Droplet organelles?

Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid–liqu...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 35; no. 15; pp. 1603 - 1612
Main Authors Courchaine, Edward M, Lu, Alice, Neugebauer, Karla M
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.08.2016
Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid–liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term “droplet organelle”. A veritable deluge of recent publications points to the importance of low‐complexity proteins and RNA in determining the physical properties of phase‐separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative “droplet organelles” in healthy and diseased cells, connecting protein biochemistry with cell physiology. Graphical Abstract Non‐membrane‐bound cellular structures such as nucleoli, stress granules, Cajal and P bodies have been long established. Recent data reviewed by Neugebauer and colleagues delineate liquid–liquid phase separation processes that underlie the dynamic nature of these organelles composed of low‐complexity proteins and RNA.
AbstractList Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid–liquid phase separation ( LLPS ) process may drive their formation, possibly justifying the unifying term “droplet organelle”. A veritable deluge of recent publications points to the importance of low‐complexity proteins and RNA in determining the physical properties of phase‐separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis ( ALS ). We provide an overview of the organizational principles that characterize putative “droplet organelles” in healthy and diseased cells, connecting protein biochemistry with cell physiology.
Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology.Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology.
Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid–liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term “droplet organelle”. A veritable deluge of recent publications points to the importance of low‐complexity proteins and RNA in determining the physical properties of phase‐separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative “droplet organelles” in healthy and diseased cells, connecting protein biochemistry with cell physiology. Graphical Abstract Non‐membrane‐bound cellular structures such as nucleoli, stress granules, Cajal and P bodies have been long established. Recent data reviewed by Neugebauer and colleagues delineate liquid–liquid phase separation processes that underlie the dynamic nature of these organelles composed of low‐complexity proteins and RNA.
Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid–liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term “droplet organelle”. A veritable deluge of recent publications points to the importance of low‐complexity proteins and RNA in determining the physical properties of phase‐separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative “droplet organelles” in healthy and diseased cells, connecting protein biochemistry with cell physiology. Non‐membrane‐bound cellular structures such as nucleoli, stress granules, Cajal and P bodies have been long established. Recent data reviewed by Neugebauer and colleagues delineate liquid–liquid phase separation processes that underlie the dynamic nature of these organelles composed of low‐complexity proteins and RNA.
Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology.
Author Courchaine, Edward M
Neugebauer, Karla M
Lu, Alice
AuthorAffiliation 1 Department of Molecular Biophysics and Biochemistry Yale University New Haven CT USA
AuthorAffiliation_xml – name: 1 Department of Molecular Biophysics and Biochemistry Yale University New Haven CT USA
Author_xml – sequence: 1
  givenname: Edward M
  surname: Courchaine
  fullname: Courchaine, Edward M
  organization: Department of Molecular Biophysics and Biochemistry, Yale University, CT, New Haven, USA
– sequence: 2
  givenname: Alice
  surname: Lu
  fullname: Lu, Alice
  organization: Department of Molecular Biophysics and Biochemistry, Yale University, CT, New Haven, USA
– sequence: 3
  givenname: Karla M
  surname: Neugebauer
  fullname: Neugebauer, Karla M
  email: karla.neugebauer@yale.edu
  organization: Department of Molecular Biophysics and Biochemistry, Yale University, CT, New Haven, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27357569$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUhS3UiqaFFQt2CIlNN9Nee8YvFkU0tOHRwgbE0vJ4boLDZBzsCdB_X6fTRqFSxcqWfL5zz_HdJztd6JCQ5xSOKGecHeOinh8xoFyXnMpHZEQrAQUDyXfICJigRUWV3iP7Kc0BgCtJH5M9JksuudAj8uxdDMsW-5chzmyHbYvpzROyO7Vtwqe35wH5dn72dfy-uPgy-TB-e1E4QaUsahSlamrIkwEoc5bXjUSnOTTaKqewBlXLRlVgnVL5XlHKG5RThlyVjpYH5GTwXa7qBTYOuz7a1iyjX9h4ZYL15t-Xzv8ws_DbVFpoLnU2OLw1iOHXClNvFj65XCI3CatkqAINlcyJsvTVPek8rGKX661VCqAqhcqqF9uJNlHu_isL-CBwMaQUcWqc723vwzqgbw0Fc7MXs96L2ewlc8f3uDvrh4nXA_HHt3j1P7k5uzz9uA3DAKfMdTOMW20fnFcMiE89_t3Ms_GnEbKU3Hz_PDEw5qL6dDkxrLwGfsO9VQ
CODEN EMJODG
CitedBy_id crossref_primary_10_1146_annurev_biophys_121219_081629
crossref_primary_10_1134_S1062360421020077
crossref_primary_10_1016_j_isci_2021_103719
crossref_primary_10_1016_j_tibs_2019_03_005
crossref_primary_10_1093_hmg_ddx274
crossref_primary_10_15252_embj_2020105612
crossref_primary_10_1038_s41467_018_03651_9
crossref_primary_10_1515_hsz_2018_0141
crossref_primary_10_1002_ctd2_103
crossref_primary_10_3390_polym11060990
crossref_primary_10_1038_s41583_024_00859_1
crossref_primary_10_1007_s00018_022_04141_4
crossref_primary_10_1016_j_csbj_2022_12_009
crossref_primary_10_1093_nar_gkab508
crossref_primary_10_1073_pnas_1905552116
crossref_primary_10_3390_cells10061460
crossref_primary_10_1038_s41467_024_50003_x
crossref_primary_10_1016_j_devcel_2016_10_005
crossref_primary_10_1074_jbc_AC117_001037
crossref_primary_10_1093_nar_gkae463
crossref_primary_10_1016_j_gde_2020_11_002
crossref_primary_10_1016_j_omtn_2023_07_009
crossref_primary_10_1038_nrm_2017_63
crossref_primary_10_1002_cbic_202200450
crossref_primary_10_1038_s41580_024_00739_7
crossref_primary_10_1016_j_jbior_2018_09_009
crossref_primary_10_1038_s41422_020_0296_7
crossref_primary_10_1016_j_bpj_2019_02_028
crossref_primary_10_1016_j_molcel_2020_04_001
crossref_primary_10_1111_tra_12674
crossref_primary_10_1002_2211_5463_13382
crossref_primary_10_1038_s41467_019_08354_3
crossref_primary_10_1002_bies_202000104
crossref_primary_10_1242_jcs_253591
crossref_primary_10_1016_j_jmb_2020_04_015
crossref_primary_10_1021_acs_iecr_3c03830
crossref_primary_10_1007_s00299_022_02955_x
crossref_primary_10_1016_j_bpj_2024_01_023
crossref_primary_10_1128_jb_00211_23
crossref_primary_10_1016_j_dnarep_2021_103179
crossref_primary_10_1016_j_polymer_2022_125525
crossref_primary_10_1038_s41596_018_0044_3
crossref_primary_10_3390_ijms20215501
crossref_primary_10_1002_wrna_1514
crossref_primary_10_1111_tra_12669
crossref_primary_10_7554_eLife_21337
crossref_primary_10_1007_s12551_020_00673_w
crossref_primary_10_1038_s41419_020_03116_2
crossref_primary_10_3389_fpls_2020_595792
crossref_primary_10_1002_advs_202202855
crossref_primary_10_1016_j_cois_2018_07_006
crossref_primary_10_1146_annurev_biophys_062920_063704
crossref_primary_10_1128_mBio_01202_20
crossref_primary_10_1016_j_jmb_2023_168094
crossref_primary_10_3390_plants10071307
crossref_primary_10_1002_cbic_201800066
crossref_primary_10_1016_j_molcel_2018_10_036
crossref_primary_10_1063_5_0055460
crossref_primary_10_1039_C7SM01897E
crossref_primary_10_1146_annurev_biochem_061516_044700
crossref_primary_10_3390_molecules24183265
crossref_primary_10_1016_j_cell_2021_05_008
crossref_primary_10_1016_j_jcis_2024_07_135
crossref_primary_10_1038_s41467_017_02757_w
crossref_primary_10_1038_s12276_024_01226_x
crossref_primary_10_1016_j_devcel_2024_12_016
crossref_primary_10_3389_fpls_2021_680710
crossref_primary_10_15252_embr_201847604
crossref_primary_10_1016_j_ceb_2019_02_007
crossref_primary_10_1016_j_molcel_2017_12_022
crossref_primary_10_3389_fnmol_2017_00119
crossref_primary_10_1038_s41556_022_00903_1
crossref_primary_10_5483_BMBRep_2022_55_3_188
crossref_primary_10_3390_biom9120842
crossref_primary_10_1098_rsob_180044
crossref_primary_10_1128_JVI_00948_19
crossref_primary_10_7554_eLife_60326
crossref_primary_10_1021_acs_chemrev_7b00487
crossref_primary_10_15252_embr_201947952
crossref_primary_10_1038_s41598_022_08130_2
crossref_primary_10_1016_j_bbagen_2017_06_011
crossref_primary_10_1101_sqb_2019_84_040402
crossref_primary_10_7554_eLife_44752
crossref_primary_10_1074_jbc_REV120_010899
crossref_primary_10_1038_s41467_021_27123_9
crossref_primary_10_1038_s42004_023_00879_5
crossref_primary_10_1091_mbc_e16_03_0149
crossref_primary_10_1016_j_celrep_2019_09_018
crossref_primary_10_1083_jcb_201608022
crossref_primary_10_1016_j_bbadis_2016_12_022
crossref_primary_10_1073_pnas_1615395114
crossref_primary_10_1101_gad_331520_119
crossref_primary_10_1016_j_pbiomolbio_2019_04_001
crossref_primary_10_1021_acsmacrolett_8b00565
crossref_primary_10_1042_BST20160364
crossref_primary_10_1261_rna_079469_122
crossref_primary_10_3390_cells10030571
crossref_primary_10_1086_700636
crossref_primary_10_1016_j_tibs_2018_03_007
crossref_primary_10_1016_j_bbamcr_2020_118831
crossref_primary_10_1016_j_smim_2024_101926
crossref_primary_10_1016_j_tplants_2020_05_005
crossref_primary_10_1038_cddis_2016_444
crossref_primary_10_1038_s41556_020_0550_8
crossref_primary_10_7554_eLife_35224
crossref_primary_10_1016_j_ceb_2017_05_001
crossref_primary_10_1039_C7NR07833A
crossref_primary_10_1021_acs_biochem_7b01262
crossref_primary_10_1371_journal_ppat_1011022
crossref_primary_10_1016_j_cobme_2023_100483
crossref_primary_10_1016_j_ydbio_2019_01_008
crossref_primary_10_1016_j_jtbi_2017_04_006
crossref_primary_10_3389_fchem_2019_00044
crossref_primary_10_1002_pro_4521
crossref_primary_10_1080_15476286_2016_1255397
crossref_primary_10_7554_eLife_24106
crossref_primary_10_3390_biomedicines10051080
crossref_primary_10_1021_acsbiomaterials_0c01543
crossref_primary_10_1002_wrna_1574
crossref_primary_10_1016_j_cell_2016_09_036
crossref_primary_10_1016_j_tibs_2017_08_002
crossref_primary_10_1002_pro_70061
crossref_primary_10_1016_j_bpj_2018_09_022
crossref_primary_10_1016_j_tips_2021_07_003
crossref_primary_10_1080_15476286_2016_1265198
crossref_primary_10_1590_0001_3765202420240321
crossref_primary_10_1242_jcs_202002
crossref_primary_10_1016_j_celrep_2021_109277
crossref_primary_10_1007_s12104_022_10067_6
crossref_primary_10_3390_antiox9040347
crossref_primary_10_1002_wrna_1582
crossref_primary_10_1038_s42005_018_0019_2
crossref_primary_10_1111_jipb_13152
crossref_primary_10_1016_j_molcel_2018_08_003
crossref_primary_10_1242_dev_144642
crossref_primary_10_1126_sciadv_abj9247
crossref_primary_10_1242_jcs_263447
crossref_primary_10_1038_s41598_023_39094_6
crossref_primary_10_1016_j_molp_2020_01_011
crossref_primary_10_1093_nar_gkae951
crossref_primary_10_3390_biom7040070
crossref_primary_10_1021_acs_nanolett_0c02635
crossref_primary_10_1016_j_jmb_2019_11_017
crossref_primary_10_1039_D0SC04993J
crossref_primary_10_1242_dmm_028613
crossref_primary_10_1016_j_scr_2017_07_018
crossref_primary_10_1096_fj_202200235R
crossref_primary_10_1016_j_jmb_2023_167955
crossref_primary_10_1073_pnas_2217242120
crossref_primary_10_1099_jgv_0_002021
crossref_primary_10_1016_j_celrep_2019_05_085
crossref_primary_10_1080_15476286_2016_1243648
crossref_primary_10_1002_wrna_1599
crossref_primary_10_1038_s41586_020_1977_6
crossref_primary_10_1016_j_tibs_2020_04_006
crossref_primary_10_1042_BCJ20200847
crossref_primary_10_1073_pnas_1615575114
crossref_primary_10_1002_wrna_1591
crossref_primary_10_1146_annurev_arplant_042916_041115
crossref_primary_10_7554_eLife_47098
crossref_primary_10_1021_acs_chemrev_7b00305
crossref_primary_10_1016_j_jmb_2019_01_037
crossref_primary_10_1038_s41467_022_32889_7
crossref_primary_10_1073_pnas_2312587121
crossref_primary_10_1021_acs_biochem_7b01215
crossref_primary_10_15252_embj_2021109952
crossref_primary_10_1126_science_aaw9498
crossref_primary_10_18699_VJ19_471
crossref_primary_10_3390_biology10050366
crossref_primary_10_3389_fncel_2022_954912
crossref_primary_10_1016_j_cell_2017_06_022
crossref_primary_10_1080_15476286_2016_1236169
crossref_primary_10_1002_smll_202105147
crossref_primary_10_1073_pnas_1907849116
crossref_primary_10_1007_s00412_017_0632_y
crossref_primary_10_3389_fncel_2019_00487
crossref_primary_10_1038_s41580_022_00558_8
crossref_primary_10_1039_C8SM02285B
crossref_primary_10_1073_pnas_1701877114
crossref_primary_10_2142_biophys_63_5
crossref_primary_10_1016_j_mib_2024_102467
crossref_primary_10_1083_jcb_202009045
crossref_primary_10_1126_sciadv_abg8654
crossref_primary_10_1016_j_yexcr_2023_113855
crossref_primary_10_15252_embj_201696394
crossref_primary_10_1371_journal_pcbi_1007717
crossref_primary_10_1111_1348_0421_13062
crossref_primary_10_1016_j_bbamcr_2021_119058
crossref_primary_10_1038_s41467_024_50027_3
crossref_primary_10_1016_j_jmb_2020_02_013
crossref_primary_10_1042_BST20231447
crossref_primary_10_1007_s10930_025_10261_0
crossref_primary_10_1002_1873_3468_12765
crossref_primary_10_1038_s12276_022_00857_2
crossref_primary_10_3389_fcell_2022_876893
crossref_primary_10_7554_eLife_37949
crossref_primary_10_1016_j_phytochem_2019_112214
crossref_primary_10_1021_acs_jpcb_7b00868
crossref_primary_10_3389_fcimb_2023_1082622
crossref_primary_10_1016_j_acthis_2024_152207
crossref_primary_10_1038_s41586_018_0174_3
crossref_primary_10_1080_21541264_2017_1373891
crossref_primary_10_1016_j_tig_2018_05_005
crossref_primary_10_1242_dmm_049294
crossref_primary_10_1002_1873_3468_13183
crossref_primary_10_3390_ncrna5040050
crossref_primary_10_1002_wrna_1545
crossref_primary_10_1038_nrm_2017_10
crossref_primary_10_1038_s42003_024_07102_8
crossref_primary_10_1016_j_semcdb_2018_07_001
crossref_primary_10_1063_5_0048441
crossref_primary_10_1093_nar_gkab249
crossref_primary_10_3389_fgene_2022_832547
crossref_primary_10_1016_j_biochi_2024_05_007
crossref_primary_10_1039_C8NP00037A
crossref_primary_10_3389_fnins_2021_648133
crossref_primary_10_1016_j_molcel_2022_02_025
crossref_primary_10_1093_jb_mvab090
Cites_doi 10.1016/j.cub.2013.09.058
10.1093/bioinformatics/btu310
10.1016/j.tig.2011.05.006
10.1083/jcb.151.7.1561
10.1146/annurev-cellbio-100913-013325
10.1146/annurev.cellbio.16.1.273
10.7554/eLife.06807
10.1146/annurev-biophys-050511-102328
10.1038/nature11922
10.1016/j.molcel.2015.08.018
10.1073/pnas.1509317112
10.1016/j.tibs.2007.03.003
10.1016/j.molcel.2007.02.011
10.1038/35007077
10.1016/j.celrep.2014.12.030
10.1091/mbc.E06-06-0513
10.1093/protein/gzp037
10.1002/wrna.1139
10.1091/mbc.e04-08-0742
10.1016/j.molcel.2015.09.017
10.1038/nature06992
10.1016/j.cell.2015.08.010
10.1016/j.bbapap.2013.01.003
10.1073/pnas.0910163107
10.1021/j150415a018
10.1038/ncb2157
10.1016/j.cell.2015.07.047
10.1016/j.cell.2015.10.040
10.1038/nrm2081
10.1083/jcb.201504117
10.1016/j.molcel.2010.09.024
10.1038/nrm1172
10.1063/1.1723621
10.1016/j.cell.2013.05.037
10.1016/j.cell.2012.01.004
10.1101/cshperspect.a000638
10.1038/onc.2009.388
10.1016/j.cell.2009.02.044
10.1016/j.molcel.2011.09.019
10.1371/journal.pbio.0040006
10.1038/ncomms9088
10.1371/journal.pbio.1000614
10.1038/nrm2184
10.1016/j.cell.2013.10.033
10.1016/j.cell.2015.09.015
10.1016/j.cell.2015.08.060
10.1073/pnas.1504822112
10.1016/j.neuron.2015.10.030
10.1038/emboj.2012.302
10.1016/j.molcel.2015.09.006
10.1016/j.mcn.2015.01.002
10.1074/jbc.M111.328757
10.1073/pnas.1512799112
10.1038/nature10879
10.1126/science.1173155
10.1083/jcb.200906113
10.1083/jcb.200405160
10.1126/science.1254917
10.7554/eLife.04251
10.1038/nsmb.2064
10.1016/j.cell.2012.04.017
10.1038/nn.3514
10.1016/j.brainres.2012.01.016
10.1083/jcb.117.1.1
10.1016/j.cell.2012.05.022
10.1016/j.molcel.2014.10.004
10.1083/jcb.201302044
10.1073/pnas.1017150108
10.1016/j.molcel.2009.11.020
10.1126/science.1172046
10.1038/nrm3185
10.1016/j.molcel.2015.01.013
10.1016/S0960-9822(99)80066-9
10.1016/j.jmb.2015.02.001
10.1016/j.febslet.2015.06.004
10.1016/j.tibs.2007.12.003
10.1083/jcb.201507052
10.1083/jcb.200311121
10.1016/j.cell.2006.11.016
10.1083/jcb.201404124
10.7554/eLife.04591
10.1126/science.1132516
10.1126/science.aad9964
10.1083/jcb.200704147
10.1016/j.cub.2015.11.065
ContentType Journal Article
Copyright The Authors 2016
2016 The Authors
2016 The Authors.
2016 EMBO
Copyright_xml – notice: The Authors 2016
– notice: 2016 The Authors
– notice: 2016 The Authors.
– notice: 2016 EMBO
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.201593517
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE
Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Edward M Courchaine et al
EISSN 1460-2075
EndPage 1612
ExternalDocumentID PMC4969579
4134520201
27357569
10_15252_embj_201593517
EMBJ201593517
ark_67375_WNG_0C564KMG_2
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007223
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BSCLL
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
AAJSJ
AAYCA
AFWVQ
.55
3O-
4.4
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
AANHP
AASML
AAYXX
ABUWG
ABZEH
ACBWZ
ACKIV
ACRPL
ACYXJ
ADNMO
AEUYN
AFKRA
AGQPQ
AI.
ASPBG
AVWKF
AZQEC
BBNVY
BHPHI
BKSAR
BPHCQ
BVXVI
C1A
CAG
CCPQU
CITATION
COF
D1J
DWQXO
FA8
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
H13
HCIFZ
HMCUK
HVGLF
H~9
LH4
LK8
LW6
M1P
M2O
M7P
NAO
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
RIG
RNI
RZO
UKHRP
VH1
WOQ
X7M
XSW
Y6R
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c6177-be638db09350012ca5bd7ec950d9a8c8eb08b7d840ac8808b4115de7f2e583c13
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 14:11:19 EDT 2025
Fri Jul 11 00:31:07 EDT 2025
Fri Jul 25 10:57:17 EDT 2025
Thu Apr 03 07:09:03 EDT 2025
Tue Jul 01 02:06:01 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Wed Jan 22 16:33:43 EST 2025
Fri Feb 21 02:36:58 EST 2025
Wed Oct 30 09:48:37 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Liquid‐liquid phase separation
RNP granules
nuclear bodies
low‐complexity domain
Language English
License 2016 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6177-be638db09350012ca5bd7ec950d9a8c8eb08b7d840ac8808b4115de7f2e583c13
Notes ark:/67375/WNG-0C564KMG-2
ArticleID:EMBJ201593517
istex:2540CB307260E455668EDAC9E5093783DB59FC23
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
See the Glossary for abbreviations used in this article.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embj.201593517
PMID 27357569
PQID 1808004368
PQPubID 35985
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4969579
proquest_miscellaneous_1809047950
proquest_journals_1808004368
pubmed_primary_27357569
crossref_citationtrail_10_15252_embj_201593517
crossref_primary_10_15252_embj_201593517
wiley_primary_10_15252_embj_201593517_EMBJ201593517
springer_journals_10_15252_embj_201593517
istex_primary_ark_67375_WNG_0C564KMG_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 01 August 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 01 August 2016
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186: 637-644
Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46: 151-158
Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T (2004) In vivo kinetics of Cajal body components. J Cell Biol 164: 831-842
Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3: a000638
Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid-from bacteria to humans. Trends Biochem Sci 32: 217-224
Frey MR, Bailey AD, Weiner AM, Matera AG (1999) Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. Curr Biol 9: 126-135
Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4: 605-612
Schmidt HB, Görlich D (2015) Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. Elife 4: e04251
Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC, Eckmann CR, Myong S, Brangwynne CP (2015) The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci USA 112: 7189-7194
Weber SC, Brangwynne CP (2012) Getting RNA and protein in phase. Cell 149: 1188-1191
Ader C, Frey S, Maas W, Schmidt HB, Gorlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci USA 107: 6281-6285
Shevtsov SP, Dundr M (2011) Nucleation of nuclear bodies by RNA. Nat Cell Biol 13: 167-173
Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Hyman AA, Alberti S (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162: 1066-1077
Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, Han T, Xie S, Corden JL, McKnight SL (2013) Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155: 1049-1060
Platani M, Goldberg I, Swedlow JR, Lamond AI (2000) In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol 151: 1561-1574
Lancaster AK, Nutter-Upham A, Lindquist S, King OD (2014) PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30: 2501-2502
Machyna M, Kehr S, Straube K, Kappei D, Buchholz F, Butter F, Ule J, Hertel J, Stadler PF, Neugebauer KM (2014) The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. Mol Cell 56: 389-399
Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27: 295-306
Teng PK, Eisenberg D (2009) Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng Des Sel 22: 531-536
Kotaja N, Sassone-Corsi P (2007) The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 8: 85-90
Hennig S, Kong G, Mannen T, Sadowska A, Kobelke S, Blythe A, Knott GJ, Iyer KS, Ho D, Newcombe EA, Hosoki K, Goshima N, Kawaguchi T, Hatters D, Trinkle-Mulcahy L, Hirose T, Bond CS, Fox AH (2015) Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol 210: 529-539
Burke KA, Janke AM, Rhine CL, Fawzi NL (2015) Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol Cell 60: 231-241
Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16: 273-300
Chen C, Nott TJ, Jin J, Pawson T (2011) Deciphering arginine methylation: tudor tells the tale. Nat Rev Mol Cell Biol 12: 629-642
Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483: 336-340
Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol Cell 60: 208-219
Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci USA 108: 4334-4339
Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9: e1000614
Decker CJ, Teixeira D, Parker R (2007) Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 179: 437-449
Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40: 216-227
Majumdar A, Cesario WC, White-Grindley E, Jiang H, Ren F, Khan MR, Li L, Choi EM, Kannan K, Guo F, Unruh J, Slaughter B, Si K (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148: 515-529
Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grofte M, Rask MB, Streicher W, Jungmichel S, Nielsen ML, Lukas J (2015) Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun 6: 8088
Stanek D, Neugebauer KM (2004) Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J Cell Biol 166: 1015-1025
Berchowitz LE, Kabachinski G, Walker MR, Carlile TM, Gilbert WV, Schwartz TU, Amon A (2015) Regulated formation of an amyloid-like translational repressor governs gametogenesis. Cell 163: 406-418
Bentmann E, Neumann M, Tahirovic S, Rodde R, Dormann D, Haass C (2012) Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem 287: 23079-23094
Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201: 361-372
Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI (1992) Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J Cell Biol 117: 1-14
King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462: 61-80
Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33: 141-150
Malinovska L, Kroschwald S, Alberti S (2013) Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim Biophys Acta 1834: 918-931
Buchan JR, Kolaitis RM, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153: 1461-1474
Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57: 936-947
Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P, Bridges AA, Brangwynne CP, Gladfelter AS (2015) RNA controls PolyQ protein phase transitions. Mol Cell 60: 220-230
Flory PI (1942) Thermodynamics of high polymer solutions. J Chem Phys 10: 51-61
Bongiorno-Borbone L, De Cola A, Barcaroli D, Knight RA, Di Ilio C, Melino G, De Laurenzi V (2010) FLASH degradation in response to UV-C results in histone locus bodies disruption and cell-cycle arrest. Oncogene 29: 802-810
Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T, Kim J, Yun J, Xie Y, McKnight SL (2014) Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345: 1139-1145
Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454: 126-130
Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP (2015) RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci USA 112: E5237-E5245
Toretsky JA, Wright PE (2014) Assemblages: functional units formed by cellular phase separation. J Cell Biol 206: 579-588
Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8: 574-585
Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325: 328-332
Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495: 467-473
Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404: 604-609
Arribere JA, Doudna JA, Gilbert WV (2011) Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies. Mol Cell 44: 745-758
Labokha AA, Gradmann S, Frey S, Hulsmann BB, Urlaub H, Baldus M, Gorlich D (2013) Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J 32: 204-218
Grossman E, Medalia O, Zwerger M (2012) Functional architecture of the nuclear pore complex. Annu Rev Biophys 41: 557-584
Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, Mackenzie IR, Huang EJ, Tsai LH (2013) Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci 16: 1383-1391
Hyman AA, Weber CA, Julicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30: 39-58
Neupert W (2015) A perspective on transport of proteins into mitochondria: a myriad of open questions. J Mol Biol 427: 1135-1158
Arai
Cherkasov, Hofmann, Druffel‐Augustin, Mogk, Tyedmers, Stoecklin, Bukau (CR21) 2013; 23
Molliex, Temirov, Lee, Coughlin, Kanagaraj, Kim, Mittag, Taylor (CR60) 2015; 163
Weber, Brangwynne (CR83) 2012; 149
Handwerger, Cordero, Gall (CR34) 2005; 16
Su, Ditlev, Hui, Xing, Banjade, Okrut, King, Taunton, Rosen, Vale (CR75) 2016; 352
Courchaine, Neugebauer (CR22) 2015; 210
Lamond, Spector (CR48) 2003; 4
Brangwynne, Eckmann, Courson, Rybarska, Hoege, Gharakhani, Julicher, Hyman (CR14) 2009; 324
Anderson, Kedersha (CR4) 2008; 33
Wang, Pan, Su, Quinn, Sasaki, Jimenez, Mackenzie, Huang, Tsai (CR81) 2013; 16
Machyna, Heyn, Neugebauer (CR53) 2013; 4
Novotny, Malinova, Stejskalova, Mateju, Klimesova, Roithova, Sveda, Knejzlik, Stanek (CR64) 2015; 10
Platani, Goldberg, Swedlow, Lamond (CR70) 2000; 151
Parker, Sheth (CR65) 2007; 25
Phair, Misteli (CR68) 2000; 404
Berry, Weber, Vaidya, Haataja, Brangwynne (CR9) 2015; 112
Li, Banjade, Cheng, Kim, Chen, Guo, Llaguno, Hollingsworth, King, Banani, Russo, Jiang, Nixon, Rosen (CR50) 2012; 483
Xiang, Kato, Wu, Lin, Ding, Zhang, Yu, McKnight (CR84) 2015; 163
Elbaum‐Garfinkle, Kim, Szczepaniak, Chen, Eckmann, Myong, Brangwynne (CR25) 2015; 112
Kroschwald, Maharana, Mateju, Malinovska, Nuske, Poser, Richter, Alberti (CR44) 2015; 4
Li, King, Shorter, Gitler (CR51) 2013; 201
Fowler, Koulov, Alory‐Jost, Marks, Balch, Kelly (CR28) 2006; 4
Fowler, Koulov, Balch, Kelly (CR29) 2007; 32
Falahati, Pelham‐Webb, Blythe, Wieschaus (CR26) 2016; 26
Bentmann, Neumann, Tahirovic, Rodde, Dormann, Haass (CR7) 2012; 287
Kwon, Kato, Xiang, Wu, Theodoropoulos, Mirzaei, Han, Xie, Corden, McKnight (CR45) 2013; 155
Pederson (CR67) 2011; 3
Kato, Han, Xie, Shi, Du, Wu, Mirzaei, Goldsmith, Longgood, Pei, Grishin, Frantz, Schneider, Chen, Li, Sawaya, Eisenberg, Tycko, McKnight (CR39) 2012; 149
Kwon, Xiang, Kato, Wu, Theodoropoulos, Wang, Kim, Yun, Xie, McKnight (CR46) 2014; 345
Zhang, Elbaum‐Garfinkle, Langdon, Taylor, Occhipinti, Bridges, Brangwynne, Gladfelter (CR85) 2015; 60
Frey, Bailey, Weiner, Matera (CR30) 1999; 9
Schmidt, Görlich (CR71) 2015; 4
Malinovska, Kroschwald, Alberti (CR58) 2013; 1834
Toretsky, Wright (CR78) 2014; 206
Brangwynne, Mitchison, Hyman (CR15) 2011; 108
Machyna, Kehr, Straube, Kappei, Buchholz, Butter, Ule, Hertel, Stadler, Neugebauer (CR54) 2014; 56
Bond, Fox (CR11) 2009; 186
Stanek, Neugebauer (CR74) 2004; 166
Uversky (CR79) 2015; 589
Klingauf, Stanek, Neugebauer (CR42) 2006; 17
Kotaja, Sassone‐Corsi (CR43) 2007; 8
Wang, Smith, Chen, Schmidt, Rasoloson, Paix, Lambrus, Calidas, Betzig, Seydoux (CR82) 2014; 3
Buchan, Kolaitis, Taylor, Parker (CR17) 2013; 153
Boulon, Westman, Hutten, Boisvert, Lamond (CR13) 2010; 40
Murakami, Qamar, Lin, Schierle, Rees, Miyashita, Costa, Dodd, Chan, Michel, Kronenberg‐Versteeg, Li, Yang, Wakutani, Meadows, Ferry, Dong, Tartaglia, Favrin, Lin (CR61) 2015; 88
Phan, Kuryavyi, Darnell, Serganov, Majumdar, Ilin, Raslin, Polonskaia, Chen, Clain, Darnell, Patel (CR69) 2011; 18
Lin, Protter, Rosen, Parker (CR52) 2015; 60
Carmo‐Fonseca, Pepperkok, Carvalho, Lamond (CR19) 1992; 117
Jiang, Wang, Huang, He, Cui, Zhu, Zheng (CR38) 2015; 163
Lancaster, Nutter‐Upham, Lindquist, King (CR49) 2014; 30
Nott, Petsalaki, Farber, Jervis, Fussner, Plochowietz, Craggs, Bazett‐Jones, Pawson, Forman‐Kay, Baldwin (CR63) 2015; 57
Sun, Diaz, Fang, Hart, Chesi, Shorter, Gitler (CR76) 2011; 9
Altmeyer, Neelsen, Teloni, Pozdnyakova, Pellegrino, Grofte, Rask, Streicher, Jungmichel, Nielsen, Lukas (CR3) 2015; 6
Arai, Sugase, Dyson, Wright (CR5) 2015; 112
Wang, Arai, Song, Reichart, Du, Pascual, Tempst, Rosenfeld, Glass, Kurokawa (CR80) 2008; 454
Shevtsov, Dundr (CR73) 2011; 13
Maji, Perrin, Sawaya, Jessberger, Vadodaria, Rissman, Singru, Nilsson, Simon, Schubert, Eisenberg, Rivier, Sawchenko, Vale, Riek (CR56) 2009; 325
Seydoux, Braun (CR72) 2006; 127
Dundr, Hebert, Karpova, Stanek, Xu, Shpargel, Meier, Neugebauer, Matera, Misteli (CR24) 2004; 164
Gall (CR32) 2000; 16
Alberti, Halfmann, King, Kapila, Lindquist (CR2) 2009; 137
Boisvert, van Koningsbruggen, Navascues, Lamond (CR10) 2007; 8
Kim, Kim, Wang, Scarborough, Moore, Diaz, MacLea, Freibaum, Li, Molliex, Kanagaraj, Carter, Boylan, Wojtas, Rademakers, Pinkus, Greenberg, Trojanowski, Traynor, Smith (CR40) 2013; 495
Huggins (CR36) 1942; 46
Chen, Nott, Jin, Pawson (CR20) 2011; 12
Patel, Lee, Jawerth, Maharana, Jahnel, Hein, Stoynov, Mahamid, Saha, Franzmann, Pozniakovski, Poser, Maghelli, Royer, Weigert, Myers, Grill, Drechsel, Hyman, Alberti (CR66) 2015; 162
Hyman, Weber, Julicher (CR37) 2014; 30
Mao, Zhang, Spector (CR59) 2011; 27
Neupert (CR62) 2015; 427
Decker, Teixeira, Parker (CR23) 2007; 179
Hennig, Kong, Mannen, Sadowska, Kobelke, Blythe, Knott, Iyer, Ho, Newcombe, Hosoki, Goshima, Kawaguchi, Hatters, Trinkle‐Mulcahy, Hirose, Bond, Fox (CR35) 2015; 210
Buchan, Parker (CR16) 2009; 36
Grossman, Medalia, Zwerger (CR33) 2012; 41
Teng, Eisenberg (CR77) 2009; 22
Flory (CR27) 1942; 10
Majumdar, Cesario, White‐Grindley, Jiang, Ren, Khan, Li, Choi, Kannan, Guo, Unruh, Slaughter, Si (CR57) 2012; 148
King, Gitler, Shorter (CR41) 2012; 1462
Majcher, Goode, James, Layfield (CR55) 2015; 66
Arribere, Doudna, Gilbert (CR6) 2011; 44
Berchowitz, Kabachinski, Walker, Carlile, Gilbert, Schwartz, Amon (CR8) 2015; 163
Bongiorno‐Borbone, De Cola, Barcaroli, Knight, Di Ilio, Melino, De Laurenzi (CR12) 2010; 29
Ader, Frey, Maas, Schmidt, Gorlich, Baldus (CR1) 2010; 107
Frey, Richter, Gorlich (CR31) 2006; 314
Labokha, Gradmann, Frey, Hulsmann, Urlaub, Baldus, Gorlich (CR47) 2013; 32
Burke, Janke, Rhine, Fawzi (CR18) 2015; 60
2004; 166
2004; 164
2012; 483
2012; 287
2013; 4
2010; 107
2015; 589
2013; 23
2013; 201
2011; 13
2008; 33
2011; 12
2015; 427
2007; 32
2011; 18
2014; 206
2007; 179
2000; 16
2014; 3
2013; 16
2010; 29
2015; 210
2000; 404
2015; 88
2007; 8
1992; 117
2013; 155
2003; 4
2016; 352
2013; 153
2006; 127
2011; 27
2014; 56
2009; 324
2007; 25
1942; 10
2009; 325
2015; 57
2015; 162
2015; 163
2013; 1834
2009; 22
2015; 6
2012; 1462
2015; 4
2006; 17
2015; 10
2000; 151
2006; 4
2006; 314
1942; 46
2012; 148
2011; 3
2012; 149
2009; 137
2010; 40
1999; 9
2011; 9
2009; 36
2011; 108
2015; 60
2013; 32
2015; 112
2015; 66
2011; 44
2013; 495
2009; 186
2008; 454
2014; 30
2005; 16
2016; 26
2014; 345
2012; 41
e_1_2_15_21_1
e_1_2_15_42_1
e_1_2_15_67_1
e_1_2_15_40_1
e_1_2_15_69_1
e_1_2_15_3_1
e_1_2_15_29_1
e_1_2_15_80_1
e_1_2_15_27_1
e_1_2_15_48_1
e_1_2_15_61_1
e_1_2_15_82_1
e_1_2_15_25_1
e_1_2_15_46_1
e_1_2_15_63_1
e_1_2_15_84_1
e_1_2_15_23_1
e_1_2_15_44_1
e_1_2_15_65_1
e_1_2_15_86_1
e_1_2_15_9_1
e_1_2_15_7_1
e_1_2_15_5_1
e_1_2_15_10_1
e_1_2_15_31_1
e_1_2_15_56_1
e_1_2_15_77_1
e_1_2_15_58_1
e_1_2_15_79_1
e_1_2_15_18_1
e_1_2_15_39_1
e_1_2_15_16_1
e_1_2_15_37_1
e_1_2_15_50_1
e_1_2_15_71_1
e_1_2_15_14_1
e_1_2_15_35_1
e_1_2_15_52_1
e_1_2_15_73_1
e_1_2_15_12_1
e_1_2_15_33_1
e_1_2_15_54_1
e_1_2_15_75_1
e_1_2_15_19_1
e_1_2_15_20_1
e_1_2_15_43_1
e_1_2_15_66_1
e_1_2_15_41_1
e_1_2_15_68_1
e_1_2_15_28_1
e_1_2_15_81_1
e_1_2_15_2_1
e_1_2_15_26_1
e_1_2_15_49_1
e_1_2_15_60_1
e_1_2_15_83_1
e_1_2_15_24_1
e_1_2_15_47_1
e_1_2_15_62_1
e_1_2_15_85_1
e_1_2_15_22_1
e_1_2_15_45_1
e_1_2_15_64_1
e_1_2_15_8_1
e_1_2_15_6_1
e_1_2_15_4_1
e_1_2_15_32_1
e_1_2_15_55_1
e_1_2_15_78_1
e_1_2_15_30_1
e_1_2_15_57_1
e_1_2_15_59_1
e_1_2_15_17_1
e_1_2_15_70_1
e_1_2_15_15_1
e_1_2_15_38_1
e_1_2_15_72_1
e_1_2_15_13_1
e_1_2_15_36_1
e_1_2_15_51_1
e_1_2_15_74_1
e_1_2_15_11_1
e_1_2_15_34_1
e_1_2_15_53_1
e_1_2_15_76_1
References_xml – reference: Neupert W (2015) A perspective on transport of proteins into mitochondria: a myriad of open questions. J Mol Biol 427: 1135-1158
– reference: Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324: 1729-1732
– reference: Weber SC, Brangwynne CP (2012) Getting RNA and protein in phase. Cell 149: 1188-1191
– reference: Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186: 637-644
– reference: Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57: 936-947
– reference: Ader C, Frey S, Maas W, Schmidt HB, Gorlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci USA 107: 6281-6285
– reference: Bentmann E, Neumann M, Tahirovic S, Rodde R, Dormann D, Haass C (2012) Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem 287: 23079-23094
– reference: Malinovska L, Kroschwald S, Alberti S (2013) Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim Biophys Acta 1834: 918-931
– reference: Platani M, Goldberg I, Swedlow JR, Lamond AI (2000) In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol 151: 1561-1574
– reference: King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462: 61-80
– reference: Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454: 126-130
– reference: Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, Han T, Xie S, Corden JL, McKnight SL (2013) Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155: 1049-1060
– reference: Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404: 604-609
– reference: Teng PK, Eisenberg D (2009) Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng Des Sel 22: 531-536
– reference: Shevtsov SP, Dundr M (2011) Nucleation of nuclear bodies by RNA. Nat Cell Biol 13: 167-173
– reference: Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25: 635-646
– reference: Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33: 141-150
– reference: Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T (2004) In vivo kinetics of Cajal body components. J Cell Biol 164: 831-842
– reference: Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201: 361-372
– reference: Majcher V, Goode A, James V, Layfield R (2015) Autophagy receptor defects and ALS-FTLD. Mol Cell Neurosci 66: 43-52
– reference: Toretsky JA, Wright PE (2014) Assemblages: functional units formed by cellular phase separation. J Cell Biol 206: 579-588
– reference: Machyna M, Heyn P, Neugebauer KM (2013) Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA 4: 17-34
– reference: Murakami T, Qamar S, Lin JQ, Schierle GS, Rees E, Miyashita A, Costa AR, Dodd RB, Chan FT, Michel CH, Kronenberg-Versteeg D, Li Y, Yang SP, Wakutani Y, Meadows W, Ferry RR, Dong L, Tartaglia GG, Favrin G, Lin WL et al (2015) ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function. Neuron 88: 678-690
– reference: Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483: 336-340
– reference: Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC, Eckmann CR, Myong S, Brangwynne CP (2015) The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci USA 112: 7189-7194
– reference: Chen C, Nott TJ, Jin J, Pawson T (2011) Deciphering arginine methylation: tudor tells the tale. Nat Rev Mol Cell Biol 12: 629-642
– reference: Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163: 123-133
– reference: Buchan JR, Kolaitis RM, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153: 1461-1474
– reference: Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149: 753-767
– reference: Hennig S, Kong G, Mannen T, Sadowska A, Kobelke S, Blythe A, Knott GJ, Iyer KS, Ho D, Newcombe EA, Hosoki K, Goshima N, Kawaguchi T, Hatters D, Trinkle-Mulcahy L, Hirose T, Bond CS, Fox AH (2015) Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol 210: 529-539
– reference: Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP (2015) RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci USA 112: E5237-E5245
– reference: Labokha AA, Gradmann S, Frey S, Hulsmann BB, Urlaub H, Baldus M, Gorlich D (2013) Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J 32: 204-218
– reference: Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4: e6
– reference: Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16: 273-300
– reference: Kroschwald S, Maharana S, Mateju D, Malinovska L, Nuske E, Poser I, Richter D, Alberti S (2015) Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. Elife 4: e06807
– reference: Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137: 146-158
– reference: Novotny I, Malinova A, Stejskalova E, Mateju D, Klimesova K, Roithova A, Sveda M, Knejzlik Z, Stanek D (2015) SART3-dependent accumulation of incomplete spliceosomal snRNPs in cajal bodies. Cell Rep 10: 429-440
– reference: Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27: 295-306
– reference: Xiang S, Kato M, Wu LC, Lin Y, Ding M, Zhang Y, Yu Y, McKnight SL (2015) The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163: 829-839
– reference: Decker CJ, Teixeira D, Parker R (2007) Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 179: 437-449
– reference: Falahati H, Pelham-Webb B, Blythe S, Wieschaus E (2016) Nucleation by rRNA dictates the precision of nucleolus assembly. Curr Biol 26: 277-285
– reference: Schmidt HB, Görlich D (2015) Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. Elife 4: e04251
– reference: Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid-from bacteria to humans. Trends Biochem Sci 32: 217-224
– reference: Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T, Kim J, Yun J, Xie Y, McKnight SL (2014) Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345: 1139-1145
– reference: Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci USA 108: 4334-4339
– reference: Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol Cell 60: 208-219
– reference: Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495: 467-473
– reference: Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325: 328-332
– reference: Cherkasov V, Hofmann S, Druffel-Augustin S, Mogk A, Tyedmers J, Stoecklin G, Bukau B (2013) Coordination of translational control and protein homeostasis during severe heat stress. Curr Biol 23: 2452-2462
– reference: Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3: a000638
– reference: Courchaine E, Neugebauer KM (2015) Paraspeckles: paragons of functional aggregation. J Cell Biol 210: 527-528
– reference: Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI (1992) Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J Cell Biol 117: 1-14
– reference: Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P, Bridges AA, Brangwynne CP, Gladfelter AS (2015) RNA controls PolyQ protein phase transitions. Mol Cell 60: 220-230
– reference: Bongiorno-Borbone L, De Cola A, Barcaroli D, Knight RA, Di Ilio C, Melino G, De Laurenzi V (2010) FLASH degradation in response to UV-C results in histone locus bodies disruption and cell-cycle arrest. Oncogene 29: 802-810
– reference: Stanek D, Neugebauer KM (2004) Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J Cell Biol 166: 1015-1025
– reference: Frey S, Richter RP, Gorlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314: 815-817
– reference: Seydoux G, Braun RE (2006) Pathway to totipotency: lessons from germ cells. Cell 127: 891-904
– reference: Uversky VN (2015) The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 589: 2498-2506
– reference: Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, Mackenzie IR, Huang EJ, Tsai LH (2013) Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci 16: 1383-1391
– reference: Flory PI (1942) Thermodynamics of high polymer solutions. J Chem Phys 10: 51-61
– reference: Grossman E, Medalia O, Zwerger M (2012) Functional architecture of the nuclear pore complex. Annu Rev Biophys 41: 557-584
– reference: Hyman AA, Weber CA, Julicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30: 39-58
– reference: Frey MR, Bailey AD, Weiner AM, Matera AG (1999) Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. Curr Biol 9: 126-135
– reference: Handwerger KE, Cordero JA, Gall JG (2005) Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol Biol Cell 16: 202-211
– reference: Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9: e1000614
– reference: Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46: 151-158
– reference: Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36: 932-941
– reference: Kotaja N, Sassone-Corsi P (2007) The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 8: 85-90
– reference: Arai M, Sugase K, Dyson HJ, Wright PE (2015) Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc Natl Acad Sci USA 112: 9614-9619
– reference: Majumdar A, Cesario WC, White-Grindley E, Jiang H, Ren F, Khan MR, Li L, Choi EM, Kannan K, Guo F, Unruh J, Slaughter B, Si K (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148: 515-529
– reference: Wang JT, Smith J, Chen BC, Schmidt H, Rasoloson D, Paix A, Lambrus BG, Calidas D, Betzig E, Seydoux G (2014) Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. Elife 3: e04591
– reference: Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40: 216-227
– reference: Burke KA, Janke AM, Rhine CL, Fawzi NL (2015) Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol Cell 60: 231-241
– reference: Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grofte M, Rask MB, Streicher W, Jungmichel S, Nielsen ML, Lukas J (2015) Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun 6: 8088
– reference: Arribere JA, Doudna JA, Gilbert WV (2011) Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies. Mol Cell 44: 745-758
– reference: Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4: 605-612
– reference: Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J, King DS, Taunton J, Rosen MK, Vale RD (2016) Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352: 595-599
– reference: Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8: 574-585
– reference: Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Hyman AA, Alberti S (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162: 1066-1077
– reference: Lancaster AK, Nutter-Upham A, Lindquist S, King OD (2014) PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30: 2501-2502
– reference: Machyna M, Kehr S, Straube K, Kappei D, Buchholz F, Butter F, Ule J, Hertel J, Stadler PF, Neugebauer KM (2014) The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. Mol Cell 56: 389-399
– reference: Jiang H, Wang S, Huang Y, He X, Cui H, Zhu X, Zheng Y (2015) Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163: 108-122
– reference: Berchowitz LE, Kabachinski G, Walker MR, Carlile TM, Gilbert WV, Schwartz TU, Amon A (2015) Regulated formation of an amyloid-like translational repressor governs gametogenesis. Cell 163: 406-418
– reference: Klingauf M, Stanek D, Neugebauer KM (2006) Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling. Mol Biol Cell 17: 4972-4981
– reference: Phan AT, Kuryavyi V, Darnell JC, Serganov A, Majumdar A, Ilin S, Raslin T, Polonskaia A, Chen C, Clain D, Darnell RB, Patel DJ (2011) Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat Struct Mol Biol 18: 796-804
– volume: 8
  start-page: 574
  year: 2007
  end-page: 585
  ident: CR10
  article-title: The multifunctional nucleolus
  publication-title: Nat Rev Mol Cell Biol
– volume: 9
  start-page: 126
  year: 1999
  end-page: 135
  ident: CR30
  article-title: Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts
  publication-title: Curr Biol
– volume: 17
  start-page: 4972
  year: 2006
  end-page: 4981
  ident: CR42
  article-title: Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling
  publication-title: Mol Biol Cell
– volume: 16
  start-page: 273
  year: 2000
  end-page: 300
  ident: CR32
  article-title: Cajal bodies: the first 100 years
  publication-title: Annu Rev Cell Dev Biol
– volume: 112
  start-page: E5237
  year: 2015
  end-page: E5245
  ident: CR9
  article-title: RNA transcription modulates phase transition‐driven nuclear body assembly
  publication-title: Proc Natl Acad Sci USA
– volume: 162
  start-page: 1066
  year: 2015
  end-page: 1077
  ident: CR66
  article-title: A liquid‐to‐solid phase transition of the ALS protein FUS accelerated by disease mutation
  publication-title: Cell
– volume: 210
  start-page: 527
  year: 2015
  end-page: 528
  ident: CR22
  article-title: Paraspeckles: paragons of functional aggregation
  publication-title: J Cell Biol
– volume: 149
  start-page: 753
  year: 2012
  end-page: 767
  ident: CR39
  article-title: Cell‐free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
– volume: 8
  start-page: 85
  year: 2007
  end-page: 90
  ident: CR43
  article-title: The chromatoid body: a germ‐cell‐specific RNA‐processing centre
  publication-title: Nat Rev Mol Cell Biol
– volume: 30
  start-page: 2501
  year: 2014
  end-page: 2502
  ident: CR49
  article-title: PLAAC: a web and command‐line application to identify proteins with prion‐like amino acid composition
  publication-title: Bioinformatics
– volume: 325
  start-page: 328
  year: 2009
  end-page: 332
  ident: CR56
  article-title: Functional amyloids as natural storage of peptide hormones in pituitary secretory granules
  publication-title: Science
– volume: 404
  start-page: 604
  year: 2000
  end-page: 609
  ident: CR68
  article-title: High mobility of proteins in the mammalian cell nucleus
  publication-title: Nature
– volume: 32
  start-page: 204
  year: 2013
  end-page: 218
  ident: CR47
  article-title: Systematic analysis of barrier‐forming FG hydrogels from Xenopus nuclear pore complexes
  publication-title: EMBO J
– volume: 66
  start-page: 43
  year: 2015
  end-page: 52
  ident: CR55
  article-title: Autophagy receptor defects and ALS‐FTLD
  publication-title: Mol Cell Neurosci
– volume: 151
  start-page: 1561
  year: 2000
  end-page: 1574
  ident: CR70
  article-title: analysis of Cajal body movement, separation, and joining in live human cells
  publication-title: J Cell Biol
– volume: 44
  start-page: 745
  year: 2011
  end-page: 758
  ident: CR6
  article-title: Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies
  publication-title: Mol Cell
– volume: 41
  start-page: 557
  year: 2012
  end-page: 584
  ident: CR33
  article-title: Functional architecture of the nuclear pore complex
  publication-title: Annu Rev Biophys
– volume: 4
  start-page: 605
  year: 2003
  end-page: 612
  ident: CR48
  article-title: Nuclear speckles: a model for nuclear organelles
  publication-title: Nat Rev Mol Cell Biol
– volume: 16
  start-page: 202
  year: 2005
  end-page: 211
  ident: CR34
  article-title: Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low‐density, sponge‐like structure
  publication-title: Mol Biol Cell
– volume: 127
  start-page: 891
  year: 2006
  end-page: 904
  ident: CR72
  article-title: Pathway to totipotency: lessons from germ cells
  publication-title: Cell
– volume: 40
  start-page: 216
  year: 2010
  end-page: 227
  ident: CR13
  article-title: The nucleolus under stress
  publication-title: Mol Cell
– volume: 201
  start-page: 361
  year: 2013
  end-page: 372
  ident: CR51
  article-title: Stress granules as crucibles of ALS pathogenesis
  publication-title: J Cell Biol
– volume: 153
  start-page: 1461
  year: 2013
  end-page: 1474
  ident: CR17
  article-title: Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function
  publication-title: Cell
– volume: 60
  start-page: 231
  year: 2015
  end-page: 241
  ident: CR18
  article-title: Residue‐by‐residue view of FUS granules that bind the C‐terminal domain of RNA polymerase II
  publication-title: Mol Cell
– volume: 26
  start-page: 277
  year: 2016
  end-page: 285
  ident: CR26
  article-title: Nucleation by rRNA dictates the precision of nucleolus assembly
  publication-title: Curr Biol
– volume: 163
  start-page: 123
  year: 2015
  end-page: 133
  ident: CR60
  article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
  publication-title: Cell
– volume: 18
  start-page: 796
  year: 2011
  end-page: 804
  ident: CR69
  article-title: Structure‐function studies of FMRP RGG peptide recognition of an RNA duplex‐quadruplex junction
  publication-title: Nat Struct Mol Biol
– volume: 324
  start-page: 1729
  year: 2009
  end-page: 1732
  ident: CR14
  article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation
  publication-title: Science
– volume: 1834
  start-page: 918
  year: 2013
  end-page: 931
  ident: CR58
  article-title: Protein disorder, prion propensities, and self‐organizing macromolecular collectives
  publication-title: Biochim Biophys Acta
– volume: 112
  start-page: 7189
  year: 2015
  end-page: 7194
  ident: CR25
  article-title: The disordered P granule protein LAF‐1 drives phase separation into droplets with tunable viscosity and dynamics
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 429
  year: 2015
  end-page: 440
  ident: CR64
  article-title: SART3‐dependent accumulation of incomplete spliceosomal snRNPs in cajal bodies
  publication-title: Cell Rep
– volume: 36
  start-page: 932
  year: 2009
  end-page: 941
  ident: CR16
  article-title: Eukaryotic stress granules: the ins and outs of translation
  publication-title: Mol Cell
– volume: 25
  start-page: 635
  year: 2007
  end-page: 646
  ident: CR65
  article-title: P bodies and the control of mRNA translation and degradation
  publication-title: Mol Cell
– volume: 137
  start-page: 146
  year: 2009
  end-page: 158
  ident: CR2
  article-title: A systematic survey identifies prions and illuminates sequence features of prionogenic proteins
  publication-title: Cell
– volume: 149
  start-page: 1188
  year: 2012
  end-page: 1191
  ident: CR83
  article-title: Getting RNA and protein in phase
  publication-title: Cell
– volume: 12
  start-page: 629
  year: 2011
  end-page: 642
  ident: CR20
  article-title: Deciphering arginine methylation: tudor tells the tale
  publication-title: Nat Rev Mol Cell Biol
– volume: 179
  start-page: 437
  year: 2007
  end-page: 449
  ident: CR23
  article-title: Edc3p and a glutamine/asparagine‐rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae
  publication-title: J Cell Biol
– volume: 4
  start-page: e06807
  year: 2015
  ident: CR44
  article-title: Promiscuous interactions and protein disaggregases determine the material state of stress‐inducible RNP granules
  publication-title: Elife
– volume: 427
  start-page: 1135
  year: 2015
  end-page: 1158
  ident: CR62
  article-title: A perspective on transport of proteins into mitochondria: a myriad of open questions
  publication-title: J Mol Biol
– volume: 108
  start-page: 4334
  year: 2011
  end-page: 4339
  ident: CR15
  article-title: Active liquid‐like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes
  publication-title: Proc Natl Acad Sci USA
– volume: 1462
  start-page: 61
  year: 2012
  end-page: 80
  ident: CR41
  article-title: The tip of the iceberg: RNA‐binding proteins with prion‐like domains in neurodegenerative disease
  publication-title: Brain Res
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  ident: CR63
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol Cell
– volume: 29
  start-page: 802
  year: 2010
  end-page: 810
  ident: CR12
  article-title: FLASH degradation in response to UV‐C results in histone locus bodies disruption and cell‐cycle arrest
  publication-title: Oncogene
– volume: 210
  start-page: 529
  year: 2015
  end-page: 539
  ident: CR35
  article-title: Prion‐like domains in RNA binding proteins are essential for building subnuclear paraspeckles
  publication-title: J Cell Biol
– volume: 46
  start-page: 151
  year: 1942
  end-page: 158
  ident: CR36
  article-title: Some properties of solutions of long‐chain compounds
  publication-title: J Phys Chem
– volume: 30
  start-page: 39
  year: 2014
  end-page: 58
  ident: CR37
  article-title: Liquid‐liquid phase separation in biology
  publication-title: Annu Rev Cell Dev Biol
– volume: 4
  start-page: 17
  year: 2013
  end-page: 34
  ident: CR53
  article-title: Cajal bodies: where form meets function
  publication-title: Wiley Interdiscip Rev RNA
– volume: 589
  start-page: 2498
  year: 2015
  end-page: 2506
  ident: CR79
  article-title: The multifaceted roles of intrinsic disorder in protein complexes
  publication-title: FEBS Lett
– volume: 495
  start-page: 467
  year: 2013
  end-page: 473
  ident: CR40
  article-title: Mutations in prion‐like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS
  publication-title: Nature
– volume: 32
  start-page: 217
  year: 2007
  end-page: 224
  ident: CR29
  article-title: Functional amyloid–from bacteria to humans
  publication-title: Trends Biochem Sci
– volume: 33
  start-page: 141
  year: 2008
  end-page: 150
  ident: CR4
  article-title: Stress granules: the Tao of RNA triage
  publication-title: Trends Biochem Sci
– volume: 206
  start-page: 579
  year: 2014
  end-page: 588
  ident: CR78
  article-title: Assemblages: functional units formed by cellular phase separation
  publication-title: J Cell Biol
– volume: 56
  start-page: 389
  year: 2014
  end-page: 399
  ident: CR54
  article-title: The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies
  publication-title: Mol Cell
– volume: 148
  start-page: 515
  year: 2012
  end-page: 529
  ident: CR57
  article-title: Critical role of amyloid‐like oligomers of Drosophila Orb2 in the persistence of memory
  publication-title: Cell
– volume: 163
  start-page: 406
  year: 2015
  end-page: 418
  ident: CR8
  article-title: Regulated formation of an amyloid‐like translational repressor governs gametogenesis
  publication-title: Cell
– volume: 163
  start-page: 108
  year: 2015
  end-page: 122
  ident: CR38
  article-title: Phase transition of spindle‐associated protein regulate spindle apparatus assembly
  publication-title: Cell
– volume: 163
  start-page: 829
  year: 2015
  end-page: 839
  ident: CR84
  article-title: The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid‐like droplets, and nuclei
  publication-title: Cell
– volume: 112
  start-page: 9614
  year: 2015
  end-page: 9619
  ident: CR5
  article-title: Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: 167
  year: 2011
  end-page: 173
  ident: CR73
  article-title: Nucleation of nuclear bodies by RNA
  publication-title: Nat Cell Biol
– volume: 23
  start-page: 2452
  year: 2013
  end-page: 2462
  ident: CR21
  article-title: Coordination of translational control and protein homeostasis during severe heat stress
  publication-title: Curr Biol
– volume: 155
  start-page: 1049
  year: 2013
  end-page: 1060
  ident: CR45
  article-title: Phosphorylation‐regulated binding of RNA polymerase II to fibrous polymers of low‐complexity domains
  publication-title: Cell
– volume: 352
  start-page: 595
  year: 2016
  end-page: 599
  ident: CR75
  article-title: Phase separation of signaling molecules promotes T cell receptor signal transduction
  publication-title: Science
– volume: 287
  start-page: 23079
  year: 2012
  end-page: 23094
  ident: CR7
  article-title: Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA‐binding protein of 43 kDa (TDP‐43)
  publication-title: J Biol Chem
– volume: 117
  start-page: 1
  year: 1992
  end-page: 14
  ident: CR19
  article-title: Transcription‐dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies
  publication-title: J Cell Biol
– volume: 9
  start-page: e1000614
  year: 2011
  ident: CR76
  article-title: Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS
  publication-title: PLoS Biol
– volume: 164
  start-page: 831
  year: 2004
  end-page: 842
  ident: CR24
  article-title: kinetics of Cajal body components
  publication-title: J Cell Biol
– volume: 3
  start-page: a000638
  year: 2011
  ident: CR67
  article-title: The nucleolus
  publication-title: Cold Spring Harb Perspect Biol
– volume: 16
  start-page: 1383
  year: 2013
  end-page: 1391
  ident: CR81
  article-title: Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons
  publication-title: Nat Neurosci
– volume: 10
  start-page: 51
  year: 1942
  end-page: 61
  ident: CR27
  article-title: Thermodynamics of high polymer solutions
  publication-title: J Chem Phys
– volume: 345
  start-page: 1139
  year: 2014
  end-page: 1145
  ident: CR46
  article-title: Poly‐dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells
  publication-title: Science
– volume: 166
  start-page: 1015
  year: 2004
  end-page: 1025
  ident: CR74
  article-title: Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer
  publication-title: J Cell Biol
– volume: 4
  start-page: e04251
  year: 2015
  ident: CR71
  article-title: Nup98 FG domains from diverse species spontaneously phase‐separate into particles with nuclear pore‐like permselectivity
  publication-title: Elife
– volume: 186
  start-page: 637
  year: 2009
  end-page: 644
  ident: CR11
  article-title: Paraspeckles: nuclear bodies built on long noncoding RNA
  publication-title: J Cell Biol
– volume: 60
  start-page: 220
  year: 2015
  end-page: 230
  ident: CR85
  article-title: RNA controls PolyQ protein phase transitions
  publication-title: Mol Cell
– volume: 3
  start-page: e04591
  year: 2014
  ident: CR82
  article-title: Regulation of RNA granule dynamics by phosphorylation of serine‐rich, intrinsically disordered proteins in
  publication-title: Elife
– volume: 22
  start-page: 531
  year: 2009
  end-page: 536
  ident: CR77
  article-title: Short protein segments can drive a non‐fibrillizing protein into the amyloid state
  publication-title: Protein Eng Des Sel
– volume: 454
  start-page: 126
  year: 2008
  end-page: 130
  ident: CR80
  article-title: Induced ncRNAs allosterically modify RNA‐binding proteins in cis to inhibit transcription
  publication-title: Nature
– volume: 6
  start-page: 8088
  year: 2015
  ident: CR3
  article-title: Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP‐ribose)
  publication-title: Nat Commun
– volume: 60
  start-page: 208
  year: 2015
  end-page: 219
  ident: CR52
  article-title: Formation and Maturation of Phase‐Separated Liquid Droplets by RNA‐Binding Proteins
  publication-title: Mol Cell
– volume: 4
  start-page: e6
  year: 2006
  ident: CR28
  article-title: Functional amyloid formation within mammalian tissue
  publication-title: PLoS Biol
– volume: 27
  start-page: 295
  year: 2011
  end-page: 306
  ident: CR59
  article-title: Biogenesis and function of nuclear bodies
  publication-title: Trends Genet
– volume: 483
  start-page: 336
  year: 2012
  end-page: 340
  ident: CR50
  article-title: Phase transitions in the assembly of multivalent signalling proteins
  publication-title: Nature
– volume: 107
  start-page: 6281
  year: 2010
  end-page: 6285
  ident: CR1
  article-title: Amyloid‐like interactions within nucleoporin FG hydrogels
  publication-title: Proc Natl Acad Sci USA
– volume: 314
  start-page: 815
  year: 2006
  end-page: 817
  ident: CR31
  article-title: FG‐rich repeats of nuclear pore proteins form a three‐dimensional meshwork with hydrogel‐like properties
  publication-title: Science
– volume: 88
  start-page: 678
  year: 2015
  end-page: 690
  ident: CR61
  article-title: ALS/FTD Mutation‐Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function
  publication-title: Neuron
– volume: 26
  start-page: 277
  year: 2016
  end-page: 285
  article-title: Nucleation by rRNA dictates the precision of nucleolus assembly
  publication-title: Curr Biol
– volume: 179
  start-page: 437
  year: 2007
  end-page: 449
  article-title: Edc3p and a glutamine/asparagine‐rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae
  publication-title: J Cell Biol
– volume: 3
  start-page: e04591
  year: 2014
  article-title: Regulation of RNA granule dynamics by phosphorylation of serine‐rich, intrinsically disordered proteins in
  publication-title: Elife
– volume: 22
  start-page: 531
  year: 2009
  end-page: 536
  article-title: Short protein segments can drive a non‐fibrillizing protein into the amyloid state
  publication-title: Protein Eng Des Sel
– volume: 10
  start-page: 51
  year: 1942
  end-page: 61
  article-title: Thermodynamics of high polymer solutions
  publication-title: J Chem Phys
– volume: 10
  start-page: 429
  year: 2015
  end-page: 440
  article-title: SART3‐dependent accumulation of incomplete spliceosomal snRNPs in cajal bodies
  publication-title: Cell Rep
– volume: 107
  start-page: 6281
  year: 2010
  end-page: 6285
  article-title: Amyloid‐like interactions within nucleoporin FG hydrogels
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: e06807
  year: 2015
  article-title: Promiscuous interactions and protein disaggregases determine the material state of stress‐inducible RNP granules
  publication-title: Elife
– volume: 4
  start-page: e04251
  year: 2015
  article-title: Nup98 FG domains from diverse species spontaneously phase‐separate into particles with nuclear pore‐like permselectivity
  publication-title: Elife
– volume: 112
  start-page: 7189
  year: 2015
  end-page: 7194
  article-title: The disordered P granule protein LAF‐1 drives phase separation into droplets with tunable viscosity and dynamics
  publication-title: Proc Natl Acad Sci USA
– volume: 117
  start-page: 1
  year: 1992
  end-page: 14
  article-title: Transcription‐dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies
  publication-title: J Cell Biol
– volume: 287
  start-page: 23079
  year: 2012
  end-page: 23094
  article-title: Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA‐binding protein of 43 kDa (TDP‐43)
  publication-title: J Biol Chem
– volume: 352
  start-page: 595
  year: 2016
  end-page: 599
  article-title: Phase separation of signaling molecules promotes T cell receptor signal transduction
  publication-title: Science
– volume: 206
  start-page: 579
  year: 2014
  end-page: 588
  article-title: Assemblages: functional units formed by cellular phase separation
  publication-title: J Cell Biol
– volume: 25
  start-page: 635
  year: 2007
  end-page: 646
  article-title: P bodies and the control of mRNA translation and degradation
  publication-title: Mol Cell
– volume: 427
  start-page: 1135
  year: 2015
  end-page: 1158
  article-title: A perspective on transport of proteins into mitochondria: a myriad of open questions
  publication-title: J Mol Biol
– volume: 112
  start-page: 9614
  year: 2015
  end-page: 9619
  article-title: Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding
  publication-title: Proc Natl Acad Sci USA
– volume: 32
  start-page: 217
  year: 2007
  end-page: 224
  article-title: Functional amyloid–from bacteria to humans
  publication-title: Trends Biochem Sci
– volume: 155
  start-page: 1049
  year: 2013
  end-page: 1060
  article-title: Phosphorylation‐regulated binding of RNA polymerase II to fibrous polymers of low‐complexity domains
  publication-title: Cell
– volume: 30
  start-page: 39
  year: 2014
  end-page: 58
  article-title: Liquid‐liquid phase separation in biology
  publication-title: Annu Rev Cell Dev Biol
– volume: 9
  start-page: e1000614
  year: 2011
  article-title: Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS
  publication-title: PLoS Biol
– volume: 66
  start-page: 43
  year: 2015
  end-page: 52
  article-title: Autophagy receptor defects and ALS‐FTLD
  publication-title: Mol Cell Neurosci
– volume: 16
  start-page: 273
  year: 2000
  end-page: 300
  article-title: Cajal bodies: the first 100 years
  publication-title: Annu Rev Cell Dev Biol
– volume: 164
  start-page: 831
  year: 2004
  end-page: 842
  article-title: kinetics of Cajal body components
  publication-title: J Cell Biol
– volume: 345
  start-page: 1139
  year: 2014
  end-page: 1145
  article-title: Poly‐dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells
  publication-title: Science
– volume: 589
  start-page: 2498
  year: 2015
  end-page: 2506
  article-title: The multifaceted roles of intrinsic disorder in protein complexes
  publication-title: FEBS Lett
– volume: 163
  start-page: 829
  year: 2015
  end-page: 839
  article-title: The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid‐like droplets, and nuclei
  publication-title: Cell
– volume: 56
  start-page: 389
  year: 2014
  end-page: 399
  article-title: The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies
  publication-title: Mol Cell
– volume: 163
  start-page: 406
  year: 2015
  end-page: 418
  article-title: Regulated formation of an amyloid‐like translational repressor governs gametogenesis
  publication-title: Cell
– volume: 60
  start-page: 231
  year: 2015
  end-page: 241
  article-title: Residue‐by‐residue view of FUS granules that bind the C‐terminal domain of RNA polymerase II
  publication-title: Mol Cell
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol Cell
– volume: 324
  start-page: 1729
  year: 2009
  end-page: 1732
  article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation
  publication-title: Science
– volume: 30
  start-page: 2501
  year: 2014
  end-page: 2502
  article-title: PLAAC: a web and command‐line application to identify proteins with prion‐like amino acid composition
  publication-title: Bioinformatics
– volume: 9
  start-page: 126
  year: 1999
  end-page: 135
  article-title: Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts
  publication-title: Curr Biol
– volume: 127
  start-page: 891
  year: 2006
  end-page: 904
  article-title: Pathway to totipotency: lessons from germ cells
  publication-title: Cell
– volume: 149
  start-page: 753
  year: 2012
  end-page: 767
  article-title: Cell‐free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
– volume: 40
  start-page: 216
  year: 2010
  end-page: 227
  article-title: The nucleolus under stress
  publication-title: Mol Cell
– volume: 148
  start-page: 515
  year: 2012
  end-page: 529
  article-title: Critical role of amyloid‐like oligomers of Drosophila Orb2 in the persistence of memory
  publication-title: Cell
– volume: 13
  start-page: 167
  year: 2011
  end-page: 173
  article-title: Nucleation of nuclear bodies by RNA
  publication-title: Nat Cell Biol
– volume: 149
  start-page: 1188
  year: 2012
  end-page: 1191
  article-title: Getting RNA and protein in phase
  publication-title: Cell
– volume: 12
  start-page: 629
  year: 2011
  end-page: 642
  article-title: Deciphering arginine methylation: tudor tells the tale
  publication-title: Nat Rev Mol Cell Biol
– volume: 60
  start-page: 220
  year: 2015
  end-page: 230
  article-title: RNA controls PolyQ protein phase transitions
  publication-title: Mol Cell
– volume: 16
  start-page: 202
  year: 2005
  end-page: 211
  article-title: Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low‐density, sponge‐like structure
  publication-title: Mol Biol Cell
– volume: 162
  start-page: 1066
  year: 2015
  end-page: 1077
  article-title: A liquid‐to‐solid phase transition of the ALS protein FUS accelerated by disease mutation
  publication-title: Cell
– volume: 33
  start-page: 141
  year: 2008
  end-page: 150
  article-title: Stress granules: the Tao of RNA triage
  publication-title: Trends Biochem Sci
– volume: 210
  start-page: 527
  year: 2015
  end-page: 528
  article-title: Paraspeckles: paragons of functional aggregation
  publication-title: J Cell Biol
– volume: 4
  start-page: e6
  year: 2006
  article-title: Functional amyloid formation within mammalian tissue
  publication-title: PLoS Biol
– volume: 163
  start-page: 123
  year: 2015
  end-page: 133
  article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
  publication-title: Cell
– volume: 16
  start-page: 1383
  year: 2013
  end-page: 1391
  article-title: Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons
  publication-title: Nat Neurosci
– volume: 495
  start-page: 467
  year: 2013
  end-page: 473
  article-title: Mutations in prion‐like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS
  publication-title: Nature
– volume: 27
  start-page: 295
  year: 2011
  end-page: 306
  article-title: Biogenesis and function of nuclear bodies
  publication-title: Trends Genet
– volume: 163
  start-page: 108
  year: 2015
  end-page: 122
  article-title: Phase transition of spindle‐associated protein regulate spindle apparatus assembly
  publication-title: Cell
– volume: 6
  start-page: 8088
  year: 2015
  article-title: Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP‐ribose)
  publication-title: Nat Commun
– volume: 325
  start-page: 328
  year: 2009
  end-page: 332
  article-title: Functional amyloids as natural storage of peptide hormones in pituitary secretory granules
  publication-title: Science
– volume: 1834
  start-page: 918
  year: 2013
  end-page: 931
  article-title: Protein disorder, prion propensities, and self‐organizing macromolecular collectives
  publication-title: Biochim Biophys Acta
– volume: 112
  start-page: E5237
  year: 2015
  end-page: E5245
  article-title: RNA transcription modulates phase transition‐driven nuclear body assembly
  publication-title: Proc Natl Acad Sci USA
– volume: 483
  start-page: 336
  year: 2012
  end-page: 340
  article-title: Phase transitions in the assembly of multivalent signalling proteins
  publication-title: Nature
– volume: 60
  start-page: 208
  year: 2015
  end-page: 219
  article-title: Formation and Maturation of Phase‐Separated Liquid Droplets by RNA‐Binding Proteins
  publication-title: Mol Cell
– volume: 210
  start-page: 529
  year: 2015
  end-page: 539
  article-title: Prion‐like domains in RNA binding proteins are essential for building subnuclear paraspeckles
  publication-title: J Cell Biol
– volume: 3
  start-page: a000638
  year: 2011
  article-title: The nucleolus
  publication-title: Cold Spring Harb Perspect Biol
– volume: 88
  start-page: 678
  year: 2015
  end-page: 690
  article-title: ALS/FTD Mutation‐Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function
  publication-title: Neuron
– volume: 201
  start-page: 361
  year: 2013
  end-page: 372
  article-title: Stress granules as crucibles of ALS pathogenesis
  publication-title: J Cell Biol
– volume: 8
  start-page: 85
  year: 2007
  end-page: 90
  article-title: The chromatoid body: a germ‐cell‐specific RNA‐processing centre
  publication-title: Nat Rev Mol Cell Biol
– volume: 8
  start-page: 574
  year: 2007
  end-page: 585
  article-title: The multifunctional nucleolus
  publication-title: Nat Rev Mol Cell Biol
– volume: 4
  start-page: 17
  year: 2013
  end-page: 34
  article-title: Cajal bodies: where form meets function
  publication-title: Wiley Interdiscip Rev RNA
– volume: 404
  start-page: 604
  year: 2000
  end-page: 609
  article-title: High mobility of proteins in the mammalian cell nucleus
  publication-title: Nature
– volume: 17
  start-page: 4972
  year: 2006
  end-page: 4981
  article-title: Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling
  publication-title: Mol Biol Cell
– volume: 41
  start-page: 557
  year: 2012
  end-page: 584
  article-title: Functional architecture of the nuclear pore complex
  publication-title: Annu Rev Biophys
– volume: 44
  start-page: 745
  year: 2011
  end-page: 758
  article-title: Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies
  publication-title: Mol Cell
– volume: 29
  start-page: 802
  year: 2010
  end-page: 810
  article-title: FLASH degradation in response to UV‐C results in histone locus bodies disruption and cell‐cycle arrest
  publication-title: Oncogene
– volume: 314
  start-page: 815
  year: 2006
  end-page: 817
  article-title: FG‐rich repeats of nuclear pore proteins form a three‐dimensional meshwork with hydrogel‐like properties
  publication-title: Science
– volume: 1462
  start-page: 61
  year: 2012
  end-page: 80
  article-title: The tip of the iceberg: RNA‐binding proteins with prion‐like domains in neurodegenerative disease
  publication-title: Brain Res
– volume: 186
  start-page: 637
  year: 2009
  end-page: 644
  article-title: Paraspeckles: nuclear bodies built on long noncoding RNA
  publication-title: J Cell Biol
– volume: 23
  start-page: 2452
  year: 2013
  end-page: 2462
  article-title: Coordination of translational control and protein homeostasis during severe heat stress
  publication-title: Curr Biol
– volume: 32
  start-page: 204
  year: 2013
  end-page: 218
  article-title: Systematic analysis of barrier‐forming FG hydrogels from Xenopus nuclear pore complexes
  publication-title: EMBO J
– volume: 4
  start-page: 605
  year: 2003
  end-page: 612
  article-title: Nuclear speckles: a model for nuclear organelles
  publication-title: Nat Rev Mol Cell Biol
– volume: 153
  start-page: 1461
  year: 2013
  end-page: 1474
  article-title: Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function
  publication-title: Cell
– volume: 454
  start-page: 126
  year: 2008
  end-page: 130
  article-title: Induced ncRNAs allosterically modify RNA‐binding proteins in cis to inhibit transcription
  publication-title: Nature
– volume: 108
  start-page: 4334
  year: 2011
  end-page: 4339
  article-title: Active liquid‐like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes
  publication-title: Proc Natl Acad Sci USA
– volume: 151
  start-page: 1561
  year: 2000
  end-page: 1574
  article-title: analysis of Cajal body movement, separation, and joining in live human cells
  publication-title: J Cell Biol
– volume: 36
  start-page: 932
  year: 2009
  end-page: 941
  article-title: Eukaryotic stress granules: the ins and outs of translation
  publication-title: Mol Cell
– volume: 18
  start-page: 796
  year: 2011
  end-page: 804
  article-title: Structure‐function studies of FMRP RGG peptide recognition of an RNA duplex‐quadruplex junction
  publication-title: Nat Struct Mol Biol
– volume: 137
  start-page: 146
  year: 2009
  end-page: 158
  article-title: A systematic survey identifies prions and illuminates sequence features of prionogenic proteins
  publication-title: Cell
– volume: 166
  start-page: 1015
  year: 2004
  end-page: 1025
  article-title: Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer
  publication-title: J Cell Biol
– volume: 46
  start-page: 151
  year: 1942
  end-page: 158
  article-title: Some properties of solutions of long‐chain compounds
  publication-title: J Phys Chem
– ident: e_1_2_15_22_1
  doi: 10.1016/j.cub.2013.09.058
– ident: e_1_2_15_50_1
  doi: 10.1093/bioinformatics/btu310
– ident: e_1_2_15_60_1
  doi: 10.1016/j.tig.2011.05.006
– ident: e_1_2_15_71_1
  doi: 10.1083/jcb.151.7.1561
– ident: e_1_2_15_38_1
  doi: 10.1146/annurev-cellbio-100913-013325
– ident: e_1_2_15_33_1
  doi: 10.1146/annurev.cellbio.16.1.273
– ident: e_1_2_15_45_1
  doi: 10.7554/eLife.06807
– ident: e_1_2_15_34_1
  doi: 10.1146/annurev-biophys-050511-102328
– ident: e_1_2_15_41_1
  doi: 10.1038/nature11922
– ident: e_1_2_15_53_1
  doi: 10.1016/j.molcel.2015.08.018
– ident: e_1_2_15_10_1
  doi: 10.1073/pnas.1509317112
– ident: e_1_2_15_30_1
  doi: 10.1016/j.tibs.2007.03.003
– ident: e_1_2_15_66_1
  doi: 10.1016/j.molcel.2007.02.011
– ident: e_1_2_15_69_1
  doi: 10.1038/35007077
– ident: e_1_2_15_65_1
  doi: 10.1016/j.celrep.2014.12.030
– ident: e_1_2_15_43_1
  doi: 10.1091/mbc.E06-06-0513
– ident: e_1_2_15_78_1
  doi: 10.1093/protein/gzp037
– ident: e_1_2_15_54_1
  doi: 10.1002/wrna.1139
– ident: e_1_2_15_35_1
  doi: 10.1091/mbc.e04-08-0742
– ident: e_1_2_15_86_1
  doi: 10.1016/j.molcel.2015.09.017
– ident: e_1_2_15_81_1
  doi: 10.1038/nature06992
– ident: e_1_2_15_39_1
  doi: 10.1016/j.cell.2015.08.010
– ident: e_1_2_15_59_1
  doi: 10.1016/j.bbapap.2013.01.003
– ident: e_1_2_15_2_1
  doi: 10.1073/pnas.0910163107
– ident: e_1_2_15_37_1
  doi: 10.1021/j150415a018
– ident: e_1_2_15_74_1
  doi: 10.1038/ncb2157
– ident: e_1_2_15_67_1
  doi: 10.1016/j.cell.2015.07.047
– ident: e_1_2_15_85_1
  doi: 10.1016/j.cell.2015.10.040
– ident: e_1_2_15_44_1
  doi: 10.1038/nrm2081
– ident: e_1_2_15_36_1
  doi: 10.1083/jcb.201504117
– ident: e_1_2_15_14_1
  doi: 10.1016/j.molcel.2010.09.024
– ident: e_1_2_15_49_1
  doi: 10.1038/nrm1172
– ident: e_1_2_15_28_1
  doi: 10.1063/1.1723621
– ident: e_1_2_15_18_1
  doi: 10.1016/j.cell.2013.05.037
– ident: e_1_2_15_58_1
  doi: 10.1016/j.cell.2012.01.004
– ident: e_1_2_15_68_1
  doi: 10.1101/cshperspect.a000638
– ident: e_1_2_15_13_1
  doi: 10.1038/onc.2009.388
– ident: e_1_2_15_3_1
  doi: 10.1016/j.cell.2009.02.044
– ident: e_1_2_15_7_1
  doi: 10.1016/j.molcel.2011.09.019
– ident: e_1_2_15_29_1
  doi: 10.1371/journal.pbio.0040006
– ident: e_1_2_15_4_1
  doi: 10.1038/ncomms9088
– ident: e_1_2_15_77_1
  doi: 10.1371/journal.pbio.1000614
– ident: e_1_2_15_11_1
  doi: 10.1038/nrm2184
– ident: e_1_2_15_46_1
  doi: 10.1016/j.cell.2013.10.033
– ident: e_1_2_15_61_1
  doi: 10.1016/j.cell.2015.09.015
– ident: e_1_2_15_9_1
  doi: 10.1016/j.cell.2015.08.060
– ident: e_1_2_15_26_1
  doi: 10.1073/pnas.1504822112
– ident: e_1_2_15_62_1
  doi: 10.1016/j.neuron.2015.10.030
– ident: e_1_2_15_48_1
  doi: 10.1038/emboj.2012.302
– ident: e_1_2_15_19_1
  doi: 10.1016/j.molcel.2015.09.006
– ident: e_1_2_15_56_1
  doi: 10.1016/j.mcn.2015.01.002
– ident: e_1_2_15_8_1
  doi: 10.1074/jbc.M111.328757
– ident: e_1_2_15_6_1
  doi: 10.1073/pnas.1512799112
– ident: e_1_2_15_51_1
  doi: 10.1038/nature10879
– ident: e_1_2_15_57_1
  doi: 10.1126/science.1173155
– ident: e_1_2_15_12_1
  doi: 10.1083/jcb.200906113
– ident: e_1_2_15_75_1
  doi: 10.1083/jcb.200405160
– ident: e_1_2_15_47_1
  doi: 10.1126/science.1254917
– ident: e_1_2_15_72_1
  doi: 10.7554/eLife.04251
– ident: e_1_2_15_70_1
  doi: 10.1038/nsmb.2064
– ident: e_1_2_15_40_1
  doi: 10.1016/j.cell.2012.04.017
– ident: e_1_2_15_82_1
  doi: 10.1038/nn.3514
– ident: e_1_2_15_42_1
  doi: 10.1016/j.brainres.2012.01.016
– ident: e_1_2_15_20_1
  doi: 10.1083/jcb.117.1.1
– ident: e_1_2_15_84_1
  doi: 10.1016/j.cell.2012.05.022
– ident: e_1_2_15_55_1
  doi: 10.1016/j.molcel.2014.10.004
– ident: e_1_2_15_52_1
  doi: 10.1083/jcb.201302044
– ident: e_1_2_15_16_1
  doi: 10.1073/pnas.1017150108
– ident: e_1_2_15_17_1
  doi: 10.1016/j.molcel.2009.11.020
– ident: e_1_2_15_15_1
  doi: 10.1126/science.1172046
– ident: e_1_2_15_21_1
  doi: 10.1038/nrm3185
– ident: e_1_2_15_64_1
  doi: 10.1016/j.molcel.2015.01.013
– ident: e_1_2_15_31_1
  doi: 10.1016/S0960-9822(99)80066-9
– ident: e_1_2_15_63_1
  doi: 10.1016/j.jmb.2015.02.001
– ident: e_1_2_15_80_1
  doi: 10.1016/j.febslet.2015.06.004
– ident: e_1_2_15_5_1
  doi: 10.1016/j.tibs.2007.12.003
– ident: e_1_2_15_23_1
  doi: 10.1083/jcb.201507052
– ident: e_1_2_15_25_1
  doi: 10.1083/jcb.200311121
– ident: e_1_2_15_73_1
  doi: 10.1016/j.cell.2006.11.016
– ident: e_1_2_15_79_1
  doi: 10.1083/jcb.201404124
– ident: e_1_2_15_83_1
  doi: 10.7554/eLife.04591
– ident: e_1_2_15_32_1
  doi: 10.1126/science.1132516
– ident: e_1_2_15_76_1
  doi: 10.1126/science.aad9964
– ident: e_1_2_15_24_1
  doi: 10.1083/jcb.200704147
– ident: e_1_2_15_27_1
  doi: 10.1016/j.cub.2015.11.065
SSID ssj0005871
Score 2.6063395
SecondaryResourceType review_article
Snippet Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1603
SubjectTerms Amyotrophic lateral sclerosis
Biochemistry
Cell Physiological Phenomena
Cellular biology
Cytosol - chemistry
EMBO20
EMBO27
EMBO36
Liquid-liquid phase separation
low-complexity domain
Macromolecular Substances - metabolism
Molecular biology
Multienzyme Complexes - metabolism
nuclear bodies
Physical properties
Proteins
Review
RNP granules
Title Droplet organelles?
URI https://api.istex.fr/ark:/67375/WNG-0C564KMG-2/fulltext.pdf
https://link.springer.com/article/10.15252/embj.201593517
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201593517
https://www.ncbi.nlm.nih.gov/pubmed/27357569
https://www.proquest.com/docview/1808004368
https://www.proquest.com/docview/1809047950
https://pubmed.ncbi.nlm.nih.gov/PMC4969579
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTtxAEC0FRohcEJmwOJmgQUIRHAxeej1FxGERaDiB4NZyLxZbhmgYJPh7utoewyigKDdbbm-vutyvu8qvADY8gxAuTWxMK9-DSeVdquSMxEwKIQmXvt_gRHFwwg7PyNEFvWhEkvBfmNfxe5rRbMf91teYgUVlTlM-Ax2a5hxrNBSseMnlEGFmFRZTSCpko-HzxgWmhp8OIvn4Frf8O0WyjZNOs9gwDO0vwkLDH_u7tcE_wQc37MJcXVHyqQvzxaSA22fo_hphdvi4Hyo34QL9_Y8lONvfOy0O46YGQmw8t-Cxdt5BrMZwJTITU1JtuTOSJlaWwginE6G59dO00nhXFJp4imcdrzJHRW7SfBlmh3dDtwp9akRFkspWGDnVmdap4SXx32rLjMitjWB7Ao0yjUA41qm4VThRQCwVYqlaLCPYbE_4U2tjvN_0e8C6bVeObjCljFN1fnKgkoIycjw4UFkEvYkxVONN9ypF8cuglR_BenvYo4nBDQ_g3UNoI1EunyYRrNS2a2_mKZpnpUxGwKes2jZAje3pI8Ory6C1TSTDQGYEWxP7v3qs9941Dx3kX5iovcHPo3bvy3_c4St89NuszkPswex49OC-eW401mvBL9ZwfKLPMZUCKQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRKhcKgiPmhYIEiA4mPqx6909IBTSR5o0udCK3hbvw-KZVkmq0p_DP2V2_YCIVohDj_aOvetvZj0znvEMwDO0ILiNIxPSAiWYFLilcpaRMBOcC8IEyo1zFMeTbHBEhsf0eAV-1v_C-Gz3OiTp39RVj55ky35XX1wuFhUpjVmVRzmyF-fopc3f7G8jS58nye7OYX8QVo0EQo0KmoXKopQZ5WJ-Tr3rnCrDrBY0MiLnmlsVccUM-jq5RnnmiqCdZCwrEkt5quMU73sD2pxmnLag3esN3w9_55Fw79X5Dzkk5qKqH3TJkpdUX9tx8cdldu3f6ZlNjHbZgvYqcPc2rFW2a7dXCtsdWLHTDtwsu1ledGC1XzePuwud7ZnLTF90fdcoFxyYv70HR9cC231oTU-mdh26VPOCRIUpXNRWJUrFmuUE9YTJNE-NCeB1DY3UVXFy1yPjm3ROisNSOixlg2UAL5sLTsu6HFeTvvBYN3T57KtLZ2NUfpjsyahPMzIa78kkgM2aGbLayXMZu8Kbvk5_AE-bYUTTBVYQwJMzTyNcqX4aBfCg5F0zGZqHaBFnIgC2xNWGwNX3Xh6Zfv7k63wTkbkgagCvav7_sayrnjX1AvIvTOTO-N2wOXr4HzM8gdXB4fhAHuxPRhtwC89nZT7kJrQWszP7CG20hXpc7ZIufLzujfkL9fxDYA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVhwvCMJlKBAkQPBg6mPX3n1ACJymR0jEA1X7tngPizOtklTQH8V_ZGZ9QEQrxEMf7V177W9mNTOe8TcAj9GDEC6ObMgr1GBW4ZYq84yFmRRCslyi3lCgOJ5k23ts94AfrMDP9l8YX-3epiTrfxqIpWm62DiyVduvJ9lw3_RnqsviMuVx3tRUjtzJd4zY5i93BijeJ0ky3HxfbIdNU4HQoLHOQ-1Q46ym_B-ZelNybXNnJI-sLIURTkdC5xbjntKgbgvN0GeyLq8Sx0Vq4hTvewHWMCyKKdYrsuJ3RYnw8Z3_pMNiIRsmoVMeeMkIrpE8f5zm4f5dqNlla5d9aW8Mh9fgauPF9l_XancdVty0BxfrvpYnPbhctG3kbkBvMKMa9UXf94-iNMH81U3YOxfQbsHq9HDq7kCfG1GxqLIV5W91onVs8pKhxbCZEam1AbxooVGmoSmnbhlfFYUrhKUiLFWHZQDPuguOaoaOs6c-9Vh388rZFypsy7nan2ypqOAZG423VBLAeisM1ezpuYqJgtMz9gfwqBtGNCnFggAeHvs5kkj7eRTA7Vp23WLoKKJvnMkA8iWpdhOI6Xt5ZPrpo2f8ZjKjdGoAz1v5__FYZ71r6hXkX5iozfGb3e7o7n-s8BAuvRsM1dudyegeXMHTWV0YuQ6ri9mxu4_O2kI_8FukDx_Oe0_-AiF_Rjo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Droplet+organelles%3F&rft.jtitle=The+EMBO+journal&rft.au=Courchaine%2C+Edward+M&rft.au=Lu%2C+Alice&rft.au=Neugebauer%2C+Karla+M&rft.date=2016-08-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=35&rft.issue=15&rft.spage=1603&rft.epage=1612&rft_id=info:doi/10.15252%2Fembj.201593517&rft_id=info%3Apmid%2F27357569&rft.externalDocID=PMC4969579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon