Effect of Central Metal Ions of Analogous Metal-Organic Frameworks on Adsorption of Organoarsenic Compounds from Water: Plausible Mechanism of Adsorption and Water Purification
The adsorptive removal of organoarsenic compounds such as p‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL‐100‐Fe) exhibits a much higher adsorption capacity for AS...
Saved in:
Published in | Chemistry : a European journal Vol. 21; no. 1; pp. 347 - 354 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
02.01.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The adsorptive removal of organoarsenic compounds such as p‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL‐100‐Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL‐100‐Fe is also much more rapid than that over activated carbon. Moreover, the used MIL‐100‐Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL‐100‐Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL‐100 species (MIL‐100‐Fe, rather than MIL‐100‐Al or MIL‐100‐Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL‐100‐Fe, different from other analogous MIL‐100 species, can be explained (through calculations) by the facile desorption of water from MIL‐100‐Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL‐100‐Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments.
As seen in MOFs: Among three analogous metal–organic frameworks (MOFs; MIL‐100‐Al, MIL‐100‐Cr, and MIL‐100‐Fe), only MIL‐100‐Fe is found to be very effective in the adsorption of organic arsenic compounds from water. This preferential adsorption and the adsorption mechanism can be explained with detailed investigation and calculations on the metal ion sites within the MOFs. |
---|---|
AbstractList | The adsorptive removal of organoarsenic compounds such as p-arsanilic acid (ASA) and roxarsone (ROX) from water using metal-organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL-100-Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL-100-Fe is also much more rapid than that over activated carbon. Moreover, the used MIL-100-Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL-100-Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL-100 species (MIL-100-Fe, rather than MIL-100-Al or MIL-100-Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL-100-Fe, different from other analogous MIL-100 species, can be explained (through calculations) by the facile desorption of water from MIL-100-Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL-100-Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments. The adsorptive removal of organoarsenic compounds such as p-arsanilic acid (ASA) and roxarsone (ROX) from water using metal-organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL-100-Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL-100-Fe is also much more rapid than that over activated carbon. Moreover, the used MIL-100-Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL-100-Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL-100 species (MIL-100-Fe, rather than MIL-100-Al or MIL-100-Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL-100-Fe, different from other analogous MIL-100 species, can be explained (through calculations) by the facile desorption of water from MIL-100-Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL-100-Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments. As seen in MOFs: Among three analogous metal-organic frameworks (MOFs; MIL-100-Al, MIL-100-Cr, and MIL-100-Fe), only MIL-100-Fe is found to be very effective in the adsorption of organic arsenic compounds from water. This preferential adsorption and the adsorption mechanism can be explained with detailed investigation and calculations on the metal ion sites within the MOFs. The adsorptive removal of organoarsenic compounds such as p‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL‐100‐Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL‐100‐Fe is also much more rapid than that over activated carbon. Moreover, the used MIL‐100‐Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL‐100‐Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL‐100 species (MIL‐100‐Fe, rather than MIL‐100‐Al or MIL‐100‐Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL‐100‐Fe, different from other analogous MIL‐100 species, can be explained (through calculations) by the facile desorption of water from MIL‐100‐Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL‐100‐Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments. As seen in MOFs: Among three analogous metal–organic frameworks (MOFs; MIL‐100‐Al, MIL‐100‐Cr, and MIL‐100‐Fe), only MIL‐100‐Fe is found to be very effective in the adsorption of organic arsenic compounds from water. This preferential adsorption and the adsorption mechanism can be explained with detailed investigation and calculations on the metal ion sites within the MOFs. Abstract The adsorptive removal of organoarsenic compounds such as p ‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL‐100‐Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL‐100‐Fe is also much more rapid than that over activated carbon. Moreover, the used MIL‐100‐Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL‐100‐Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL‐100 species (MIL‐100‐Fe, rather than MIL‐100‐Al or MIL‐100‐Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL‐100‐Fe, different from other analogous MIL‐100 species, can be explained (through calculations) by the facile desorption of water from MIL‐100‐Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL‐100‐Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments. |
Author | Jhung, Sung Hwa Hasan, Zubair Jun, Jong Won Tong, Minman Jung, Beom K. Zhong, Chongli |
Author_xml | – sequence: 1 givenname: Jong Won surname: Jun fullname: Jun, Jong Won organization: Department of Chemistry and Green-Nano Materials Research Centre, Kyungpook National University, Daegu 702-701 (Republic of Korea), Fax: (+82) 53-950-6330 – sequence: 2 givenname: Minman surname: Tong fullname: Tong, Minman organization: State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 (P. R. China), Fax: (+86) 10-64419862 – sequence: 3 givenname: Beom K. surname: Jung fullname: Jung, Beom K. organization: Department of Chemistry and Green-Nano Materials Research Centre, Kyungpook National University, Daegu 702-701 (Republic of Korea), Fax: (+82) 53-950-6330 – sequence: 4 givenname: Zubair surname: Hasan fullname: Hasan, Zubair organization: Department of Chemistry and Green-Nano Materials Research Centre, Kyungpook National University, Daegu 702-701 (Republic of Korea), Fax: (+82) 53-950-6330 – sequence: 5 givenname: Chongli surname: Zhong fullname: Zhong, Chongli email: zhongcl@mail.buct.edu.cn organization: State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 (P. R. China), Fax: (+86) 10-64419862 – sequence: 6 givenname: Sung Hwa surname: Jhung fullname: Jhung, Sung Hwa email: sung@knu.ac.kr organization: Department of Chemistry and Green-Nano Materials Research Centre, Kyungpook National University, Daegu 702-701 (Republic of Korea), Fax: (+82) 53-950-6330 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25298118$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9P2zAYh62JaRS2645TpF12SWfH8b_dqq4UJDo4bOJouc5rCCRxsRMxvtU-Im4D3bQLlzh69fyeV3p_R-ig8x0g9JHgKcG4-GpvoJ0WmJS45Ey-QRPCCpJTwdkBmmBVipwzqg7RUYy3GGPFKX2HDgtWKEmInKA_C-fA9pl32Ry6PpgmW0Gfvme-i9vprDONv_ZDHOf5Rbg2XW2zk2BaePDhLlFdNquiD5u-Tr8ps2O8CRG25Ny3Gz90Vcxc8G12ZXoI37LLxgyxXjeQvPYmKWO7W_dXZLpqhLPLIdSutmY7fo_eOtNE-PD8HqNfJ4uf89P8_GJ5Np-d55YTIfOSS8UsgKJWFspZu6ZqzcDKihgrORYghYR0EaGkFW7NnIHSgVOqqApXSXqMvozeTfD3A8Ret3W00DSmg3QNnZZwoihl6nWUU6XSHlEm9PN_6K0fQjrxjpJSUixEoqYjZYOPMYDTm1C3JjxqgvW2dr2tXe9rT4FPz9ph3UK1x196ToAagYe6gcdXdHp-ulj9K8_HbB17-L3PmnCnuaCC6asfS_19hQlTZKk5fQIPs8y8 |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1016_j_ccr_2018_06_011 crossref_primary_10_1007_s11270_023_06208_9 crossref_primary_10_1002_chem_201502317 crossref_primary_10_1002_cjoc_201500761 crossref_primary_10_1016_j_ccr_2023_215303 crossref_primary_10_1016_j_chemosphere_2024_141786 crossref_primary_10_1021_acssuschemeng_7b02720 crossref_primary_10_1016_j_cej_2015_06_044 crossref_primary_10_1039_C9NJ00433E crossref_primary_10_1016_j_jhazmat_2017_04_044 crossref_primary_10_1016_j_cej_2017_06_052 crossref_primary_10_1016_j_chemosphere_2022_135261 crossref_primary_10_1016_j_microc_2015_10_005 crossref_primary_10_1039_C9EN00316A crossref_primary_10_1021_acs_inorgchem_9b00380 crossref_primary_10_1016_j_desal_2022_116038 crossref_primary_10_1016_j_envpol_2020_115668 crossref_primary_10_1016_j_seppur_2022_121187 crossref_primary_10_14478_ace_2016_1048 crossref_primary_10_1016_j_ccr_2020_213477 crossref_primary_10_1016_j_jclepro_2020_121492 crossref_primary_10_1016_j_jhazmat_2020_123655 crossref_primary_10_1016_j_chemosphere_2019_124875 crossref_primary_10_1039_C5CC05990A crossref_primary_10_1016_j_ccr_2018_10_003 crossref_primary_10_1016_j_scitotenv_2020_143765 crossref_primary_10_1016_j_ccr_2020_213507 crossref_primary_10_1021_acs_jpcc_7b11247 crossref_primary_10_1039_D2RA04182K crossref_primary_10_1016_j_jcis_2020_02_004 crossref_primary_10_1021_jacs_5b03904 crossref_primary_10_1016_j_seppur_2024_127724 crossref_primary_10_1021_acsami_3c10766 crossref_primary_10_1016_j_seppur_2024_127602 crossref_primary_10_1021_acsanm_0c01696 crossref_primary_10_2139_ssrn_4018860 crossref_primary_10_1016_j_cej_2017_08_038 crossref_primary_10_1021_acsami_7b02563 crossref_primary_10_1016_j_seppur_2022_121014 crossref_primary_10_1021_acs_nanolett_9b04124 crossref_primary_10_1039_C7NR01092C crossref_primary_10_1016_j_rechem_2023_101223 crossref_primary_10_1016_j_apcata_2016_11_006 crossref_primary_10_1002_aoc_5637 crossref_primary_10_1016_j_jhazmat_2015_08_045 crossref_primary_10_1016_j_chemosphere_2018_05_145 crossref_primary_10_1016_j_envres_2020_110654 crossref_primary_10_1039_C5CE01428J crossref_primary_10_1016_j_matchemphys_2020_123246 crossref_primary_10_1007_s11270_023_06736_4 crossref_primary_10_1002_aic_15384 crossref_primary_10_1149_1945_7111_ac707b crossref_primary_10_1016_j_jece_2022_108737 crossref_primary_10_1016_j_apsusc_2017_09_032 crossref_primary_10_1016_j_cej_2019_121948 crossref_primary_10_1016_j_cej_2023_146963 crossref_primary_10_1016_j_cej_2015_08_087 crossref_primary_10_1016_j_cej_2024_148766 crossref_primary_10_1016_j_cej_2021_130598 crossref_primary_10_1002_chem_201802343 crossref_primary_10_1016_j_cis_2019_102071 crossref_primary_10_1039_C7DT03705H crossref_primary_10_1016_j_xcrp_2021_100625 crossref_primary_10_1049_mnl_2016_0674 crossref_primary_10_1016_j_jenvman_2023_119065 crossref_primary_10_1016_j_scitotenv_2017_05_219 crossref_primary_10_1038_srep34462 crossref_primary_10_1016_j_cej_2019_122196 crossref_primary_10_1016_j_pmatsci_2017_01_002 crossref_primary_10_1007_s11696_022_02100_8 crossref_primary_10_1016_j_apsusc_2022_154859 crossref_primary_10_3390_ma10070769 crossref_primary_10_1016_j_ccr_2020_213526 crossref_primary_10_1016_j_jhazmat_2018_10_030 crossref_primary_10_1002_ejic_201600160 crossref_primary_10_1021_acsestwater_3c00468 crossref_primary_10_1016_j_seppur_2023_125589 crossref_primary_10_1002_asia_202001365 crossref_primary_10_1016_j_jiec_2019_07_009 crossref_primary_10_1016_j_jiec_2018_10_035 crossref_primary_10_1039_C9RA06879A crossref_primary_10_1016_j_jcis_2019_07_046 crossref_primary_10_3390_ma16247636 crossref_primary_10_1007_s00604_018_2879_2 crossref_primary_10_1016_j_chemosphere_2016_05_081 crossref_primary_10_1016_j_ccr_2022_214776 crossref_primary_10_1016_j_watres_2019_04_043 crossref_primary_10_1039_C5TA05440K crossref_primary_10_1016_j_enmm_2023_100868 crossref_primary_10_1016_j_jece_2022_108556 crossref_primary_10_1016_j_cclet_2017_09_062 crossref_primary_10_1002_cnma_202100400 crossref_primary_10_1002_pi_5315 crossref_primary_10_1039_C8TA00264A crossref_primary_10_1039_D1TA04444C crossref_primary_10_1007_s00604_023_06107_0 crossref_primary_10_1039_C9EN00923J crossref_primary_10_1007_s11814_020_0722_z crossref_primary_10_1039_D0MA00291G crossref_primary_10_1016_j_apmt_2020_100796 crossref_primary_10_1016_j_cej_2017_01_021 crossref_primary_10_1016_j_chemosphere_2017_04_049 crossref_primary_10_1002_chem_201500909 crossref_primary_10_1016_j_inoche_2023_110745 crossref_primary_10_1016_j_cej_2014_12_093 crossref_primary_10_1016_j_saa_2016_02_020 crossref_primary_10_1007_s11356_017_9002_9 crossref_primary_10_1016_j_colsurfa_2023_131014 crossref_primary_10_1039_C7EN00758B crossref_primary_10_3390_app12157591 crossref_primary_10_1016_j_inoche_2021_108804 crossref_primary_10_1088_1755_1315_1263_1_012059 crossref_primary_10_1021_acs_cgd_8b01353 crossref_primary_10_1016_j_jhazmat_2015_09_040 crossref_primary_10_1016_j_jhazmat_2022_128271 crossref_primary_10_1016_j_jece_2023_111418 crossref_primary_10_1016_j_cej_2015_02_007 crossref_primary_10_1016_j_jenvman_2020_111389 crossref_primary_10_1016_j_seppur_2016_12_041 crossref_primary_10_1016_j_chemosphere_2023_139687 crossref_primary_10_1039_C9CS00829B crossref_primary_10_1080_15569543_2024_2329921 crossref_primary_10_1016_j_jece_2021_105225 crossref_primary_10_2139_ssrn_4110627 crossref_primary_10_1016_j_jhazmat_2022_128394 crossref_primary_10_1016_j_chemosphere_2020_127369 crossref_primary_10_1016_j_chemosphere_2021_129605 crossref_primary_10_1016_j_cej_2018_01_139 crossref_primary_10_1016_j_scitotenv_2020_140508 crossref_primary_10_2166_wrd_2024_118 crossref_primary_10_1016_j_jwpe_2022_103059 crossref_primary_10_1016_j_jssc_2019_121029 crossref_primary_10_1107_S205698902300837X crossref_primary_10_1007_s11356_020_07942_x crossref_primary_10_1016_j_cej_2021_132162 crossref_primary_10_1021_acs_est_7b05761 crossref_primary_10_1016_j_cej_2016_10_084 crossref_primary_10_1002_cplu_201500308 crossref_primary_10_2139_ssrn_4098681 crossref_primary_10_1016_j_molliq_2021_115593 crossref_primary_10_1038_s41598_018_23557_2 crossref_primary_10_1016_j_chemosphere_2020_126829 crossref_primary_10_1021_acs_jpcc_5b09298 crossref_primary_10_1039_C7CS00543A |
Cites_doi | 10.1246/bcsj.20110162 10.1039/c3cs60059a 10.1021/jp402916y 10.1002/anie.201105113 10.1016/j.cej.2014.02.070 10.1016/j.cej.2013.08.110 10.1039/B618320B 10.1021/cm901983a 10.1016/j.cattod.2013.09.040 10.1002/anie.200705998 10.1039/c0cc01506g 10.1016/j.jcis.2011.02.040 10.1039/C0CC04759G 10.1021/es803178f 10.1002/chem.200902382 10.1021/ja0276974 10.1016/j.jhazmat.2012.11.011 10.1002/ange.201105113 10.1021/ic402012d 10.1002/anie.200460592 10.1021/jp507074x 10.1016/j.micromeso.2012.02.027 10.1016/j.jhazmat.2008.03.028 10.1016/j.jcis.2014.01.003 10.1166/apm.2013.1005 10.1021/es071752x 10.1021/cr200216x 10.1002/adfm.200801130 10.1039/c2ce25760b 10.1002/ange.200705998 10.1039/B704325B 10.1039/b927113a 10.1039/C1JM14101E 10.1039/c3ta11807j 10.1016/j.jenvman.2008.09.003 10.1166/apm.2013.1002 10.1002/ange.201100050 10.1002/ange.200460592 10.1016/j.micromeso.2010.05.018 10.1021/jp809408x 10.1007/s13762-013-0261-9 10.1016/j.jhazmat.2012.01.005 10.1021/es0486770 10.1016/j.jhazmat.2007.03.055 10.1016/j.micromeso.2011.11.025 10.1016/j.jcis.2012.03.064 10.1016/j.watres.2005.10.040 10.1016/j.jhazmat.2010.09.035 10.1021/cr400005f 10.1039/c0cp01703e 10.1021/es061160z 10.1021/es048701 10.1002/anie.201100050 10.1021/ja906034k 10.1039/c2jm16030g 10.1126/science.1230444 10.1126/science.1116275 10.1021/ja403571z 10.1021/cm300863c 10.1016/j.jhazmat.2012.05.078 10.1002/adma.200601604 10.1016/j.jhazmat.2010.12.005 10.1021/la800227x 10.1039/C4CS00006D 10.1021/la904502h 10.1016/j.jhazmat.2013.06.076 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201404658 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 354 |
ExternalDocumentID | 3533451081 10_1002_chem_201404658 25298118 CHEM201404658 ark_67375_WNG_DM01591G_6 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 2013R1A2A2A01007176 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c6178-46895cee93c829fccb39b5ec8d1ac8607e878e000798c7fb5fae4fef992d2fd83 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 |
IngestDate | Fri Aug 16 21:20:59 EDT 2024 Fri Aug 16 22:30:40 EDT 2024 Thu Oct 10 17:01:27 EDT 2024 Fri Aug 23 03:32:02 EDT 2024 Sat Sep 28 07:56:42 EDT 2024 Sat Aug 24 00:59:03 EDT 2024 Wed Oct 30 09:53:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | water purification iron adsorption arsenic metal-organic frameworks |
Language | English |
License | 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6178-46895cee93c829fccb39b5ec8d1ac8607e878e000798c7fb5fae4fef992d2fd83 |
Notes | istex:482DBE96D08961F72451B4868C582006BB0B66A5 National Research Foundation of Korea - No. 2013R1A2A2A01007176 ArticleID:CHEM201404658 ark:/67375/WNG-DM01591G-6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25298118 |
PQID | 1638883077 |
PQPubID | 986340 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1786193359 proquest_miscellaneous_1639979874 proquest_journals_1638883077 crossref_primary_10_1002_chem_201404658 pubmed_primary_25298118 wiley_primary_10_1002_chem_201404658_CHEM201404658 istex_primary_ark_67375_WNG_DM01591G_6 |
PublicationCentury | 2000 |
PublicationDate | January 2, 2015 |
PublicationDateYYYYMMDD | 2015-01-02 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2, 2015 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | B. J. Lafferty, R. H. Loeppert, Environ. Sci. Technol. 2005, 39, 2120-2127. N. A. Khan, J. S. Lee, J. Jeon, C.-H. Jun, S. H. Jhung, Microporous Mesoporous Mater. 2012, 152, 235-239. N. A. Khan, S. H. Jhung, J. Hazard. Mater. 2013, 260, 1050-1056. S.-H. Lin, R.-S. Juang, J. Environ. Manag. 2009, 90, 1336-1349. H. Wu, Q. Gong, D. H. Olson, J. Li, Chem. Rev. 2012, 112, 836-868. G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surble', J. Dutour, I. Margiolaki, Angew. Chem. Int. Ed. 2004, 43, 6296-6301 N. A. Khan, Z. Hasan, S. H. Jhung, J. Hazard. Mater. 2013, 244-245, 444-456. L. Nouri, I. Ghodbane, O. Hamdaoui, M. Chiha, J. Hazard. Mater. 2007, 149, 115-125. S. Zheng, W. Jiang, Y. Cai, D. D. Dionysiou, K. E. O'Shea, Catal. Today 2014, 224, 83-88. C. Volkringer, D. Popov, T. Loiseau, G. Férey, M. Burghammer, C. Riekel, M. Haouas, F. Taulelle, Chem. Mater. 2009, 21, 5695-5697. E. Haque, N. A. Khan, J. H. Park, S. H. Jhung, Chem. Eur. J. 2010, 16, 1046-1052. Y. Arai, D. L. Sparks, J. A. Davis, Environ. Sci. Technol. 2005, 39, 2537-2544. U. Arroyo-Abad, M. P. Elizalde-González, C. M. Hidalgo-Moreno, J. Mattusch, R. Wennrich, J. Hazard. Mater. 2011, 186, 1328-1334. E. Haque, J. H. Jeong, S. H. Jhung, CrystEngComm 2010, 12, 2749-2754. Y.-K. Hwang, D.-Y. Hong, J.-S. Chang, S. H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Angew. Chem. Int. Ed. 2008, 47, 4144-4148 F. Vermoortele, R. Ameloot, L. Alaerts, R. Matthessen, B. Carlier, E. V. R. Fernandez, G. Gascon, F. Kapteijn, D. E. De Vos, J. Mater. Chem. 2012, 22, 10313-10321. B. Van de Voorde, B. Bueken, J. Denayer, D. De Vos, Chem. Soc. Rev. 2014, 43, 5766-5788. C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, G. Férey, J. Am. Chem. Soc. 2002, 124, 13519-13526. M. Maes, M. Trekels, M. Boulhout, S. Schouteden, F. Vermoortele, L. Alaerts, D. Heurtaux, Y.-K. Seo, Y. K. Hwang, J.-S. Chang, I. Beurroies, R. Denoyel, K. Temst, A. Vantomme, P. Horcajada, C. Serre, D. De Vos, Angew. Chem. Int. Ed. 2011, 50, 4210-4214 Z. Hasan, M. Tong, B. K. Jung, I. Ahmed, C. Zhong, S. H. Jhung, J. Phys. Chem. C 2014, 118, 21049-21056. K. Leus, I. Muylaert, M. Vandichel, G. B. Marin, M. Waroquier, V. V. Speybroeck, P. V. D. Voort, Chem. Commun. 2010, 46, 5085-5087. Angew. Chem. 2008, 120, 4212-4216. W. Mitchell, S. Goldberg, H. A. Al-Abadleh, J. Colloid Interface Sci. 2011, 358, 534-540. J. Hu, Z. Tong, G. Chen, X. Zhan, Z. Hu, Int. J. Environ. Sci. Technol. 2014, 11, 785-794. Q. Yang, D. Liu, C. Zhong, J. R. Li, Chem. Rev. 2013, 113, 8261-8323. P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamong, G. DeWeireld, J. S. Chang, D. Y. Hong, Y. K. Hwang, S. H. Jhung, G. Férey, Langmuir 2008, 24, 7245-7250. Y.-S. Ho, Water Res. 2006, 40, 119-125. K. Ariga, S. Ishihara, H. Abe, M. Lia, J. P. Hill, J. Mater. Chem. 2012, 22, 2369-2377. Y. F. Chen, R. Babarao, S. I. Sandler, J. W. Jiang, Langmuir 2010, 26, 8743-8750. K. A. Cychosz, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2009, 131, 14538-14543. Angew. Chem. 2011, 123, 4296-4300. L. Xie, D. Liu, H. Huang, Q. Yang, C. Zhong, Chem. Eng. J. 2014, 246, 142-149. S. Depalma, S. Cowen, T. Hoang, H. A. Al-Abadleh, Environ. Sci. Technol. 2008, 42, 1922-1927. B. K. Jung, Z. Hasan, S. H. Jhung, Chem. Eng. J. 2013, 234, 99-105. D. S. Coombes, F. Corà, C. Mellot-Draznieks, R. G. Bell, J. Phys. Chem. C 2009, 113, 544-552. S. H. Jhung, J.-H. Lee, J. W. Yoon, C. Serre, G. Férey, J.-S. Chang, Adv. Mater. 2007, 19, 121-124. L. Poon, S. Younus, L. D. Wilson, J. Colloid Interface Sci. 2014, 420, 136-144. E. Haque, J. Jun, S. H. Jhung, J. Hazard. Mater. 2011, 185, 507-511. M. Maes, S. Schouteden, L. Alaerts, D. Depla, D. E. De Vos, Phys. Chem. Chem. Phys. 2011, 13, 5587-5589. B. Van de Voorde, M. Boulhout, F. Vermoortele, P. Horcajada, D. Cunha, J. S. Lee, J.-S. Chang, E. Gibson, M. Dature, J.-C. Lavalley, A. Vimont, I Beurroies, D. De Vos, J. Am. Chem. Soc. 2013, 135, 9849-9856. N. A. Khan, Z. Hasan, S. H. Jhung, Adv. Porous Mater. 2013, 1, 91-102. Y. Masue, R. H. Leoppert, T. A. Kramer, Environ. Sci. Technol. 2007, 41, 837-842. P. Horcajada, S. Surblé, C. Serre, D.-Y. Hong, Y.-K. Seo, J.-S. Chang, J. M. Grenèche, I. Margiolaki, G. Férey, Chem. Commun. 2007, 2820-2822. B. H. Hameed, A. A. Rahman, J. Hazard. Mater. 2008, 160, 576-581. H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444. Angew. Chem. 2012, 124, 1224-1227. Angew. Chem. 2004, 116, 6456-6461. A. Vinu, K. Ariga, Adv. Porous Mater. 2013, 1, 63-71. N. A. Khan, J. W. Jun, J. H. Jeong, S. H. Jhung, Chem. Commun. 2011, 47, 1306-1308. G. Férey, Chem. Soc. Rev. 2008, 37, 191-214. I. Ahmed, N. A. Khan, S. H. Jhung, Inorg. Chem. 2013, 52, 14155-14161. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Mirgiolaki, Science 2005, 309, 2040-2042. S. H. Jhung, N. A. Khan, Z. Hasan, CrystEngComm 2012, 14, 7099-7109. W.-R. Chen, C.-H. Huang, J. Hazard. Mater. 2012, 227- 228, 378-385. K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J. P. Hill, Bull. Chem. Soc. Jpn. 2012, 85, 1-32. D.-Y. Hong, Y. K. Hwang, C. Serre, G. Férey, J.-S. Chang, Adv. Funct. Mater. 2009, 19, 1537-1552. Z. Hasan, J. Jeon, S. H. Jhung, J. Hazard. Mater. 2012, 209, 151-157. M. Tong, D. Liu, Q. Yang, S. Devautour-Vinot, G. Maurinb, C. Zhong, J. Mater. Chem. A 2013, 1, 8534-8537. S. Devautour-Vinot, G. Maurin, C. Serre, P. Horcajada, D. Paula da Cunha, V, Guillerm, E. Souza-Costa, F. Taulelle, C. Martineau, Chem. Mater. 2012, 24, 2168-2177. S. Devautour-Vinot, C. Martineau, S. Diaby, M. Ben-Yahia, S. Miller, C. Serre, P. Horcajada, D. Cunha, F. Taulelle, G. Maurin, J. Phys. Chem. C 2013, 117, 11694-11704. M. Chabot, T. Hoang, H. A. Al-Abadleh, Environ. Sci. Technol. 2009, 43, 3142-3147. Y.-K. Seo, J. W. Yoon, J. S. Lee, U.-H. Lee, Y.-K. Hwang, C.-H. Jun, P. Horcajada, C. Serre, J.-S. Chang, Microporous Mesoporous Mater. 2012, 157, 137-145. N. A. Khan, S. H. Jhung, Angew. Chem. Int. Ed. 2012, 51, 1198-1201 T. K. Trung, N. A. Ramsahye, P. Trens, N. Tanchoux, C. Serre, F. Fajula, G. Férey, Microporous Mesoporous Mater. 2010, 134, 134-140. J. Hu, Z. Tong, Z. Hu, G. Chen, T. Chen, J. Colloid Interface Sci. 2012, 377, 355-361. Z. Zhou, M. Hartmann, Chem. Soc. Rev. 2013, 42, 3894-3912. 2011; 358 2010; 12 2010; 16 2009; 43 2013; 1 2007; 149 2008; 37 2009; 113 2011; 13 2008 2008; 47 120 2012; 14 2012; 209 2010; 26 2012; 377 2012 2012; 51 124 2009; 90 2013; 52 2013; 117 2013; 113 2013; 234 2008; 24 2005; 309 2009; 19 2012; 24 2005; 39 2012; 22 2014; 246 2014; 11 2014; 118 2007; 19 2004 2004; 43 116 2009; 21 2012 2013; 42 2007 2013; 341 2009; 131 2013; 260 2014; 43 2008; 160 2012; 152 2012; 112 2012; 157 2006; 40 2010; 46 2002; 124 2010; 134 2013; 244–245 2013; 135 2011 2011; 50 123 2008; 42 2011; 47 2007; 41 2011; 185 2014; 224 2014; 420 2012; 85 2011; 186 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_3 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_52_3 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_37_3 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_3 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 43 116 start-page: 6296 6456 year: 2004 2004 end-page: 6301 6461 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 185 start-page: 507 year: 2011 end-page: 511 publication-title: J. Hazard. Mater. – volume: 118 start-page: 21049 year: 2014 end-page: 21056 publication-title: J. Phys. Chem. C – start-page: 378 year: 2012 end-page: 385 publication-title: J. Hazard. Mater. – volume: 420 start-page: 136 year: 2014 end-page: 144 publication-title: J. Colloid Interface Sci. – volume: 39 start-page: 2120 year: 2005 end-page: 2127 publication-title: Environ. Sci. Technol. – volume: 149 start-page: 115 year: 2007 end-page: 125 publication-title: J. Hazard. Mater. – volume: 22 start-page: 2369 year: 2012 end-page: 2377 publication-title: J. Mater. Chem. – volume: 39 start-page: 2537 year: 2005 end-page: 2544 publication-title: Environ. Sci. Technol. – volume: 41 start-page: 837 year: 2007 end-page: 842 publication-title: Environ. Sci. Technol. – volume: 12 start-page: 2749 year: 2010 end-page: 2754 publication-title: CrystEngComm – volume: 1 start-page: 91 year: 2013 end-page: 102 publication-title: Adv. Porous Mater. – volume: 134 start-page: 134 year: 2010 end-page: 140 publication-title: Microporous Mesoporous Mater. – start-page: 2820 year: 2007 end-page: 2822 publication-title: Chem. Commun. – volume: 47 start-page: 1306 year: 2011 end-page: 1308 publication-title: Chem. Commun. – volume: 117 start-page: 11694 year: 2013 end-page: 11704 publication-title: J. Phys. Chem. C – volume: 358 start-page: 534 year: 2011 end-page: 540 publication-title: J. Colloid Interface Sci. – volume: 40 start-page: 119 year: 2006 end-page: 125 publication-title: Water Res. – volume: 19 start-page: 121 year: 2007 end-page: 124 publication-title: Adv. Mater. – volume: 47 120 start-page: 4144 4212 year: 2008 2008 end-page: 4148 4216 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 5766 year: 2014 end-page: 5788 publication-title: Chem. Soc. Rev. – volume: 19 start-page: 1537 year: 2009 end-page: 1552 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 7099 year: 2012 end-page: 7109 publication-title: CrystEngComm – volume: 46 start-page: 5085 year: 2010 end-page: 5087 publication-title: Chem. Commun. – volume: 42 start-page: 1922 year: 2008 end-page: 1927 publication-title: Environ. Sci. Technol. – volume: 124 start-page: 13519 year: 2002 end-page: 13526 publication-title: J. Am. Chem. Soc. – volume: 186 start-page: 1328 year: 2011 end-page: 1334 publication-title: J. Hazard. Mater. – volume: 42 start-page: 3894 year: 2013 end-page: 3912 publication-title: Chem. Soc. Rev. – volume: 52 start-page: 14155 year: 2013 end-page: 14161 publication-title: Inorg. Chem. – volume: 157 start-page: 137 year: 2012 end-page: 145 publication-title: Microporous Mesoporous Mater. – volume: 260 start-page: 1050 year: 2013 end-page: 1056 publication-title: J. Hazard. Mater. – volume: 209 start-page: 151 year: 2012 end-page: 157 publication-title: J. Hazard. Mater. – volume: 1 start-page: 63 year: 2013 end-page: 71 publication-title: Adv. Porous Mater. – volume: 24 start-page: 7245 year: 2008 end-page: 7250 publication-title: Langmuir – volume: 113 start-page: 544 year: 2009 end-page: 552 publication-title: J. Phys. Chem. C – volume: 112 start-page: 836 year: 2012 end-page: 868 publication-title: Chem. Rev. – volume: 224 start-page: 83 year: 2014 end-page: 88 publication-title: Catal. Today – volume: 309 start-page: 2040 year: 2005 end-page: 2042 publication-title: Science – volume: 1 start-page: 8534 year: 2013 end-page: 8537 publication-title: J. Mater. Chem. A – volume: 160 start-page: 576 year: 2008 end-page: 581 publication-title: J. Hazard. Mater. – volume: 22 start-page: 10313 year: 2012 end-page: 10321 publication-title: J. Mater. Chem. – volume: 37 start-page: 191 year: 2008 end-page: 214 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 3142 year: 2009 end-page: 3147 publication-title: Environ. Sci. Technol. – volume: 341 start-page: 1230444 year: 2013 publication-title: Science – volume: 377 start-page: 355 year: 2012 end-page: 361 publication-title: J. Colloid Interface Sci. – volume: 244–245 start-page: 444 year: 2013 end-page: 456 publication-title: J. Hazard. Mater. – volume: 131 start-page: 14538 year: 2009 end-page: 14543 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 2168 year: 2012 end-page: 2177 publication-title: Chem. Mater. – volume: 135 start-page: 9849 year: 2013 end-page: 9856 publication-title: J. Am. Chem. Soc. – volume: 234 start-page: 99 year: 2013 end-page: 105 publication-title: Chem. Eng. J. – volume: 246 start-page: 142 year: 2014 end-page: 149 publication-title: Chem. Eng. J. – volume: 51 124 start-page: 1198 1224 year: 2012 2012 end-page: 1201 1227 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 8743 year: 2010 end-page: 8750 publication-title: Langmuir – volume: 11 start-page: 785 year: 2014 end-page: 794 publication-title: Int. J. Environ. Sci. Technol. – volume: 85 start-page: 1 year: 2012 end-page: 32 publication-title: Bull. Chem. Soc. Jpn. – volume: 50 123 start-page: 4210 4296 year: 2011 2011 end-page: 4214 4300 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 5587 year: 2011 end-page: 5589 publication-title: Phys. Chem. Chem. Phys. – volume: 16 start-page: 1046 year: 2010 end-page: 1052 publication-title: Chem. Eur. J. – volume: 113 start-page: 8261 year: 2013 end-page: 8323 publication-title: Chem. Rev. – volume: 152 start-page: 235 year: 2012 end-page: 239 publication-title: Microporous Mesoporous Mater. – volume: 90 start-page: 1336 year: 2009 end-page: 1349 publication-title: J. Environ. Manag. – volume: 21 start-page: 5695 year: 2009 end-page: 5697 publication-title: Chem. Mater. – ident: e_1_2_6_9_2 doi: 10.1246/bcsj.20110162 – ident: e_1_2_6_11_2 doi: 10.1039/c3cs60059a – ident: e_1_2_6_64_2 doi: 10.1021/jp402916y – ident: e_1_2_6_19_2 doi: 10.1002/anie.201105113 – ident: e_1_2_6_28_2 doi: 10.1016/j.cej.2014.02.070 – ident: e_1_2_6_27_2 doi: 10.1016/j.cej.2013.08.110 – ident: e_1_2_6_15_2 doi: 10.1039/B618320B – ident: e_1_2_6_35_2 doi: 10.1021/cm901983a – ident: e_1_2_6_4_2 doi: 10.1016/j.cattod.2013.09.040 – ident: e_1_2_6_52_2 doi: 10.1002/anie.200705998 – ident: e_1_2_6_54_2 doi: 10.1039/c0cc01506g – ident: e_1_2_6_6_2 doi: 10.1016/j.jcis.2011.02.040 – ident: e_1_2_6_20_2 doi: 10.1039/C0CC04759G – ident: e_1_2_6_7_2 doi: 10.1021/es803178f – ident: e_1_2_6_59_2 doi: 10.1002/chem.200902382 – ident: e_1_2_6_33_2 doi: 10.1021/ja0276974 – ident: e_1_2_6_47_2 doi: 10.1016/j.jhazmat.2012.11.011 – ident: e_1_2_6_19_3 doi: 10.1002/ange.201105113 – ident: e_1_2_6_22_2 doi: 10.1021/ic402012d – ident: e_1_2_6_37_2 doi: 10.1002/anie.200460592 – ident: e_1_2_6_25_2 doi: 10.1021/jp507074x – ident: e_1_2_6_40_2 doi: 10.1016/j.micromeso.2012.02.027 – ident: e_1_2_6_44_2 doi: 10.1016/j.jhazmat.2008.03.028 – ident: e_1_2_6_3_2 doi: 10.1016/j.jcis.2014.01.003 – ident: e_1_2_6_12_2 doi: 10.1166/apm.2013.1005 – ident: e_1_2_6_8_2 doi: 10.1021/es071752x – ident: e_1_2_6_16_2 doi: 10.1021/cr200216x – ident: e_1_2_6_32_2 doi: 10.1002/adfm.200801130 – ident: e_1_2_6_41_2 doi: 10.1039/c2ce25760b – ident: e_1_2_6_52_3 doi: 10.1002/ange.200705998 – ident: e_1_2_6_39_2 doi: 10.1039/B704325B – ident: e_1_2_6_34_2 doi: 10.1039/b927113a – ident: e_1_2_6_60_2 – ident: e_1_2_6_10_2 doi: 10.1039/C1JM14101E – ident: e_1_2_6_23_2 doi: 10.1039/c3ta11807j – ident: e_1_2_6_45_2 doi: 10.1016/j.jenvman.2008.09.003 – ident: e_1_2_6_48_2 doi: 10.1166/apm.2013.1002 – ident: e_1_2_6_21_3 doi: 10.1002/ange.201100050 – ident: e_1_2_6_37_3 doi: 10.1002/ange.200460592 – ident: e_1_2_6_38_2 doi: 10.1016/j.micromeso.2010.05.018 – ident: e_1_2_6_62_2 doi: 10.1021/jp809408x – ident: e_1_2_6_5_2 doi: 10.1007/s13762-013-0261-9 – ident: e_1_2_6_30_2 doi: 10.1016/j.jhazmat.2012.01.005 – ident: e_1_2_6_56_2 doi: 10.1021/es0486770 – ident: e_1_2_6_43_2 doi: 10.1016/j.jhazmat.2007.03.055 – ident: e_1_2_6_36_2 doi: 10.1016/j.micromeso.2011.11.025 – ident: e_1_2_6_2_2 doi: 10.1016/j.jcis.2012.03.064 – ident: e_1_2_6_42_2 doi: 10.1016/j.watres.2005.10.040 – ident: e_1_2_6_24_2 doi: 10.1016/j.jhazmat.2010.09.035 – ident: e_1_2_6_14_2 doi: 10.1021/cr400005f – ident: e_1_2_6_29_2 doi: 10.1039/c0cp01703e – ident: e_1_2_6_55_2 doi: 10.1021/es061160z – ident: e_1_2_6_57_2 doi: 10.1021/es048701 – ident: e_1_2_6_21_2 doi: 10.1002/anie.201100050 – ident: e_1_2_6_51_2 – ident: e_1_2_6_18_2 doi: 10.1021/ja906034k – ident: e_1_2_6_58_2 doi: 10.1039/c2jm16030g – ident: e_1_2_6_13_2 doi: 10.1126/science.1230444 – ident: e_1_2_6_31_2 doi: 10.1126/science.1116275 – ident: e_1_2_6_50_2 doi: 10.1021/ja403571z – ident: e_1_2_6_63_2 doi: 10.1021/cm300863c – ident: e_1_2_6_1_2 doi: 10.1016/j.jhazmat.2012.05.078 – ident: e_1_2_6_26_2 doi: 10.1002/adma.200601604 – ident: e_1_2_6_46_2 doi: 10.1016/j.jhazmat.2010.12.005 – ident: e_1_2_6_53_2 doi: 10.1021/la800227x – ident: e_1_2_6_17_2 doi: 10.1039/C4CS00006D – ident: e_1_2_6_61_2 doi: 10.1021/la904502h – ident: e_1_2_6_49_2 doi: 10.1016/j.jhazmat.2013.06.076 |
SSID | ssj0009633 |
Score | 2.5665848 |
Snippet | The adsorptive removal of organoarsenic compounds such as p‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs) has been... The adsorptive removal of organoarsenic compounds such as p-arsanilic acid (ASA) and roxarsone (ROX) from water using metal-organic frameworks (MOFs) has been... Abstract The adsorptive removal of organoarsenic compounds such as p ‐arsanilic acid (ASA) and roxarsone (ROX) from water using metal–organic frameworks (MOFs)... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 347 |
SubjectTerms | Activated carbon Activation Adsorption Arsanilic Acid - chemistry arsenic Chemistry Coordination Complexes - chemistry Desorption Hydrogen-Ion Concentration Ions - chemistry iron Iron - chemistry Mathematical analysis Metal-organic frameworks Metalorganic compounds Organometallic Compounds - chemistry Roxarsone - chemistry Spectroscopy, Fourier Transform Infrared Surface chemistry Water Pollutants, Chemical - chemistry Water Purification |
Title | Effect of Central Metal Ions of Analogous Metal-Organic Frameworks on Adsorption of Organoarsenic Compounds from Water: Plausible Mechanism of Adsorption and Water Purification |
URI | https://api.istex.fr/ark:/67375/WNG-DM01591G-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201404658 https://www.ncbi.nlm.nih.gov/pubmed/25298118 https://www.proquest.com/docview/1638883077 https://search.proquest.com/docview/1639979874 https://search.proquest.com/docview/1786193359 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQWcCG9yNQkJEQrNJO_JjY7KqWaUFqVSGqdmfZjoNQS4KSGQmx4h_4Ez6JL-Fee5JhEAIJdjPJdRLHx9fHzr3HhDy1yrKgC5-rwvpceMtyZ7nMCydrPglRQgqjLY6mByfi9Zk8-ymLP-lDjAtu2DOiv8YObl2_vRINhTphJjnKw8AoCk644CXGdO29WelHAbrSXvKizFGDdVBtnLDt9eJro9JlfMGffkc51xlsHIJm14kdHj5FnpxvLeZuy3_-Rdfxf2p3g1xb8lO6kwB1k1wKzS1yZXfYFu42-Zb0jmlb0-XKMD0MwODpK8AvHkWZk_Zdu-jT8e9fvqZ8T09nQyAY2DV0p-rbLjosLBVtWphlB7REL4X7PfUU01_oKRDi7gU9vrAL6MEXAa6MCcvv-w_xhqsL2aZKxvR40WEQVMTdHXIye_l29yBfbvyQe8xYzMVUaQmjt-ZeMV1777h2MnhVAaDUdFIGVaqA9EYrX9YAKxtEHWqtWcXqSvG7ZKNpm3CfUAf8zolJVelaCF4JWzko6GXJfY1ihxl5PjS8-Zj0PUxScmYG28CMbZCRZxEXo5ntzjEqrpTm9Gjf7B0CsdLFvplmZHMAjlk6hN4g7VUKHCrc8cl4GpoOv8_YJkCroI3WUKVS_MGmVDDl5VzqjNxLoBwfiEmmFUwYM8IitP5SIYOiG-O_B_9S6CG5Cr9lXJJim2Rj3i3CIyBpc_c4dsQfCS83CQ |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagPZRL-W8DBYyE4JR217E3NreqZbuF7qpCrcrNchwHoZYEJRsJceIdeBMeiSdhxt5ktQiBBMc44yTe-fFn78xnQp4ZaZhTQxvLobExt4bFmUlEPMxEkQycp5DCbIvZaHLOX78TXTYh1sIEfoh-ww09w8drdHDckN5bsobCoLCUHPlhYBq9TtbB5xM8veHw7ZJBCuwrnCbP0xhZWDvexgHbW-2_Mi-t40_8-XegcxXD-klofJNk3eeH3JPL3Xae7dovvzA7_tf4bpHNBUSl-8GmbpNrrrxDNg66k-Huku-B8phWBV1sDtOpAxBPj8GEsRWZTqr3VduE9h9fv4WST0vHXS4YyJV0P2-q2scs7OVlKlhoO5TEQIVHPjUUK2DoBWDi-iU9vTItOPGVgydjzfKH5qN_4fJBpsyDMD1ta8yD8qZ3j5yPX50dTOLF2Q-xxaLFmI-kEjCBq8RKpgprs0RlwlmZg03J0SB1MpUOEY6SNi3AsozjhSuUYjkrcpncJ2tlVbptQjOAeBkf5LkqOE9ybvIMOlqRJrZAvsOIvOg0rz8Fig8dyJyZRh3oXgcRee4Noxcz9SUmxqVCX8yO9OEUsJUaHulRRHY6y9GLmNBoRL5SQkyFNz7tb4Pq8C8aUzrQCsooBUNK-R9kUgmr3iQRKiJbwSr7D2KCKQlrxogwb1t_GZBG3o3-6sG_dHpCNiZn0xN9cjx785DcgHbhd6jYDlmb1617BJhtnj32XvkTS7c7IQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaglYAL_z-BAkZCcEq76ziJza1q2bZAVytE1d4sx3YQakmqZCMhTrwDb8Ij8STM2JssixBIcIwzTuKdz_Zn78xnQp5qoZmTYxOLsTYxN5rFhU7SeFykZTJyXkIKoy2m2f4Rf3WSnvyUxR_0IYYNN-wZfrzGDn5uy62laCi0CTPJUR4GZtGLZJ1nQH-RFr1dCkgBvMJh8jyPUYS1l20csa3V-ivT0jr-wp9-xzlXKayfgybXiO6_PoSenG5282LTfP5F2PF_mnedXF0QVLodEHWDXHDVTXJ5pz8X7hb5FgSPaV3SxdYwPXRA4ekBABhLUeekfl93bSj__uVrSPg0dNJHgoFdRbdtWzd-xMJa3qaGZbZDSxym8MCnlmL-Cz0GRty8oLMz3UEXPnPwZMxY_tB-9C9cPkhXNhjTWddgFJQH3m1yNHn5bmc_Xpz8EBtMWYx5JmQK07dMjGCyNKZIZJE6IywgSmSj3IlcOOQ3Upi8BFxpx0tXSsksK61I7pC1qq7cPUILIHgFH1krS84Ty7UtoKJJ88SUqHYYkee949V5EPhQQcqZKfSBGnwQkWceF4OZbk4xLC5P1fF0T-0eArOS4z2VRWSjB45ajAitQt4rBIyo8MYnw21wHf5BoysHXkEbKaFJOf-DTS5gzZskqYzI3QDK4YNYyqSAFWNEmIfWXxqkUHVjuLr_L5Uek0uz3Yl6czB9_YBcgeLUb0-xDbI2bzr3EAjbvHjk--QPbdw50A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Central+Metal+Ions+of+Analogous+Metal%E2%80%93Organic+Frameworks+on+Adsorption+of+Organoarsenic+Compounds+from+Water%3A+Plausible+Mechanism+of+Adsorption+and+Water+Purification&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Jun%2C+Jong+Won&rft.au=Tong%2C+Minman&rft.au=Jung%2C+Beom+K.&rft.au=Hasan%2C+Zubair&rft.date=2015-01-02&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=1&rft.spage=347&rft.epage=354&rft_id=info:doi/10.1002%2Fchem.201404658&rft.externalDBID=10.1002%252Fchem.201404658&rft.externalDocID=CHEM201404658 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |