Effect of Central Metal Ions of Analogous Metal-Organic Frameworks on Adsorption of Organoarsenic Compounds from Water: Plausible Mechanism of Adsorption and Water Purification

The adsorptive removal of organoarsenic compounds such as p‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL‐100‐Fe) exhibits a much higher adsorption capacity for AS...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 21; no. 1; pp. 347 - 354
Main Authors Jun, Jong Won, Tong, Minman, Jung, Beom K., Hasan, Zubair, Zhong, Chongli, Jhung, Sung Hwa
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 02.01.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The adsorptive removal of organoarsenic compounds such as p‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL‐100‐Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL‐100‐Fe is also much more rapid than that over activated carbon. Moreover, the used MIL‐100‐Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL‐100‐Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL‐100 species (MIL‐100‐Fe, rather than MIL‐100‐Al or MIL‐100‐Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL‐100‐Fe, different from other analogous MIL‐100 species, can be explained (through calculations) by the facile desorption of water from MIL‐100‐Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL‐100‐Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments. As seen in MOFs: Among three analogous metal–organic frameworks (MOFs; MIL‐100‐Al, MIL‐100‐Cr, and MIL‐100‐Fe), only MIL‐100‐Fe is found to be very effective in the adsorption of organic arsenic compounds from water. This preferential adsorption and the adsorption mechanism can be explained with detailed investigation and calculations on the metal ion sites within the MOFs.
AbstractList The adsorptive removal of organoarsenic compounds such as p-arsanilic acid (ASA) and roxarsone (ROX) from water using metal-organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL-100-Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL-100-Fe is also much more rapid than that over activated carbon. Moreover, the used MIL-100-Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL-100-Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL-100 species (MIL-100-Fe, rather than MIL-100-Al or MIL-100-Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL-100-Fe, different from other analogous MIL-100 species, can be explained (through calculations) by the facile desorption of water from MIL-100-Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL-100-Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments.
The adsorptive removal of organoarsenic compounds such as p-arsanilic acid (ASA) and roxarsone (ROX) from water using metal-organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL-100-Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL-100-Fe is also much more rapid than that over activated carbon. Moreover, the used MIL-100-Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL-100-Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL-100 species (MIL-100-Fe, rather than MIL-100-Al or MIL-100-Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL-100-Fe, different from other analogous MIL-100 species, can be explained (through calculations) by the facile desorption of water from MIL-100-Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL-100-Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments. As seen in MOFs: Among three analogous metal-organic frameworks (MOFs; MIL-100-Al, MIL-100-Cr, and MIL-100-Fe), only MIL-100-Fe is found to be very effective in the adsorption of organic arsenic compounds from water. This preferential adsorption and the adsorption mechanism can be explained with detailed investigation and calculations on the metal ion sites within the MOFs.
The adsorptive removal of organoarsenic compounds such as p‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL‐100‐Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL‐100‐Fe is also much more rapid than that over activated carbon. Moreover, the used MIL‐100‐Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL‐100‐Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL‐100 species (MIL‐100‐Fe, rather than MIL‐100‐Al or MIL‐100‐Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL‐100‐Fe, different from other analogous MIL‐100 species, can be explained (through calculations) by the facile desorption of water from MIL‐100‐Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL‐100‐Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments. As seen in MOFs: Among three analogous metal–organic frameworks (MOFs; MIL‐100‐Al, MIL‐100‐Cr, and MIL‐100‐Fe), only MIL‐100‐Fe is found to be very effective in the adsorption of organic arsenic compounds from water. This preferential adsorption and the adsorption mechanism can be explained with detailed investigation and calculations on the metal ion sites within the MOFs.
Abstract The adsorptive removal of organoarsenic compounds such as p ‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL‐100‐Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL‐100‐Fe is also much more rapid than that over activated carbon. Moreover, the used MIL‐100‐Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL‐100‐Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL‐100 species (MIL‐100‐Fe, rather than MIL‐100‐Al or MIL‐100‐Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL‐100‐Fe, different from other analogous MIL‐100 species, can be explained (through calculations) by the facile desorption of water from MIL‐100‐Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL‐100‐Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments.
Author Jhung, Sung Hwa
Hasan, Zubair
Jun, Jong Won
Tong, Minman
Jung, Beom K.
Zhong, Chongli
Author_xml – sequence: 1
  givenname: Jong Won
  surname: Jun
  fullname: Jun, Jong Won
  organization: Department of Chemistry and Green-Nano Materials Research Centre, Kyungpook National University, Daegu 702-701 (Republic of Korea), Fax: (+82) 53-950-6330
– sequence: 2
  givenname: Minman
  surname: Tong
  fullname: Tong, Minman
  organization: State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 (P. R. China), Fax: (+86) 10-64419862
– sequence: 3
  givenname: Beom K.
  surname: Jung
  fullname: Jung, Beom K.
  organization: Department of Chemistry and Green-Nano Materials Research Centre, Kyungpook National University, Daegu 702-701 (Republic of Korea), Fax: (+82) 53-950-6330
– sequence: 4
  givenname: Zubair
  surname: Hasan
  fullname: Hasan, Zubair
  organization: Department of Chemistry and Green-Nano Materials Research Centre, Kyungpook National University, Daegu 702-701 (Republic of Korea), Fax: (+82) 53-950-6330
– sequence: 5
  givenname: Chongli
  surname: Zhong
  fullname: Zhong, Chongli
  email: zhongcl@mail.buct.edu.cn
  organization: State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 (P. R. China), Fax: (+86) 10-64419862
– sequence: 6
  givenname: Sung Hwa
  surname: Jhung
  fullname: Jhung, Sung Hwa
  email: sung@knu.ac.kr
  organization: Department of Chemistry and Green-Nano Materials Research Centre, Kyungpook National University, Daegu 702-701 (Republic of Korea), Fax: (+82) 53-950-6330
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25298118$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9P2zAYh62JaRS2645TpF12SWfH8b_dqq4UJDo4bOJouc5rCCRxsRMxvtU-Im4D3bQLlzh69fyeV3p_R-ig8x0g9JHgKcG4-GpvoJ0WmJS45Ey-QRPCCpJTwdkBmmBVipwzqg7RUYy3GGPFKX2HDgtWKEmInKA_C-fA9pl32Ry6PpgmW0Gfvme-i9vprDONv_ZDHOf5Rbg2XW2zk2BaePDhLlFdNquiD5u-Tr8ps2O8CRG25Ny3Gz90Vcxc8G12ZXoI37LLxgyxXjeQvPYmKWO7W_dXZLpqhLPLIdSutmY7fo_eOtNE-PD8HqNfJ4uf89P8_GJ5Np-d55YTIfOSS8UsgKJWFspZu6ZqzcDKihgrORYghYR0EaGkFW7NnIHSgVOqqApXSXqMvozeTfD3A8Ret3W00DSmg3QNnZZwoihl6nWUU6XSHlEm9PN_6K0fQjrxjpJSUixEoqYjZYOPMYDTm1C3JjxqgvW2dr2tXe9rT4FPz9ph3UK1x196ToAagYe6gcdXdHp-ulj9K8_HbB17-L3PmnCnuaCC6asfS_19hQlTZKk5fQIPs8y8
CODEN CEUJED
CitedBy_id crossref_primary_10_1016_j_ccr_2018_06_011
crossref_primary_10_1007_s11270_023_06208_9
crossref_primary_10_1002_chem_201502317
crossref_primary_10_1002_cjoc_201500761
crossref_primary_10_1016_j_ccr_2023_215303
crossref_primary_10_1016_j_chemosphere_2024_141786
crossref_primary_10_1021_acssuschemeng_7b02720
crossref_primary_10_1016_j_cej_2015_06_044
crossref_primary_10_1039_C9NJ00433E
crossref_primary_10_1016_j_jhazmat_2017_04_044
crossref_primary_10_1016_j_cej_2017_06_052
crossref_primary_10_1016_j_chemosphere_2022_135261
crossref_primary_10_1016_j_microc_2015_10_005
crossref_primary_10_1039_C9EN00316A
crossref_primary_10_1021_acs_inorgchem_9b00380
crossref_primary_10_1016_j_desal_2022_116038
crossref_primary_10_1016_j_envpol_2020_115668
crossref_primary_10_1016_j_seppur_2022_121187
crossref_primary_10_14478_ace_2016_1048
crossref_primary_10_1016_j_ccr_2020_213477
crossref_primary_10_1016_j_jclepro_2020_121492
crossref_primary_10_1016_j_jhazmat_2020_123655
crossref_primary_10_1016_j_chemosphere_2019_124875
crossref_primary_10_1039_C5CC05990A
crossref_primary_10_1016_j_ccr_2018_10_003
crossref_primary_10_1016_j_scitotenv_2020_143765
crossref_primary_10_1016_j_ccr_2020_213507
crossref_primary_10_1021_acs_jpcc_7b11247
crossref_primary_10_1039_D2RA04182K
crossref_primary_10_1016_j_jcis_2020_02_004
crossref_primary_10_1021_jacs_5b03904
crossref_primary_10_1016_j_seppur_2024_127724
crossref_primary_10_1021_acsami_3c10766
crossref_primary_10_1016_j_seppur_2024_127602
crossref_primary_10_1021_acsanm_0c01696
crossref_primary_10_2139_ssrn_4018860
crossref_primary_10_1016_j_cej_2017_08_038
crossref_primary_10_1021_acsami_7b02563
crossref_primary_10_1016_j_seppur_2022_121014
crossref_primary_10_1021_acs_nanolett_9b04124
crossref_primary_10_1039_C7NR01092C
crossref_primary_10_1016_j_rechem_2023_101223
crossref_primary_10_1016_j_apcata_2016_11_006
crossref_primary_10_1002_aoc_5637
crossref_primary_10_1016_j_jhazmat_2015_08_045
crossref_primary_10_1016_j_chemosphere_2018_05_145
crossref_primary_10_1016_j_envres_2020_110654
crossref_primary_10_1039_C5CE01428J
crossref_primary_10_1016_j_matchemphys_2020_123246
crossref_primary_10_1007_s11270_023_06736_4
crossref_primary_10_1002_aic_15384
crossref_primary_10_1149_1945_7111_ac707b
crossref_primary_10_1016_j_jece_2022_108737
crossref_primary_10_1016_j_apsusc_2017_09_032
crossref_primary_10_1016_j_cej_2019_121948
crossref_primary_10_1016_j_cej_2023_146963
crossref_primary_10_1016_j_cej_2015_08_087
crossref_primary_10_1016_j_cej_2024_148766
crossref_primary_10_1016_j_cej_2021_130598
crossref_primary_10_1002_chem_201802343
crossref_primary_10_1016_j_cis_2019_102071
crossref_primary_10_1039_C7DT03705H
crossref_primary_10_1016_j_xcrp_2021_100625
crossref_primary_10_1049_mnl_2016_0674
crossref_primary_10_1016_j_jenvman_2023_119065
crossref_primary_10_1016_j_scitotenv_2017_05_219
crossref_primary_10_1038_srep34462
crossref_primary_10_1016_j_cej_2019_122196
crossref_primary_10_1016_j_pmatsci_2017_01_002
crossref_primary_10_1007_s11696_022_02100_8
crossref_primary_10_1016_j_apsusc_2022_154859
crossref_primary_10_3390_ma10070769
crossref_primary_10_1016_j_ccr_2020_213526
crossref_primary_10_1016_j_jhazmat_2018_10_030
crossref_primary_10_1002_ejic_201600160
crossref_primary_10_1021_acsestwater_3c00468
crossref_primary_10_1016_j_seppur_2023_125589
crossref_primary_10_1002_asia_202001365
crossref_primary_10_1016_j_jiec_2019_07_009
crossref_primary_10_1016_j_jiec_2018_10_035
crossref_primary_10_1039_C9RA06879A
crossref_primary_10_1016_j_jcis_2019_07_046
crossref_primary_10_3390_ma16247636
crossref_primary_10_1007_s00604_018_2879_2
crossref_primary_10_1016_j_chemosphere_2016_05_081
crossref_primary_10_1016_j_ccr_2022_214776
crossref_primary_10_1016_j_watres_2019_04_043
crossref_primary_10_1039_C5TA05440K
crossref_primary_10_1016_j_enmm_2023_100868
crossref_primary_10_1016_j_jece_2022_108556
crossref_primary_10_1016_j_cclet_2017_09_062
crossref_primary_10_1002_cnma_202100400
crossref_primary_10_1002_pi_5315
crossref_primary_10_1039_C8TA00264A
crossref_primary_10_1039_D1TA04444C
crossref_primary_10_1007_s00604_023_06107_0
crossref_primary_10_1039_C9EN00923J
crossref_primary_10_1007_s11814_020_0722_z
crossref_primary_10_1039_D0MA00291G
crossref_primary_10_1016_j_apmt_2020_100796
crossref_primary_10_1016_j_cej_2017_01_021
crossref_primary_10_1016_j_chemosphere_2017_04_049
crossref_primary_10_1002_chem_201500909
crossref_primary_10_1016_j_inoche_2023_110745
crossref_primary_10_1016_j_cej_2014_12_093
crossref_primary_10_1016_j_saa_2016_02_020
crossref_primary_10_1007_s11356_017_9002_9
crossref_primary_10_1016_j_colsurfa_2023_131014
crossref_primary_10_1039_C7EN00758B
crossref_primary_10_3390_app12157591
crossref_primary_10_1016_j_inoche_2021_108804
crossref_primary_10_1088_1755_1315_1263_1_012059
crossref_primary_10_1021_acs_cgd_8b01353
crossref_primary_10_1016_j_jhazmat_2015_09_040
crossref_primary_10_1016_j_jhazmat_2022_128271
crossref_primary_10_1016_j_jece_2023_111418
crossref_primary_10_1016_j_cej_2015_02_007
crossref_primary_10_1016_j_jenvman_2020_111389
crossref_primary_10_1016_j_seppur_2016_12_041
crossref_primary_10_1016_j_chemosphere_2023_139687
crossref_primary_10_1039_C9CS00829B
crossref_primary_10_1080_15569543_2024_2329921
crossref_primary_10_1016_j_jece_2021_105225
crossref_primary_10_2139_ssrn_4110627
crossref_primary_10_1016_j_jhazmat_2022_128394
crossref_primary_10_1016_j_chemosphere_2020_127369
crossref_primary_10_1016_j_chemosphere_2021_129605
crossref_primary_10_1016_j_cej_2018_01_139
crossref_primary_10_1016_j_scitotenv_2020_140508
crossref_primary_10_2166_wrd_2024_118
crossref_primary_10_1016_j_jwpe_2022_103059
crossref_primary_10_1016_j_jssc_2019_121029
crossref_primary_10_1107_S205698902300837X
crossref_primary_10_1007_s11356_020_07942_x
crossref_primary_10_1016_j_cej_2021_132162
crossref_primary_10_1021_acs_est_7b05761
crossref_primary_10_1016_j_cej_2016_10_084
crossref_primary_10_1002_cplu_201500308
crossref_primary_10_2139_ssrn_4098681
crossref_primary_10_1016_j_molliq_2021_115593
crossref_primary_10_1038_s41598_018_23557_2
crossref_primary_10_1016_j_chemosphere_2020_126829
crossref_primary_10_1021_acs_jpcc_5b09298
crossref_primary_10_1039_C7CS00543A
Cites_doi 10.1246/bcsj.20110162
10.1039/c3cs60059a
10.1021/jp402916y
10.1002/anie.201105113
10.1016/j.cej.2014.02.070
10.1016/j.cej.2013.08.110
10.1039/B618320B
10.1021/cm901983a
10.1016/j.cattod.2013.09.040
10.1002/anie.200705998
10.1039/c0cc01506g
10.1016/j.jcis.2011.02.040
10.1039/C0CC04759G
10.1021/es803178f
10.1002/chem.200902382
10.1021/ja0276974
10.1016/j.jhazmat.2012.11.011
10.1002/ange.201105113
10.1021/ic402012d
10.1002/anie.200460592
10.1021/jp507074x
10.1016/j.micromeso.2012.02.027
10.1016/j.jhazmat.2008.03.028
10.1016/j.jcis.2014.01.003
10.1166/apm.2013.1005
10.1021/es071752x
10.1021/cr200216x
10.1002/adfm.200801130
10.1039/c2ce25760b
10.1002/ange.200705998
10.1039/B704325B
10.1039/b927113a
10.1039/C1JM14101E
10.1039/c3ta11807j
10.1016/j.jenvman.2008.09.003
10.1166/apm.2013.1002
10.1002/ange.201100050
10.1002/ange.200460592
10.1016/j.micromeso.2010.05.018
10.1021/jp809408x
10.1007/s13762-013-0261-9
10.1016/j.jhazmat.2012.01.005
10.1021/es0486770
10.1016/j.jhazmat.2007.03.055
10.1016/j.micromeso.2011.11.025
10.1016/j.jcis.2012.03.064
10.1016/j.watres.2005.10.040
10.1016/j.jhazmat.2010.09.035
10.1021/cr400005f
10.1039/c0cp01703e
10.1021/es061160z
10.1021/es048701
10.1002/anie.201100050
10.1021/ja906034k
10.1039/c2jm16030g
10.1126/science.1230444
10.1126/science.1116275
10.1021/ja403571z
10.1021/cm300863c
10.1016/j.jhazmat.2012.05.078
10.1002/adma.200601604
10.1016/j.jhazmat.2010.12.005
10.1021/la800227x
10.1039/C4CS00006D
10.1021/la904502h
10.1016/j.jhazmat.2013.06.076
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201404658
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 354
ExternalDocumentID 3533451081
10_1002_chem_201404658
25298118
CHEM201404658
ark_67375_WNG_DM01591G_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2013R1A2A2A01007176
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c6178-46895cee93c829fccb39b5ec8d1ac8607e878e000798c7fb5fae4fef992d2fd83
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Fri Aug 16 21:20:59 EDT 2024
Fri Aug 16 22:30:40 EDT 2024
Thu Oct 10 17:01:27 EDT 2024
Fri Aug 23 03:32:02 EDT 2024
Sat Sep 28 07:56:42 EDT 2024
Sat Aug 24 00:59:03 EDT 2024
Wed Oct 30 09:53:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords water purification
iron
adsorption
arsenic
metal-organic frameworks
Language English
License 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6178-46895cee93c829fccb39b5ec8d1ac8607e878e000798c7fb5fae4fef992d2fd83
Notes istex:482DBE96D08961F72451B4868C582006BB0B66A5
National Research Foundation of Korea - No. 2013R1A2A2A01007176
ArticleID:CHEM201404658
ark:/67375/WNG-DM01591G-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25298118
PQID 1638883077
PQPubID 986340
PageCount 8
ParticipantIDs proquest_miscellaneous_1786193359
proquest_miscellaneous_1639979874
proquest_journals_1638883077
crossref_primary_10_1002_chem_201404658
pubmed_primary_25298118
wiley_primary_10_1002_chem_201404658_CHEM201404658
istex_primary_ark_67375_WNG_DM01591G_6
PublicationCentury 2000
PublicationDate January 2, 2015
PublicationDateYYYYMMDD 2015-01-02
PublicationDate_xml – month: 01
  year: 2015
  text: January 2, 2015
  day: 02
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References B. J. Lafferty, R. H. Loeppert, Environ. Sci. Technol. 2005, 39, 2120-2127.
N. A. Khan, J. S. Lee, J. Jeon, C.-H. Jun, S. H. Jhung, Microporous Mesoporous Mater. 2012, 152, 235-239.
N. A. Khan, S. H. Jhung, J. Hazard. Mater. 2013, 260, 1050-1056.
S.-H. Lin, R.-S. Juang, J. Environ. Manag. 2009, 90, 1336-1349.
H. Wu, Q. Gong, D. H. Olson, J. Li, Chem. Rev. 2012, 112, 836-868.
G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surble', J. Dutour, I. Margiolaki, Angew. Chem. Int. Ed. 2004, 43, 6296-6301
N. A. Khan, Z. Hasan, S. H. Jhung, J. Hazard. Mater. 2013, 244-245, 444-456.
L. Nouri, I. Ghodbane, O. Hamdaoui, M. Chiha, J. Hazard. Mater. 2007, 149, 115-125.
S. Zheng, W. Jiang, Y. Cai, D. D. Dionysiou, K. E. O'Shea, Catal. Today 2014, 224, 83-88.
C. Volkringer, D. Popov, T. Loiseau, G. Férey, M. Burghammer, C. Riekel, M. Haouas, F. Taulelle, Chem. Mater. 2009, 21, 5695-5697.
E. Haque, N. A. Khan, J. H. Park, S. H. Jhung, Chem. Eur. J. 2010, 16, 1046-1052.
Y. Arai, D. L. Sparks, J. A. Davis, Environ. Sci. Technol. 2005, 39, 2537-2544.
U. Arroyo-Abad, M. P. Elizalde-González, C. M. Hidalgo-Moreno, J. Mattusch, R. Wennrich, J. Hazard. Mater. 2011, 186, 1328-1334.
E. Haque, J. H. Jeong, S. H. Jhung, CrystEngComm 2010, 12, 2749-2754.
Y.-K. Hwang, D.-Y. Hong, J.-S. Chang, S. H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Angew. Chem. Int. Ed. 2008, 47, 4144-4148
F. Vermoortele, R. Ameloot, L. Alaerts, R. Matthessen, B. Carlier, E. V. R. Fernandez, G. Gascon, F. Kapteijn, D. E. De Vos, J. Mater. Chem. 2012, 22, 10313-10321.
B. Van de Voorde, B. Bueken, J. Denayer, D. De Vos, Chem. Soc. Rev. 2014, 43, 5766-5788.
C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, G. Férey, J. Am. Chem. Soc. 2002, 124, 13519-13526.
M. Maes, M. Trekels, M. Boulhout, S. Schouteden, F. Vermoortele, L. Alaerts, D. Heurtaux, Y.-K. Seo, Y. K. Hwang, J.-S. Chang, I. Beurroies, R. Denoyel, K. Temst, A. Vantomme, P. Horcajada, C. Serre, D. De Vos, Angew. Chem. Int. Ed. 2011, 50, 4210-4214
Z. Hasan, M. Tong, B. K. Jung, I. Ahmed, C. Zhong, S. H. Jhung, J. Phys. Chem. C 2014, 118, 21049-21056.
K. Leus, I. Muylaert, M. Vandichel, G. B. Marin, M. Waroquier, V. V. Speybroeck, P. V. D. Voort, Chem. Commun. 2010, 46, 5085-5087.
Angew. Chem. 2008, 120, 4212-4216.
W. Mitchell, S. Goldberg, H. A. Al-Abadleh, J. Colloid Interface Sci. 2011, 358, 534-540.
J. Hu, Z. Tong, G. Chen, X. Zhan, Z. Hu, Int. J. Environ. Sci. Technol. 2014, 11, 785-794.
Q. Yang, D. Liu, C. Zhong, J. R. Li, Chem. Rev. 2013, 113, 8261-8323.
P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamong, G. DeWeireld, J. S. Chang, D. Y. Hong, Y. K. Hwang, S. H. Jhung, G. Férey, Langmuir 2008, 24, 7245-7250.
Y.-S. Ho, Water Res. 2006, 40, 119-125.
K. Ariga, S. Ishihara, H. Abe, M. Lia, J. P. Hill, J. Mater. Chem. 2012, 22, 2369-2377.
Y. F. Chen, R. Babarao, S. I. Sandler, J. W. Jiang, Langmuir 2010, 26, 8743-8750.
K. A. Cychosz, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2009, 131, 14538-14543.
Angew. Chem. 2011, 123, 4296-4300.
L. Xie, D. Liu, H. Huang, Q. Yang, C. Zhong, Chem. Eng. J. 2014, 246, 142-149.
S. Depalma, S. Cowen, T. Hoang, H. A. Al-Abadleh, Environ. Sci. Technol. 2008, 42, 1922-1927.
B. K. Jung, Z. Hasan, S. H. Jhung, Chem. Eng. J. 2013, 234, 99-105.
D. S. Coombes, F. Corà, C. Mellot-Draznieks, R. G. Bell, J. Phys. Chem. C 2009, 113, 544-552.
S. H. Jhung, J.-H. Lee, J. W. Yoon, C. Serre, G. Férey, J.-S. Chang, Adv. Mater. 2007, 19, 121-124.
L. Poon, S. Younus, L. D. Wilson, J. Colloid Interface Sci. 2014, 420, 136-144.
E. Haque, J. Jun, S. H. Jhung, J. Hazard. Mater. 2011, 185, 507-511.
M. Maes, S. Schouteden, L. Alaerts, D. Depla, D. E. De Vos, Phys. Chem. Chem. Phys. 2011, 13, 5587-5589.
B. Van de Voorde, M. Boulhout, F. Vermoortele, P. Horcajada, D. Cunha, J. S. Lee, J.-S. Chang, E. Gibson, M. Dature, J.-C. Lavalley, A. Vimont, I Beurroies, D. De Vos, J. Am. Chem. Soc. 2013, 135, 9849-9856.
N. A. Khan, Z. Hasan, S. H. Jhung, Adv. Porous Mater. 2013, 1, 91-102.
Y. Masue, R. H. Leoppert, T. A. Kramer, Environ. Sci. Technol. 2007, 41, 837-842.
P. Horcajada, S. Surblé, C. Serre, D.-Y. Hong, Y.-K. Seo, J.-S. Chang, J. M. Grenèche, I. Margiolaki, G. Férey, Chem. Commun. 2007, 2820-2822.
B. H. Hameed, A. A. Rahman, J. Hazard. Mater. 2008, 160, 576-581.
H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
Angew. Chem. 2012, 124, 1224-1227.
Angew. Chem. 2004, 116, 6456-6461.
A. Vinu, K. Ariga, Adv. Porous Mater. 2013, 1, 63-71.
N. A. Khan, J. W. Jun, J. H. Jeong, S. H. Jhung, Chem. Commun. 2011, 47, 1306-1308.
G. Férey, Chem. Soc. Rev. 2008, 37, 191-214.
I. Ahmed, N. A. Khan, S. H. Jhung, Inorg. Chem. 2013, 52, 14155-14161.
G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Mirgiolaki, Science 2005, 309, 2040-2042.
S. H. Jhung, N. A. Khan, Z. Hasan, CrystEngComm 2012, 14, 7099-7109.
W.-R. Chen, C.-H. Huang, J. Hazard. Mater. 2012, 227- 228, 378-385.
K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J. P. Hill, Bull. Chem. Soc. Jpn. 2012, 85, 1-32.
D.-Y. Hong, Y. K. Hwang, C. Serre, G. Férey, J.-S. Chang, Adv. Funct. Mater. 2009, 19, 1537-1552.
Z. Hasan, J. Jeon, S. H. Jhung, J. Hazard. Mater. 2012, 209, 151-157.
M. Tong, D. Liu, Q. Yang, S. Devautour-Vinot, G. Maurinb, C. Zhong, J. Mater. Chem. A 2013, 1, 8534-8537.
S. Devautour-Vinot, G. Maurin, C. Serre, P. Horcajada, D. Paula da Cunha, V, Guillerm, E. Souza-Costa, F. Taulelle, C. Martineau, Chem. Mater. 2012, 24, 2168-2177.
S. Devautour-Vinot, C. Martineau, S. Diaby, M. Ben-Yahia, S. Miller, C. Serre, P. Horcajada, D. Cunha, F. Taulelle, G. Maurin, J. Phys. Chem. C 2013, 117, 11694-11704.
M. Chabot, T. Hoang, H. A. Al-Abadleh, Environ. Sci. Technol. 2009, 43, 3142-3147.
Y.-K. Seo, J. W. Yoon, J. S. Lee, U.-H. Lee, Y.-K. Hwang, C.-H. Jun, P. Horcajada, C. Serre, J.-S. Chang, Microporous Mesoporous Mater. 2012, 157, 137-145.
N. A. Khan, S. H. Jhung, Angew. Chem. Int. Ed. 2012, 51, 1198-1201
T. K. Trung, N. A. Ramsahye, P. Trens, N. Tanchoux, C. Serre, F. Fajula, G. Férey, Microporous Mesoporous Mater. 2010, 134, 134-140.
J. Hu, Z. Tong, Z. Hu, G. Chen, T. Chen, J. Colloid Interface Sci. 2012, 377, 355-361.
Z. Zhou, M. Hartmann, Chem. Soc. Rev. 2013, 42, 3894-3912.
2011; 358
2010; 12
2010; 16
2009; 43
2013; 1
2007; 149
2008; 37
2009; 113
2011; 13
2008 2008; 47 120
2012; 14
2012; 209
2010; 26
2012; 377
2012 2012; 51 124
2009; 90
2013; 52
2013; 117
2013; 113
2013; 234
2008; 24
2005; 309
2009; 19
2012; 24
2005; 39
2012; 22
2014; 246
2014; 11
2014; 118
2007; 19
2004 2004; 43 116
2009; 21
2012
2013; 42
2007
2013; 341
2009; 131
2013; 260
2014; 43
2008; 160
2012; 152
2012; 112
2012; 157
2006; 40
2010; 46
2002; 124
2010; 134
2013; 244–245
2013; 135
2011 2011; 50 123
2008; 42
2011; 47
2007; 41
2011; 185
2014; 224
2014; 420
2012; 85
2011; 186
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_3
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_52_3
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_37_3
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_3
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 43 116
  start-page: 6296 6456
  year: 2004 2004
  end-page: 6301 6461
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 185
  start-page: 507
  year: 2011
  end-page: 511
  publication-title: J. Hazard. Mater.
– volume: 118
  start-page: 21049
  year: 2014
  end-page: 21056
  publication-title: J. Phys. Chem. C
– start-page: 378
  year: 2012
  end-page: 385
  publication-title: J. Hazard. Mater.
– volume: 420
  start-page: 136
  year: 2014
  end-page: 144
  publication-title: J. Colloid Interface Sci.
– volume: 39
  start-page: 2120
  year: 2005
  end-page: 2127
  publication-title: Environ. Sci. Technol.
– volume: 149
  start-page: 115
  year: 2007
  end-page: 125
  publication-title: J. Hazard. Mater.
– volume: 22
  start-page: 2369
  year: 2012
  end-page: 2377
  publication-title: J. Mater. Chem.
– volume: 39
  start-page: 2537
  year: 2005
  end-page: 2544
  publication-title: Environ. Sci. Technol.
– volume: 41
  start-page: 837
  year: 2007
  end-page: 842
  publication-title: Environ. Sci. Technol.
– volume: 12
  start-page: 2749
  year: 2010
  end-page: 2754
  publication-title: CrystEngComm
– volume: 1
  start-page: 91
  year: 2013
  end-page: 102
  publication-title: Adv. Porous Mater.
– volume: 134
  start-page: 134
  year: 2010
  end-page: 140
  publication-title: Microporous Mesoporous Mater.
– start-page: 2820
  year: 2007
  end-page: 2822
  publication-title: Chem. Commun.
– volume: 47
  start-page: 1306
  year: 2011
  end-page: 1308
  publication-title: Chem. Commun.
– volume: 117
  start-page: 11694
  year: 2013
  end-page: 11704
  publication-title: J. Phys. Chem. C
– volume: 358
  start-page: 534
  year: 2011
  end-page: 540
  publication-title: J. Colloid Interface Sci.
– volume: 40
  start-page: 119
  year: 2006
  end-page: 125
  publication-title: Water Res.
– volume: 19
  start-page: 121
  year: 2007
  end-page: 124
  publication-title: Adv. Mater.
– volume: 47 120
  start-page: 4144 4212
  year: 2008 2008
  end-page: 4148 4216
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 5766
  year: 2014
  end-page: 5788
  publication-title: Chem. Soc. Rev.
– volume: 19
  start-page: 1537
  year: 2009
  end-page: 1552
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 7099
  year: 2012
  end-page: 7109
  publication-title: CrystEngComm
– volume: 46
  start-page: 5085
  year: 2010
  end-page: 5087
  publication-title: Chem. Commun.
– volume: 42
  start-page: 1922
  year: 2008
  end-page: 1927
  publication-title: Environ. Sci. Technol.
– volume: 124
  start-page: 13519
  year: 2002
  end-page: 13526
  publication-title: J. Am. Chem. Soc.
– volume: 186
  start-page: 1328
  year: 2011
  end-page: 1334
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 3894
  year: 2013
  end-page: 3912
  publication-title: Chem. Soc. Rev.
– volume: 52
  start-page: 14155
  year: 2013
  end-page: 14161
  publication-title: Inorg. Chem.
– volume: 157
  start-page: 137
  year: 2012
  end-page: 145
  publication-title: Microporous Mesoporous Mater.
– volume: 260
  start-page: 1050
  year: 2013
  end-page: 1056
  publication-title: J. Hazard. Mater.
– volume: 209
  start-page: 151
  year: 2012
  end-page: 157
  publication-title: J. Hazard. Mater.
– volume: 1
  start-page: 63
  year: 2013
  end-page: 71
  publication-title: Adv. Porous Mater.
– volume: 24
  start-page: 7245
  year: 2008
  end-page: 7250
  publication-title: Langmuir
– volume: 113
  start-page: 544
  year: 2009
  end-page: 552
  publication-title: J. Phys. Chem. C
– volume: 112
  start-page: 836
  year: 2012
  end-page: 868
  publication-title: Chem. Rev.
– volume: 224
  start-page: 83
  year: 2014
  end-page: 88
  publication-title: Catal. Today
– volume: 309
  start-page: 2040
  year: 2005
  end-page: 2042
  publication-title: Science
– volume: 1
  start-page: 8534
  year: 2013
  end-page: 8537
  publication-title: J. Mater. Chem. A
– volume: 160
  start-page: 576
  year: 2008
  end-page: 581
  publication-title: J. Hazard. Mater.
– volume: 22
  start-page: 10313
  year: 2012
  end-page: 10321
  publication-title: J. Mater. Chem.
– volume: 37
  start-page: 191
  year: 2008
  end-page: 214
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 3142
  year: 2009
  end-page: 3147
  publication-title: Environ. Sci. Technol.
– volume: 341
  start-page: 1230444
  year: 2013
  publication-title: Science
– volume: 377
  start-page: 355
  year: 2012
  end-page: 361
  publication-title: J. Colloid Interface Sci.
– volume: 244–245
  start-page: 444
  year: 2013
  end-page: 456
  publication-title: J. Hazard. Mater.
– volume: 131
  start-page: 14538
  year: 2009
  end-page: 14543
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 2168
  year: 2012
  end-page: 2177
  publication-title: Chem. Mater.
– volume: 135
  start-page: 9849
  year: 2013
  end-page: 9856
  publication-title: J. Am. Chem. Soc.
– volume: 234
  start-page: 99
  year: 2013
  end-page: 105
  publication-title: Chem. Eng. J.
– volume: 246
  start-page: 142
  year: 2014
  end-page: 149
  publication-title: Chem. Eng. J.
– volume: 51 124
  start-page: 1198 1224
  year: 2012 2012
  end-page: 1201 1227
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 26
  start-page: 8743
  year: 2010
  end-page: 8750
  publication-title: Langmuir
– volume: 11
  start-page: 785
  year: 2014
  end-page: 794
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 85
  start-page: 1
  year: 2012
  end-page: 32
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 50 123
  start-page: 4210 4296
  year: 2011 2011
  end-page: 4214 4300
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 5587
  year: 2011
  end-page: 5589
  publication-title: Phys. Chem. Chem. Phys.
– volume: 16
  start-page: 1046
  year: 2010
  end-page: 1052
  publication-title: Chem. Eur. J.
– volume: 113
  start-page: 8261
  year: 2013
  end-page: 8323
  publication-title: Chem. Rev.
– volume: 152
  start-page: 235
  year: 2012
  end-page: 239
  publication-title: Microporous Mesoporous Mater.
– volume: 90
  start-page: 1336
  year: 2009
  end-page: 1349
  publication-title: J. Environ. Manag.
– volume: 21
  start-page: 5695
  year: 2009
  end-page: 5697
  publication-title: Chem. Mater.
– ident: e_1_2_6_9_2
  doi: 10.1246/bcsj.20110162
– ident: e_1_2_6_11_2
  doi: 10.1039/c3cs60059a
– ident: e_1_2_6_64_2
  doi: 10.1021/jp402916y
– ident: e_1_2_6_19_2
  doi: 10.1002/anie.201105113
– ident: e_1_2_6_28_2
  doi: 10.1016/j.cej.2014.02.070
– ident: e_1_2_6_27_2
  doi: 10.1016/j.cej.2013.08.110
– ident: e_1_2_6_15_2
  doi: 10.1039/B618320B
– ident: e_1_2_6_35_2
  doi: 10.1021/cm901983a
– ident: e_1_2_6_4_2
  doi: 10.1016/j.cattod.2013.09.040
– ident: e_1_2_6_52_2
  doi: 10.1002/anie.200705998
– ident: e_1_2_6_54_2
  doi: 10.1039/c0cc01506g
– ident: e_1_2_6_6_2
  doi: 10.1016/j.jcis.2011.02.040
– ident: e_1_2_6_20_2
  doi: 10.1039/C0CC04759G
– ident: e_1_2_6_7_2
  doi: 10.1021/es803178f
– ident: e_1_2_6_59_2
  doi: 10.1002/chem.200902382
– ident: e_1_2_6_33_2
  doi: 10.1021/ja0276974
– ident: e_1_2_6_47_2
  doi: 10.1016/j.jhazmat.2012.11.011
– ident: e_1_2_6_19_3
  doi: 10.1002/ange.201105113
– ident: e_1_2_6_22_2
  doi: 10.1021/ic402012d
– ident: e_1_2_6_37_2
  doi: 10.1002/anie.200460592
– ident: e_1_2_6_25_2
  doi: 10.1021/jp507074x
– ident: e_1_2_6_40_2
  doi: 10.1016/j.micromeso.2012.02.027
– ident: e_1_2_6_44_2
  doi: 10.1016/j.jhazmat.2008.03.028
– ident: e_1_2_6_3_2
  doi: 10.1016/j.jcis.2014.01.003
– ident: e_1_2_6_12_2
  doi: 10.1166/apm.2013.1005
– ident: e_1_2_6_8_2
  doi: 10.1021/es071752x
– ident: e_1_2_6_16_2
  doi: 10.1021/cr200216x
– ident: e_1_2_6_32_2
  doi: 10.1002/adfm.200801130
– ident: e_1_2_6_41_2
  doi: 10.1039/c2ce25760b
– ident: e_1_2_6_52_3
  doi: 10.1002/ange.200705998
– ident: e_1_2_6_39_2
  doi: 10.1039/B704325B
– ident: e_1_2_6_34_2
  doi: 10.1039/b927113a
– ident: e_1_2_6_60_2
– ident: e_1_2_6_10_2
  doi: 10.1039/C1JM14101E
– ident: e_1_2_6_23_2
  doi: 10.1039/c3ta11807j
– ident: e_1_2_6_45_2
  doi: 10.1016/j.jenvman.2008.09.003
– ident: e_1_2_6_48_2
  doi: 10.1166/apm.2013.1002
– ident: e_1_2_6_21_3
  doi: 10.1002/ange.201100050
– ident: e_1_2_6_37_3
  doi: 10.1002/ange.200460592
– ident: e_1_2_6_38_2
  doi: 10.1016/j.micromeso.2010.05.018
– ident: e_1_2_6_62_2
  doi: 10.1021/jp809408x
– ident: e_1_2_6_5_2
  doi: 10.1007/s13762-013-0261-9
– ident: e_1_2_6_30_2
  doi: 10.1016/j.jhazmat.2012.01.005
– ident: e_1_2_6_56_2
  doi: 10.1021/es0486770
– ident: e_1_2_6_43_2
  doi: 10.1016/j.jhazmat.2007.03.055
– ident: e_1_2_6_36_2
  doi: 10.1016/j.micromeso.2011.11.025
– ident: e_1_2_6_2_2
  doi: 10.1016/j.jcis.2012.03.064
– ident: e_1_2_6_42_2
  doi: 10.1016/j.watres.2005.10.040
– ident: e_1_2_6_24_2
  doi: 10.1016/j.jhazmat.2010.09.035
– ident: e_1_2_6_14_2
  doi: 10.1021/cr400005f
– ident: e_1_2_6_29_2
  doi: 10.1039/c0cp01703e
– ident: e_1_2_6_55_2
  doi: 10.1021/es061160z
– ident: e_1_2_6_57_2
  doi: 10.1021/es048701
– ident: e_1_2_6_21_2
  doi: 10.1002/anie.201100050
– ident: e_1_2_6_51_2
– ident: e_1_2_6_18_2
  doi: 10.1021/ja906034k
– ident: e_1_2_6_58_2
  doi: 10.1039/c2jm16030g
– ident: e_1_2_6_13_2
  doi: 10.1126/science.1230444
– ident: e_1_2_6_31_2
  doi: 10.1126/science.1116275
– ident: e_1_2_6_50_2
  doi: 10.1021/ja403571z
– ident: e_1_2_6_63_2
  doi: 10.1021/cm300863c
– ident: e_1_2_6_1_2
  doi: 10.1016/j.jhazmat.2012.05.078
– ident: e_1_2_6_26_2
  doi: 10.1002/adma.200601604
– ident: e_1_2_6_46_2
  doi: 10.1016/j.jhazmat.2010.12.005
– ident: e_1_2_6_53_2
  doi: 10.1021/la800227x
– ident: e_1_2_6_17_2
  doi: 10.1039/C4CS00006D
– ident: e_1_2_6_61_2
  doi: 10.1021/la904502h
– ident: e_1_2_6_49_2
  doi: 10.1016/j.jhazmat.2013.06.076
SSID ssj0009633
Score 2.5665848
Snippet The adsorptive removal of organoarsenic compounds such as p‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs) has been...
The adsorptive removal of organoarsenic compounds such as p-arsanilic acid (ASA) and roxarsone (ROX) from water using metal-organic frameworks (MOFs) has been...
Abstract The adsorptive removal of organoarsenic compounds such as p ‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs)...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 347
SubjectTerms Activated carbon
Activation
Adsorption
Arsanilic Acid - chemistry
arsenic
Chemistry
Coordination Complexes - chemistry
Desorption
Hydrogen-Ion Concentration
Ions - chemistry
iron
Iron - chemistry
Mathematical analysis
Metal-organic frameworks
Metalorganic compounds
Organometallic Compounds - chemistry
Roxarsone - chemistry
Spectroscopy, Fourier Transform Infrared
Surface chemistry
Water Pollutants, Chemical - chemistry
Water Purification
Title Effect of Central Metal Ions of Analogous Metal-Organic Frameworks on Adsorption of Organoarsenic Compounds from Water: Plausible Mechanism of Adsorption and Water Purification
URI https://api.istex.fr/ark:/67375/WNG-DM01591G-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201404658
https://www.ncbi.nlm.nih.gov/pubmed/25298118
https://www.proquest.com/docview/1638883077
https://search.proquest.com/docview/1639979874
https://search.proquest.com/docview/1786193359
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQWcCG9yNQkJEQrNJO_JjY7KqWaUFqVSGqdmfZjoNQS4KSGQmx4h_4Ez6JL-Fee5JhEAIJdjPJdRLHx9fHzr3HhDy1yrKgC5-rwvpceMtyZ7nMCydrPglRQgqjLY6mByfi9Zk8-ymLP-lDjAtu2DOiv8YObl2_vRINhTphJjnKw8AoCk644CXGdO29WelHAbrSXvKizFGDdVBtnLDt9eJro9JlfMGffkc51xlsHIJm14kdHj5FnpxvLeZuy3_-Rdfxf2p3g1xb8lO6kwB1k1wKzS1yZXfYFu42-Zb0jmlb0-XKMD0MwODpK8AvHkWZk_Zdu-jT8e9fvqZ8T09nQyAY2DV0p-rbLjosLBVtWphlB7REL4X7PfUU01_oKRDi7gU9vrAL6MEXAa6MCcvv-w_xhqsL2aZKxvR40WEQVMTdHXIye_l29yBfbvyQe8xYzMVUaQmjt-ZeMV1777h2MnhVAaDUdFIGVaqA9EYrX9YAKxtEHWqtWcXqSvG7ZKNpm3CfUAf8zolJVelaCF4JWzko6GXJfY1ihxl5PjS8-Zj0PUxScmYG28CMbZCRZxEXo5ntzjEqrpTm9Gjf7B0CsdLFvplmZHMAjlk6hN4g7VUKHCrc8cl4GpoOv8_YJkCroI3WUKVS_MGmVDDl5VzqjNxLoBwfiEmmFUwYM8IitP5SIYOiG-O_B_9S6CG5Cr9lXJJim2Rj3i3CIyBpc_c4dsQfCS83CQ
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagPZRL-W8DBYyE4JR217E3NreqZbuF7qpCrcrNchwHoZYEJRsJceIdeBMeiSdhxt5ktQiBBMc44yTe-fFn78xnQp4ZaZhTQxvLobExt4bFmUlEPMxEkQycp5DCbIvZaHLOX78TXTYh1sIEfoh-ww09w8drdHDckN5bsobCoLCUHPlhYBq9TtbB5xM8veHw7ZJBCuwrnCbP0xhZWDvexgHbW-2_Mi-t40_8-XegcxXD-klofJNk3eeH3JPL3Xae7dovvzA7_tf4bpHNBUSl-8GmbpNrrrxDNg66k-Huku-B8phWBV1sDtOpAxBPj8GEsRWZTqr3VduE9h9fv4WST0vHXS4YyJV0P2-q2scs7OVlKlhoO5TEQIVHPjUUK2DoBWDi-iU9vTItOPGVgydjzfKH5qN_4fJBpsyDMD1ta8yD8qZ3j5yPX50dTOLF2Q-xxaLFmI-kEjCBq8RKpgprs0RlwlmZg03J0SB1MpUOEY6SNi3AsozjhSuUYjkrcpncJ2tlVbptQjOAeBkf5LkqOE9ybvIMOlqRJrZAvsOIvOg0rz8Fig8dyJyZRh3oXgcRee4Noxcz9SUmxqVCX8yO9OEUsJUaHulRRHY6y9GLmNBoRL5SQkyFNz7tb4Pq8C8aUzrQCsooBUNK-R9kUgmr3iQRKiJbwSr7D2KCKQlrxogwb1t_GZBG3o3-6sG_dHpCNiZn0xN9cjx785DcgHbhd6jYDlmb1617BJhtnj32XvkTS7c7IQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaglYAL_z-BAkZCcEq76ziJza1q2bZAVytE1d4sx3YQakmqZCMhTrwDb8Ij8STM2JssixBIcIwzTuKdz_Zn78xnQp5qoZmTYxOLsTYxN5rFhU7SeFykZTJyXkIKoy2m2f4Rf3WSnvyUxR_0IYYNN-wZfrzGDn5uy62laCi0CTPJUR4GZtGLZJ1nQH-RFr1dCkgBvMJh8jyPUYS1l20csa3V-ivT0jr-wp9-xzlXKayfgybXiO6_PoSenG5282LTfP5F2PF_mnedXF0QVLodEHWDXHDVTXJ5pz8X7hb5FgSPaV3SxdYwPXRA4ekBABhLUeekfl93bSj__uVrSPg0dNJHgoFdRbdtWzd-xMJa3qaGZbZDSxym8MCnlmL-Cz0GRty8oLMz3UEXPnPwZMxY_tB-9C9cPkhXNhjTWddgFJQH3m1yNHn5bmc_Xpz8EBtMWYx5JmQK07dMjGCyNKZIZJE6IywgSmSj3IlcOOQ3Upi8BFxpx0tXSsksK61I7pC1qq7cPUILIHgFH1krS84Ty7UtoKJJ88SUqHYYkee949V5EPhQQcqZKfSBGnwQkWceF4OZbk4xLC5P1fF0T-0eArOS4z2VRWSjB45ajAitQt4rBIyo8MYnw21wHf5BoysHXkEbKaFJOf-DTS5gzZskqYzI3QDK4YNYyqSAFWNEmIfWXxqkUHVjuLr_L5Uek0uz3Yl6czB9_YBcgeLUb0-xDbI2bzr3EAjbvHjk--QPbdw50A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Central+Metal+Ions+of+Analogous+Metal%E2%80%93Organic+Frameworks+on+Adsorption+of+Organoarsenic+Compounds+from+Water%3A+Plausible+Mechanism+of+Adsorption+and+Water+Purification&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Jun%2C+Jong+Won&rft.au=Tong%2C+Minman&rft.au=Jung%2C+Beom+K.&rft.au=Hasan%2C+Zubair&rft.date=2015-01-02&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=1&rft.spage=347&rft.epage=354&rft_id=info:doi/10.1002%2Fchem.201404658&rft.externalDBID=10.1002%252Fchem.201404658&rft.externalDocID=CHEM201404658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon