncbi.nlm.nih.gov/pubmed/26732128 https://www.proquest.com/docview/1764831565 https://www.proquest.com/docview/1765114442 https://www.proquest.com/docview/1776656592 https://www.proquest.com/docview/1803093662 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSkhcKCyUBgoyCFW9ZJU4tpOIE6zarYDugbK0ByTLdpzVqqsE7UMCfj1j51GKSoW4JcpEsifj8TfOzDcArxHEl6qMs7DgkQ7R-7FQM4xSXJMkK3JmIl8-djoRJ1P2_oJfbMGbrham4YfoD9zcyvD-2i1wpVe_LfKZ0cMYdz9X6OtytRwg-nRFHZVQ31czTjhDVxMnLauQy-Lp37y2F90pVY0I1Sn3-01w8zp69dvP8Q587QbeZJ1cDjdrPTQ__-B0_M-ZPYD7LSwlbxs7eghbthrA3aZR5Y8B7B5d1cOhWOsQVgMIThF010svRg7IaDFHBOzvHsH4rJ4viFFLXVfEp2x3HL1EVQXR89qVfBG1IpWdef5x4prPueM7su5O_DGQfwzT46PPo5Ow7dsQGldwGIrCpsYULvhMbJTTyNpUCVM6ckHBsiTKy5iVmbalNWkU2YgWVHM0FpNhbKzTZBe2q7qye0BoboRKuWJpJpgtVU5NkYrSclMKw4oigMPuC0rTkpq73hoL2QU3qEzplRnAq170W8PkcZPQHpqBVDP0sHJ6Rh3_nmO1w4sADrxt9C-r5aXLiku5PJ-MJR194OfjyUf5JYD9znhk6xBWMvYzx2CZB_Cyf4xKdf9nVGXrjZdB-MsYo7fJpAIhOM9vk8n8_20hUOZJY7z9oCmOGNEKTvTQm-DfVSHHo3f-4um_iz6De05lTY7ePmyvlxv7HEHbWr_wq_MX5uU4tQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQwheBhTGAgMMQtNeUuXDdhKJF6i2Ftb2ga1sL5PlOE5VrUqmfkjAX8_Z-RhDY0K8JcpFsi_n8--cu98BvEcQn8vcj92MeamL3o-6KcUoxTRJ0jyhyrPlY6MxH0zol3N2vgEfmlqYih-iPXAzK8P6a7PAzYH0b6t8qtKuj9tfvAn3TEdvG1B9vSaPCgPbWdMPGUVn44c1r5DJ42lfvbEbbeayRIxq1Pv9NsB5E7_aDejoEVw0Q6_yTi6761XaVT__YHX837k9hu0amZKPlSk9gQ1ddOB-1avyRwd2Dq9L4lCs9gnLDjgjxN3lwoqRfdKbzxAE27un0D8pZ3Oi5CItC2KzthuaXiKLjKSz0lR9EbkkhZ5aCnJi-s-ZEzyyag79MZZ_BpOjw9PewK1bN7jK1By6PNORUpmJP0PtJYGndSS5yg2_IKdx6CW5T_M41blWkedpL8iClKG9qBjD4zQKd2CrKAu9CyRIFJcRkzSKOdW5TAKVRTzXTOVc0Sxz4KD5hELVvOamvcZcNPENKlNYZTrwrhW9qsg8bhPaRTsQcopOVkxOAkPBZ4jt8MKBfWsc7ctycWkS4yImzsZ9EfSO2Vl_PBTfHNhrrEfUPmEpfDtzjJeZA2_bx6hU84tGFrpcWxlEwJTS4C6ZiCMKZ8ldMrH9xc05yjyvrLcddIAjRsCCEz2wNvh3VYh-75O9ePHvom_gweB0NBTDz-Pjl_DQqK9K2duDrdVirV8hhlulr-1S_QVZATzQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RSAuPBZKAwUMQlUvWeXhOIl6KtvuFtquEGVpD0iW49irVVdJtQ8J-us7dh6lqFSIW6JMJHsyHn_jzHwD8AFBvBbaT9w88jIXvR91M4pRimmSpFhKpWfLx46H7GBEP59FZyuw09TCVPwQ7YGbWRnWX5sFfpHr3xb5WGZdH3e_ZBXuUeYlxqT3vl5zR4WBbazphxFFX-OHNa2QSeNpX72xGa1qUSJENdr9eRvevAlf7f7Tfww_mpFXaSfn3eUi68rLP0gd_3NqT-BRjUvJbmVIT2FFFR24X3Wq_NWB9f3rgjgUqz3CvAPOMaLucmbFyBbpTScIge3dMxiclJMpkWKWlQWxOdsNSS8RRU6ySWlqvoiYk0KNLQE5Md3nzPkdWTRH_hjJP4dRf_9b78CtGze40lQcuixXsZS5iT5D5aWBp1QsmNSGXZDRJPRS7VOdZEorGXue8oI8yCK0FplgcJzF4TqsFWWhNoAEqWQijgSNE0aVFmkg85hpFUnNJM1zB7abL8hlzWpummtMeRPdoDK5VaYD71vRi4rK4zahDTQDLsboYvnoJDAEfIbWDi8c2LK20b4sZucmLS6O-OlwwIPeYXQ6GB7x7w5sNsbDa48w576dOUbLkQPv2seoVPODRhSqXFoZxL-U0uAumZghBo_Su2QS-4ObMZR5URlvO-gAR4xwBSe6bU3w76rgg95He_Hy30XfwoMve31-9Gl4-AoeGu1V-XqbsLaYLdVrBHCL7I1dqFeMpDuI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+carbon+sequestration+and+biochar+as+negative+emission+technologies&rft.jtitle=Global+change+biology&rft.au=Smith%2C+Pete&rft.date=2016-03-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=22&rft.issue=3&rft.spage=1315&rft.epage=1324&rft_id=info:doi/10.1111%2Fgcb.13178&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gcb_13178 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |