Droplet organelles?
Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid–liqu...
Saved in:
Published in | The EMBO journal Vol. 35; no. 15; pp. 1603 - 1612 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Blackwell Publishing Ltd
01.08.2016
Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid–liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term “droplet organelle”. A veritable deluge of recent publications points to the importance of low‐complexity proteins and RNA in determining the physical properties of phase‐separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative “droplet organelles” in healthy and diseased cells, connecting protein biochemistry with cell physiology.
Graphical Abstract
Non‐membrane‐bound cellular structures such as nucleoli, stress granules, Cajal and P bodies have been long established. Recent data reviewed by Neugebauer and colleagues delineate liquid–liquid phase separation processes that underlie the dynamic nature of these organelles composed of low‐complexity proteins and RNA. |
---|---|
AbstractList | Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid–liquid phase separation (
LLPS
) process may drive their formation, possibly justifying the unifying term “droplet organelle”. A veritable deluge of recent publications points to the importance of low‐complexity proteins and
RNA
in determining the physical properties of phase‐separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (
ALS
). We provide an overview of the organizational principles that characterize putative “droplet organelles” in healthy and diseased cells, connecting protein biochemistry with cell physiology. Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology.Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology. Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid–liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term “droplet organelle”. A veritable deluge of recent publications points to the importance of low‐complexity proteins and RNA in determining the physical properties of phase‐separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative “droplet organelles” in healthy and diseased cells, connecting protein biochemistry with cell physiology. Graphical Abstract Non‐membrane‐bound cellular structures such as nucleoli, stress granules, Cajal and P bodies have been long established. Recent data reviewed by Neugebauer and colleagues delineate liquid–liquid phase separation processes that underlie the dynamic nature of these organelles composed of low‐complexity proteins and RNA. Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid–liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term “droplet organelle”. A veritable deluge of recent publications points to the importance of low‐complexity proteins and RNA in determining the physical properties of phase‐separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative “droplet organelles” in healthy and diseased cells, connecting protein biochemistry with cell physiology. Non‐membrane‐bound cellular structures such as nucleoli, stress granules, Cajal and P bodies have been long established. Recent data reviewed by Neugebauer and colleagues delineate liquid–liquid phase separation processes that underlie the dynamic nature of these organelles composed of low‐complexity proteins and RNA. Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology. |
Author | Courchaine, Edward M Neugebauer, Karla M Lu, Alice |
AuthorAffiliation | 1 Department of Molecular Biophysics and Biochemistry Yale University New Haven CT USA |
AuthorAffiliation_xml | – name: 1 Department of Molecular Biophysics and Biochemistry Yale University New Haven CT USA |
Author_xml | – sequence: 1 givenname: Edward M surname: Courchaine fullname: Courchaine, Edward M organization: Department of Molecular Biophysics and Biochemistry, Yale University, CT, New Haven, USA – sequence: 2 givenname: Alice surname: Lu fullname: Lu, Alice organization: Department of Molecular Biophysics and Biochemistry, Yale University, CT, New Haven, USA – sequence: 3 givenname: Karla M surname: Neugebauer fullname: Neugebauer, Karla M email: karla.neugebauer@yale.edu organization: Department of Molecular Biophysics and Biochemistry, Yale University, CT, New Haven, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27357569$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUhS3UiqaFFQt2CIlNN9Nee8YvFkU0tOHRwgbE0vJ4boLDZBzsCdB_X6fTRqFSxcqWfL5zz_HdJztd6JCQ5xSOKGecHeOinh8xoFyXnMpHZEQrAQUDyXfICJigRUWV3iP7Kc0BgCtJH5M9JksuudAj8uxdDMsW-5chzmyHbYvpzROyO7Vtwqe35wH5dn72dfy-uPgy-TB-e1E4QaUsahSlamrIkwEoc5bXjUSnOTTaKqewBlXLRlVgnVL5XlHKG5RThlyVjpYH5GTwXa7qBTYOuz7a1iyjX9h4ZYL15t-Xzv8ws_DbVFpoLnU2OLw1iOHXClNvFj65XCI3CatkqAINlcyJsvTVPek8rGKX661VCqAqhcqqF9uJNlHu_isL-CBwMaQUcWqc723vwzqgbw0Fc7MXs96L2ewlc8f3uDvrh4nXA_HHt3j1P7k5uzz9uA3DAKfMdTOMW20fnFcMiE89_t3Ms_GnEbKU3Hz_PDEw5qL6dDkxrLwGfsO9VQ |
CODEN | EMJODG |
CitedBy_id | crossref_primary_10_1146_annurev_biophys_121219_081629 crossref_primary_10_1134_S1062360421020077 crossref_primary_10_1016_j_isci_2021_103719 crossref_primary_10_1016_j_tibs_2019_03_005 crossref_primary_10_1093_hmg_ddx274 crossref_primary_10_15252_embj_2020105612 crossref_primary_10_1038_s41467_018_03651_9 crossref_primary_10_1515_hsz_2018_0141 crossref_primary_10_1002_ctd2_103 crossref_primary_10_3390_polym11060990 crossref_primary_10_1038_s41583_024_00859_1 crossref_primary_10_1007_s00018_022_04141_4 crossref_primary_10_1016_j_csbj_2022_12_009 crossref_primary_10_1093_nar_gkab508 crossref_primary_10_1073_pnas_1905552116 crossref_primary_10_3390_cells10061460 crossref_primary_10_1038_s41467_024_50003_x crossref_primary_10_1016_j_devcel_2016_10_005 crossref_primary_10_1074_jbc_AC117_001037 crossref_primary_10_1093_nar_gkae463 crossref_primary_10_1016_j_gde_2020_11_002 crossref_primary_10_1016_j_omtn_2023_07_009 crossref_primary_10_1038_nrm_2017_63 crossref_primary_10_1002_cbic_202200450 crossref_primary_10_1038_s41580_024_00739_7 crossref_primary_10_1016_j_jbior_2018_09_009 crossref_primary_10_1038_s41422_020_0296_7 crossref_primary_10_1016_j_bpj_2019_02_028 crossref_primary_10_1016_j_molcel_2020_04_001 crossref_primary_10_1111_tra_12674 crossref_primary_10_1002_2211_5463_13382 crossref_primary_10_1038_s41467_019_08354_3 crossref_primary_10_1002_bies_202000104 crossref_primary_10_1242_jcs_253591 crossref_primary_10_1016_j_jmb_2020_04_015 crossref_primary_10_1021_acs_iecr_3c03830 crossref_primary_10_1007_s00299_022_02955_x crossref_primary_10_1016_j_bpj_2024_01_023 crossref_primary_10_1128_jb_00211_23 crossref_primary_10_1016_j_dnarep_2021_103179 crossref_primary_10_1016_j_polymer_2022_125525 crossref_primary_10_1038_s41596_018_0044_3 crossref_primary_10_3390_ijms20215501 crossref_primary_10_1002_wrna_1514 crossref_primary_10_1111_tra_12669 crossref_primary_10_7554_eLife_21337 crossref_primary_10_1007_s12551_020_00673_w crossref_primary_10_1038_s41419_020_03116_2 crossref_primary_10_3389_fpls_2020_595792 crossref_primary_10_1002_advs_202202855 crossref_primary_10_1016_j_cois_2018_07_006 crossref_primary_10_1146_annurev_biophys_062920_063704 crossref_primary_10_1128_mBio_01202_20 crossref_primary_10_1016_j_jmb_2023_168094 crossref_primary_10_3390_plants10071307 crossref_primary_10_1002_cbic_201800066 crossref_primary_10_1016_j_molcel_2018_10_036 crossref_primary_10_1063_5_0055460 crossref_primary_10_1039_C7SM01897E crossref_primary_10_1146_annurev_biochem_061516_044700 crossref_primary_10_3390_molecules24183265 crossref_primary_10_1016_j_cell_2021_05_008 crossref_primary_10_1016_j_jcis_2024_07_135 crossref_primary_10_1038_s41467_017_02757_w crossref_primary_10_1038_s12276_024_01226_x crossref_primary_10_1016_j_devcel_2024_12_016 crossref_primary_10_3389_fpls_2021_680710 crossref_primary_10_15252_embr_201847604 crossref_primary_10_1016_j_ceb_2019_02_007 crossref_primary_10_1016_j_molcel_2017_12_022 crossref_primary_10_3389_fnmol_2017_00119 crossref_primary_10_1038_s41556_022_00903_1 crossref_primary_10_5483_BMBRep_2022_55_3_188 crossref_primary_10_3390_biom9120842 crossref_primary_10_1098_rsob_180044 crossref_primary_10_1128_JVI_00948_19 crossref_primary_10_7554_eLife_60326 crossref_primary_10_1021_acs_chemrev_7b00487 crossref_primary_10_15252_embr_201947952 crossref_primary_10_1038_s41598_022_08130_2 crossref_primary_10_1016_j_bbagen_2017_06_011 crossref_primary_10_1101_sqb_2019_84_040402 crossref_primary_10_7554_eLife_44752 crossref_primary_10_1074_jbc_REV120_010899 crossref_primary_10_1038_s41467_021_27123_9 crossref_primary_10_1038_s42004_023_00879_5 crossref_primary_10_1091_mbc_e16_03_0149 crossref_primary_10_1016_j_celrep_2019_09_018 crossref_primary_10_1083_jcb_201608022 crossref_primary_10_1016_j_bbadis_2016_12_022 crossref_primary_10_1073_pnas_1615395114 crossref_primary_10_1101_gad_331520_119 crossref_primary_10_1016_j_pbiomolbio_2019_04_001 crossref_primary_10_1021_acsmacrolett_8b00565 crossref_primary_10_1042_BST20160364 crossref_primary_10_1261_rna_079469_122 crossref_primary_10_3390_cells10030571 crossref_primary_10_1086_700636 crossref_primary_10_1016_j_tibs_2018_03_007 crossref_primary_10_1016_j_bbamcr_2020_118831 crossref_primary_10_1016_j_smim_2024_101926 crossref_primary_10_1016_j_tplants_2020_05_005 crossref_primary_10_1038_cddis_2016_444 crossref_primary_10_1038_s41556_020_0550_8 crossref_primary_10_7554_eLife_35224 crossref_primary_10_1016_j_ceb_2017_05_001 crossref_primary_10_1039_C7NR07833A crossref_primary_10_1021_acs_biochem_7b01262 crossref_primary_10_1371_journal_ppat_1011022 crossref_primary_10_1016_j_cobme_2023_100483 crossref_primary_10_1016_j_ydbio_2019_01_008 crossref_primary_10_1016_j_jtbi_2017_04_006 crossref_primary_10_3389_fchem_2019_00044 crossref_primary_10_1002_pro_4521 crossref_primary_10_1080_15476286_2016_1255397 crossref_primary_10_7554_eLife_24106 crossref_primary_10_3390_biomedicines10051080 crossref_primary_10_1021_acsbiomaterials_0c01543 crossref_primary_10_1002_wrna_1574 crossref_primary_10_1016_j_cell_2016_09_036 crossref_primary_10_1016_j_tibs_2017_08_002 crossref_primary_10_1002_pro_70061 crossref_primary_10_1016_j_bpj_2018_09_022 crossref_primary_10_1016_j_tips_2021_07_003 crossref_primary_10_1080_15476286_2016_1265198 crossref_primary_10_1590_0001_3765202420240321 crossref_primary_10_1242_jcs_202002 crossref_primary_10_1016_j_celrep_2021_109277 crossref_primary_10_1007_s12104_022_10067_6 crossref_primary_10_3390_antiox9040347 crossref_primary_10_1002_wrna_1582 crossref_primary_10_1038_s42005_018_0019_2 crossref_primary_10_1111_jipb_13152 crossref_primary_10_1016_j_molcel_2018_08_003 crossref_primary_10_1242_dev_144642 crossref_primary_10_1126_sciadv_abj9247 crossref_primary_10_1242_jcs_263447 crossref_primary_10_1038_s41598_023_39094_6 crossref_primary_10_1016_j_molp_2020_01_011 crossref_primary_10_1093_nar_gkae951 crossref_primary_10_3390_biom7040070 crossref_primary_10_1021_acs_nanolett_0c02635 crossref_primary_10_1016_j_jmb_2019_11_017 crossref_primary_10_1039_D0SC04993J crossref_primary_10_1242_dmm_028613 crossref_primary_10_1016_j_scr_2017_07_018 crossref_primary_10_1096_fj_202200235R crossref_primary_10_1016_j_jmb_2023_167955 crossref_primary_10_1073_pnas_2217242120 crossref_primary_10_1099_jgv_0_002021 crossref_primary_10_1016_j_celrep_2019_05_085 crossref_primary_10_1080_15476286_2016_1243648 crossref_primary_10_1002_wrna_1599 crossref_primary_10_1038_s41586_020_1977_6 crossref_primary_10_1016_j_tibs_2020_04_006 crossref_primary_10_1042_BCJ20200847 crossref_primary_10_1073_pnas_1615575114 crossref_primary_10_1002_wrna_1591 crossref_primary_10_1146_annurev_arplant_042916_041115 crossref_primary_10_7554_eLife_47098 crossref_primary_10_1021_acs_chemrev_7b00305 crossref_primary_10_1016_j_jmb_2019_01_037 crossref_primary_10_1038_s41467_022_32889_7 crossref_primary_10_1073_pnas_2312587121 crossref_primary_10_1021_acs_biochem_7b01215 crossref_primary_10_15252_embj_2021109952 crossref_primary_10_1126_science_aaw9498 crossref_primary_10_18699_VJ19_471 crossref_primary_10_3390_biology10050366 crossref_primary_10_3389_fncel_2022_954912 crossref_primary_10_1016_j_cell_2017_06_022 crossref_primary_10_1080_15476286_2016_1236169 crossref_primary_10_1002_smll_202105147 crossref_primary_10_1073_pnas_1907849116 crossref_primary_10_1007_s00412_017_0632_y crossref_primary_10_3389_fncel_2019_00487 crossref_primary_10_1038_s41580_022_00558_8 crossref_primary_10_1039_C8SM02285B crossref_primary_10_1073_pnas_1701877114 crossref_primary_10_2142_biophys_63_5 crossref_primary_10_1016_j_mib_2024_102467 crossref_primary_10_1083_jcb_202009045 crossref_primary_10_1126_sciadv_abg8654 crossref_primary_10_1016_j_yexcr_2023_113855 crossref_primary_10_15252_embj_201696394 crossref_primary_10_1371_journal_pcbi_1007717 crossref_primary_10_1111_1348_0421_13062 crossref_primary_10_1016_j_bbamcr_2021_119058 crossref_primary_10_1038_s41467_024_50027_3 crossref_primary_10_1016_j_jmb_2020_02_013 crossref_primary_10_1042_BST20231447 crossref_primary_10_1007_s10930_025_10261_0 crossref_primary_10_1002_1873_3468_12765 crossref_primary_10_1038_s12276_022_00857_2 crossref_primary_10_3389_fcell_2022_876893 crossref_primary_10_7554_eLife_37949 crossref_primary_10_1016_j_phytochem_2019_112214 crossref_primary_10_1021_acs_jpcb_7b00868 crossref_primary_10_3389_fcimb_2023_1082622 crossref_primary_10_1016_j_acthis_2024_152207 crossref_primary_10_1038_s41586_018_0174_3 crossref_primary_10_1080_21541264_2017_1373891 crossref_primary_10_1016_j_tig_2018_05_005 crossref_primary_10_1242_dmm_049294 crossref_primary_10_1002_1873_3468_13183 crossref_primary_10_3390_ncrna5040050 crossref_primary_10_1002_wrna_1545 crossref_primary_10_1038_nrm_2017_10 crossref_primary_10_1038_s42003_024_07102_8 crossref_primary_10_1016_j_semcdb_2018_07_001 crossref_primary_10_1063_5_0048441 crossref_primary_10_1093_nar_gkab249 crossref_primary_10_3389_fgene_2022_832547 crossref_primary_10_1016_j_biochi_2024_05_007 crossref_primary_10_1039_C8NP00037A crossref_primary_10_3389_fnins_2021_648133 crossref_primary_10_1016_j_molcel_2022_02_025 crossref_primary_10_1093_jb_mvab090 |
Cites_doi | 10.1016/j.cub.2013.09.058 10.1093/bioinformatics/btu310 10.1016/j.tig.2011.05.006 10.1083/jcb.151.7.1561 10.1146/annurev-cellbio-100913-013325 10.1146/annurev.cellbio.16.1.273 10.7554/eLife.06807 10.1146/annurev-biophys-050511-102328 10.1038/nature11922 10.1016/j.molcel.2015.08.018 10.1073/pnas.1509317112 10.1016/j.tibs.2007.03.003 10.1016/j.molcel.2007.02.011 10.1038/35007077 10.1016/j.celrep.2014.12.030 10.1091/mbc.E06-06-0513 10.1093/protein/gzp037 10.1002/wrna.1139 10.1091/mbc.e04-08-0742 10.1016/j.molcel.2015.09.017 10.1038/nature06992 10.1016/j.cell.2015.08.010 10.1016/j.bbapap.2013.01.003 10.1073/pnas.0910163107 10.1021/j150415a018 10.1038/ncb2157 10.1016/j.cell.2015.07.047 10.1016/j.cell.2015.10.040 10.1038/nrm2081 10.1083/jcb.201504117 10.1016/j.molcel.2010.09.024 10.1038/nrm1172 10.1063/1.1723621 10.1016/j.cell.2013.05.037 10.1016/j.cell.2012.01.004 10.1101/cshperspect.a000638 10.1038/onc.2009.388 10.1016/j.cell.2009.02.044 10.1016/j.molcel.2011.09.019 10.1371/journal.pbio.0040006 10.1038/ncomms9088 10.1371/journal.pbio.1000614 10.1038/nrm2184 10.1016/j.cell.2013.10.033 10.1016/j.cell.2015.09.015 10.1016/j.cell.2015.08.060 10.1073/pnas.1504822112 10.1016/j.neuron.2015.10.030 10.1038/emboj.2012.302 10.1016/j.molcel.2015.09.006 10.1016/j.mcn.2015.01.002 10.1074/jbc.M111.328757 10.1073/pnas.1512799112 10.1038/nature10879 10.1126/science.1173155 10.1083/jcb.200906113 10.1083/jcb.200405160 10.1126/science.1254917 10.7554/eLife.04251 10.1038/nsmb.2064 10.1016/j.cell.2012.04.017 10.1038/nn.3514 10.1016/j.brainres.2012.01.016 10.1083/jcb.117.1.1 10.1016/j.cell.2012.05.022 10.1016/j.molcel.2014.10.004 10.1083/jcb.201302044 10.1073/pnas.1017150108 10.1016/j.molcel.2009.11.020 10.1126/science.1172046 10.1038/nrm3185 10.1016/j.molcel.2015.01.013 10.1016/S0960-9822(99)80066-9 10.1016/j.jmb.2015.02.001 10.1016/j.febslet.2015.06.004 10.1016/j.tibs.2007.12.003 10.1083/jcb.201507052 10.1083/jcb.200311121 10.1016/j.cell.2006.11.016 10.1083/jcb.201404124 10.7554/eLife.04591 10.1126/science.1132516 10.1126/science.aad9964 10.1083/jcb.200704147 10.1016/j.cub.2015.11.065 |
ContentType | Journal Article |
Copyright | The Authors 2016 2016 The Authors 2016 The Authors. 2016 EMBO |
Copyright_xml | – notice: The Authors 2016 – notice: 2016 The Authors – notice: 2016 The Authors. – notice: 2016 EMBO |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embj.201593517 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Edward M Courchaine et al |
EISSN | 1460-2075 |
EndPage | 1612 |
ExternalDocumentID | PMC4969579 4134520201 27357569 10_15252_embj_201593517 EMBJ201593517 ark_67375_WNG_0C564KMG_2 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM007223 – fundername: NCATS NIH HHS grantid: UL1 TR001863 |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSMW ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BSCLL BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM AAJSJ AAYCA AFWVQ .55 3O- 4.4 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 AANHP AASML AAYXX ABUWG ABZEH ACBWZ ACKIV ACRPL ACYXJ ADNMO AEUYN AFKRA AGQPQ AI. ASPBG AVWKF AZQEC BBNVY BHPHI BKSAR BPHCQ BVXVI C1A CAG CCPQU CITATION COF D1J DWQXO FA8 FEDTE FYUFA GNUQQ GODZA GUQSH H13 HCIFZ HMCUK HVGLF H~9 LH4 LK8 LW6 M1P M2O M7P NAO PCBAR PHGZM PHGZT PQQKQ PROAC PSQYO RIG RNI RZO UKHRP VH1 WOQ X7M XSW Y6R YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c6177-be638db09350012ca5bd7ec950d9a8c8eb08b7d840ac8808b4115de7f2e583c13 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 14:11:19 EDT 2025 Fri Jul 11 00:31:07 EDT 2025 Fri Jul 25 10:57:17 EDT 2025 Thu Apr 03 07:09:03 EDT 2025 Tue Jul 01 02:06:01 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Wed Jan 22 16:33:43 EST 2025 Fri Feb 21 02:36:58 EST 2025 Wed Oct 30 09:48:37 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Liquid‐liquid phase separation RNP granules nuclear bodies low‐complexity domain |
Language | English |
License | 2016 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6177-be638db09350012ca5bd7ec950d9a8c8eb08b7d840ac8808b4115de7f2e583c13 |
Notes | ark:/67375/WNG-0C564KMG-2 ArticleID:EMBJ201593517 istex:2540CB307260E455668EDAC9E5093783DB59FC23 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 See the Glossary for abbreviations used in this article. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embj.201593517 |
PMID | 27357569 |
PQID | 1808004368 |
PQPubID | 35985 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4969579 proquest_miscellaneous_1809047950 proquest_journals_1808004368 pubmed_primary_27357569 crossref_citationtrail_10_15252_embj_201593517 crossref_primary_10_15252_embj_201593517 wiley_primary_10_15252_embj_201593517_EMBJ201593517 springer_journals_10_15252_embj_201593517 istex_primary_ark_67375_WNG_0C564KMG_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 01 August 2016 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 01 August 2016 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
References | Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186: 637-644 Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46: 151-158 Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T (2004) In vivo kinetics of Cajal body components. J Cell Biol 164: 831-842 Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3: a000638 Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid-from bacteria to humans. Trends Biochem Sci 32: 217-224 Frey MR, Bailey AD, Weiner AM, Matera AG (1999) Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. Curr Biol 9: 126-135 Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4: 605-612 Schmidt HB, Görlich D (2015) Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. Elife 4: e04251 Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC, Eckmann CR, Myong S, Brangwynne CP (2015) The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci USA 112: 7189-7194 Weber SC, Brangwynne CP (2012) Getting RNA and protein in phase. Cell 149: 1188-1191 Ader C, Frey S, Maas W, Schmidt HB, Gorlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci USA 107: 6281-6285 Shevtsov SP, Dundr M (2011) Nucleation of nuclear bodies by RNA. Nat Cell Biol 13: 167-173 Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Hyman AA, Alberti S (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162: 1066-1077 Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, Han T, Xie S, Corden JL, McKnight SL (2013) Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155: 1049-1060 Platani M, Goldberg I, Swedlow JR, Lamond AI (2000) In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol 151: 1561-1574 Lancaster AK, Nutter-Upham A, Lindquist S, King OD (2014) PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30: 2501-2502 Machyna M, Kehr S, Straube K, Kappei D, Buchholz F, Butter F, Ule J, Hertel J, Stadler PF, Neugebauer KM (2014) The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. Mol Cell 56: 389-399 Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27: 295-306 Teng PK, Eisenberg D (2009) Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng Des Sel 22: 531-536 Kotaja N, Sassone-Corsi P (2007) The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 8: 85-90 Hennig S, Kong G, Mannen T, Sadowska A, Kobelke S, Blythe A, Knott GJ, Iyer KS, Ho D, Newcombe EA, Hosoki K, Goshima N, Kawaguchi T, Hatters D, Trinkle-Mulcahy L, Hirose T, Bond CS, Fox AH (2015) Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol 210: 529-539 Burke KA, Janke AM, Rhine CL, Fawzi NL (2015) Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol Cell 60: 231-241 Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16: 273-300 Chen C, Nott TJ, Jin J, Pawson T (2011) Deciphering arginine methylation: tudor tells the tale. Nat Rev Mol Cell Biol 12: 629-642 Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483: 336-340 Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol Cell 60: 208-219 Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci USA 108: 4334-4339 Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9: e1000614 Decker CJ, Teixeira D, Parker R (2007) Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 179: 437-449 Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40: 216-227 Majumdar A, Cesario WC, White-Grindley E, Jiang H, Ren F, Khan MR, Li L, Choi EM, Kannan K, Guo F, Unruh J, Slaughter B, Si K (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148: 515-529 Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grofte M, Rask MB, Streicher W, Jungmichel S, Nielsen ML, Lukas J (2015) Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun 6: 8088 Stanek D, Neugebauer KM (2004) Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J Cell Biol 166: 1015-1025 Berchowitz LE, Kabachinski G, Walker MR, Carlile TM, Gilbert WV, Schwartz TU, Amon A (2015) Regulated formation of an amyloid-like translational repressor governs gametogenesis. Cell 163: 406-418 Bentmann E, Neumann M, Tahirovic S, Rodde R, Dormann D, Haass C (2012) Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem 287: 23079-23094 Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201: 361-372 Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI (1992) Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J Cell Biol 117: 1-14 King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462: 61-80 Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33: 141-150 Malinovska L, Kroschwald S, Alberti S (2013) Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim Biophys Acta 1834: 918-931 Buchan JR, Kolaitis RM, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153: 1461-1474 Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57: 936-947 Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P, Bridges AA, Brangwynne CP, Gladfelter AS (2015) RNA controls PolyQ protein phase transitions. Mol Cell 60: 220-230 Flory PI (1942) Thermodynamics of high polymer solutions. J Chem Phys 10: 51-61 Bongiorno-Borbone L, De Cola A, Barcaroli D, Knight RA, Di Ilio C, Melino G, De Laurenzi V (2010) FLASH degradation in response to UV-C results in histone locus bodies disruption and cell-cycle arrest. Oncogene 29: 802-810 Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T, Kim J, Yun J, Xie Y, McKnight SL (2014) Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345: 1139-1145 Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454: 126-130 Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP (2015) RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci USA 112: E5237-E5245 Toretsky JA, Wright PE (2014) Assemblages: functional units formed by cellular phase separation. J Cell Biol 206: 579-588 Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8: 574-585 Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325: 328-332 Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495: 467-473 Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404: 604-609 Arribere JA, Doudna JA, Gilbert WV (2011) Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies. Mol Cell 44: 745-758 Labokha AA, Gradmann S, Frey S, Hulsmann BB, Urlaub H, Baldus M, Gorlich D (2013) Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J 32: 204-218 Grossman E, Medalia O, Zwerger M (2012) Functional architecture of the nuclear pore complex. Annu Rev Biophys 41: 557-584 Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, Mackenzie IR, Huang EJ, Tsai LH (2013) Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci 16: 1383-1391 Hyman AA, Weber CA, Julicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30: 39-58 Neupert W (2015) A perspective on transport of proteins into mitochondria: a myriad of open questions. J Mol Biol 427: 1135-1158 Arai Cherkasov, Hofmann, Druffel‐Augustin, Mogk, Tyedmers, Stoecklin, Bukau (CR21) 2013; 23 Molliex, Temirov, Lee, Coughlin, Kanagaraj, Kim, Mittag, Taylor (CR60) 2015; 163 Weber, Brangwynne (CR83) 2012; 149 Handwerger, Cordero, Gall (CR34) 2005; 16 Su, Ditlev, Hui, Xing, Banjade, Okrut, King, Taunton, Rosen, Vale (CR75) 2016; 352 Courchaine, Neugebauer (CR22) 2015; 210 Lamond, Spector (CR48) 2003; 4 Brangwynne, Eckmann, Courson, Rybarska, Hoege, Gharakhani, Julicher, Hyman (CR14) 2009; 324 Anderson, Kedersha (CR4) 2008; 33 Wang, Pan, Su, Quinn, Sasaki, Jimenez, Mackenzie, Huang, Tsai (CR81) 2013; 16 Machyna, Heyn, Neugebauer (CR53) 2013; 4 Novotny, Malinova, Stejskalova, Mateju, Klimesova, Roithova, Sveda, Knejzlik, Stanek (CR64) 2015; 10 Platani, Goldberg, Swedlow, Lamond (CR70) 2000; 151 Parker, Sheth (CR65) 2007; 25 Phair, Misteli (CR68) 2000; 404 Berry, Weber, Vaidya, Haataja, Brangwynne (CR9) 2015; 112 Li, Banjade, Cheng, Kim, Chen, Guo, Llaguno, Hollingsworth, King, Banani, Russo, Jiang, Nixon, Rosen (CR50) 2012; 483 Xiang, Kato, Wu, Lin, Ding, Zhang, Yu, McKnight (CR84) 2015; 163 Elbaum‐Garfinkle, Kim, Szczepaniak, Chen, Eckmann, Myong, Brangwynne (CR25) 2015; 112 Kroschwald, Maharana, Mateju, Malinovska, Nuske, Poser, Richter, Alberti (CR44) 2015; 4 Li, King, Shorter, Gitler (CR51) 2013; 201 Fowler, Koulov, Alory‐Jost, Marks, Balch, Kelly (CR28) 2006; 4 Fowler, Koulov, Balch, Kelly (CR29) 2007; 32 Falahati, Pelham‐Webb, Blythe, Wieschaus (CR26) 2016; 26 Bentmann, Neumann, Tahirovic, Rodde, Dormann, Haass (CR7) 2012; 287 Kwon, Kato, Xiang, Wu, Theodoropoulos, Mirzaei, Han, Xie, Corden, McKnight (CR45) 2013; 155 Pederson (CR67) 2011; 3 Kato, Han, Xie, Shi, Du, Wu, Mirzaei, Goldsmith, Longgood, Pei, Grishin, Frantz, Schneider, Chen, Li, Sawaya, Eisenberg, Tycko, McKnight (CR39) 2012; 149 Kwon, Xiang, Kato, Wu, Theodoropoulos, Wang, Kim, Yun, Xie, McKnight (CR46) 2014; 345 Zhang, Elbaum‐Garfinkle, Langdon, Taylor, Occhipinti, Bridges, Brangwynne, Gladfelter (CR85) 2015; 60 Frey, Bailey, Weiner, Matera (CR30) 1999; 9 Schmidt, Görlich (CR71) 2015; 4 Malinovska, Kroschwald, Alberti (CR58) 2013; 1834 Toretsky, Wright (CR78) 2014; 206 Brangwynne, Mitchison, Hyman (CR15) 2011; 108 Machyna, Kehr, Straube, Kappei, Buchholz, Butter, Ule, Hertel, Stadler, Neugebauer (CR54) 2014; 56 Bond, Fox (CR11) 2009; 186 Stanek, Neugebauer (CR74) 2004; 166 Uversky (CR79) 2015; 589 Klingauf, Stanek, Neugebauer (CR42) 2006; 17 Kotaja, Sassone‐Corsi (CR43) 2007; 8 Wang, Smith, Chen, Schmidt, Rasoloson, Paix, Lambrus, Calidas, Betzig, Seydoux (CR82) 2014; 3 Buchan, Kolaitis, Taylor, Parker (CR17) 2013; 153 Boulon, Westman, Hutten, Boisvert, Lamond (CR13) 2010; 40 Murakami, Qamar, Lin, Schierle, Rees, Miyashita, Costa, Dodd, Chan, Michel, Kronenberg‐Versteeg, Li, Yang, Wakutani, Meadows, Ferry, Dong, Tartaglia, Favrin, Lin (CR61) 2015; 88 Phan, Kuryavyi, Darnell, Serganov, Majumdar, Ilin, Raslin, Polonskaia, Chen, Clain, Darnell, Patel (CR69) 2011; 18 Lin, Protter, Rosen, Parker (CR52) 2015; 60 Carmo‐Fonseca, Pepperkok, Carvalho, Lamond (CR19) 1992; 117 Jiang, Wang, Huang, He, Cui, Zhu, Zheng (CR38) 2015; 163 Lancaster, Nutter‐Upham, Lindquist, King (CR49) 2014; 30 Nott, Petsalaki, Farber, Jervis, Fussner, Plochowietz, Craggs, Bazett‐Jones, Pawson, Forman‐Kay, Baldwin (CR63) 2015; 57 Sun, Diaz, Fang, Hart, Chesi, Shorter, Gitler (CR76) 2011; 9 Altmeyer, Neelsen, Teloni, Pozdnyakova, Pellegrino, Grofte, Rask, Streicher, Jungmichel, Nielsen, Lukas (CR3) 2015; 6 Arai, Sugase, Dyson, Wright (CR5) 2015; 112 Wang, Arai, Song, Reichart, Du, Pascual, Tempst, Rosenfeld, Glass, Kurokawa (CR80) 2008; 454 Shevtsov, Dundr (CR73) 2011; 13 Maji, Perrin, Sawaya, Jessberger, Vadodaria, Rissman, Singru, Nilsson, Simon, Schubert, Eisenberg, Rivier, Sawchenko, Vale, Riek (CR56) 2009; 325 Seydoux, Braun (CR72) 2006; 127 Dundr, Hebert, Karpova, Stanek, Xu, Shpargel, Meier, Neugebauer, Matera, Misteli (CR24) 2004; 164 Gall (CR32) 2000; 16 Alberti, Halfmann, King, Kapila, Lindquist (CR2) 2009; 137 Boisvert, van Koningsbruggen, Navascues, Lamond (CR10) 2007; 8 Kim, Kim, Wang, Scarborough, Moore, Diaz, MacLea, Freibaum, Li, Molliex, Kanagaraj, Carter, Boylan, Wojtas, Rademakers, Pinkus, Greenberg, Trojanowski, Traynor, Smith (CR40) 2013; 495 Huggins (CR36) 1942; 46 Chen, Nott, Jin, Pawson (CR20) 2011; 12 Patel, Lee, Jawerth, Maharana, Jahnel, Hein, Stoynov, Mahamid, Saha, Franzmann, Pozniakovski, Poser, Maghelli, Royer, Weigert, Myers, Grill, Drechsel, Hyman, Alberti (CR66) 2015; 162 Hyman, Weber, Julicher (CR37) 2014; 30 Mao, Zhang, Spector (CR59) 2011; 27 Neupert (CR62) 2015; 427 Decker, Teixeira, Parker (CR23) 2007; 179 Hennig, Kong, Mannen, Sadowska, Kobelke, Blythe, Knott, Iyer, Ho, Newcombe, Hosoki, Goshima, Kawaguchi, Hatters, Trinkle‐Mulcahy, Hirose, Bond, Fox (CR35) 2015; 210 Buchan, Parker (CR16) 2009; 36 Grossman, Medalia, Zwerger (CR33) 2012; 41 Teng, Eisenberg (CR77) 2009; 22 Flory (CR27) 1942; 10 Majumdar, Cesario, White‐Grindley, Jiang, Ren, Khan, Li, Choi, Kannan, Guo, Unruh, Slaughter, Si (CR57) 2012; 148 King, Gitler, Shorter (CR41) 2012; 1462 Majcher, Goode, James, Layfield (CR55) 2015; 66 Arribere, Doudna, Gilbert (CR6) 2011; 44 Berchowitz, Kabachinski, Walker, Carlile, Gilbert, Schwartz, Amon (CR8) 2015; 163 Bongiorno‐Borbone, De Cola, Barcaroli, Knight, Di Ilio, Melino, De Laurenzi (CR12) 2010; 29 Ader, Frey, Maas, Schmidt, Gorlich, Baldus (CR1) 2010; 107 Frey, Richter, Gorlich (CR31) 2006; 314 Labokha, Gradmann, Frey, Hulsmann, Urlaub, Baldus, Gorlich (CR47) 2013; 32 Burke, Janke, Rhine, Fawzi (CR18) 2015; 60 2004; 166 2004; 164 2012; 483 2012; 287 2013; 4 2010; 107 2015; 589 2013; 23 2013; 201 2011; 13 2008; 33 2011; 12 2015; 427 2007; 32 2011; 18 2014; 206 2007; 179 2000; 16 2014; 3 2013; 16 2010; 29 2015; 210 2000; 404 2015; 88 2007; 8 1992; 117 2013; 155 2003; 4 2016; 352 2013; 153 2006; 127 2011; 27 2014; 56 2009; 324 2007; 25 1942; 10 2009; 325 2015; 57 2015; 162 2015; 163 2013; 1834 2009; 22 2015; 6 2012; 1462 2015; 4 2006; 17 2015; 10 2000; 151 2006; 4 2006; 314 1942; 46 2012; 148 2011; 3 2012; 149 2009; 137 2010; 40 1999; 9 2011; 9 2009; 36 2011; 108 2015; 60 2013; 32 2015; 112 2015; 66 2011; 44 2013; 495 2009; 186 2008; 454 2014; 30 2005; 16 2016; 26 2014; 345 2012; 41 e_1_2_15_21_1 e_1_2_15_42_1 e_1_2_15_67_1 e_1_2_15_40_1 e_1_2_15_69_1 e_1_2_15_3_1 e_1_2_15_29_1 e_1_2_15_80_1 e_1_2_15_27_1 e_1_2_15_48_1 e_1_2_15_61_1 e_1_2_15_82_1 e_1_2_15_25_1 e_1_2_15_46_1 e_1_2_15_63_1 e_1_2_15_84_1 e_1_2_15_23_1 e_1_2_15_44_1 e_1_2_15_65_1 e_1_2_15_86_1 e_1_2_15_9_1 e_1_2_15_7_1 e_1_2_15_5_1 e_1_2_15_10_1 e_1_2_15_31_1 e_1_2_15_56_1 e_1_2_15_77_1 e_1_2_15_58_1 e_1_2_15_79_1 e_1_2_15_18_1 e_1_2_15_39_1 e_1_2_15_16_1 e_1_2_15_37_1 e_1_2_15_50_1 e_1_2_15_71_1 e_1_2_15_14_1 e_1_2_15_35_1 e_1_2_15_52_1 e_1_2_15_73_1 e_1_2_15_12_1 e_1_2_15_33_1 e_1_2_15_54_1 e_1_2_15_75_1 e_1_2_15_19_1 e_1_2_15_20_1 e_1_2_15_43_1 e_1_2_15_66_1 e_1_2_15_41_1 e_1_2_15_68_1 e_1_2_15_28_1 e_1_2_15_81_1 e_1_2_15_2_1 e_1_2_15_26_1 e_1_2_15_49_1 e_1_2_15_60_1 e_1_2_15_83_1 e_1_2_15_24_1 e_1_2_15_47_1 e_1_2_15_62_1 e_1_2_15_85_1 e_1_2_15_22_1 e_1_2_15_45_1 e_1_2_15_64_1 e_1_2_15_8_1 e_1_2_15_6_1 e_1_2_15_4_1 e_1_2_15_32_1 e_1_2_15_55_1 e_1_2_15_78_1 e_1_2_15_30_1 e_1_2_15_57_1 e_1_2_15_59_1 e_1_2_15_17_1 e_1_2_15_70_1 e_1_2_15_15_1 e_1_2_15_38_1 e_1_2_15_72_1 e_1_2_15_13_1 e_1_2_15_36_1 e_1_2_15_51_1 e_1_2_15_74_1 e_1_2_15_11_1 e_1_2_15_34_1 e_1_2_15_53_1 e_1_2_15_76_1 |
References_xml | – reference: Neupert W (2015) A perspective on transport of proteins into mitochondria: a myriad of open questions. J Mol Biol 427: 1135-1158 – reference: Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324: 1729-1732 – reference: Weber SC, Brangwynne CP (2012) Getting RNA and protein in phase. Cell 149: 1188-1191 – reference: Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186: 637-644 – reference: Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57: 936-947 – reference: Ader C, Frey S, Maas W, Schmidt HB, Gorlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci USA 107: 6281-6285 – reference: Bentmann E, Neumann M, Tahirovic S, Rodde R, Dormann D, Haass C (2012) Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem 287: 23079-23094 – reference: Malinovska L, Kroschwald S, Alberti S (2013) Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim Biophys Acta 1834: 918-931 – reference: Platani M, Goldberg I, Swedlow JR, Lamond AI (2000) In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol 151: 1561-1574 – reference: King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462: 61-80 – reference: Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454: 126-130 – reference: Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, Han T, Xie S, Corden JL, McKnight SL (2013) Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155: 1049-1060 – reference: Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404: 604-609 – reference: Teng PK, Eisenberg D (2009) Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng Des Sel 22: 531-536 – reference: Shevtsov SP, Dundr M (2011) Nucleation of nuclear bodies by RNA. Nat Cell Biol 13: 167-173 – reference: Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25: 635-646 – reference: Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33: 141-150 – reference: Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T (2004) In vivo kinetics of Cajal body components. J Cell Biol 164: 831-842 – reference: Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201: 361-372 – reference: Majcher V, Goode A, James V, Layfield R (2015) Autophagy receptor defects and ALS-FTLD. Mol Cell Neurosci 66: 43-52 – reference: Toretsky JA, Wright PE (2014) Assemblages: functional units formed by cellular phase separation. J Cell Biol 206: 579-588 – reference: Machyna M, Heyn P, Neugebauer KM (2013) Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA 4: 17-34 – reference: Murakami T, Qamar S, Lin JQ, Schierle GS, Rees E, Miyashita A, Costa AR, Dodd RB, Chan FT, Michel CH, Kronenberg-Versteeg D, Li Y, Yang SP, Wakutani Y, Meadows W, Ferry RR, Dong L, Tartaglia GG, Favrin G, Lin WL et al (2015) ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function. Neuron 88: 678-690 – reference: Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483: 336-340 – reference: Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC, Eckmann CR, Myong S, Brangwynne CP (2015) The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci USA 112: 7189-7194 – reference: Chen C, Nott TJ, Jin J, Pawson T (2011) Deciphering arginine methylation: tudor tells the tale. Nat Rev Mol Cell Biol 12: 629-642 – reference: Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163: 123-133 – reference: Buchan JR, Kolaitis RM, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153: 1461-1474 – reference: Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149: 753-767 – reference: Hennig S, Kong G, Mannen T, Sadowska A, Kobelke S, Blythe A, Knott GJ, Iyer KS, Ho D, Newcombe EA, Hosoki K, Goshima N, Kawaguchi T, Hatters D, Trinkle-Mulcahy L, Hirose T, Bond CS, Fox AH (2015) Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol 210: 529-539 – reference: Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP (2015) RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci USA 112: E5237-E5245 – reference: Labokha AA, Gradmann S, Frey S, Hulsmann BB, Urlaub H, Baldus M, Gorlich D (2013) Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J 32: 204-218 – reference: Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4: e6 – reference: Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16: 273-300 – reference: Kroschwald S, Maharana S, Mateju D, Malinovska L, Nuske E, Poser I, Richter D, Alberti S (2015) Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. Elife 4: e06807 – reference: Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137: 146-158 – reference: Novotny I, Malinova A, Stejskalova E, Mateju D, Klimesova K, Roithova A, Sveda M, Knejzlik Z, Stanek D (2015) SART3-dependent accumulation of incomplete spliceosomal snRNPs in cajal bodies. Cell Rep 10: 429-440 – reference: Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27: 295-306 – reference: Xiang S, Kato M, Wu LC, Lin Y, Ding M, Zhang Y, Yu Y, McKnight SL (2015) The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163: 829-839 – reference: Decker CJ, Teixeira D, Parker R (2007) Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 179: 437-449 – reference: Falahati H, Pelham-Webb B, Blythe S, Wieschaus E (2016) Nucleation by rRNA dictates the precision of nucleolus assembly. Curr Biol 26: 277-285 – reference: Schmidt HB, Görlich D (2015) Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. Elife 4: e04251 – reference: Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid-from bacteria to humans. Trends Biochem Sci 32: 217-224 – reference: Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T, Kim J, Yun J, Xie Y, McKnight SL (2014) Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345: 1139-1145 – reference: Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci USA 108: 4334-4339 – reference: Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol Cell 60: 208-219 – reference: Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495: 467-473 – reference: Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325: 328-332 – reference: Cherkasov V, Hofmann S, Druffel-Augustin S, Mogk A, Tyedmers J, Stoecklin G, Bukau B (2013) Coordination of translational control and protein homeostasis during severe heat stress. Curr Biol 23: 2452-2462 – reference: Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3: a000638 – reference: Courchaine E, Neugebauer KM (2015) Paraspeckles: paragons of functional aggregation. J Cell Biol 210: 527-528 – reference: Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI (1992) Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J Cell Biol 117: 1-14 – reference: Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P, Bridges AA, Brangwynne CP, Gladfelter AS (2015) RNA controls PolyQ protein phase transitions. Mol Cell 60: 220-230 – reference: Bongiorno-Borbone L, De Cola A, Barcaroli D, Knight RA, Di Ilio C, Melino G, De Laurenzi V (2010) FLASH degradation in response to UV-C results in histone locus bodies disruption and cell-cycle arrest. Oncogene 29: 802-810 – reference: Stanek D, Neugebauer KM (2004) Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J Cell Biol 166: 1015-1025 – reference: Frey S, Richter RP, Gorlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314: 815-817 – reference: Seydoux G, Braun RE (2006) Pathway to totipotency: lessons from germ cells. Cell 127: 891-904 – reference: Uversky VN (2015) The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 589: 2498-2506 – reference: Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, Mackenzie IR, Huang EJ, Tsai LH (2013) Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci 16: 1383-1391 – reference: Flory PI (1942) Thermodynamics of high polymer solutions. J Chem Phys 10: 51-61 – reference: Grossman E, Medalia O, Zwerger M (2012) Functional architecture of the nuclear pore complex. Annu Rev Biophys 41: 557-584 – reference: Hyman AA, Weber CA, Julicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30: 39-58 – reference: Frey MR, Bailey AD, Weiner AM, Matera AG (1999) Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. Curr Biol 9: 126-135 – reference: Handwerger KE, Cordero JA, Gall JG (2005) Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol Biol Cell 16: 202-211 – reference: Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9: e1000614 – reference: Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46: 151-158 – reference: Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36: 932-941 – reference: Kotaja N, Sassone-Corsi P (2007) The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 8: 85-90 – reference: Arai M, Sugase K, Dyson HJ, Wright PE (2015) Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc Natl Acad Sci USA 112: 9614-9619 – reference: Majumdar A, Cesario WC, White-Grindley E, Jiang H, Ren F, Khan MR, Li L, Choi EM, Kannan K, Guo F, Unruh J, Slaughter B, Si K (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148: 515-529 – reference: Wang JT, Smith J, Chen BC, Schmidt H, Rasoloson D, Paix A, Lambrus BG, Calidas D, Betzig E, Seydoux G (2014) Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. Elife 3: e04591 – reference: Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40: 216-227 – reference: Burke KA, Janke AM, Rhine CL, Fawzi NL (2015) Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol Cell 60: 231-241 – reference: Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grofte M, Rask MB, Streicher W, Jungmichel S, Nielsen ML, Lukas J (2015) Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun 6: 8088 – reference: Arribere JA, Doudna JA, Gilbert WV (2011) Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies. Mol Cell 44: 745-758 – reference: Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4: 605-612 – reference: Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J, King DS, Taunton J, Rosen MK, Vale RD (2016) Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352: 595-599 – reference: Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8: 574-585 – reference: Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Hyman AA, Alberti S (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162: 1066-1077 – reference: Lancaster AK, Nutter-Upham A, Lindquist S, King OD (2014) PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30: 2501-2502 – reference: Machyna M, Kehr S, Straube K, Kappei D, Buchholz F, Butter F, Ule J, Hertel J, Stadler PF, Neugebauer KM (2014) The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. Mol Cell 56: 389-399 – reference: Jiang H, Wang S, Huang Y, He X, Cui H, Zhu X, Zheng Y (2015) Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163: 108-122 – reference: Berchowitz LE, Kabachinski G, Walker MR, Carlile TM, Gilbert WV, Schwartz TU, Amon A (2015) Regulated formation of an amyloid-like translational repressor governs gametogenesis. Cell 163: 406-418 – reference: Klingauf M, Stanek D, Neugebauer KM (2006) Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling. Mol Biol Cell 17: 4972-4981 – reference: Phan AT, Kuryavyi V, Darnell JC, Serganov A, Majumdar A, Ilin S, Raslin T, Polonskaia A, Chen C, Clain D, Darnell RB, Patel DJ (2011) Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat Struct Mol Biol 18: 796-804 – volume: 8 start-page: 574 year: 2007 end-page: 585 ident: CR10 article-title: The multifunctional nucleolus publication-title: Nat Rev Mol Cell Biol – volume: 9 start-page: 126 year: 1999 end-page: 135 ident: CR30 article-title: Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts publication-title: Curr Biol – volume: 17 start-page: 4972 year: 2006 end-page: 4981 ident: CR42 article-title: Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling publication-title: Mol Biol Cell – volume: 16 start-page: 273 year: 2000 end-page: 300 ident: CR32 article-title: Cajal bodies: the first 100 years publication-title: Annu Rev Cell Dev Biol – volume: 112 start-page: E5237 year: 2015 end-page: E5245 ident: CR9 article-title: RNA transcription modulates phase transition‐driven nuclear body assembly publication-title: Proc Natl Acad Sci USA – volume: 162 start-page: 1066 year: 2015 end-page: 1077 ident: CR66 article-title: A liquid‐to‐solid phase transition of the ALS protein FUS accelerated by disease mutation publication-title: Cell – volume: 210 start-page: 527 year: 2015 end-page: 528 ident: CR22 article-title: Paraspeckles: paragons of functional aggregation publication-title: J Cell Biol – volume: 149 start-page: 753 year: 2012 end-page: 767 ident: CR39 article-title: Cell‐free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell – volume: 8 start-page: 85 year: 2007 end-page: 90 ident: CR43 article-title: The chromatoid body: a germ‐cell‐specific RNA‐processing centre publication-title: Nat Rev Mol Cell Biol – volume: 30 start-page: 2501 year: 2014 end-page: 2502 ident: CR49 article-title: PLAAC: a web and command‐line application to identify proteins with prion‐like amino acid composition publication-title: Bioinformatics – volume: 325 start-page: 328 year: 2009 end-page: 332 ident: CR56 article-title: Functional amyloids as natural storage of peptide hormones in pituitary secretory granules publication-title: Science – volume: 404 start-page: 604 year: 2000 end-page: 609 ident: CR68 article-title: High mobility of proteins in the mammalian cell nucleus publication-title: Nature – volume: 32 start-page: 204 year: 2013 end-page: 218 ident: CR47 article-title: Systematic analysis of barrier‐forming FG hydrogels from Xenopus nuclear pore complexes publication-title: EMBO J – volume: 66 start-page: 43 year: 2015 end-page: 52 ident: CR55 article-title: Autophagy receptor defects and ALS‐FTLD publication-title: Mol Cell Neurosci – volume: 151 start-page: 1561 year: 2000 end-page: 1574 ident: CR70 article-title: analysis of Cajal body movement, separation, and joining in live human cells publication-title: J Cell Biol – volume: 44 start-page: 745 year: 2011 end-page: 758 ident: CR6 article-title: Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies publication-title: Mol Cell – volume: 41 start-page: 557 year: 2012 end-page: 584 ident: CR33 article-title: Functional architecture of the nuclear pore complex publication-title: Annu Rev Biophys – volume: 4 start-page: 605 year: 2003 end-page: 612 ident: CR48 article-title: Nuclear speckles: a model for nuclear organelles publication-title: Nat Rev Mol Cell Biol – volume: 16 start-page: 202 year: 2005 end-page: 211 ident: CR34 article-title: Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low‐density, sponge‐like structure publication-title: Mol Biol Cell – volume: 127 start-page: 891 year: 2006 end-page: 904 ident: CR72 article-title: Pathway to totipotency: lessons from germ cells publication-title: Cell – volume: 40 start-page: 216 year: 2010 end-page: 227 ident: CR13 article-title: The nucleolus under stress publication-title: Mol Cell – volume: 201 start-page: 361 year: 2013 end-page: 372 ident: CR51 article-title: Stress granules as crucibles of ALS pathogenesis publication-title: J Cell Biol – volume: 153 start-page: 1461 year: 2013 end-page: 1474 ident: CR17 article-title: Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function publication-title: Cell – volume: 60 start-page: 231 year: 2015 end-page: 241 ident: CR18 article-title: Residue‐by‐residue view of FUS granules that bind the C‐terminal domain of RNA polymerase II publication-title: Mol Cell – volume: 26 start-page: 277 year: 2016 end-page: 285 ident: CR26 article-title: Nucleation by rRNA dictates the precision of nucleolus assembly publication-title: Curr Biol – volume: 163 start-page: 123 year: 2015 end-page: 133 ident: CR60 article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization publication-title: Cell – volume: 18 start-page: 796 year: 2011 end-page: 804 ident: CR69 article-title: Structure‐function studies of FMRP RGG peptide recognition of an RNA duplex‐quadruplex junction publication-title: Nat Struct Mol Biol – volume: 324 start-page: 1729 year: 2009 end-page: 1732 ident: CR14 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science – volume: 1834 start-page: 918 year: 2013 end-page: 931 ident: CR58 article-title: Protein disorder, prion propensities, and self‐organizing macromolecular collectives publication-title: Biochim Biophys Acta – volume: 112 start-page: 7189 year: 2015 end-page: 7194 ident: CR25 article-title: The disordered P granule protein LAF‐1 drives phase separation into droplets with tunable viscosity and dynamics publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 429 year: 2015 end-page: 440 ident: CR64 article-title: SART3‐dependent accumulation of incomplete spliceosomal snRNPs in cajal bodies publication-title: Cell Rep – volume: 36 start-page: 932 year: 2009 end-page: 941 ident: CR16 article-title: Eukaryotic stress granules: the ins and outs of translation publication-title: Mol Cell – volume: 25 start-page: 635 year: 2007 end-page: 646 ident: CR65 article-title: P bodies and the control of mRNA translation and degradation publication-title: Mol Cell – volume: 137 start-page: 146 year: 2009 end-page: 158 ident: CR2 article-title: A systematic survey identifies prions and illuminates sequence features of prionogenic proteins publication-title: Cell – volume: 149 start-page: 1188 year: 2012 end-page: 1191 ident: CR83 article-title: Getting RNA and protein in phase publication-title: Cell – volume: 12 start-page: 629 year: 2011 end-page: 642 ident: CR20 article-title: Deciphering arginine methylation: tudor tells the tale publication-title: Nat Rev Mol Cell Biol – volume: 179 start-page: 437 year: 2007 end-page: 449 ident: CR23 article-title: Edc3p and a glutamine/asparagine‐rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae publication-title: J Cell Biol – volume: 4 start-page: e06807 year: 2015 ident: CR44 article-title: Promiscuous interactions and protein disaggregases determine the material state of stress‐inducible RNP granules publication-title: Elife – volume: 427 start-page: 1135 year: 2015 end-page: 1158 ident: CR62 article-title: A perspective on transport of proteins into mitochondria: a myriad of open questions publication-title: J Mol Biol – volume: 108 start-page: 4334 year: 2011 end-page: 4339 ident: CR15 article-title: Active liquid‐like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes publication-title: Proc Natl Acad Sci USA – volume: 1462 start-page: 61 year: 2012 end-page: 80 ident: CR41 article-title: The tip of the iceberg: RNA‐binding proteins with prion‐like domains in neurodegenerative disease publication-title: Brain Res – volume: 57 start-page: 936 year: 2015 end-page: 947 ident: CR63 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol Cell – volume: 29 start-page: 802 year: 2010 end-page: 810 ident: CR12 article-title: FLASH degradation in response to UV‐C results in histone locus bodies disruption and cell‐cycle arrest publication-title: Oncogene – volume: 210 start-page: 529 year: 2015 end-page: 539 ident: CR35 article-title: Prion‐like domains in RNA binding proteins are essential for building subnuclear paraspeckles publication-title: J Cell Biol – volume: 46 start-page: 151 year: 1942 end-page: 158 ident: CR36 article-title: Some properties of solutions of long‐chain compounds publication-title: J Phys Chem – volume: 30 start-page: 39 year: 2014 end-page: 58 ident: CR37 article-title: Liquid‐liquid phase separation in biology publication-title: Annu Rev Cell Dev Biol – volume: 4 start-page: 17 year: 2013 end-page: 34 ident: CR53 article-title: Cajal bodies: where form meets function publication-title: Wiley Interdiscip Rev RNA – volume: 589 start-page: 2498 year: 2015 end-page: 2506 ident: CR79 article-title: The multifaceted roles of intrinsic disorder in protein complexes publication-title: FEBS Lett – volume: 495 start-page: 467 year: 2013 end-page: 473 ident: CR40 article-title: Mutations in prion‐like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS publication-title: Nature – volume: 32 start-page: 217 year: 2007 end-page: 224 ident: CR29 article-title: Functional amyloid–from bacteria to humans publication-title: Trends Biochem Sci – volume: 33 start-page: 141 year: 2008 end-page: 150 ident: CR4 article-title: Stress granules: the Tao of RNA triage publication-title: Trends Biochem Sci – volume: 206 start-page: 579 year: 2014 end-page: 588 ident: CR78 article-title: Assemblages: functional units formed by cellular phase separation publication-title: J Cell Biol – volume: 56 start-page: 389 year: 2014 end-page: 399 ident: CR54 article-title: The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies publication-title: Mol Cell – volume: 148 start-page: 515 year: 2012 end-page: 529 ident: CR57 article-title: Critical role of amyloid‐like oligomers of Drosophila Orb2 in the persistence of memory publication-title: Cell – volume: 163 start-page: 406 year: 2015 end-page: 418 ident: CR8 article-title: Regulated formation of an amyloid‐like translational repressor governs gametogenesis publication-title: Cell – volume: 163 start-page: 108 year: 2015 end-page: 122 ident: CR38 article-title: Phase transition of spindle‐associated protein regulate spindle apparatus assembly publication-title: Cell – volume: 163 start-page: 829 year: 2015 end-page: 839 ident: CR84 article-title: The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid‐like droplets, and nuclei publication-title: Cell – volume: 112 start-page: 9614 year: 2015 end-page: 9619 ident: CR5 article-title: Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding publication-title: Proc Natl Acad Sci USA – volume: 13 start-page: 167 year: 2011 end-page: 173 ident: CR73 article-title: Nucleation of nuclear bodies by RNA publication-title: Nat Cell Biol – volume: 23 start-page: 2452 year: 2013 end-page: 2462 ident: CR21 article-title: Coordination of translational control and protein homeostasis during severe heat stress publication-title: Curr Biol – volume: 155 start-page: 1049 year: 2013 end-page: 1060 ident: CR45 article-title: Phosphorylation‐regulated binding of RNA polymerase II to fibrous polymers of low‐complexity domains publication-title: Cell – volume: 352 start-page: 595 year: 2016 end-page: 599 ident: CR75 article-title: Phase separation of signaling molecules promotes T cell receptor signal transduction publication-title: Science – volume: 287 start-page: 23079 year: 2012 end-page: 23094 ident: CR7 article-title: Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA‐binding protein of 43 kDa (TDP‐43) publication-title: J Biol Chem – volume: 117 start-page: 1 year: 1992 end-page: 14 ident: CR19 article-title: Transcription‐dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies publication-title: J Cell Biol – volume: 9 start-page: e1000614 year: 2011 ident: CR76 article-title: Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS publication-title: PLoS Biol – volume: 164 start-page: 831 year: 2004 end-page: 842 ident: CR24 article-title: kinetics of Cajal body components publication-title: J Cell Biol – volume: 3 start-page: a000638 year: 2011 ident: CR67 article-title: The nucleolus publication-title: Cold Spring Harb Perspect Biol – volume: 16 start-page: 1383 year: 2013 end-page: 1391 ident: CR81 article-title: Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons publication-title: Nat Neurosci – volume: 10 start-page: 51 year: 1942 end-page: 61 ident: CR27 article-title: Thermodynamics of high polymer solutions publication-title: J Chem Phys – volume: 345 start-page: 1139 year: 2014 end-page: 1145 ident: CR46 article-title: Poly‐dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells publication-title: Science – volume: 166 start-page: 1015 year: 2004 end-page: 1025 ident: CR74 article-title: Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer publication-title: J Cell Biol – volume: 4 start-page: e04251 year: 2015 ident: CR71 article-title: Nup98 FG domains from diverse species spontaneously phase‐separate into particles with nuclear pore‐like permselectivity publication-title: Elife – volume: 186 start-page: 637 year: 2009 end-page: 644 ident: CR11 article-title: Paraspeckles: nuclear bodies built on long noncoding RNA publication-title: J Cell Biol – volume: 60 start-page: 220 year: 2015 end-page: 230 ident: CR85 article-title: RNA controls PolyQ protein phase transitions publication-title: Mol Cell – volume: 3 start-page: e04591 year: 2014 ident: CR82 article-title: Regulation of RNA granule dynamics by phosphorylation of serine‐rich, intrinsically disordered proteins in publication-title: Elife – volume: 22 start-page: 531 year: 2009 end-page: 536 ident: CR77 article-title: Short protein segments can drive a non‐fibrillizing protein into the amyloid state publication-title: Protein Eng Des Sel – volume: 454 start-page: 126 year: 2008 end-page: 130 ident: CR80 article-title: Induced ncRNAs allosterically modify RNA‐binding proteins in cis to inhibit transcription publication-title: Nature – volume: 6 start-page: 8088 year: 2015 ident: CR3 article-title: Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP‐ribose) publication-title: Nat Commun – volume: 60 start-page: 208 year: 2015 end-page: 219 ident: CR52 article-title: Formation and Maturation of Phase‐Separated Liquid Droplets by RNA‐Binding Proteins publication-title: Mol Cell – volume: 4 start-page: e6 year: 2006 ident: CR28 article-title: Functional amyloid formation within mammalian tissue publication-title: PLoS Biol – volume: 27 start-page: 295 year: 2011 end-page: 306 ident: CR59 article-title: Biogenesis and function of nuclear bodies publication-title: Trends Genet – volume: 483 start-page: 336 year: 2012 end-page: 340 ident: CR50 article-title: Phase transitions in the assembly of multivalent signalling proteins publication-title: Nature – volume: 107 start-page: 6281 year: 2010 end-page: 6285 ident: CR1 article-title: Amyloid‐like interactions within nucleoporin FG hydrogels publication-title: Proc Natl Acad Sci USA – volume: 314 start-page: 815 year: 2006 end-page: 817 ident: CR31 article-title: FG‐rich repeats of nuclear pore proteins form a three‐dimensional meshwork with hydrogel‐like properties publication-title: Science – volume: 88 start-page: 678 year: 2015 end-page: 690 ident: CR61 article-title: ALS/FTD Mutation‐Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function publication-title: Neuron – volume: 26 start-page: 277 year: 2016 end-page: 285 article-title: Nucleation by rRNA dictates the precision of nucleolus assembly publication-title: Curr Biol – volume: 179 start-page: 437 year: 2007 end-page: 449 article-title: Edc3p and a glutamine/asparagine‐rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae publication-title: J Cell Biol – volume: 3 start-page: e04591 year: 2014 article-title: Regulation of RNA granule dynamics by phosphorylation of serine‐rich, intrinsically disordered proteins in publication-title: Elife – volume: 22 start-page: 531 year: 2009 end-page: 536 article-title: Short protein segments can drive a non‐fibrillizing protein into the amyloid state publication-title: Protein Eng Des Sel – volume: 10 start-page: 51 year: 1942 end-page: 61 article-title: Thermodynamics of high polymer solutions publication-title: J Chem Phys – volume: 10 start-page: 429 year: 2015 end-page: 440 article-title: SART3‐dependent accumulation of incomplete spliceosomal snRNPs in cajal bodies publication-title: Cell Rep – volume: 107 start-page: 6281 year: 2010 end-page: 6285 article-title: Amyloid‐like interactions within nucleoporin FG hydrogels publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: e06807 year: 2015 article-title: Promiscuous interactions and protein disaggregases determine the material state of stress‐inducible RNP granules publication-title: Elife – volume: 4 start-page: e04251 year: 2015 article-title: Nup98 FG domains from diverse species spontaneously phase‐separate into particles with nuclear pore‐like permselectivity publication-title: Elife – volume: 112 start-page: 7189 year: 2015 end-page: 7194 article-title: The disordered P granule protein LAF‐1 drives phase separation into droplets with tunable viscosity and dynamics publication-title: Proc Natl Acad Sci USA – volume: 117 start-page: 1 year: 1992 end-page: 14 article-title: Transcription‐dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies publication-title: J Cell Biol – volume: 287 start-page: 23079 year: 2012 end-page: 23094 article-title: Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA‐binding protein of 43 kDa (TDP‐43) publication-title: J Biol Chem – volume: 352 start-page: 595 year: 2016 end-page: 599 article-title: Phase separation of signaling molecules promotes T cell receptor signal transduction publication-title: Science – volume: 206 start-page: 579 year: 2014 end-page: 588 article-title: Assemblages: functional units formed by cellular phase separation publication-title: J Cell Biol – volume: 25 start-page: 635 year: 2007 end-page: 646 article-title: P bodies and the control of mRNA translation and degradation publication-title: Mol Cell – volume: 427 start-page: 1135 year: 2015 end-page: 1158 article-title: A perspective on transport of proteins into mitochondria: a myriad of open questions publication-title: J Mol Biol – volume: 112 start-page: 9614 year: 2015 end-page: 9619 article-title: Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding publication-title: Proc Natl Acad Sci USA – volume: 32 start-page: 217 year: 2007 end-page: 224 article-title: Functional amyloid–from bacteria to humans publication-title: Trends Biochem Sci – volume: 155 start-page: 1049 year: 2013 end-page: 1060 article-title: Phosphorylation‐regulated binding of RNA polymerase II to fibrous polymers of low‐complexity domains publication-title: Cell – volume: 30 start-page: 39 year: 2014 end-page: 58 article-title: Liquid‐liquid phase separation in biology publication-title: Annu Rev Cell Dev Biol – volume: 9 start-page: e1000614 year: 2011 article-title: Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS publication-title: PLoS Biol – volume: 66 start-page: 43 year: 2015 end-page: 52 article-title: Autophagy receptor defects and ALS‐FTLD publication-title: Mol Cell Neurosci – volume: 16 start-page: 273 year: 2000 end-page: 300 article-title: Cajal bodies: the first 100 years publication-title: Annu Rev Cell Dev Biol – volume: 164 start-page: 831 year: 2004 end-page: 842 article-title: kinetics of Cajal body components publication-title: J Cell Biol – volume: 345 start-page: 1139 year: 2014 end-page: 1145 article-title: Poly‐dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells publication-title: Science – volume: 589 start-page: 2498 year: 2015 end-page: 2506 article-title: The multifaceted roles of intrinsic disorder in protein complexes publication-title: FEBS Lett – volume: 163 start-page: 829 year: 2015 end-page: 839 article-title: The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid‐like droplets, and nuclei publication-title: Cell – volume: 56 start-page: 389 year: 2014 end-page: 399 article-title: The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies publication-title: Mol Cell – volume: 163 start-page: 406 year: 2015 end-page: 418 article-title: Regulated formation of an amyloid‐like translational repressor governs gametogenesis publication-title: Cell – volume: 60 start-page: 231 year: 2015 end-page: 241 article-title: Residue‐by‐residue view of FUS granules that bind the C‐terminal domain of RNA polymerase II publication-title: Mol Cell – volume: 57 start-page: 936 year: 2015 end-page: 947 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol Cell – volume: 324 start-page: 1729 year: 2009 end-page: 1732 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science – volume: 30 start-page: 2501 year: 2014 end-page: 2502 article-title: PLAAC: a web and command‐line application to identify proteins with prion‐like amino acid composition publication-title: Bioinformatics – volume: 9 start-page: 126 year: 1999 end-page: 135 article-title: Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts publication-title: Curr Biol – volume: 127 start-page: 891 year: 2006 end-page: 904 article-title: Pathway to totipotency: lessons from germ cells publication-title: Cell – volume: 149 start-page: 753 year: 2012 end-page: 767 article-title: Cell‐free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell – volume: 40 start-page: 216 year: 2010 end-page: 227 article-title: The nucleolus under stress publication-title: Mol Cell – volume: 148 start-page: 515 year: 2012 end-page: 529 article-title: Critical role of amyloid‐like oligomers of Drosophila Orb2 in the persistence of memory publication-title: Cell – volume: 13 start-page: 167 year: 2011 end-page: 173 article-title: Nucleation of nuclear bodies by RNA publication-title: Nat Cell Biol – volume: 149 start-page: 1188 year: 2012 end-page: 1191 article-title: Getting RNA and protein in phase publication-title: Cell – volume: 12 start-page: 629 year: 2011 end-page: 642 article-title: Deciphering arginine methylation: tudor tells the tale publication-title: Nat Rev Mol Cell Biol – volume: 60 start-page: 220 year: 2015 end-page: 230 article-title: RNA controls PolyQ protein phase transitions publication-title: Mol Cell – volume: 16 start-page: 202 year: 2005 end-page: 211 article-title: Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low‐density, sponge‐like structure publication-title: Mol Biol Cell – volume: 162 start-page: 1066 year: 2015 end-page: 1077 article-title: A liquid‐to‐solid phase transition of the ALS protein FUS accelerated by disease mutation publication-title: Cell – volume: 33 start-page: 141 year: 2008 end-page: 150 article-title: Stress granules: the Tao of RNA triage publication-title: Trends Biochem Sci – volume: 210 start-page: 527 year: 2015 end-page: 528 article-title: Paraspeckles: paragons of functional aggregation publication-title: J Cell Biol – volume: 4 start-page: e6 year: 2006 article-title: Functional amyloid formation within mammalian tissue publication-title: PLoS Biol – volume: 163 start-page: 123 year: 2015 end-page: 133 article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization publication-title: Cell – volume: 16 start-page: 1383 year: 2013 end-page: 1391 article-title: Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons publication-title: Nat Neurosci – volume: 495 start-page: 467 year: 2013 end-page: 473 article-title: Mutations in prion‐like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS publication-title: Nature – volume: 27 start-page: 295 year: 2011 end-page: 306 article-title: Biogenesis and function of nuclear bodies publication-title: Trends Genet – volume: 163 start-page: 108 year: 2015 end-page: 122 article-title: Phase transition of spindle‐associated protein regulate spindle apparatus assembly publication-title: Cell – volume: 6 start-page: 8088 year: 2015 article-title: Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP‐ribose) publication-title: Nat Commun – volume: 325 start-page: 328 year: 2009 end-page: 332 article-title: Functional amyloids as natural storage of peptide hormones in pituitary secretory granules publication-title: Science – volume: 1834 start-page: 918 year: 2013 end-page: 931 article-title: Protein disorder, prion propensities, and self‐organizing macromolecular collectives publication-title: Biochim Biophys Acta – volume: 112 start-page: E5237 year: 2015 end-page: E5245 article-title: RNA transcription modulates phase transition‐driven nuclear body assembly publication-title: Proc Natl Acad Sci USA – volume: 483 start-page: 336 year: 2012 end-page: 340 article-title: Phase transitions in the assembly of multivalent signalling proteins publication-title: Nature – volume: 60 start-page: 208 year: 2015 end-page: 219 article-title: Formation and Maturation of Phase‐Separated Liquid Droplets by RNA‐Binding Proteins publication-title: Mol Cell – volume: 210 start-page: 529 year: 2015 end-page: 539 article-title: Prion‐like domains in RNA binding proteins are essential for building subnuclear paraspeckles publication-title: J Cell Biol – volume: 3 start-page: a000638 year: 2011 article-title: The nucleolus publication-title: Cold Spring Harb Perspect Biol – volume: 88 start-page: 678 year: 2015 end-page: 690 article-title: ALS/FTD Mutation‐Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function publication-title: Neuron – volume: 201 start-page: 361 year: 2013 end-page: 372 article-title: Stress granules as crucibles of ALS pathogenesis publication-title: J Cell Biol – volume: 8 start-page: 85 year: 2007 end-page: 90 article-title: The chromatoid body: a germ‐cell‐specific RNA‐processing centre publication-title: Nat Rev Mol Cell Biol – volume: 8 start-page: 574 year: 2007 end-page: 585 article-title: The multifunctional nucleolus publication-title: Nat Rev Mol Cell Biol – volume: 4 start-page: 17 year: 2013 end-page: 34 article-title: Cajal bodies: where form meets function publication-title: Wiley Interdiscip Rev RNA – volume: 404 start-page: 604 year: 2000 end-page: 609 article-title: High mobility of proteins in the mammalian cell nucleus publication-title: Nature – volume: 17 start-page: 4972 year: 2006 end-page: 4981 article-title: Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling publication-title: Mol Biol Cell – volume: 41 start-page: 557 year: 2012 end-page: 584 article-title: Functional architecture of the nuclear pore complex publication-title: Annu Rev Biophys – volume: 44 start-page: 745 year: 2011 end-page: 758 article-title: Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies publication-title: Mol Cell – volume: 29 start-page: 802 year: 2010 end-page: 810 article-title: FLASH degradation in response to UV‐C results in histone locus bodies disruption and cell‐cycle arrest publication-title: Oncogene – volume: 314 start-page: 815 year: 2006 end-page: 817 article-title: FG‐rich repeats of nuclear pore proteins form a three‐dimensional meshwork with hydrogel‐like properties publication-title: Science – volume: 1462 start-page: 61 year: 2012 end-page: 80 article-title: The tip of the iceberg: RNA‐binding proteins with prion‐like domains in neurodegenerative disease publication-title: Brain Res – volume: 186 start-page: 637 year: 2009 end-page: 644 article-title: Paraspeckles: nuclear bodies built on long noncoding RNA publication-title: J Cell Biol – volume: 23 start-page: 2452 year: 2013 end-page: 2462 article-title: Coordination of translational control and protein homeostasis during severe heat stress publication-title: Curr Biol – volume: 32 start-page: 204 year: 2013 end-page: 218 article-title: Systematic analysis of barrier‐forming FG hydrogels from Xenopus nuclear pore complexes publication-title: EMBO J – volume: 4 start-page: 605 year: 2003 end-page: 612 article-title: Nuclear speckles: a model for nuclear organelles publication-title: Nat Rev Mol Cell Biol – volume: 153 start-page: 1461 year: 2013 end-page: 1474 article-title: Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function publication-title: Cell – volume: 454 start-page: 126 year: 2008 end-page: 130 article-title: Induced ncRNAs allosterically modify RNA‐binding proteins in cis to inhibit transcription publication-title: Nature – volume: 108 start-page: 4334 year: 2011 end-page: 4339 article-title: Active liquid‐like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes publication-title: Proc Natl Acad Sci USA – volume: 151 start-page: 1561 year: 2000 end-page: 1574 article-title: analysis of Cajal body movement, separation, and joining in live human cells publication-title: J Cell Biol – volume: 36 start-page: 932 year: 2009 end-page: 941 article-title: Eukaryotic stress granules: the ins and outs of translation publication-title: Mol Cell – volume: 18 start-page: 796 year: 2011 end-page: 804 article-title: Structure‐function studies of FMRP RGG peptide recognition of an RNA duplex‐quadruplex junction publication-title: Nat Struct Mol Biol – volume: 137 start-page: 146 year: 2009 end-page: 158 article-title: A systematic survey identifies prions and illuminates sequence features of prionogenic proteins publication-title: Cell – volume: 166 start-page: 1015 year: 2004 end-page: 1025 article-title: Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer publication-title: J Cell Biol – volume: 46 start-page: 151 year: 1942 end-page: 158 article-title: Some properties of solutions of long‐chain compounds publication-title: J Phys Chem – ident: e_1_2_15_22_1 doi: 10.1016/j.cub.2013.09.058 – ident: e_1_2_15_50_1 doi: 10.1093/bioinformatics/btu310 – ident: e_1_2_15_60_1 doi: 10.1016/j.tig.2011.05.006 – ident: e_1_2_15_71_1 doi: 10.1083/jcb.151.7.1561 – ident: e_1_2_15_38_1 doi: 10.1146/annurev-cellbio-100913-013325 – ident: e_1_2_15_33_1 doi: 10.1146/annurev.cellbio.16.1.273 – ident: e_1_2_15_45_1 doi: 10.7554/eLife.06807 – ident: e_1_2_15_34_1 doi: 10.1146/annurev-biophys-050511-102328 – ident: e_1_2_15_41_1 doi: 10.1038/nature11922 – ident: e_1_2_15_53_1 doi: 10.1016/j.molcel.2015.08.018 – ident: e_1_2_15_10_1 doi: 10.1073/pnas.1509317112 – ident: e_1_2_15_30_1 doi: 10.1016/j.tibs.2007.03.003 – ident: e_1_2_15_66_1 doi: 10.1016/j.molcel.2007.02.011 – ident: e_1_2_15_69_1 doi: 10.1038/35007077 – ident: e_1_2_15_65_1 doi: 10.1016/j.celrep.2014.12.030 – ident: e_1_2_15_43_1 doi: 10.1091/mbc.E06-06-0513 – ident: e_1_2_15_78_1 doi: 10.1093/protein/gzp037 – ident: e_1_2_15_54_1 doi: 10.1002/wrna.1139 – ident: e_1_2_15_35_1 doi: 10.1091/mbc.e04-08-0742 – ident: e_1_2_15_86_1 doi: 10.1016/j.molcel.2015.09.017 – ident: e_1_2_15_81_1 doi: 10.1038/nature06992 – ident: e_1_2_15_39_1 doi: 10.1016/j.cell.2015.08.010 – ident: e_1_2_15_59_1 doi: 10.1016/j.bbapap.2013.01.003 – ident: e_1_2_15_2_1 doi: 10.1073/pnas.0910163107 – ident: e_1_2_15_37_1 doi: 10.1021/j150415a018 – ident: e_1_2_15_74_1 doi: 10.1038/ncb2157 – ident: e_1_2_15_67_1 doi: 10.1016/j.cell.2015.07.047 – ident: e_1_2_15_85_1 doi: 10.1016/j.cell.2015.10.040 – ident: e_1_2_15_44_1 doi: 10.1038/nrm2081 – ident: e_1_2_15_36_1 doi: 10.1083/jcb.201504117 – ident: e_1_2_15_14_1 doi: 10.1016/j.molcel.2010.09.024 – ident: e_1_2_15_49_1 doi: 10.1038/nrm1172 – ident: e_1_2_15_28_1 doi: 10.1063/1.1723621 – ident: e_1_2_15_18_1 doi: 10.1016/j.cell.2013.05.037 – ident: e_1_2_15_58_1 doi: 10.1016/j.cell.2012.01.004 – ident: e_1_2_15_68_1 doi: 10.1101/cshperspect.a000638 – ident: e_1_2_15_13_1 doi: 10.1038/onc.2009.388 – ident: e_1_2_15_3_1 doi: 10.1016/j.cell.2009.02.044 – ident: e_1_2_15_7_1 doi: 10.1016/j.molcel.2011.09.019 – ident: e_1_2_15_29_1 doi: 10.1371/journal.pbio.0040006 – ident: e_1_2_15_4_1 doi: 10.1038/ncomms9088 – ident: e_1_2_15_77_1 doi: 10.1371/journal.pbio.1000614 – ident: e_1_2_15_11_1 doi: 10.1038/nrm2184 – ident: e_1_2_15_46_1 doi: 10.1016/j.cell.2013.10.033 – ident: e_1_2_15_61_1 doi: 10.1016/j.cell.2015.09.015 – ident: e_1_2_15_9_1 doi: 10.1016/j.cell.2015.08.060 – ident: e_1_2_15_26_1 doi: 10.1073/pnas.1504822112 – ident: e_1_2_15_62_1 doi: 10.1016/j.neuron.2015.10.030 – ident: e_1_2_15_48_1 doi: 10.1038/emboj.2012.302 – ident: e_1_2_15_19_1 doi: 10.1016/j.molcel.2015.09.006 – ident: e_1_2_15_56_1 doi: 10.1016/j.mcn.2015.01.002 – ident: e_1_2_15_8_1 doi: 10.1074/jbc.M111.328757 – ident: e_1_2_15_6_1 doi: 10.1073/pnas.1512799112 – ident: e_1_2_15_51_1 doi: 10.1038/nature10879 – ident: e_1_2_15_57_1 doi: 10.1126/science.1173155 – ident: e_1_2_15_12_1 doi: 10.1083/jcb.200906113 – ident: e_1_2_15_75_1 doi: 10.1083/jcb.200405160 – ident: e_1_2_15_47_1 doi: 10.1126/science.1254917 – ident: e_1_2_15_72_1 doi: 10.7554/eLife.04251 – ident: e_1_2_15_70_1 doi: 10.1038/nsmb.2064 – ident: e_1_2_15_40_1 doi: 10.1016/j.cell.2012.04.017 – ident: e_1_2_15_82_1 doi: 10.1038/nn.3514 – ident: e_1_2_15_42_1 doi: 10.1016/j.brainres.2012.01.016 – ident: e_1_2_15_20_1 doi: 10.1083/jcb.117.1.1 – ident: e_1_2_15_84_1 doi: 10.1016/j.cell.2012.05.022 – ident: e_1_2_15_55_1 doi: 10.1016/j.molcel.2014.10.004 – ident: e_1_2_15_52_1 doi: 10.1083/jcb.201302044 – ident: e_1_2_15_16_1 doi: 10.1073/pnas.1017150108 – ident: e_1_2_15_17_1 doi: 10.1016/j.molcel.2009.11.020 – ident: e_1_2_15_15_1 doi: 10.1126/science.1172046 – ident: e_1_2_15_21_1 doi: 10.1038/nrm3185 – ident: e_1_2_15_64_1 doi: 10.1016/j.molcel.2015.01.013 – ident: e_1_2_15_31_1 doi: 10.1016/S0960-9822(99)80066-9 – ident: e_1_2_15_63_1 doi: 10.1016/j.jmb.2015.02.001 – ident: e_1_2_15_80_1 doi: 10.1016/j.febslet.2015.06.004 – ident: e_1_2_15_5_1 doi: 10.1016/j.tibs.2007.12.003 – ident: e_1_2_15_23_1 doi: 10.1083/jcb.201507052 – ident: e_1_2_15_25_1 doi: 10.1083/jcb.200311121 – ident: e_1_2_15_73_1 doi: 10.1016/j.cell.2006.11.016 – ident: e_1_2_15_79_1 doi: 10.1083/jcb.201404124 – ident: e_1_2_15_83_1 doi: 10.7554/eLife.04591 – ident: e_1_2_15_32_1 doi: 10.1126/science.1132516 – ident: e_1_2_15_76_1 doi: 10.1126/science.aad9964 – ident: e_1_2_15_24_1 doi: 10.1083/jcb.200704147 – ident: e_1_2_15_27_1 doi: 10.1016/j.cub.2015.11.065 |
SSID | ssj0005871 |
Score | 2.6063395 |
SecondaryResourceType | review_article |
Snippet | Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1603 |
SubjectTerms | Amyotrophic lateral sclerosis Biochemistry Cell Physiological Phenomena Cellular biology Cytosol - chemistry EMBO20 EMBO27 EMBO36 Liquid-liquid phase separation low-complexity domain Macromolecular Substances - metabolism Molecular biology Multienzyme Complexes - metabolism nuclear bodies Physical properties Proteins Review RNP granules |
Title | Droplet organelles? |
URI | https://api.istex.fr/ark:/67375/WNG-0C564KMG-2/fulltext.pdf https://link.springer.com/article/10.15252/embj.201593517 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201593517 https://www.ncbi.nlm.nih.gov/pubmed/27357569 https://www.proquest.com/docview/1808004368 https://www.proquest.com/docview/1809047950 https://pubmed.ncbi.nlm.nih.gov/PMC4969579 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTtxAEC0FRohcEJmwOJmgQUIRHAxeej1FxGERaDiB4NZyLxZbhmgYJPh7utoewyigKDdbbm-vutyvu8qvADY8gxAuTWxMK9-DSeVdquSMxEwKIQmXvt_gRHFwwg7PyNEFvWhEkvBfmNfxe5rRbMf91teYgUVlTlM-Ax2a5hxrNBSseMnlEGFmFRZTSCpko-HzxgWmhp8OIvn4Frf8O0WyjZNOs9gwDO0vwkLDH_u7tcE_wQc37MJcXVHyqQvzxaSA22fo_hphdvi4Hyo34QL9_Y8lONvfOy0O46YGQmw8t-Cxdt5BrMZwJTITU1JtuTOSJlaWwginE6G59dO00nhXFJp4imcdrzJHRW7SfBlmh3dDtwp9akRFkspWGDnVmdap4SXx32rLjMitjWB7Ao0yjUA41qm4VThRQCwVYqlaLCPYbE_4U2tjvN_0e8C6bVeObjCljFN1fnKgkoIycjw4UFkEvYkxVONN9ypF8cuglR_BenvYo4nBDQ_g3UNoI1EunyYRrNS2a2_mKZpnpUxGwKes2jZAje3pI8Ory6C1TSTDQGYEWxP7v3qs9941Dx3kX5iovcHPo3bvy3_c4St89NuszkPswex49OC-eW401mvBL9ZwfKLPMZUCKQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRKhcKgiPmhYIEiA4mPqx6909IBTSR5o0udCK3hbvw-KZVkmq0p_DP2V2_YCIVohDj_aOvetvZj0znvEMwDO0ILiNIxPSAiWYFLilcpaRMBOcC8IEyo1zFMeTbHBEhsf0eAV-1v_C-Gz3OiTp39RVj55ky35XX1wuFhUpjVmVRzmyF-fopc3f7G8jS58nye7OYX8QVo0EQo0KmoXKopQZ5WJ-Tr3rnCrDrBY0MiLnmlsVccUM-jq5RnnmiqCdZCwrEkt5quMU73sD2pxmnLag3esN3w9_55Fw79X5Dzkk5qKqH3TJkpdUX9tx8cdldu3f6ZlNjHbZgvYqcPc2rFW2a7dXCtsdWLHTDtwsu1ledGC1XzePuwud7ZnLTF90fdcoFxyYv70HR9cC231oTU-mdh26VPOCRIUpXNRWJUrFmuUE9YTJNE-NCeB1DY3UVXFy1yPjm3ROisNSOixlg2UAL5sLTsu6HFeTvvBYN3T57KtLZ2NUfpjsyahPMzIa78kkgM2aGbLayXMZu8Kbvk5_AE-bYUTTBVYQwJMzTyNcqX4aBfCg5F0zGZqHaBFnIgC2xNWGwNX3Xh6Zfv7k63wTkbkgagCvav7_sayrnjX1AvIvTOTO-N2wOXr4HzM8gdXB4fhAHuxPRhtwC89nZT7kJrQWszP7CG20hXpc7ZIufLzujfkL9fxDYA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVhwvCMJlKBAkQPBg6mPX3n1ACJymR0jEA1X7tngPizOtklTQH8V_ZGZ9QEQrxEMf7V177W9mNTOe8TcAj9GDEC6ObMgr1GBW4ZYq84yFmRRCslyi3lCgOJ5k23ts94AfrMDP9l8YX-3epiTrfxqIpWm62DiyVduvJ9lw3_RnqsviMuVx3tRUjtzJd4zY5i93BijeJ0ky3HxfbIdNU4HQoLHOQ-1Q46ym_B-ZelNybXNnJI-sLIURTkdC5xbjntKgbgvN0GeyLq8Sx0Vq4hTvewHWMCyKKdYrsuJ3RYnw8Z3_pMNiIRsmoVMeeMkIrpE8f5zm4f5dqNlla5d9aW8Mh9fgauPF9l_XancdVty0BxfrvpYnPbhctG3kbkBvMKMa9UXf94-iNMH81U3YOxfQbsHq9HDq7kCfG1GxqLIV5W91onVs8pKhxbCZEam1AbxooVGmoSmnbhlfFYUrhKUiLFWHZQDPuguOaoaOs6c-9Vh388rZFypsy7nan2ypqOAZG423VBLAeisM1ezpuYqJgtMz9gfwqBtGNCnFggAeHvs5kkj7eRTA7Vp23WLoKKJvnMkA8iWpdhOI6Xt5ZPrpo2f8ZjKjdGoAz1v5__FYZ71r6hXkX5iozfGb3e7o7n-s8BAuvRsM1dudyegeXMHTWV0YuQ6ri9mxu4_O2kI_8FukDx_Oe0_-AiF_Rjo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Droplet+organelles%3F&rft.jtitle=The+EMBO+journal&rft.au=Courchaine%2C+Edward+M&rft.au=Lu%2C+Alice&rft.au=Neugebauer%2C+Karla+M&rft.date=2016-08-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=35&rft.issue=15&rft.spage=1603&rft.epage=1612&rft_id=info:doi/10.15252%2Fembj.201593517&rft_id=info%3Apmid%2F27357569&rft.externalDocID=PMC4969579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |