Daily torpor and hibernation in birds and mammals
ABSTRACT Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states ass...
Saved in:
Published in | Biological reviews of the Cambridge Philosophical Society Vol. 90; no. 3; pp. 891 - 926 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian‐mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30‐fold longer, and mean torpor bout duration >25‐fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators. |
---|---|
AbstractList | Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35...) than daily heterotherms (~25...). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ~13...C, and the mean minimum torpor metabolic rate was ~35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators. (ProQuest: ... denotes formulae/symbols omitted.) Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian‐mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30‐fold longer, and mean torpor bout duration >25‐fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate ( BMR ) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators. Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e., the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e., hypometabolic states associated with low body temperatures (torpor), have been distinguished: Daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged however, suggesting that these phenotypes may merely represent the extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species, 43 birds and 171 mammals form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms are small on average, but hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30-g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the BMR in daily heterotherms but only 6% of basal metabolic rate in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators. Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators. Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators. ABSTRACT Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian‐mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30‐fold longer, and mean torpor bout duration >25‐fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators. |
Author | Geiser, Fritz Ruf, Thomas |
AuthorAffiliation | 2 Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia 1 Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, A-1160 Vienna, Austria |
AuthorAffiliation_xml | – name: 1 Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, A-1160 Vienna, Austria – name: 2 Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia |
Author_xml | – sequence: 1 givenname: Thomas surname: Ruf fullname: Ruf, Thomas email: Thomas.Ruf@vetmeduni.ac.at organization: Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstraße 1, A-1160 Vienna, Austria – sequence: 2 givenname: Fritz surname: Geiser fullname: Geiser, Fritz organization: Centre for Behavioural and Physiological Ecology, Zoology, University of New England, New South Wales 2351, Armidale, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25123049$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv1TAQhS1URB-w4A-gSGxgkdYTv-INErRQHhVIiJfYWE4yoW4T-2LnFu6_x-TeW0EF3ozl-c7x0cw-2fHBIyH3gR5CPkdNvDqECpi6RfaAS11CLb7szHdeKs1gl-yndEFpfpDsDtmtBFSMcr1H4MS6YVVMIS5CLKzvinPXYPR2csEXzheNi12aG6MdRzuku-R2nwve29QD8vHF8w_HL8uzd6evjp-ela0EpcoaJOY_gFVaSS4ROiV6KrGRrdZCMiktcMsp9lJT2_U1YkcrxrXgVU97xQ7Ik7XvYtmM2LXop2gHs4hutHFlgnXm74535-ZbuDKcCdCVzAaPNgYxfF9imszoUovDYD2GZTJQQ1XnmAIy-vAGehGWeQhDpqRWAoSaDR_8meg6ynaaGThaA20MKUXsTeumeZI5oBsMUPN7Xybvy8z7yorHNxRb03-xG_cfbsDV_0Hz7P2nraJcK1ya8Oe1wsZLIxVTwnx-e2pOXqs3_CtkGfsFRHaxPQ |
CODEN | BRCPAH |
CitedBy_id | crossref_primary_10_1111_mec_13730 crossref_primary_10_25225_jvb_21004 crossref_primary_10_1210_endocr_bqab087 crossref_primary_10_1111_mec_14827 crossref_primary_10_1139_bcb_2018_0198 crossref_primary_10_1080_01616412_2021_1910904 crossref_primary_10_3389_fphys_2017_00889 crossref_primary_10_1007_s00442_016_3707_1 crossref_primary_10_1016_j_gene_2018_08_014 crossref_primary_10_1186_s12983_023_00501_3 crossref_primary_10_1093_jmammal_gyz026 crossref_primary_10_3390_ijms22179623 crossref_primary_10_1016_j_mce_2020_111054 crossref_primary_10_1016_j_physbeh_2015_09_002 crossref_primary_10_1134_S0022093025010016 crossref_primary_10_1007_s00114_016_1396_6 crossref_primary_10_1139_cjz_2017_0310 crossref_primary_10_1088_1748_3190_aa9a12 crossref_primary_10_3389_fphys_2021_634953 crossref_primary_10_1111_evo_14643 crossref_primary_10_1016_j_neubiorev_2021_03_037 crossref_primary_10_1371_journal_pone_0202653 crossref_primary_10_1152_physiol_00050_2015 crossref_primary_10_1111_1365_2435_13092 crossref_primary_10_1134_S0022093024040148 crossref_primary_10_1016_j_molmet_2024_101946 crossref_primary_10_1002_2211_5463_13731 crossref_primary_10_1016_j_jtherbio_2024_103913 crossref_primary_10_3389_fevo_2022_1034659 crossref_primary_10_1111_2041_210X_13327 crossref_primary_10_1134_S0022093018060066 crossref_primary_10_1111_mam_12308 crossref_primary_10_1016_j_jtherbio_2023_103652 crossref_primary_10_1016_j_jtherbio_2018_01_001 crossref_primary_10_1242_jeb_246330 crossref_primary_10_3389_fphys_2022_901270 crossref_primary_10_1071_AM19056 crossref_primary_10_1656_045_028_0101 crossref_primary_10_3389_fphys_2017_00745 crossref_primary_10_1086_727975 crossref_primary_10_1002_ece3_4537 crossref_primary_10_1016_j_mce_2021_111315 crossref_primary_10_1007_s00360_021_01352_2 crossref_primary_10_3389_fevo_2020_00060 crossref_primary_10_1186_s42408_023_00199_y crossref_primary_10_1242_jeb_155879 crossref_primary_10_1038_s41467_020_20050_1 crossref_primary_10_1007_s00360_016_1003_3 crossref_primary_10_1038_s41598_021_00266_x crossref_primary_10_1093_icb_icx059 crossref_primary_10_1152_physiol_00028_2015 crossref_primary_10_1093_cz_zoaa047 crossref_primary_10_1177_0748730417702246 crossref_primary_10_1086_721184 crossref_primary_10_1093_jmammal_gyac061 crossref_primary_10_1098_rspb_2023_0922 crossref_primary_10_1007_s00429_017_1596_7 crossref_primary_10_1186_s40317_024_00374_1 crossref_primary_10_1098_rsbl_2019_0466 crossref_primary_10_1007_s00360_018_1171_4 crossref_primary_10_3389_fnins_2019_00336 crossref_primary_10_3389_fphys_2020_623665 crossref_primary_10_1098_rspb_2016_0382 crossref_primary_10_3390_d11010009 crossref_primary_10_3389_fnana_2024_1334206 crossref_primary_10_1093_conphys_coab075 crossref_primary_10_1007_s00360_017_1093_6 crossref_primary_10_1186_s12862_022_01962_6 crossref_primary_10_1111_brv_12476 crossref_primary_10_3389_fphys_2020_00706 crossref_primary_10_3390_ijms23169026 crossref_primary_10_1096_fj_202301646R crossref_primary_10_1038_s42003_025_07493_2 crossref_primary_10_1111_jzo_12613 crossref_primary_10_3390_antiox8090334 crossref_primary_10_3390_ijms241311036 crossref_primary_10_1002_ece3_4674 crossref_primary_10_1098_rsbl_2019_0211 crossref_primary_10_1111_jav_03084 crossref_primary_10_1142_S0218127423501821 crossref_primary_10_1093_icb_icad046 crossref_primary_10_1073_pnas_2405169121 crossref_primary_10_1093_icb_icab093 crossref_primary_10_1242_jeb_129171 crossref_primary_10_1111_brv_12646 crossref_primary_10_7717_peerj_4911 crossref_primary_10_1096_fj_202100107R crossref_primary_10_1098_rstb_2019_0136 crossref_primary_10_3390_insects9040188 crossref_primary_10_7554_eLife_35029 crossref_primary_10_1016_j_cryobiol_2024_105191 crossref_primary_10_1111_brv_12885 crossref_primary_10_1242_jeb_249975 crossref_primary_10_1086_720273 crossref_primary_10_7554_eLife_26686 crossref_primary_10_1016_j_bbagrm_2018_04_007 crossref_primary_10_3389_fvets_2022_978756 crossref_primary_10_1071_ZO16030 crossref_primary_10_1371_journal_pone_0185913 crossref_primary_10_1093_icb_icad053 crossref_primary_10_3389_fphys_2021_624950 crossref_primary_10_1007_s00360_018_1170_5 crossref_primary_10_1016_j_mce_2020_111088 crossref_primary_10_1111_1365_2656_13997 crossref_primary_10_1152_ajpregu_00146_2018 crossref_primary_10_1242_jeb_157867 crossref_primary_10_1111_1365_2656_13999 crossref_primary_10_1186_s13578_021_00574_9 crossref_primary_10_1186_s12983_020_00370_0 crossref_primary_10_3389_fmicb_2019_02247 crossref_primary_10_1111_mam_12346 crossref_primary_10_1016_j_jtherbio_2023_103572 crossref_primary_10_1098_rstb_2019_0147 crossref_primary_10_1038_s41598_018_27263_x crossref_primary_10_1086_694847 crossref_primary_10_1134_S199074782470034X crossref_primary_10_1016_j_mambio_2018_10_001 crossref_primary_10_1038_s41598_017_07946_7 crossref_primary_10_1093_icb_icx087 crossref_primary_10_1152_ajpregu_00214_2014 crossref_primary_10_1371_journal_pone_0145702 crossref_primary_10_1152_physiol_00046_2018 crossref_primary_10_1242_jeb_197152 crossref_primary_10_3389_fphys_2021_760797 crossref_primary_10_1007_s00360_024_01573_1 crossref_primary_10_1016_j_jtherbio_2024_103866 crossref_primary_10_1038_s41598_020_58298_8 crossref_primary_10_1016_j_jtherbio_2020_102810 crossref_primary_10_1007_s00360_017_1080_y crossref_primary_10_1007_s00442_021_05026_2 crossref_primary_10_1016_j_physbeh_2016_03_009 crossref_primary_10_1111_brv_12671 crossref_primary_10_1016_j_tree_2015_09_001 crossref_primary_10_1186_s40462_023_00410_4 crossref_primary_10_3390_ijms242115785 crossref_primary_10_1111_jpi_12748 crossref_primary_10_1038_srep17392 crossref_primary_10_1007_s00265_022_03141_5 crossref_primary_10_1016_j_physbeh_2023_114230 crossref_primary_10_1086_722477 crossref_primary_10_1016_j_gpb_2015_06_001 crossref_primary_10_1093_conphys_coz073 crossref_primary_10_1098_rspb_2024_0266 crossref_primary_10_1007_s42965_019_00051_y crossref_primary_10_1242_jeb_247224 crossref_primary_10_1007_s00360_024_01585_x crossref_primary_10_1111_oik_08178 crossref_primary_10_1007_s00360_019_01205_z crossref_primary_10_1016_j_ecolind_2022_108550 crossref_primary_10_1242_jeb_170894 crossref_primary_10_1242_jeb_171983 crossref_primary_10_1371_journal_pone_0293971 crossref_primary_10_2989_00306525_2018_1538061 crossref_primary_10_1097_SHK_0000000000001495 crossref_primary_10_1016_j_physbeh_2017_12_019 crossref_primary_10_1038_s41598_019_40576_9 crossref_primary_10_1242_jeb_137828 crossref_primary_10_1007_s00265_019_2664_1 crossref_primary_10_1038_s42003_022_03431_8 crossref_primary_10_1242_jeb_185900 crossref_primary_10_1007_s00442_019_04542_6 crossref_primary_10_3389_fphys_2020_00436 crossref_primary_10_1186_s40657_018_0131_8 crossref_primary_10_1111_ecog_05170 crossref_primary_10_1139_cjz_2016_0318 crossref_primary_10_1038_s41559_024_02545_y crossref_primary_10_1007_s00360_016_1021_1 crossref_primary_10_3389_fcell_2021_704966 crossref_primary_10_1007_s00360_016_0995_z crossref_primary_10_1016_j_cellsig_2020_109763 crossref_primary_10_1016_j_cvex_2023_05_001 crossref_primary_10_1007_s00360_020_01280_7 crossref_primary_10_1016_j_jtherbio_2022_103193 crossref_primary_10_1016_j_jtherbio_2020_102658 crossref_primary_10_1002_jez_1994 crossref_primary_10_1038_s41598_022_22320_y crossref_primary_10_1093_icb_icad094 crossref_primary_10_2326_osj_20_213 crossref_primary_10_1093_icb_icad095 crossref_primary_10_1016_j_jtherbio_2021_102839 crossref_primary_10_1002_bit_28832 crossref_primary_10_1038_s42003_019_0719_5 crossref_primary_10_1111_mam_12263 crossref_primary_10_1016_j_cbpa_2016_05_019 crossref_primary_10_1016_j_cbpa_2024_111688 crossref_primary_10_1016_j_cub_2019_10_027 crossref_primary_10_1016_j_jtherbio_2024_103999 crossref_primary_10_1086_719932 crossref_primary_10_1016_j_jtherbio_2022_103197 crossref_primary_10_1002_ecy_4384 crossref_primary_10_1016_j_jtherbio_2020_102542 crossref_primary_10_3390_ani13193015 crossref_primary_10_1007_s00429_018_1753_7 crossref_primary_10_1086_730867 crossref_primary_10_1098_rsbl_2020_0428 crossref_primary_10_1007_s10336_023_02092_6 crossref_primary_10_1016_j_bbagrm_2019_194473 crossref_primary_10_1002_jez_b_23013 crossref_primary_10_3390_ijms19082363 crossref_primary_10_1093_icb_icad067 crossref_primary_10_3389_fphar_2023_1098976 crossref_primary_10_1016_j_jtherbio_2019_08_003 crossref_primary_10_3389_fphys_2023_1220058 crossref_primary_10_1007_s00360_017_1111_8 crossref_primary_10_1038_s41598_018_20655_z crossref_primary_10_1093_conphys_coy057 crossref_primary_10_1098_rstb_2020_0215 crossref_primary_10_1038_s41598_022_25590_8 crossref_primary_10_1098_rstb_2020_0213 crossref_primary_10_1007_s00442_018_4306_0 crossref_primary_10_1007_s00360_022_01466_1 crossref_primary_10_1111_mec_14876 crossref_primary_10_1111_csp2_220 crossref_primary_10_1098_rspb_2024_0855 crossref_primary_10_1007_s00360_016_1045_6 crossref_primary_10_1111_1365_2435_13274 crossref_primary_10_1371_journal_pgen_1009270 crossref_primary_10_1007_s42991_020_00080_4 crossref_primary_10_1152_japplphysiol_00725_2019 crossref_primary_10_25225_jvb_23036 crossref_primary_10_1073_pnas_2100707118 crossref_primary_10_3389_fphys_2024_1377986 crossref_primary_10_1186_s12983_018_0286_5 crossref_primary_10_1038_s41598_020_79559_6 crossref_primary_10_3389_fphys_2020_00423 crossref_primary_10_1098_rsif_2021_0211 crossref_primary_10_1016_j_jtherbio_2015_08_012 crossref_primary_10_1515_mammalia_2022_0059 crossref_primary_10_30802_AALAS_JAALAS_21_000068 crossref_primary_10_1093_iob_obz013 crossref_primary_10_1371_journal_pone_0306537 crossref_primary_10_31857_S0233475524040041 crossref_primary_10_1016_j_cryobiol_2021_07_006 crossref_primary_10_1371_journal_pone_0185746 crossref_primary_10_1007_s00248_021_01877_7 crossref_primary_10_3389_fnins_2024_1501223 crossref_primary_10_1086_703420 crossref_primary_10_1242_jeb_125401 crossref_primary_10_3389_fphys_2017_00842 crossref_primary_10_1016_j_jbc_2021_101166 crossref_primary_10_1111_oik_04884 crossref_primary_10_3106_ms2020_0102 crossref_primary_10_1016_j_cub_2023_10_076 crossref_primary_10_3389_fnana_2019_00087 crossref_primary_10_35885_1684_7318_2024_1_79_97 crossref_primary_10_1002_zoo_21607 crossref_primary_10_1111_gcb_16860 crossref_primary_10_3390_ani14101498 crossref_primary_10_1111_1365_2435_13447 crossref_primary_10_3389_fphys_2020_575060 crossref_primary_10_1007_s00442_017_3923_3 crossref_primary_10_1242_jeb_128926 crossref_primary_10_1021_acs_jproteome_8b00816 crossref_primary_10_1111_ecog_06056 crossref_primary_10_3389_fphys_2020_00522 crossref_primary_10_1007_s00360_017_1100_y crossref_primary_10_1016_j_jtherbio_2017_10_006 crossref_primary_10_1096_fj_202201613R crossref_primary_10_1155_2015_731595 crossref_primary_10_1016_j_cbpa_2016_04_020 crossref_primary_10_1016_j_isci_2023_108390 crossref_primary_10_1111_btp_12807 crossref_primary_10_1093_auk_ukaa020 crossref_primary_10_1098_rspb_2022_0456 crossref_primary_10_1016_j_celrep_2024_113960 crossref_primary_10_1016_j_jtherbio_2024_103792 crossref_primary_10_1126_science_abn3943 crossref_primary_10_1139_cjz_2022_0035 crossref_primary_10_1242_jeb_229518 crossref_primary_10_3389_fphys_2021_730657 crossref_primary_10_3390_ani10081418 crossref_primary_10_1016_j_cub_2020_05_026 crossref_primary_10_1002_jcp_29294 crossref_primary_10_1093_biohorizons_hzy002 crossref_primary_10_1016_j_isci_2021_103453 crossref_primary_10_1007_s13364_018_0392_y crossref_primary_10_1073_pnas_1717507115 crossref_primary_10_1093_conphys_coae014 crossref_primary_10_1111_brv_12822 crossref_primary_10_1242_jeb_248027 crossref_primary_10_1007_s00360_017_1069_6 crossref_primary_10_1038_s42003_021_02505_3 crossref_primary_10_1016_j_cbpa_2017_12_014 crossref_primary_10_1071_AM15041 crossref_primary_10_1038_srep24627 crossref_primary_10_3389_fnana_2019_00092 crossref_primary_10_1111_mam_12172 crossref_primary_10_1016_j_crmeth_2022_100336 crossref_primary_10_1111_brv_12839 crossref_primary_10_3389_fphys_2020_00985 crossref_primary_10_3897_neotropical_19_e131710 crossref_primary_10_1007_s00442_017_3837_0 crossref_primary_10_1098_rspb_2022_0598 crossref_primary_10_1007_s00442_023_05452_4 crossref_primary_10_1111_1365_2435_12797 crossref_primary_10_1002_ece3_6371 crossref_primary_10_1111_ele_12785 crossref_primary_10_1371_journal_pone_0268811 crossref_primary_10_1111_1365_2435_14739 crossref_primary_10_1002_ece3_6372 crossref_primary_10_1002_cbf_3422 crossref_primary_10_1093_cz_zoae057 crossref_primary_10_1002_jez_2438 crossref_primary_10_1016_j_cnd_2017_03_003 crossref_primary_10_1525_abt_2022_84_9_529 crossref_primary_10_1071_RD18073 crossref_primary_10_1007_s00360_018_1158_1 crossref_primary_10_1038_s41467_024_50316_x crossref_primary_10_1111_1365_2435_13640 crossref_primary_10_1016_j_celrep_2019_10_102 crossref_primary_10_1242_jeb_174508 crossref_primary_10_1111_jzo_12486 crossref_primary_10_1007_s11284_016_1348_9 crossref_primary_10_1016_j_isci_2023_108740 crossref_primary_10_1038_s41598_018_32311_7 crossref_primary_10_1038_s41598_017_03119_8 crossref_primary_10_15252_embj_2020105604 crossref_primary_10_3389_fevo_2018_00190 crossref_primary_10_1007_s13364_016_0287_8 crossref_primary_10_1038_s44323_024_00002_4 crossref_primary_10_1016_j_tim_2016_01_011 crossref_primary_10_1007_s00360_022_01452_7 crossref_primary_10_3389_fphys_2017_01070 crossref_primary_10_1080_23328940_2020_1743605 crossref_primary_10_1007_s00360_023_01528_y crossref_primary_10_1098_rsbl_2021_0675 crossref_primary_10_1086_718222 crossref_primary_10_1152_ajpregu_00314_2016 crossref_primary_10_1242_jeb_171124 crossref_primary_10_3389_frspt_2024_1457487 crossref_primary_10_1111_mec_14483 crossref_primary_10_1038_s41419_024_07059_w crossref_primary_10_1080_15627020_2017_1419072 crossref_primary_10_1098_rspb_2023_1589 crossref_primary_10_1139_cjz_2016_0055 crossref_primary_10_1152_ajpregu_00040_2023 crossref_primary_10_1016_j_ibmb_2018_11_001 crossref_primary_10_1111_jne_12437 crossref_primary_10_1038_s41598_023_33646_6 crossref_primary_10_1177_10591478241234170 crossref_primary_10_1242_jeb_242529 crossref_primary_10_1111_1365_2435_13782 crossref_primary_10_1007_s00360_015_0929_1 crossref_primary_10_1007_s00360_024_01556_2 crossref_primary_10_3390_cells13010012 crossref_primary_10_1007_s00360_023_01494_5 crossref_primary_10_1186_s12983_023_00498_9 crossref_primary_10_1038_s41598_019_38937_5 crossref_primary_10_3389_fevo_2018_00092 crossref_primary_10_1016_j_jtherbio_2017_11_011 crossref_primary_10_1242_jeb_231761 crossref_primary_10_1016_j_pbiomolbio_2018_08_005 crossref_primary_10_1002_ecy_3677 crossref_primary_10_1002_ece3_10081 crossref_primary_10_1007_s00360_022_01451_8 crossref_primary_10_1016_j_chembiol_2021_08_008 crossref_primary_10_1007_s42991_023_00387_y crossref_primary_10_1515_mammalia_2017_0097 crossref_primary_10_1016_j_cophys_2020_02_003 crossref_primary_10_1016_j_cub_2024_01_035 crossref_primary_10_1038_s41598_018_31520_4 crossref_primary_10_3389_fphys_2018_00891 crossref_primary_10_3389_fphys_2021_682394 crossref_primary_10_1086_729775 crossref_primary_10_3389_fphys_2019_01033 crossref_primary_10_1111_jav_01341 crossref_primary_10_1016_j_coemr_2019_12_003 crossref_primary_10_1007_s00360_017_1140_3 crossref_primary_10_1093_jmammal_gyw113 crossref_primary_10_1186_s40665_016_0022_3 crossref_primary_10_1242_jeb_244606 crossref_primary_10_1007_s00360_018_1179_9 crossref_primary_10_3161_15081109ACC2023_25_2_009 crossref_primary_10_1017_S0266467422000360 crossref_primary_10_1098_rspb_2022_1719 crossref_primary_10_1186_s12917_018_1521_1 crossref_primary_10_2220_biomedres_40_153 crossref_primary_10_7554_eLife_31225 crossref_primary_10_15298_rusjtheriol_22_1_04 crossref_primary_10_3390_ani10081344 crossref_primary_10_1098_rspb_2018_2370 crossref_primary_10_1111_jav_02305 crossref_primary_10_1111_jav_01453 crossref_primary_10_1177_0748730418797820 crossref_primary_10_1007_s12192_022_01312_x crossref_primary_10_1093_jmammal_gyw126 crossref_primary_10_2903_j_efsa_2019_5758 crossref_primary_10_1016_j_physbeh_2017_11_020 crossref_primary_10_1111_jeb_13353 crossref_primary_10_1242_jeb_232876 crossref_primary_10_3389_fphys_2018_01973 crossref_primary_10_1007_s00360_020_01263_8 crossref_primary_10_1111_apha_12747 crossref_primary_10_1146_annurev_cellbio_012820_095945 crossref_primary_10_1007_s00360_018_1168_z crossref_primary_10_1016_j_neubiorev_2020_12_021 crossref_primary_10_1093_cz_zoz023 crossref_primary_10_1016_j_cbpa_2018_06_018 crossref_primary_10_1016_j_cbpb_2017_12_008 crossref_primary_10_1111_eth_13337 crossref_primary_10_3389_fphys_2023_1251042 crossref_primary_10_1086_707409 crossref_primary_10_1002_ece3_7049 crossref_primary_10_1242_bio_059064 crossref_primary_10_1007_s00360_021_01425_2 crossref_primary_10_1093_jmammal_gyv163 crossref_primary_10_1111_ecog_04064 crossref_primary_10_1007_s00114_018_1583_8 crossref_primary_10_1538_expanim_17_0035 crossref_primary_10_3389_fneur_2017_00558 crossref_primary_10_1016_j_anbehav_2016_10_008 crossref_primary_10_1186_s12983_016_0173_x crossref_primary_10_1016_j_cbpa_2018_05_001 crossref_primary_10_1007_s11010_022_04516_y crossref_primary_10_1111_1365_2664_13021 crossref_primary_10_1098_rstb_2016_0449 crossref_primary_10_3389_fphys_2023_1241470 crossref_primary_10_1038_s41598_022_26976_4 crossref_primary_10_1007_s00360_024_01546_4 crossref_primary_10_1111_1365_2435_13630 crossref_primary_10_1515_jbcpp_2018_0121 crossref_primary_10_1016_j_zool_2020_125834 crossref_primary_10_1152_jn_00047_2022 crossref_primary_10_1098_rspb_2022_0635 crossref_primary_10_1016_j_cbpb_2017_12_007 crossref_primary_10_1098_rspb_2024_1137 crossref_primary_10_3389_fphys_2023_1207620 crossref_primary_10_1093_jmammal_gyab049 crossref_primary_10_1111_brv_12280 crossref_primary_10_1002_ece3_5440 crossref_primary_10_1016_j_neubiorev_2021_09_054 crossref_primary_10_1093_jmammal_gyx009 crossref_primary_10_3389_fevo_2024_1365549 crossref_primary_10_1371_journal_pone_0275984 crossref_primary_10_1152_ajpregu_00012_2019 crossref_primary_10_1071_ZO19061 crossref_primary_10_3389_fnins_2023_1113843 crossref_primary_10_1242_jeb_246824 crossref_primary_10_1016_j_ygcen_2021_113946 crossref_primary_10_1016_j_jtherbio_2016_07_015 crossref_primary_10_1371_journal_pone_0298515 crossref_primary_10_1111_jzo_13174 crossref_primary_10_2478_s11756_020_00428_8 crossref_primary_10_1371_journal_pone_0285782 crossref_primary_10_1016_j_exer_2016_01_011 crossref_primary_10_1002_ece3_70634 crossref_primary_10_1086_721444 crossref_primary_10_3390_ani11082344 crossref_primary_10_1007_s00114_019_1626_9 crossref_primary_10_1242_jeb_243208 crossref_primary_10_1038_s41598_021_97825_z crossref_primary_10_2220_biomedres_43_53 crossref_primary_10_1242_jeb_212126 crossref_primary_10_1007_s10336_018_1588_2 crossref_primary_10_3390_ecologies3030020 crossref_primary_10_1111_oik_10827 crossref_primary_10_3389_fphys_2021_769833 crossref_primary_10_3390_d15050655 crossref_primary_10_1016_j_tree_2022_10_003 crossref_primary_10_1007_s00360_017_1074_9 crossref_primary_10_3389_fevo_2020_00107 crossref_primary_10_1111_cobi_14390 crossref_primary_10_1002_jez_2259 crossref_primary_10_1098_rsos_181182 crossref_primary_10_1002_ece3_7641 crossref_primary_10_1038_s41598_019_38884_1 crossref_primary_10_1086_721477 crossref_primary_10_1007_s00114_019_1636_7 crossref_primary_10_1093_sleep_zsac064 crossref_primary_10_3389_fmicb_2024_1433675 crossref_primary_10_1093_sleep_zsab093 crossref_primary_10_1002_biof_1976 crossref_primary_10_1134_S0006350919050191 crossref_primary_10_1111_ibi_13100 crossref_primary_10_1111_1365_2435_12620 crossref_primary_10_1080_14772019_2023_2232359 crossref_primary_10_1016_j_mam_2019_06_006 crossref_primary_10_1111_brv_13160 crossref_primary_10_3389_fphys_2021_620614 crossref_primary_10_1113_JP281385 crossref_primary_10_1016_j_mam_2019_06_003 crossref_primary_10_1111_1365_2435_13718 crossref_primary_10_1111_mec_16014 crossref_primary_10_1093_jmammal_gyx039 crossref_primary_10_31857_S0044452924050045 crossref_primary_10_47027_duvetfd_1587520 crossref_primary_10_1038_s41598_024_62455_8 crossref_primary_10_1152_physrev_00016_2016 crossref_primary_10_1038_s41598_022_05896_3 crossref_primary_10_3389_fnins_2017_00195 crossref_primary_10_1016_j_physbeh_2022_113712 crossref_primary_10_7717_peerj_1138 crossref_primary_10_1111_febs_14683 crossref_primary_10_1007_s00360_021_01416_3 crossref_primary_10_1002_ece3_11579 crossref_primary_10_1111_btp_13224 crossref_primary_10_3389_fphys_2019_00469 crossref_primary_10_1007_s00360_016_1039_4 crossref_primary_10_1007_s00421_023_05272_7 crossref_primary_10_12688_wellcomeopenres_17379_2 crossref_primary_10_1098_rspb_2022_2099 crossref_primary_10_1086_699917 crossref_primary_10_1093_jmammal_gyae112 crossref_primary_10_1134_S1062359024700924 crossref_primary_10_1002_1873_3468_14499 crossref_primary_10_1093_texcom_tgaa018 crossref_primary_10_1016_j_jtherbio_2022_103321 crossref_primary_10_1186_s12983_019_0311_3 crossref_primary_10_3390_ani13101600 crossref_primary_10_1080_07420528_2020_1726373 crossref_primary_10_1242_jeb_243115 crossref_primary_10_1098_rsos_211986 crossref_primary_10_1186_s12983_021_00434_9 crossref_primary_10_1146_annurev_nutr_071816_064740 crossref_primary_10_1016_j_exger_2020_110889 crossref_primary_10_1002_ece3_8645 crossref_primary_10_1051_bioconf_20236002011 crossref_primary_10_3389_fphys_2020_605186 crossref_primary_10_1038_s41684_024_01362_x crossref_primary_10_18470_1992_1098_2024_2_6 crossref_primary_10_3106_ms2024_0012 crossref_primary_10_1242_jeb_154633 crossref_primary_10_1007_s00424_018_2244_7 crossref_primary_10_1016_j_jtherbio_2023_103738 crossref_primary_10_1126_science_adf5341 crossref_primary_10_1007_s10336_020_01755_y crossref_primary_10_1007_s00360_017_1096_3 crossref_primary_10_1371_journal_pone_0186299 crossref_primary_10_1016_j_cub_2025_02_064 crossref_primary_10_1002_jez_2570 crossref_primary_10_1111_jav_02856 crossref_primary_10_1242_jeb_160150 crossref_primary_10_1071_ZO20025 crossref_primary_10_1016_j_cbpa_2016_09_025 crossref_primary_10_3161_15081109ACC2021_23_2_010 crossref_primary_10_1098_rsos_160002 crossref_primary_10_1086_707497 crossref_primary_10_1007_s00360_025_01608_1 crossref_primary_10_3390_foundations3030029 crossref_primary_10_2192_URSUS_D_19_00015_1 crossref_primary_10_1242_jeb_244222 crossref_primary_10_1007_s00442_021_05022_6 crossref_primary_10_1038_s41598_021_94992_x crossref_primary_10_1007_s00360_017_1060_2 crossref_primary_10_1186_s12983_019_0312_2 crossref_primary_10_1152_ajpregu_00045_2016 crossref_primary_10_7554_eLife_70062 crossref_primary_10_1242_jeb_204925 crossref_primary_10_3390_ijms21207599 crossref_primary_10_1007_s13364_022_00652_4 crossref_primary_10_1071_ZO20036 crossref_primary_10_1080_23328940_2024_2339781 crossref_primary_10_1007_s00424_023_02842_8 crossref_primary_10_1093_jmammal_gyac022 crossref_primary_10_1002_9780470942390_mo140111 crossref_primary_10_3389_fnins_2020_602796 crossref_primary_10_3389_fmars_2025_1561403 crossref_primary_10_1038_s41598_021_98085_7 crossref_primary_10_1098_rsos_171359 crossref_primary_10_1093_jmammal_gyx071 crossref_primary_10_3389_fevo_2021_759726 crossref_primary_10_1002_bies_202400190 crossref_primary_10_1242_jeb_220046 |
Cites_doi | 10.1111/j.1469-185X.2011.00188.x 10.1111/geb.12077 10.1644/11-MAMM-A-120.1 10.1007/BF00692755 10.1071/ZO9850667 10.1086/physzool.60.1.30158631 10.2307/1538547 10.1016/0300-9629(80)90060-2 10.1086/589545 10.1007/s00360-007-0186-z 10.1080/03946975.1999.10539392 10.1086/physzool.37.2.30152332 10.1038/nature05634 10.1139/z85-442 10.2307/1381835 10.1007/BF00217110 10.1086/502816 10.1007/978-3-642-28678-0_10 10.1086/595967 10.1007/s00360-009-0350-8 10.1073/pnas.0704699104 10.1016/S1096-4959(02)00018-0 10.1086/physzool.58.4.30156018 10.1016/j.cbpa.2012.03.017 10.1007/s00360-011-0642-7 10.1007/s00360-007-0249-1 10.1139/z65-011 10.1111/j.1365-2435.2010.01806.x 10.1007/s00114-005-0063-0 10.1515/MAMM.2006.017 10.1007/s00442-011-2214-7 10.1071/ZO9890685 10.1007/978-3-642-28678-0_3 10.1007/BF00345702 10.1007/s003600100226 10.1007/BF02350004 10.1086/physzool.63.3.30156224 10.1163/002829673X00067 10.1139/z61-013 10.1007/978-3-662-04162-8_4 10.1007/s00360-007-0147-6 10.1016/0300-9629(82)90275-4 10.1152/ajpregu.00260.2005 10.1016/0010-406X(65)90062-9 10.1086/physzool.66.5.30163816 10.1016/j.physbeh.2009.04.013 10.1644/10-MAMM-A-097.1 10.1146/annurev.physiol.66.032102.115105 10.1016/j.ympev.2006.03.031 10.5962/bhl.part.85543 10.1007/BF00333769 10.2307/1381276 10.4098/AT.arch.96-31 10.1098/rspb.2011.0881 10.1007/BF01640590 10.1016/0306-4565(94)90007-8 10.1007/BF03192411 10.1016/0300-9629(72)90044-8 10.1086/648736 10.1080/00359190409519168 10.1002/cphy.c130007 10.1007/BF00301619 10.1038/35030297 10.1152/ajpregu.00688.2007 10.1016/0300-9629(89)90375-7 10.1152/ajplegacy.1969.217.4.1246 10.1007/s003600000129 10.1016/0010-406X(62)90043-9 10.2307/1365224 10.2307/1378202 10.1007/s003600000135 10.1007/BF00378050 10.1007/BF01641448 10.1007/BF00694790 10.1016/0300-9629(81)90645-9 10.1126/science.183.4124.545 10.1007/s003600050074 10.1152/ajpregu.00593.2002 10.1016/0010-406X(67)90492-6 10.2307/1382652 10.1002/jez.1402670203 10.1080/02541858.1980.11447700 10.1080/09291018009359691 10.1111/j.1365-2656.2007.01314.x 10.1093/bioinformatics/btg412 10.1111/j.1365-2435.2008.01420.x 10.2307/1538740 10.1007/BF02464401 10.1081/CBI-100101036 10.1152/ajpregu.1997.273.6.R2097 10.1016/j.jtherbio.2004.05.003 10.1111/j.1442-9993.1982.tb01586.x 10.1152/ajplegacy.1966.211.5.1108 10.1007/s003600050008 10.1086/physzool.61.1.30163731 10.1111/1365-2435.12173 10.1242/jeb.065516 10.1007/s00360-005-0475-3 10.1644/11-MAMM-A-144.1 10.1086/509211 10.1016/S0003-3472(05)80506-8 10.1007/978-3-642-28678-0_8 10.1198/016214502760047131 10.1111/j.1469-7998.1988.tb03763.x 10.1007/s00360-012-0661-z 10.1111/j.1469-185X.1999.tb00180.x 10.1177/0748730410368621 10.2307/1366047 10.1086/367949 10.1139/Z07-067 10.1016/S0742-8413(97)00061-3 10.1086/317755 10.1007/s00360-009-0405-x 10.1086/physzool.54.1.30155808 10.1002/jcp.1030650313 10.1098/rsbl.2012.0269 10.1016/0010-406X(70)90359-2 10.1098/rsbl.2011.0758 10.1007/s004420051003 10.1016/0010-406X(70)90941-2 10.1086/physzool.41.3.30155466 10.1098/rsbl.2012.1095 10.1007/s00360-012-0683-6 10.2307/1381290 10.1071/AM88005 10.1007/978-3-642-28678-0 10.1007/s00360-007-0164-5 10.1086/381470 10.1007/s00114-010-0707-6 10.1242/jeb.038224 10.2307/1313595 10.1007/s003600100227 10.1007/s00360-003-0326-z 10.1086/physzool.54.3.30159941 10.1016/0010-406X(69)91312-7 10.1016/0300-9629(83)90623-0 10.1890/0012-9658(2000)081[1004:PTATDA]2.0.CO;2 10.1111/j.1469-185X.2010.00122.x 10.1139/Y10-017 10.4098/AT.arch.74-37 10.1152/ajpregu.1984.246.2.R161 10.2307/1379934 10.1111/j.1469-7998.1991.tb04390.x 10.1016/S0306-4565(01)00032-8 10.1016/j.cbpa.2007.08.013 10.1007/s003600050049 10.1016/0300-9629(81)90157-2 10.4098/AT.arch.78-36 10.1152/ajpregu.00579.2002 10.1007/978-1-4899-4541-9 10.1242/bio.20122790 10.1086/380210 10.1007/s00360-005-0008-0 10.1071/AM84020 10.1016/S0300-9629(76)80076-X 10.1007/s00360-008-0318-0 10.7882/AZ.2010.009 10.1086/673313 10.1007/s003600100201 10.1126/science.168.3929.368 10.1371/journal.pone.0010797 10.1007/BF02164408 10.1016/S0300-9629(76)80034-5 10.1152/ajpregu.1994.266.4.R1251 10.1644/1545-1542(2005)086<0015:VITPOF>2.0.CO;2 10.1007/s00360-010-0507-5 10.1086/physzool.34.3.30152696 10.1007/s00360-010-0452-3 10.1016/S0022-5193(05)80323-6 10.1007/s003600050242 10.1152/ajpregu.00792.2010 10.1139/z05-074 10.1086/physzool.50.3.30155724 10.1007/978-3-642-28678-0_14 10.1177/0748730403254971 10.1111/j.1466-8238.2011.00679.x 10.1086/319310 10.1086/physzool.63.6.30152634 10.1007/BF00693360 10.1071/MU9850200 10.1071/ZO98058 10.1007/s00360-008-0298-0 10.1111/j.1440-1681.1998.tb02287.x 10.2307/1364720 10.1086/284385 10.1016/B978-0-12-734550-5.50009-0 10.1007/978-3-662-04162-8_24 10.1674/0003-0031-167.2.396 10.1007/s00114-008-0471-z 10.1007/s00360-010-0531-5 10.1007/s00360-010-0459-9 10.3106/1348-6160(2005)30[33:BTPOTK]2.0.CO;2 10.1038/nature09210 10.1007/BF00686752 10.1086/505999 10.1007/978-3-642-28678-0_1 10.1139/Z08-150 10.1371/journal.pone.0018641 10.1007/s00360-008-0328-y 10.1086/425188 10.1007/s004420051021 10.1525/cond.2008.110.1.110 10.1071/ZO9800521 10.1086/physzool.61.5.30161266 10.1007/s00360-004-0414-8 10.1642/0004-8038(2002)119[0251:NHATIT]2.0.CO;2 10.1126/science.1199435 10.1139/z63-087 10.1007/s00114-007-0293-4 10.1016/S1095-6433(99)00081-1 10.1644/05-MAMM-A-254R3.1 10.1007/BF00297762 10.1071/ZO9880473 10.1890/08-1494.1 10.1016/0306-4565(78)90003-7 10.1644/1545-1542(2001)082<0551:FTIFRB>2.0.CO;2 10.1007/BF00379969 10.1086/physzool.36.2.30155436 10.1177/074873001129001971 10.1007/s003600050270 10.1111/j.1461-0248.2009.01307.x 10.1016/0300-9629(71)90098-3 10.1086/physzool.46.2.30155591 10.1086/324097 10.1016/B978-1-4160-6645-3.00028-1 10.1007/978-3-642-28678-0_4 10.1093/icb/icr035 10.1016/j.cbpa.2007.09.005 10.1007/s00360-010-0509-3 10.1007/BF00260749 10.2307/1376476 10.2307/1948477 10.1007/BF00692921 10.1007/s00360-004-0470-0 10.1086/658171 10.5962/bhl.part.82328 10.1086/605457 10.1086/physzool.68.2.30166502 10.1242/jeb.066514 10.1080/10635150701313830 10.1007/978-3-642-68651-1_35 10.1046/j.1365-2435.1999.00302.x 10.1111/2041-210X.12131 10.2307/1383001 10.1007/BF00388050 10.1007/s10336-007-0205-6 10.2307/1936263 10.1007/978-94-009-5772-5 10.1086/physzool.66.5.30163817 10.1086/physzool.38.3.30152836 10.1016/0300-9629(94)90023-X 10.1016/j.ympev.2009.03.019 10.1038/429825a 10.1126/science.1157704 10.1650/0010-5422(2002)104[0705:AFHRAR]2.0.CO;2 10.1086/physzool.52.2.30152564 10.1152/ajpregu.1984.246.1.R49 10.1016/S0022-5193(05)80482-5 10.1126/science.136.3514.380 10.1152/ajplegacy.1958.194.1.83 10.3377/1562-7020(2007)42[50:TIOTIW]2.0.CO;2 10.1242/jeb.02535 10.1038/203892a0 10.1007/978-3-642-28678-0_2 10.1086/physzool.68.6.30163788 10.1007/BF00297716 10.1098/rstl.1832.0017 10.1007/BF01918804 10.1111/j.1095-8312.2010.01447.x 10.1890/0012-9658(2000)081[0990:EEOTPR]2.0.CO;2 10.1007/s00114-007-0274-7 10.1152/ajpregu.2000.278.3.R698 10.1016/0300-9629(78)90167-6 10.1242/jeb.200.3.467 10.1007/BF01945554 10.1139/z80-101 10.1086/physzool.65.5.30158553 10.1093/icb/icr042 10.1016/0300-9629(83)90553-4 10.2307/1381762 10.1046/j.1365-2435.2000.t01-1-00460.x 10.1152/ajpregu.2000.279.1.R255 10.1126/science.2740905 10.2307/1382332 10.1071/ZO9930067 10.1086/physzool.58.3.30156003 10.1007/s00360-008-0277-5 10.1086/physzool.56.3.30152601 10.1007/978-3-662-04162-8_9 10.1007/s003600050058 10.1007/s00114-008-0492-7 10.1007/s003600100207 10.1371/journal.pone.0063111 10.1111/j.1365-2656.2010.01689.x 10.1073/pnas.54.4.1058 10.1126/science.180.4087.751 10.1139/z86-118 10.1086/physzool.61.1.30163730 10.1007/s003600100221 10.1016/0300-9629(75)90389-8 10.1007/s003600050141 10.1086/physzool.50.1.30155714 10.1086/394389 10.1007/s003600000139 10.1007/BF00667787 10.1177/0748730411402632 10.1007/s00360-011-0631-x 10.1242/jeb.00574 10.1007/s004420050399 10.1007/s00360-012-0647-x 10.1111/j.1469-7998.1985.tb04916.x 10.1007/s00360-010-0519-1 10.1086/319669 10.1093/icb/ict100 10.1002/jcp.1030610210 10.1086/303383 10.1086/367950 10.4098/AT.arch.87-23 10.1007/BF00689217 10.1007/BF00317201 10.1007/BF01754494 10.2307/1364860 10.2307/1377932 10.1016/j.mambio.2009.06.001 10.1016/j.cbpa.2007.02.041 10.1189/jlb.0310174 10.1086/343873 10.1080/08927014.2009.9522495 10.1002/jez.1401090105 10.1098/rspb.2011.0190 10.1242/jeb.01482 10.1016/0010-406X(66)90043-0 10.1126/science.1213859 10.1152/physrev.00008.2003 10.1152/ajpregu.1977.232.5.R203 10.1038/44766 10.2307/1381319 10.1007/s00360-010-0457-y 10.1152/ajpregu.00562.2001 10.2307/1370489 10.1086/physzool.65.2.30158263 |
ContentType | Journal Article |
Copyright | 2014 The Authors. published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. Copyright Blackwell Publishing Ltd. Aug 2015 |
Copyright_xml | – notice: 2014 The Authors. published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society – notice: 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. – notice: Copyright Blackwell Publishing Ltd. Aug 2015 |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS C1K 7X8 5PM |
DOI | 10.1111/brv.12137 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Ecology Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1469-185X |
EndPage | 926 |
ExternalDocumentID | PMC4351926 3748911211 25123049 10_1111_brv_12137 BRV12137 ark_67375_WNG_DJ7K4Z17_B |
Genre | article Journal Article Feature |
GrantInformation_xml | – fundername: Austrian Science Fund funderid: P25023 – fundername: DVCR of UNE – fundername: Australian Research Council – fundername: Austrian Science Fund FWF grantid: P 25023 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCQX ABCUV ABEML ABITZ ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACGOF ACMXC ACPOU ACPRK ACQPF ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKSM AFPWT AFRAH AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMXJE BROTX BRXPI BSCLL BY8 C45 CAG CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M K48 KBYEO L7B L98 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RCA RIG RIWAO RJQFR ROL RX1 RXW SAMSI SUPJJ SV3 TAE TEORI TN5 UB1 UPT W8V W99 WBKPD WH7 WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ X6Y XG1 XOL XSW YZZ ZXP ~02 ~IA ~WT 24P AAHQN AAIPD AAMNL AANHP AAYCA ABVKB ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABGDZ AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS C1K 7X8 5PM |
ID | FETCH-LOGICAL-c6177-816e23013297646e1d75f06eb6c9956366a14a40ef690adf8eed02349542f0f73 |
IEDL.DBID | DR2 |
ISSN | 1464-7931 1469-185X |
IngestDate | Thu Aug 21 13:25:22 EDT 2025 Fri Jul 11 02:14:19 EDT 2025 Wed Aug 13 07:32:49 EDT 2025 Mon Jul 21 06:02:52 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Tue Jul 01 03:31:09 EDT 2025 Wed Jan 22 16:33:35 EST 2025 Wed Oct 30 09:53:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | hypometabolism hypothermia over‐wintering daily torpor energy savings heterothermy hibernation thermoregulation endotherms |
Language | English |
License | Attribution 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6177-816e23013297646e1d75f06eb6c9956366a14a40ef690adf8eed02349542f0f73 |
Notes | istex:EAF27B4D3E4C8CF6D3158B40E47A55F02DDAC572 DVCR of UNE ark:/67375/WNG-DJ7K4Z17-B Austrian Science Fund - No. P25023 ArticleID:BRV12137 Australian Research Council SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Thomas.Ruf@vetmeduni.ac.at, phone: ++43 1 489 09 15 150 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbrv.12137 |
PMID | 25123049 |
PQID | 1697515726 |
PQPubID | 36769 |
PageCount | 36 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4351926 proquest_miscellaneous_1812881651 proquest_journals_1697515726 pubmed_primary_25123049 crossref_citationtrail_10_1111_brv_12137 crossref_primary_10_1111_brv_12137 wiley_primary_10_1111_brv_12137_BRV12137 istex_primary_ark_67375_WNG_DJ7K4Z17_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2015 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: August 2015 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Cambridge |
PublicationTitle | Biological reviews of the Cambridge Philosophical Society |
PublicationTitleAlternate | Biol Rev |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Kayser, C. (1964). La dépense d'énergie des mammiferes en hibernation. Archives des Sciences Physiologiques 18, 137-150. Geiser, F. & Masters, P. (1994). Torpor in relation to reproduction in the mulgara, Dasycercus cristicauda (Dasyuridae, Marsupialia). Journal of Thermal Biology 19, 33-40. Lee, T. N., Barnes, B. M. & Buck, C. L. (2009). Body temperature patterns during hibernation in a free-living Alaska marmot (Marmota broweri). Ethology Ecology & Evolution 21, 403-413. Secord, R., Bloch, J. I., Chester, S. G. B., Boyer, D. M., Wood, A. R., Wing, S. L., Kraus, M. J., McInerney, F. A. & Krigbaum, J. (2012). Evolution of the earliest horses driven by climate change in the paleocene-eocene thermal maximum. Science 335, 959-962. Willis, C. K. R., Brigham, R. M. & Geiser, F. (2006). Deep, prolonged torpor by pregnant, free-ranging bats. Naturwissenschaften 93, 80-83. Brown, J. H. & Bartholomew, G. A. (1969). Periodicity and energetics of torpor in the Kangaroo Mouse, Microdipodops pallidus. Ecology 50, 705-709. Lehmer, E. M., Savage, L. T., Antolin, M. F. & Biggins, D. E. (2006). Extreme plasticity in thermoregulatory behaviors of free-ranging black-tailed prairie dogs. Physiological and Biochemical Zoology 79, 454-467. Stawski, C., Turbill, C. & Geiser, F. (2009). Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 179, 433-441. Darwin, C. (1839). Journal and Remarks: 1832-1836. H. Colburn, London. Hoffmann, R. & Prinzinger, R. (1984). Torpor und Nahrungsausnutzung bei 4 Mausvogelarten (Coliiformes). Journal für Ornithologie 125, 225-237. Körtner, G., Pavey, C. R. & Geiser, F. (2008). Thermal biology, torpor, and activity in free-living mulgaras in arid zone australia during the winter reproductive season. Physiological and Biochemical Zoology 81, 442-451. Wang, L. C. H. & Hudson, J. W. (1971). Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 38, 59-90. Hainsworth, F. R. & Wolf, L. L. (1970). Regulation of oxygen consumption and body temperature during torpor in a hummingbird, Eulampis jugularis. Science 168, 368-369. McNab, B. K. & Bonaccorso, F. J. (1995). The energetics of Australasian swifts, frogmouths, and nightjars. Physiological Zoology 68, 245-261. Geiser, F. & Pavey, C. R. (2007). Basking and torpor in a rock-dwelling desert marsupial: survival strategies in a resource-poor environment. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 177, 885-892. Hudson, J. W. & Deavers, D. R. (1973). Thermoregulation at high ambient temperatures of six species of ground squirrels (Spermophilus spp.) from different habitats. Physiological Zoology 46, 95-109. Opazo, J. C., Nespolo, R. F. & Bozinovic, F. (1999). Arousal from torpor in the chilean mouse-opposum (Thylamys elegans): does non-shivering thermogenesis play a role? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 123, 393-397. Cade, T. J. (1964). The evolution of torpidity in rodents. Annales Academiae Scientiarum Fennicae Series A 4 Biologica 71, 77-111. Ruf, T., Bieber, C., Arnold, W. & Millesi, E. (2012). Living in a Seasonal World. Thermoregulatory and Metabolic Adaptations. Springer-Verlag, Heidelberg, New York, Dordrecht, London. Koskimies, J. (1948). On temperature regulation and metabolism in the swift, Micropus a. apus L., during fasting. Experientia 4, 274-276. Frey, H. (1979). La température corporelle de Suncus etruscus (Soricidae, Insectivora) au cours de l'activité, du repos normothermique et de la torpeur. Revue Suisse de Zoologie 86, 653-662. Kulzer, E., Nelson, J. E., McKean, J. L. & Möhres, F. P. (1970). Untersuchungen über die Temperaturregulation australischer Fledermäuse (Microchiroptera). Zeitschrift für vergleichende Physiologie 69, 426-451. Mzilikazi, N. & Lovegrove, B. G. (2004). Daily torpor in free-ranging rock elephant shrews, Elephantulus myurus: a year-long study. Physiological and Biochemical Zoology 77, 285-296. Bech, C., Steffensen, J. F., Berger, M., Abe, A. S. & Bicudo, J. E. P. W. (2006). Metabolic aspects of torpor in hummingbirds. Acta Zoologica Sinica 52 (Suppl.), 397-400. Bartholomew, G. A. & Cade, T. J. (1957). Temperature regulation, hibernation, and aestivation in the Little Pocket Mouse, Perognathus longimembris. Journal of Mammalogy 38, 60-72. Nowack, J., Mzilikazi, N. & Dausmann, K. H. (2010). Torpor on demand: heterothermy in the non-lemur primate Galago moholi. PLoS ONE 5, e10797. Bartholomew, G. A., Howell, T. R. & Cade, T. J. (1957). Torpidity in the white-throated swift, Anna hummingbird, and poor-will. The Condor 59, 145-155. Guppy, M. & Withers, P. (1999). Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biological Reviews of the Cambridge Philosophical Society 74, 1-40. Arlettaz, R., Ruchet, C., Aeschimann, J., Brun, E., Genoud, M. & Vogel, P. (2000). Physiological traits affecting the distribution and wintering strategy of the bat Tadarida teniotis. Ecology 81, 1004-1014. Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O'Dell, J., Orme, C. D. L., Safi, K., Sechrest, W., Boakes, E. H., Carbone, C., Connolly, C., Cutts, M. J., Foster, J. K., Grenyer, R., Habib, M., Plaster, C. A., Price, S. A., Rigby, E. A., Rist, J., Teacher, A., Bininda-Emonds, O. R. P., Gittleman, J. L., Mace, G. M., Purvis, A. & Michener, W. K. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648. Scantlebury, M., Lovegrove, B., Jackson, C., Bennett, N. & Lutermann, H. (2008). Hibernation and non-shivering thermogenesis in the Hottentot golden mole (Amblysomus hottentottus longiceps). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 178, 887-897. Thäti, H. (1978). Seasonal differences in O2 consumption and respiratory quotient in a hibernator (Erinaceus europaeus L.). Annales Zoologici Fennici 15, 69-75. Lovegrove, B. G., Lawes, M. J. & Roxburgh, L. (1999). Confirmation of pleisiomorphic daily torpor in mammals: the round-eared elephant shrew Macroscelides proboscideus (Macroscelidea). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 169, 453-460. Turbill, C., Bieber, C. & Ruf, T. (2011). Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proceedings of the Royal Society B: Biological Sciences 278, 3355-3363. Twente, J. W. & Twente, J. A. (1965). Regulation of hibernating periods by temperature. Proceedings of the National Academy of Sciences of the United States of America 54, 1058-1061. Geiser, F. (1987). Hibernation and daily torpor in two pygmy possums (Cercartetus spp., Marsupialia). Physiological Zoology 60, 93-102. Geiser, F. (2008). Ontogeny and phylogeny of endothermy and torpor in mammals and birds. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 150, 176-180. Tomlinson, S., Withers, P. C. & Maloney, S. K. (2012). Flexibility in thermoregulatory physiology of two dunnarts, Sminthopsis macroura and Sminthopsis ooldea (Marsupialia; Dasyuridae). The Journal of Experimental Biology 215, 2236-2246. Bartholomew, G. A., Vleck, C. M. & Bucher, T. L. (1983). Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores, Manacus vitellinus and Pipra mentalis. Physiological Zoology 56, 370-379. Nagel, A. (1985). Sauerstoffverbrauch, Temperaturregulation und Herzfrequenz bei europäischen Spitzmäusen (Soricidae). Zeitschrift für Säugetierkunde 50, 249-266. Eisentraut, M. (1933). Winterstarre, Winterschlaf und Winterruhe. Eine kurze biologischphysiologische Studie. Mitteilungen aus dem Zoologischen Museum in Berlin 19, 48-63. Fowler, P. A. & Racey, P. A. (1988). Overwintering strategies of the badger, Meles meles, at 57 °N. Journal of Zoology (London) 214, 635-651. Arnold, W., Ruf, T., Frey-Roos, F. & Bruns, U. (2011). Diet-independent remodeling of cellular membranes precedes seasonally changing body temperature in a hibernator. PLoS ONE 6, e18641. Grahn, D. A., Miller, J. D., Houng, V. S. & Heller, H. C. (1994). Persistence of circadian rhythmicity in hibernating ground squirrels. American Journal of Physiology - Regulatory Integrative Comparative Physiology 266, R1251-R1258. Newman, J. R. & Rudd, R. L. (1978). Observations of torpor-like behavior in the shrew, Sorex sinuosus. Acta Theriologica 23, 446-448. Waβmer, T. & Wollnik, F. (1997). Timing of torpor bouts during hibernation in European hamsters (Cricetus cricetus L.). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 167, 270-279. Coburn, D. K. & Geiser, F. (1998). Seasonal changes in energetics and torpor patterns in the subtropical blossom-bat Syconycteris australis (Megachiroptera). Oecologia 113, 467-473. Geiser, F. (1993). Hibernation in the eastern pygmy possum, Cercartetus nanus (Marsupialia, Burramyidae). Australian Journal of Zoology 41, 67-75. Cooper, C. E. & Withers, P. C. (2004). Patterns of body temperature variation and torpor in the numbat, Myrmecobius fasciatus (Marsupialia: Myrmecobiidae). Journal of Thermal Biology 29, 277-284. Lovegrove, B. G. (2000). The zoogeography of mammalian basal metabolic rate. The American Naturalist 156, 210-219. Jacobs, D. S., Kelly, E. J., Mason, M. & Stoffberg, S. (2007). Thermoregulation in two free-ranging subtropical insectivorous bat species: Scotophilus species (Vespertilionidae). Canadian Journal of Zoology-Revue Canadienne De Zoologie 85, 883-890. Merritt, J. F. (1986). Winter survival adaptations of the short-tailed shrew (Blarina brevicauda) in Appalachian montane forest. Journal of Mammalogy 67, 450-464. Genoud, M. (1985). Ecological energetics of two European shrews: Crocidura russula and Sorex coronatus (Soricidae: Mamm 1980; 137 2010; 97 2004; 20 1987; 32 2009; 87 2005; 175 1970; 168 2004; 29 2002; 97 2009; 82 1967; 23 1999; 49 1980; 45 1999; 47 1988; 76 1988; 77 2000a; 17 1939; 15 1972; 41 1985; 207 2010; 180 2001; 46 1974; 183 1994; 266 2000; 407 1993b; 66 2009; 96 1984; 154 1987; 43 2009; 98 2006; 209 2000; 14 2007; 177 2009; 90 1999; 54 1964; 37 2008; 22 1998; 168 2008; 110 2010; 5 2012; 21 2003; 284 2013; 87 1962; 6 1980; 65 2012; 182 2003; 173 2005; 86 2009; 179 2001; 26 1985; 85 2011; 6 2004; 429 1976; 54 1980; 58 1991; 168 1989; 244 1987; 60 1964; 18 1994; 19 1971; 38 1991; 161 2004; 59 1997; 200 1976; 53A 1977; 115 1977; 232 2004; 66 2007; 148 1965; 54 1992; 162 1984; 246 2013; 22 1984; 125 1969; 71 1963; 41 1984; 21 1965; 50 1985; 125 1985; 63 2008; 77 2002; 119 1999; 123 1964; 80 1975; 51 1951; 101 1957; 59 1974; 19 2012b; 87 2000; 170 2004; 77 1963; 36 1965; 65 1963; 33 1970; 70 1997; 99 1978; 23 2000 1991; 41 1999; 13 1999; 12 2002; 104 2001; 16 1948; 109 1985; 50 2003; 83 2012; 335 1994; 107 2012; 215 1970; 69 1985; 58 1964; 71 1980; 28 2010; 75 1966; 211 1968; 49 2010; 79 2012 2000; 278 2000; 279 2011 1969; 50 2010 1982; 73 1981; 69 1964; 66 2008 1978; 15 2004 1932; 229 2000; 156 2008; 320 1979; 52 1993; 267 2008; 95 1839 1957; 38 2007; 56 2010; 85 2011; 331 1956 1968; 41 2012c; 182 2010; 83 1974; 39 2010; 88 1980; 15 1965; 87 1950; 99 1986; 64 2005; 289 1986; 67 1980; 11 1997; 78 1996; 41 2000b; 123 1961 2013 1985; 33 1992; 65 2008; 81 1848 1981; 54 1969 1967 1845 2007; 104 2004; 286 2013; 3 1973; 180 1973; 11 1997; 273 1982; 52 2010; 466 1969; 30 1983; 7 1976 2010; 100 1970; 33 1970; 32 1999; 169 1970 2014; 28 2013; 8 1965; 16 2013; 5 1979 2013; 9 1978 1832; 122 2009; 12 2003; 206 1991; 223 2010; 25 1960; 124 1990 2004; 174 1948; 4 1987 1989; 193 1986 1977; 33 1982 1969; 217 2000; 123 2001b; 74 1989 1988; 214 1970; 24 2006; 52 2007; 446 2010; 35 2002; 131 1990; 37 1963; 61 1991; 72 2011; 84 1993; 41 2000; 73 1996 2005b; 175 1983; 74 1993 1978; 59 2007; 94 1992 2002a; 172 1965; 38 2005a; 83 1993a; 66 2011; 301 1965; 43 1990; 23 1986; 127 1965; 46 2006; 40 1973; 23 2010; 213 1984; 7 2011; 92 2003b; 76 1997; 167 1997; 34 2001a; 171 1985; 156 1931; 6 2000; 81 2007; 80 2007; 85 1979; 86 1958; 194 1998; 79 2006; 70 2012; 162 1966; 19 2011; 278 1997; 117 2012; 167 2006; 79 1988; 36 1995; 76 1980; 87 1978; 3 2003; 18 2012; 169 1990; 145 1961; 34 1998; 113 1999; 401 1990; 144 2003a; 76 1961; 39 1983; 56 2009; 52 1974; 89 1987; 157 2001; 171 1973; 46 1995; 68 2005; 30 1982; 7 2012a 2011; 26 2011; 25 1961; 45 1955; 57 2008; 150 2006; 93 1987; 11 2002; 172 2009; 21 1986; 156 2011; 31 1998; 22 1998; 25 1990; 83 1990; 63 2012; 93 2001; 82 2002b; 172 2002; 160 2002; 282 1962; 136 2012; 1 2006; 87 1988; 69 1993; 11 1989; 92 2011; 51 2011; 42 1977; 50 2005; 208 1999; 76 2011; 181 1988; 61 1999; 74 1978; 125 1999; 72 1933; 19 2012; 279 2008; 178 2001; 74 1964; 203 2008; 294 1990; 71 2012; 8 e_1_2_7_311_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_357_1 e_1_2_7_19_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_202_1 e_1_2_7_225_1 Hissa R. (e_1_2_7_170_1) 1997; 34 e_1_2_7_322_1 e_1_2_7_116_1 e_1_2_7_345_1 Bickler P. E. (e_1_2_7_27_1) 1984; 246 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_237_1 e_1_2_7_139_1 e_1_2_7_128_1 e_1_2_7_333_1 e_1_2_7_356_1 e_1_2_7_379_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_310_1 e_1_2_7_192_1 Kulzer E. (e_1_2_7_218_1) 1980; 45 e_1_2_7_249_1 Augee M. L. (e_1_2_7_11_1) 1992 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 Heldmaier G. (e_1_2_7_161_1) 1989 Reardon M. (e_1_2_7_325_1) 1999; 54 e_1_2_7_117_1 e_1_2_7_344_1 e_1_2_7_367_1 Strumwasser F. (e_1_2_7_363_1) 1960; 124 e_1_2_7_70_1 e_1_2_7_321_1 e_1_2_7_181_1 e_1_2_7_193_1 e_1_2_7_238_1 e_1_2_7_215_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_355_1 e_1_2_7_378_1 Bergmann C. G. L. C. (e_1_2_7_26_1) 1848 e_1_2_7_81_1 e_1_2_7_332_1 Collins B. G. (e_1_2_7_64_1) 1987; 11 e_1_2_7_227_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_204_1 e_1_2_7_118_1 e_1_2_7_366_1 e_1_2_7_389_1 e_1_2_7_92_1 e_1_2_7_343_1 e_1_2_7_320_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_239_1 e_1_2_7_39_1 Hammel H. T. (e_1_2_7_155_1) 1968; 41 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_377_1 e_1_2_7_279_1 e_1_2_7_331_1 e_1_2_7_354_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_388_1 e_1_2_7_365_1 Arnold W. (e_1_2_7_6_1) 1993 e_1_2_7_217_1 e_1_2_7_38_1 Thäti H. (e_1_2_7_368_1) 1978; 15 Kayser C. (e_1_2_7_195_1) 1939; 15 e_1_2_7_270_1 Strumwasser F. (e_1_2_7_364_1) 1967 e_1_2_7_278_1 e_1_2_7_330_1 e_1_2_7_376_1 e_1_2_7_353_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_289_1 e_1_2_7_341_1 e_1_2_7_387_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_271_1 e_1_2_7_109_1 Hock R. J. (e_1_2_7_172_1) 1960; 124 Freckelton R. P. (e_1_2_7_106_1) 2002; 160 e_1_2_7_277_1 e_1_2_7_352_1 e_1_2_7_375_1 e_1_2_7_398_1 Yang M. (e_1_2_7_401_1) 2011; 31 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 Schlegel R. (e_1_2_7_338_1) 1969 R Development Core Team (e_1_2_7_324_1) 2013 e_1_2_7_260_1 e_1_2_7_340_1 e_1_2_7_386_1 Lyman C. P. (e_1_2_7_247_1) 1958; 194 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 Blix A. S. (e_1_2_7_32_1) 1989 Woods C. P. (e_1_2_7_399_1) 2004 e_1_2_7_272_1 e_1_2_7_276_1 e_1_2_7_299_1 e_1_2_7_351_1 e_1_2_7_397_1 Grigg G. C. (e_1_2_7_145_1) 1990; 23 e_1_2_7_374_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_208_1 Fisher K. C. (e_1_2_7_98_1) 1964; 71 e_1_2_7_186_1 e_1_2_7_261_1 e_1_2_7_287_1 e_1_2_7_362_1 e_1_2_7_385_1 e_1_2_7_21_1 e_1_2_7_35_1 Vogel P. (e_1_2_7_384_1) 1974; 39 e_1_2_7_58_1 e_1_2_7_152_1 Kayser C. (e_1_2_7_197_1) 1964; 18 e_1_2_7_175_1 e_1_2_7_198_1 e_1_2_7_309_1 e_1_2_7_273_1 e_1_2_7_250_1 e_1_2_7_298_1 e_1_2_7_373_1 e_1_2_7_396_1 e_1_2_7_209_1 Herreid C. F. (e_1_2_7_165_1) 1966; 211 e_1_2_7_350_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 Frey H. (e_1_2_7_111_1) 1980; 87 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_262_1 e_1_2_7_286_1 e_1_2_7_361_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_308_1 e_1_2_7_274_1 e_1_2_7_251_1 e_1_2_7_3_1 e_1_2_7_297_1 e_1_2_7_395_1 e_1_2_7_372_1 e_1_2_7_68_1 Geiser F. (e_1_2_7_122_1) 1984; 7 e_1_2_7_188_1 Eisentraut M. (e_1_2_7_93_1) 1933; 19 e_1_2_7_263_1 e_1_2_7_319_1 Ruf T. (e_1_2_7_334_1) 1989 e_1_2_7_240_1 Ransome R. (e_1_2_7_323_1) 1990 e_1_2_7_285_1 MacMillen R. E. (e_1_2_7_253_1) 1983; 7 e_1_2_7_307_1 Peiponen V. A. (e_1_2_7_304_1) 1965; 87 e_1_2_7_383_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_360_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_177_1 e_1_2_7_252_1 Kristoffersson R. (e_1_2_7_214_1) 1964; 80 Hudson J. W. (e_1_2_7_178_1) 1973; 46 e_1_2_7_296_1 e_1_2_7_318_1 Henshaw R. E. (e_1_2_7_163_1) 1970 Cranford J. A. (e_1_2_7_72_1) 1986 e_1_2_7_120_1 e_1_2_7_371_1 e_1_2_7_394_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_189_1 e_1_2_7_166_1 e_1_2_7_241_1 e_1_2_7_264_1 Sibley C. G. (e_1_2_7_347_1) 1990 e_1_2_7_284_1 e_1_2_7_306_1 e_1_2_7_329_1 e_1_2_7_382_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_78_1 Schaub R. (e_1_2_7_337_1) 1999; 76 e_1_2_7_132_1 e_1_2_7_404_1 e_1_2_7_230_1 e_1_2_7_295_1 e_1_2_7_317_1 e_1_2_7_121_1 e_1_2_7_393_1 e_1_2_7_13_1 Barnes B. M. (e_1_2_7_15_1) 1993 e_1_2_7_43_1 e_1_2_7_66_1 Nagel A. (e_1_2_7_283_1) 1985; 50 e_1_2_7_370_1 e_1_2_7_89_1 e_1_2_7_144_1 e_1_2_7_265_1 e_1_2_7_242_1 e_1_2_7_328_1 e_1_2_7_305_1 French A. R. (e_1_2_7_108_1) 1982; 52 e_1_2_7_110_1 Çolak E. (e_1_2_7_63_1) 1998; 22 e_1_2_7_31_1 e_1_2_7_54_1 e_1_2_7_381_1 e_1_2_7_403_1 e_1_2_7_133_1 e_1_2_7_156_1 Goldman B. G. (e_1_2_7_141_1) 1989 e_1_2_7_179_1 e_1_2_7_231_1 Darwin C. (e_1_2_7_76_1) 1839 e_1_2_7_294_1 e_1_2_7_339_1 e_1_2_7_316_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_392_1 Bucher T. L. (e_1_2_7_45_1) 1992; 65 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_266_1 Pajunen I. (e_1_2_7_301_1) 1984; 21 Lyman C. P. (e_1_2_7_248_1) 1982 Mouhoub‐Sayah C. (e_1_2_7_275_1) 2008 e_1_2_7_282_1 e_1_2_7_327_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_99_1 Nicol S. C. (e_1_2_7_288_1) 1996 e_1_2_7_380_1 Hildwein G. (e_1_2_7_168_1) 1970; 24 e_1_2_7_402_1 Grant T. R. (e_1_2_7_143_1) 1987 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_255_1 e_1_2_7_157_1 e_1_2_7_293_1 e_1_2_7_7_1 e_1_2_7_315_1 e_1_2_7_100_1 e_1_2_7_123_1 Kayser C. (e_1_2_7_196_1) 1961 e_1_2_7_41_1 e_1_2_7_87_1 e_1_2_7_391_1 Florant G. L. (e_1_2_7_101_1) 1977; 232 e_1_2_7_267_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_244_1 e_1_2_7_221_1 e_1_2_7_281_1 e_1_2_7_303_1 e_1_2_7_326_1 e_1_2_7_112_1 e_1_2_7_75_1 e_1_2_7_390_1 MacMillen R. E. (e_1_2_7_254_1) 1969; 217 e_1_2_7_256_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_292_1 e_1_2_7_314_1 e_1_2_7_8_1 Clegg J. (e_1_2_7_60_1) 1997; 200 e_1_2_7_124_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_86_1 Calder W. A. (e_1_2_7_52_1) 1996 e_1_2_7_245_1 e_1_2_7_268_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_280_1 e_1_2_7_302_1 e_1_2_7_348_1 e_1_2_7_113_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_400_1 e_1_2_7_234_1 Cade T. J. (e_1_2_7_51_1) 1964; 71 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_291_1 e_1_2_7_5_1 e_1_2_7_313_1 e_1_2_7_359_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_336_1 Bech C. (e_1_2_7_25_1) 2006; 52 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 Schmidt‐Nielsen K. (e_1_2_7_342_1) 1979 e_1_2_7_223_1 e_1_2_7_269_1 e_1_2_7_246_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_212_1 e_1_2_7_258_1 Armitage K. B. (e_1_2_7_4_1) 2000 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_290_1 e_1_2_7_312_1 e_1_2_7_126_1 e_1_2_7_335_1 e_1_2_7_358_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 Eisentraut M. (e_1_2_7_94_1) 1956 e_1_2_7_190_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_149_1 Darwin C. (e_1_2_7_77_1) 1845 e_1_2_7_300_1 e_1_2_7_115_1 Silva‐Duran I. P. (e_1_2_7_349_1) 1999; 72 e_1_2_7_346_1 e_1_2_7_369_1 e_1_2_7_95_1 e_1_2_7_213_1 e_1_2_7_236_1 e_1_2_7_259_1 Malan A. (e_1_2_7_257_1) 1996 Hiebert S. M. (e_1_2_7_167_1) 1993 e_1_2_7_138_1 Grahn D. A. (e_1_2_7_142_1) 1994; 266 |
References_xml | – reference: Willis, C. K. R., Lane, J. E., Liknes, E. T., Swanson, D. L. & Brigham, R. M. (2005a). Thermal energetics of female big brown bats (Eptesicus fuscus). Canadian Journal of Zoology 83, 871-879. – reference: Morton, S. R. & Lee, A. K. (1978). Thermoregulation and metabolism in Planigale maculata (Marsupialia Dasyuridae). Journal of Thermal Biology 3, 117-120. – reference: Arnold, W., Ruf, T., Frey-Roos, F. & Bruns, U. (2011). Diet-independent remodeling of cellular membranes precedes seasonally changing body temperature in a hibernator. PLoS ONE 6, e18641. – reference: Cory Toussaint, D., McKechnie, A. E. & van der Merwe, M. (2010). Heterothermy in free-ranging male Egyptian Free-tailed bats (Tadarida aegyptiaca) in a subtropical climate. Mammalian Biology 75, 466-470. – reference: Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., Chojnowski, J. L., Cox, W. A., Han, K.-L., Harshman, J., Huddelston, C., Marks, B. D., Miglia, K. J., Moore, W. S., Sheldon, F. H., Steadman, D. W., Witt, C. C. & Yuri, T. (2008). A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763-1768. – reference: Levy, O., Dayan, T. & Kronfeld-Schor, N. (2011). Adaptive thermoregulation in golden spiny mice: the influence of season and food availability on body temperature. Physiological and Biochemical Zoology 84, 175-184. – reference: Superina, M. & Boily, P. (2007). Hibernation and daily torpor in an armadillo, the pichi (Zaedyus pichiy). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 148, 893-898. – reference: Darwin, C. (1845). Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of H.M.S. Beagle Round the World: Under the Command of Capt. Fitz Roy, R.N. Second Edition. J. Murray, London. – reference: Wang, L. C. H. & Hudson, J. W. (1971). Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 38, 59-90. – reference: Dawson, W. R. & Fisher, C. D. (1969). Responses to temperature by the Spotted Nightjar (Eurostopodus guttatus). The Condor 71, 49-53. – reference: Turner, J. M., Körtner, G., Warnecke, L. & Geiser, F. (2012). Summer and winter torpor use by a free-ranging marsupial. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 162, 274-280. – reference: Malan, A. (2010). Is the torpor-arousal cycle of hibernation controlled by a non-temperature-compensated circadian clock? Journal of Biological Rhythms 25, 166-175. – reference: Hall, L. S. (1982). The effect of cave microclimate on winter roosting behavior in the bat, Miniopterus schreibersii blepotis. Australian Journal of Ecology 7, 129-136. – reference: Tannenbaum, M. G. & Pivorun, E. B. (1988). Seasonal study of daily torpor in southeastern Peromyscus maniculatus and Peromyscus leucopus from mountains and foothills. Physiological Zoology 61, 10-16. – reference: Strumwasser, F. (1960). Some physiological principles governing hibernation in Citellus beecheyi. Bulletin of the Museum of Comparative Zoology 124, 282-320. – reference: Baxter, R. M. (1996). Evidence for spontaneous torpor in Crocidura flavescens. Acta Theriologica 41, 327-330. – reference: Carpenter, F. L. (1974). Torpor in an Andean hummingbird: its ecological significance. Science 183, 545-547. – reference: Geiser, F. & Ferguson, C. (2001). Intraspecific differences in behaviour and physiology: effects of captive breeding on patterns of torpor in feathertail gliders. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 171, 569-576. – reference: Newman, J. R. & Rudd, R. L. (1978). Observations of torpor-like behavior in the shrew, Sorex sinuosus. Acta Theriologica 23, 446-448. – reference: Hallam, S. L. & Mzilikazi, N. (2011). Heterothermy in the southern African hedgehog, Atelerix frontalis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 181, 437-445. – reference: Bakko, E. B. & Nahornia, J. (1986). Torpor patterns in captive white-tailed prairie dogs (Cynomys leucurus). Journal of Mammalogy 67, 576-578. – reference: Grahn, D. A., Miller, J. D., Houng, V. S. & Heller, H. C. (1994). Persistence of circadian rhythmicity in hibernating ground squirrels. American Journal of Physiology - Regulatory Integrative Comparative Physiology 266, R1251-R1258. – reference: Geiser, F. & Körtner, G. (2010). Hibernation and daily torpor in Australian mammals. Australian Zoologist 35, 204-215. – reference: Boyles, J. G., Thompson, A. B., McKechnie, A. E., Malan, E., Humphries, M. M. & Careau, V. (2013). A global heterothermic continuum in mammals. Global Ecology and Biogeography 22, 1029-1039. – reference: Blanco, M. B. & Rahalinarivo, V. (2010). First direct evidence of hibernation in an eastern dwarf lemur species (Cheirogaleus crossleyi) from the high-altitude forest of Tsinjoarivo, central-eastern Madagascar. Naturwissenschaften 97, 945-950. – reference: McNab, B. K. & Morrison, P. (1963). Body temperature and metabolism in subspecies of Peromyscus from arid and mesic environments. Ecological Monographs 33, 63-82. – reference: Cooper, C. E., Körtner, G., Brigham, M. & Geiser, F. (2008). Body temperature and activity patterns of free-living laughing Kookaburras: the largest kingfisher is heterothermic. The Condor 110, 110-115. – reference: Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature 401, 877-884. – reference: Buttemer, W. A., Nicol, S. C. & Sharman, A. (2003). Thermoenergetics of pre-moulting and moulting kookaburras (Dacelo novaeguineae): they're laughing. Journal of Comparative Physiology B 173, 223-230. – reference: Mzilikazi, N. & Lovegrove, B. G. (2004). Daily torpor in free-ranging rock elephant shrews, Elephantulus myurus: a year-long study. Physiological and Biochemical Zoology 77, 285-296. – reference: Vivier, L. & van der Merwe, M. (2011). The incidence of torpor in winter and summer in the Angolan free-tailed bat, Mops condylurus (Microchiroptera: Molossidae), in a subtropical environment, Mpumulanga, South Africa. African Zoology 42, 50-58. – reference: Marom, S., Korine, C., Wojciechowski, M. S., Tracy, C. R. & Pinshow, B. (2006). Energy metabolism and evaporative water loss in the European free-tailed bat and hemprich's long-eared bat (Microchiroptera): species sympatric in the negev desert. Physiological and Biochemical Zoology 79, 944-956. – reference: Schleucher, E. (2001). Heterothermia in pigeons and doves reduces energetic costs. Journal of Thermal Biology 26, 287-293. – reference: Marshall, J. T. Jr. (1955). Hibernation in captive goatsuckers. The Condor 57, 129-134. – reference: Mzilikazi, N. & Lovegrove, B. G. (2002). Reproductive activity influences thermoregulation and torpor in pouched mice, Saccostomus campestris. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 172, 7-16. – reference: McKechnie, A. E. & Lovegrove, B. G. (2001a). Heterothermic responses in the speckled mousebird (Colius striatus). Journal of Comparative Physiology 171, 507-518. – reference: Schlegel, R. (1969). Der Ziegenmelker (Caprimulgus europaeus L.). A. Ziemsen, Wittenberg Lutherstadt. – reference: Opazo, J. C., Nespolo, R. F. & Bozinovic, F. (1999). Arousal from torpor in the chilean mouse-opposum (Thylamys elegans): does non-shivering thermogenesis play a role? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 123, 393-397. – reference: Geiser, F. (1988). Daily torpor and thermoregulation in Antechinus (Marsupialia): influence of body mass, season, development, reproduction, and sex. Oecologia 77, 395-399. – reference: Ortmann, S. & Heldmaier, G. (2000). Regulation of body temperatures and energy requirements of hibernating Alpine marmots (Marmota marmota). American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 278, 698-704. – reference: Scholander, P. F., Hock, R., Walters, V., Johnson, F. & Irving, L. (1950). Body insulation of some arctic and tropical mammals and birds. Biological Bulletin 99, 225-236. – reference: Liu, J. N. & Karasov, W. (2011). Hibernation in warm hibernacula by free-ranging Formosan leaf-nosed bats, Hipposideros terasensis, in subtropical Taiwan. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 181, 125-135. – reference: Ma, Y. L., Zhu, X. W., Rivera, P. M., Toien, O., Barnes, B. M., LaManna, J. C., Smith, M. A. & Drew, K. L. (2005). Absence of cellular stress in brain after hypoxia induced by arousal from hibernation in Arctic ground squirrels. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 289, R1297-R1306. – reference: Tucker, V. A. (1965). Oxygen consumption, thermal conductance, and torpor in the California pocket mouse, Perognathus californicus. Journal of Cellular and Comparative Physiology 65, 393-403. – reference: Daan, S. (1973). Periodicity of heterothermy in the garden doormouse, Eliomys quercinus (L.). Netherlands Journal of Zoology 23, 237-265. – reference: Frey, H. (1980). Le métabolisme énergétique de Suncus etruscus (Soricidae, Insectivora) en torpeur. Revue Suisse de Zoologie 87, 739-748. – reference: Geiser, F. (1998). Evolution of daily torpor and hibernation in birds and mammals: importance of body size. Clinical and Experimental Pharmacology and Physiology 25, 736-739. – reference: Collins, B. G., Wooller, R. D. & Richardson, K. C. (1987). Torpor by the honey possum, Tarsipes rostratus (Marsupialia: Tarsipedidae), in response to food intake and low environmental temperature. Australian Mammalogy 11, 51-57. – reference: Humphries, M. M., Thomas, D. W. & Kramer, D. L. (2003b). The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiological and Biochemical Zoology 76, 165-179. – reference: Dunbar, M. B. & Brigham, R. M. (2010). Thermoregulatory variation among populations of bats along a latitudinal gradient. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 180, 885-893. – reference: Kayser, C. (1961). The Physiology of Natural Hibernation. Pergamon Press, Oxford. – reference: Smit, B., Boyles, J. G., Brigham, R. M. & McKechnie, A. E. (2011). Torpor in dark times: patterns of heterothermy are associated with the lunar cycle in a nocturnal bird. Journal of Biological Rhythms 26, 241-248. – reference: Pengelley, E. T. & Kelley, K. H. (1966). A "circannian" rhythm in hibernating species of the genus Citellus with observation on their physiological evolution. Comparative Biochemistry and Physiology 19, 603-617. – reference: Fleming, M. R. (1980). Thermoregulation and torpor in the sugar glider, Petaurus breviceps (Marsupialia, Petauridae). Australian Journal of Zoology 28, 521-534. – reference: Schmid, J. (2000). Daily torpor in the gray mouse lemur (Microcebus murinus) in Madagascar: energetic consequences and biological significance. Oecologia 123, 175-183. – reference: Wyss, O. A. M. (1932). Winterschlaf und Wärmehaushalt, untersucht am Siebenschläfer (Myoxus glis). Pflüger's Archiv für die Gesamte Physiologie des Menschen und der Tiere 229, 599-635. – reference: Zervanos, S. M., Maher, C. R., Waldvogel, J. A. & Florant, G. L. (2010). Latitudinal differences in the hibernation characteristics of woodchucks (Marmota monax). Physiological and Biochemical Zoology 83, 135-141. – reference: Efron, B. & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall, New York. – reference: Darwin, C. (1839). Journal and Remarks: 1832-1836. H. Colburn, London. – reference: Lindstedt, S. L. & Boyce, M. S. (1985). Seasonality, fasting endurance, and body size in mammals. The American Naturalist 125, 873-878. – reference: Lovegrove, B. G., Raman, J. & Perrin, M. R. (2001). Heterothermy in elephant shrews, Elephantulus spp. (Macroscelidea): daily torpor or hibernation? Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 171, 1-10. – reference: MacMillen, R. E. (1965). Aestivation in the cactus mouse, Peromyscus eremicus. Comparative Biochemistry and Physiology 16, 227-248. – reference: Giroud, S., Frare, C., Strijkstra, A., Boerema, A., Arnold, W. & Ruf, T. (2013). Membrane phospholipid fatty acid composition regulates cardiac SERCA activity in a hibernator, the syrian hamster (Mesocricetus auratus). PLoS ONE 8, e63111. – reference: Rojas, A. D., Körtner, G. & Geiser, F. (2012). Cool running: locomotor performance at low body temperature in mammals. Biology Letters 8, 868-870. – reference: Caviedes-Vidal, E., Codelia, E. C., Roig, V. & Doña, R. (1990). Facultative torpor in the south american rodent Calomys venustus (Rodentia: Cricetidae). Journal of Mammalogy 71, 72-75. – reference: McKechnie, A. E. & Mzilikazi, N. (2011). Heterothermy in afrotropical mammals and birds: a review. Integrative and Comparative Biology 51, 349-363. – reference: Merola-Zwartjes, M. & Ligon, J. D. (2000). Ecological energetics of the Puerto Rican tody: heterothermy, torpor, and intra-island variation. Ecology 81, 990-1003. – reference: Yang, M., Xing, X., Guan, S., Zhao, Y., Wang, Z. & Wang, D.-H. (2011). Hibernation patterns and changes of body temperature in Daurian ground squirrels (Spermophilus dauricus) during hibernation. Acta Theriologica Sinica 31, 387-395. – reference: Perrin, M. R. & Ridgard, B. W. (1999). Thermoregulation and patterns of torpor in the spectacled dormouse, Graphiurus ocularis (A. Smith 1829) (Gliridae). Tropical Zoology 12, 253-266. – reference: Krüger, K., Prinzinger, R. & Schuchmann, K. L. (1982). Torpor and metabolism in hummingbirds. Comparative Biochemistry and Physiology Part A: Physiology 73, 679-689. – reference: Reardon, M. (1999). Quolls on the run. Australian Geographic 54, 89-105. – reference: Frey, H. (1979). La température corporelle de Suncus etruscus (Soricidae, Insectivora) au cours de l'activité, du repos normothermique et de la torpeur. Revue Suisse de Zoologie 86, 653-662. – reference: Ozgul, A., Childs, D. Z., Oli, M. K., Armitage, K. B., Blumstein, D. T., Olson, L. E., Tuljapurkar, S. & Coulson, T. (2010). Coupled dynamics of body mass and population growth in response to environmental change. Nature 466, 482-487. – reference: Buffenstein, R. (1985). The effect of starvation, food restriction, and water deprivation on thermoregulation and average daily metabolic rates in Gerbillus pusillus. Physiological Zoology 58, 320-328. – reference: Withers, P. C., Louw, G. N. & Henschel, J. (1980). Energetics and water relations of Namib desert rodents. South African Journal of Zoology 15, 131-137. – reference: Ericson, P. G. P., Zuccon, D., Ohlson, J. I., Johansson, U. S., Alvarenga, H. & Prum, R. O. (2006). Higher-level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannida). Molecular Phylogenetics and Evolution 40, 471-483. – reference: Geiser, F. (2008). Ontogeny and phylogeny of endothermy and torpor in mammals and birds. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 150, 176-180. – reference: Hulbert, A. J. & Else, P. L. (2005). Membranes and the setting of energy demand. The Journal of Experimental Biology 208, 1593-1599. – reference: Németh, I., Nyitrai, V. & Altbäcker, V. (2009). Ambient temperature and annual timing affect torpor bouts and euthermic phases of hibernating European ground squirrels (Spermophilus citellus). Canadian Journal of Zoology-Revue Canadienne de Zoologie 87, 204-210. – reference: Prendergast, B. J., Freeman, D. A., Zucker, I. & Nelson, R. J. (2002). Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 282, R1054-R1082. – reference: French, A. R. (1977). Periodicity of recurrent hypothermia during hibernation in the pocket mouse, Perognathus longimembris. Journal of Comparative Physiology A 115, 87-100. – reference: Humphries, M. M., Kramer, D. L. & Thomas, D. W. (2003a). The role of energy availability in mammalian hibernation: an experimental test in free-ranging eastern chipmunks. Physiological and Biochemical Zoology 76, 180-186. – reference: Körtner, G. & Geiser, F. (2009). The key to winter survival: daily torpor in a small arid-zone marsupial. Naturwissenschaften 96, 525-530. – reference: Cooper, C. E. & Withers, P. C. (2010). Comparative physiology of Australian quolls (Dasyurus; Marsupialia). Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 180, 857-868. – reference: Larsen, K. W., Becker, C. D., Boutin, S. & Blower, M. (1997). Effects of hoard manipulations on life history and reproductive success of female red squirrels (Tamiasciurus hudsonicus). Journal of Mammalogy 78, 192-203. – reference: Lavigne, D. M., Innes, S., Worthy, G. A. J. & Edwards, E. F. (1990). Lower critical temperatures of blue whales, Balaenoptera musculus. Journal of Theoretical Biology 144, 249-257. – reference: Liu, J. N. & Karasov, W. (2012). Metabolism during winter in a subtropical hibernating bat, the Formosan leaf-nosed bat (Hipposideros terasensis). Journal of Mammalogy 93, 220-228. – reference: Pettigrew, J. D. & Wilson, P. (1985). Nocturnal hypothermia in the white-throated needletail, Hirundapus caudacutus. Emu 85, 200-201. – reference: Dryden, G. L., Gębczyński, M. & Douglas, E. L. (1974). Oxygen consumption by nursling and adult musk shrews. Acta Theriologica 19, 453-461. – reference: Lasiewski, R. C. (1964). Body temperatures, heart and breathing rate, and evaporative water loss in hummingbirds. Physiological Zoology 37, 212-223. – reference: Geiser, F. (1986). Thermoregulation and torpor in the Kultarr, Antechinomys laniger (Marsupialia: Dasyuridae). Journal of Comparative Physiology B 156, 751-757. – reference: Kissling, W. D., Sekercioglu, C. H. & Jetz, W. (2012). Bird dietary guild richness across latitudes, environments and biogeographic regions. Global Ecology and Biogeography 21, 328-340. – reference: Karpovich, S., Tøien, Ø., Buck, C. & Barnes, B. (2009). Energetics of arousal episodes in hibernating arctic ground squirrels. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 179, 691-700. – reference: Owen-Smith, N. & Mills, M. G. L. (2008). Predator-prey size relationships in an African large-mammal food web. Journal of Animal Ecology 77, 173-183. – reference: Kuntz, R., Kubalek, C., Ruf, T., Tataruch, F. & Arnold, W. (2006). Seasonal adjustment of energy budget in a large wild mammal, the Przewalski horse (Equus ferus przewalskii) I. Energy intake. The Journal of Experimental Biology 209, 4557-4565. – reference: Barnes, B. M. (1989). Freeze avoidance in a mammal: body temperatures below 0°C in an arctic hibernator. Science 244, 1593-1595. – reference: Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. (2009). Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecology Letters 12, 538-549. – reference: Maddocks, T. A. & Geiser, F. (2007). Heterothermy in an Australian passerine, the Dusky Woodswallow (Artamus cyanopterus). Journal of Ornithology 148, 571-577. – reference: Bradley, S. R. & Deavers, D. R. (1980). A re-examination of the relationship between thermal conductance and body weight in mammals. Comparative Biochemistry and Physiology Part A: Physiology 65, 465-476. – reference: Geiser, F. (2004). Metabolic rate and body temperature reduction during hibernation and daily torpor. Annual Review of Physiology 66, 239-274. – reference: Geiser, F. & Baudinette, R. V. (1987). Seasonality of torpor and thermoregulation in three dasyurid marsupials. Journal of Comparative Physiology B 157, 335-344. – reference: McKechnie, A. E. & Lovegrove, B. G. (2001b). Thermoregulation and the energetic significance of clustering behavior in the white-backed mousebird (Colius colius). Physiological and Biochemical Zoology 74, 238-249. – reference: Jacobs, L. F. & Liman, E. R. (1991). Grey squirrels remember the locations of buried nuts. Animal Behaviour 41, 103-110. – reference: Arlettaz, R., Ruchet, C., Aeschimann, J., Brun, E., Genoud, M. & Vogel, P. (2000). Physiological traits affecting the distribution and wintering strategy of the bat Tadarida teniotis. Ecology 81, 1004-1014. – reference: Arnold, W., Ruf, T., Reimoser, S., Tataruch, F., Onderscheka, K. & Schober, F. (2004). Nocturnal hypometabolism as an overwintering strategy of red deer (Cervus elaphus). American Journal of Physiology - Regulatory and Integrative Comparative Physiology 286, R174-R181. – reference: Anderson, M. D. (2004). Aardwolf adaptations: a review. Transactions of the Royal Society of South Africa 59, 99-104. – reference: Young, P. J. (1990). Hibernating patterns of free-ranging Columbian Ground Squirrels. Oecologia 83, 504-511. – reference: Cryan, P. M. & Wolf, B. O. (2003). Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat, Lasiurus cinereus, during its spring migration. The Journal of Experimental Biology 206, 3381-3390. – reference: Geiser, F. & Masters, P. (1994). Torpor in relation to reproduction in the mulgara, Dasycercus cristicauda (Dasyuridae, Marsupialia). Journal of Thermal Biology 19, 33-40. – reference: Pengelley, E. T. (1964). Responses of a new hibernator (Citellus variegatus) to controlled environments. Nature 203, 892. – reference: Kulzer, E. (1965). Temperaturregulation bei Fledermäusen (Chiroptera) aus verschiedenen Klimazonen. Zeitschrift für vergleichende Physiologie 50, 1-34. – reference: Grigg, G. C., Beard, L. A. & Augee, M. L. (1989). Hibernation in a monotreme, the echidna (Tachyglossus aculeatus). Comparative Biochemistry and Physiology Part A: Physiology 92, 609-612. – reference: Stawski, C., Turbill, C. & Geiser, F. (2009). Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 179, 433-441. – reference: Heldmaier, G. & Ruf, T. (1992). Body temperature and metabolic rate during natural hypothermia in endotherms. Journal of Comparative Physiology B 162, 696-706. – reference: Kirsch, R., Ouarour, A. & Pevet, P. (1991). Daily torpor in the Djungarian hamster (Phodopus sungorus): photoperiodic regulation, characteristics and circadian organization. Journal of Comparative Physiology A 168, 121-128. – reference: McKechnie, A. E. & Lovegrove, B. G. (2002). Avian facultative hypothermic responses: a review. The Condor 104, 705-724. – reference: Revel, F. G., Herwig, A., Garidou, M. L., Dardente, H., Menet, J. S., Masson-Pevet, M., Simonneaux, V. & Saboureau, M. (2007). The circadian clock stops ticking during deep hibernation in the European hamster. Proceedings of the National Academy of Sciences of the United States of America 104, 13816-13820. – reference: Hoffmann, R. & Prinzinger, R. (1984). Torpor und Nahrungsausnutzung bei 4 Mausvogelarten (Coliiformes). Journal für Ornithologie 125, 225-237. – reference: Wilz, M. & Heldmaier, G. (2000). Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 170, 511-521. – reference: Daan, S., Beersma, D. G. M. & Borbély, A. A. (1984). Timing of human sleep: recovery process gated by a circadian pacemaker. American Journal of Physiology 246, R161-R178. – reference: Kayser, C. (1939). Exchanges respiratoires des hibernants réveillés. Annales de Physiologie et de Physicochimie Biologique 15, 1087-1219. – reference: Hainsworth, F. R. & Wolf, L. L. (1970). Regulation of oxygen consumption and body temperature during torpor in a hummingbird, Eulampis jugularis. Science 168, 368-369. – reference: Lehmer, E. M., Van Horne, B., Kulbartz, B. & Florant, G. L. (2001). Facultative torpor in free-ranging black-tailed prairie dogs (Cynomys ludovicianus). Journal of Mammalogy 82, 551-557. – reference: Tomlinson, S., Withers, P. C. & Maloney, S. K. (2012). Flexibility in thermoregulatory physiology of two dunnarts, Sminthopsis macroura and Sminthopsis ooldea (Marsupialia; Dasyuridae). The Journal of Experimental Biology 215, 2236-2246. – reference: Çolak, E. & Yiğit, N. (1998). Ecology and biology of Allactaga elater, Allactaga euphratica and Allactaga williamsi (Rodentia: Dipodidae) in Turkey. Turkish Journal of Zoology 22, 105-117. – reference: Healy, J. E., Burdett, K. A., Buck, C. L. & Florant, G. L. (2012). Sex differences in torpor patterns during natural hibernation in golden-mantled ground squirrels (Callospermophilus lateralis). Journal of Mammalogy 93, 751-758. – reference: Tinkle, D. W. & Patterson, I. G. (1965). A study of hibernating populations of Myotis velifer in northwestern Texas. Journal of Mammalogy 46, 612-633. – reference: Geiser, F. (2007). Yearlong hibernation in a marsupial mammal. Naturwissenschaften 94, 941-944. – reference: Hissa, R. (1997). Physiology of the European brown bear (Ursus arctos arctos). Annales Zoologici Fennici 34, 267-287. – reference: Cranford, J. A. (1983). Body temperature, heart rate and oxygen consumption of normothermic and heterothermic Western jumping mice (Zapus princeps). Biochemical Physiology 74, 595-599. – reference: Ruf, T., Stieglitz, A., Steinlechner, S., Blank, J. L. & Heldmaier, G. (1993). Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus). Journal of Experimental Zoology 267, 104-112. – reference: Herreid, C. F. II & Schmidt-Nielsen, K. (1966). Oxygen consumption temperature and water loss in bats from different environments. American Journal of Physiology 211, 1108-1112. – reference: El Ouezzani, S., Janati, I. A., Magoul, R., Pevet, P. & Saboureau, M. (2011). Overwinter body temperature patterns in captive jerboas (Jaculus orientalis): influence of sex and group. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 181, 299-309. – reference: Prinzinger, R., Göppel, R., Lorenz, A. & Kulzer, E. (1981). Body temperature and metabolism in the red-backed mousebird (Colius castanotus) during fasting and torpor. Comparative Biochemistry and Physiology Part A: Physiology 69, 689-692. – reference: Bech, C., Abe, A. S., Steffensen, J. F., Berger, M. & Bicudo, J. E. P. W. (1997). Torpor in three species of brazilian hummingbirds under semi-natural conditions. The Condor 99, 780-788. – reference: Nagel, A. (1977). Torpor in the European white-toothed shrews. Experientia 33, 1455-1456. – reference: Burton, R. S. & Reichman, O. J. (1999). Does immune challenge affect torpor duration? Functional Ecology 13, 232-237. – reference: Lovegrove, B. G. (2012b). The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biological Reviews 87, 128-162. – reference: Levesque, D. L. & Tattersall, G. J. (2010). Seasonal torpor and normothermic energy metabolism in the Eastern chipmunk (Tamias striatus). Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 180, 279-292. – reference: Polymeropoulos, E. T., Heldmaier, G., Frappell, P. B., McAllan, B. M., Withers, K. W., Klingenspor, M., White, C. R. & Jastroch, M. (2012). Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak. Proceedings of the Royal Society B: Biological Sciences 279, 185-193. – reference: Song, X., Körtner, G. & Geiser, F. (1997). Thermal relations of metabolic rate reduction in a hibernating marsupial. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 273, R2097-R2104. – reference: Brack, V. & Twente, J. W. (1985). The duration of the period of hibernation of 3 species of vespertilionid bats. 1. Field studies. Canadian Journal of Zoology 63, 2952-2954. – reference: Geiser, F. & Kenagy, G. J. (1988). Torpor duration in relation to temperature and metabolism in hibernating ground squirrels. Physiological Zoology 61, 442-449. – reference: Geiser, F. (1991). The effect of unsaturated and saturated dietary lipids on the pattern of daily torpor and the fatty-acid composition of tissues and membranes of the deer mouse Peromyscus maniculatus. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 161, 590-597. – reference: Bozinovic, F., Ruiz, G. & Rosenmann, M. (2004). Energetics and torpor of a South American "living fossil", the microbiotheriid Dromiciops gliroides. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 174, 293-297. – reference: Clemens, L. E., Heldmaier, G. & Exner, C. (2009). Keep cool: memory is retained during hibernation in Alpine marmots. Physiology & Behavior 98, 78-84. – reference: Jacobs, D. S., Kelly, E. J., Mason, M. & Stoffberg, S. (2007). Thermoregulation in two free-ranging subtropical insectivorous bat species: Scotophilus species (Vespertilionidae). Canadian Journal of Zoology-Revue Canadienne De Zoologie 85, 883-890. – reference: Doucette, L. I., Brigham, R. M., Pavey, C. R. & Geiser, F. (2012). Prey availability affects daily torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Oecologia 169, 361-372. – reference: Leon, B., Shkolnik, A. & Shkolnik, T. (1983). Temperature regulation and water metabolism in the elephant shrew Elephantulus edwardi. Comparative Biochemistry and Physiology Part A: Physiology 74, 399-407. – reference: Cooper, C. E., Withers, P. C. & Cruz-Neto, A. P. (2009). Metabolic, ventilatory, and hygric physiology of the gracile mouse opossum (Gracilinanus agilis). Physiological and Biochemical Zoology 82, 153-162. – reference: Pengelley, E. T. & Fisher, K. C. (1963). The effect of temperature and photoperiod on the yearly hibernating behavior of captive golden-mantled ground squirrels (Citellus lateralis tescorum). Canadian Journal of Zoology 41, 1103-1120. – reference: Tucker, V. A. (1962). Diurnal torpidity in the California pocket mouse. Science 136, 380-381. – reference: Hayes, J. P. (2001). Mass-specific and whole-animal metabolism are not the same concept. Physiological and Biochemical Zoology 74, 147-150. – reference: Freckelton, R. P., Harvey, P. H. & Pagel, M. D. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist 160, 712-726. – reference: Hwang, Y. T., Larivière, S. & Messier, F. (2007). Energetic consequences and ecological significance of heterothermy and social thermoregulation in striped skunks (Mephitis mephitis). Physiological and Biochemical Zoology 80, 138-145. – reference: Masaki, M., Koshimoto, C., Tsuchiya, K., Nishiwaki, A. & Morita, T. (2005). Body temperature profiles of the Korean field mouse Apodemus peninsulae during winter aggregation. Mammal Study 30, 33-40. – reference: Bucher, T. L. & Chappell, M. A. (1992). Ventilatory and metabolic dynamics during entry into and arousal from torpor in Selasphorus hummingbirds. Physiological Zoology 65, 978-993. – reference: Schmidt-Nielsen, K. (1979). Animal Physiology: Adaptation and Environment. Cambridge University Press, New York. – reference: Hudson, J. W. (1965). Temperature regulation and torpidity in the pygmy mouse, Baiomys taylori. Physiological Zoology 38, 243-254. – reference: Körtner, G. & Geiser, F. (2000b). Torpor and activity patterns in free-ranging sugar gliders Petaurus breviceps (Marsupialia). Oecologia 123, 350-357. – reference: Geiser, F. & Stawski, C. (2011). Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integrative and Comparative Biology 51, 337-348. – reference: Cooper, C. E. & Withers, P. C. (2004). Patterns of body temperature variation and torpor in the numbat, Myrmecobius fasciatus (Marsupialia: Myrmecobiidae). Journal of Thermal Biology 29, 277-284. – reference: Muñoz-Garcia, A., Ben-Hamo, M., Korine, C., Pinshow, B. & Williams, J. B. (2013). A new thermoregulatory index for heterothermy. Methods in Ecology and Evolution 5, 141-145. – reference: Grigg, G. C., Beard, L. & Augee, M. (1990). Echidnas in the high country. Australian Natural History 23, 528-537. – reference: Geiser, F. & Brigham, R. M. (2000). Torpor, thermal biology, and energetics in Australian long-eared bats (Nyctophilus). Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 170, 153-162. – reference: Pivorun, E. B. (1976). A biotelemetry study of the thermoregulatory patterns of Tamias striatus and Eutamias minimus during hibernation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 53A, 265-271. – reference: Grigg, G. C., Beard, L. A. & Augee, M. L. (2004). The evolution of endothermy and its diversity in mammals and birds. Physiological and Biochemical Zoology 77, 982-997. – reference: Lane, J. E., Brigham, R. M. & Swanson, D. L. (2004). Daily torpor in free-ranging whip-poor-wills (Caprimulgus vociferus). Physiological and Biochemical Zoology 77, 297-304. – reference: Kayser, C. (1964). La dépense d'énergie des mammiferes en hibernation. Archives des Sciences Physiologiques 18, 137-150. – reference: Ruf, T., Bieber, C., Arnold, W. & Millesi, E. (2012). Living in a Seasonal World. Thermoregulatory and Metabolic Adaptations. Springer-Verlag, Heidelberg, New York, Dordrecht, London. – reference: Dausmann, K. H., Glos, J., Ganzhorn, J. U. & Heldmaier, G. (2004). Hibernation in a tropical primate. Nature 429, 825-826. – reference: Eisentraut, M. (1956). Der Winterschlaf mit seinen ökologischen und physiologischen Begleiterscheinungen. VEB G Fischer, Jena. – reference: Waβmer, T. & Wollnik, F. (1997). Timing of torpor bouts during hibernation in European hamsters (Cricetus cricetus L.). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 167, 270-279. – reference: Buck, C. L. & Barnes, B. M. (2000). Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 279, R255-R262. – reference: Eisentraut, M. (1933). Winterstarre, Winterschlaf und Winterruhe. Eine kurze biologischphysiologische Studie. Mitteilungen aus dem Zoologischen Museum in Berlin 19, 48-63. – reference: Harlow, H. J. & Menkens, G. E. (1986). A comparison of hibernation in the black-tailed prairie dog, white-tailed prairie dog, and Wyoming ground squirrel. Canadian Journal of Zoology 64, 793-796. – reference: Genoud, M. (1985). Ecological energetics of two European shrews: Crocidura russula and Sorex coronatus (Soricidae: Mammalia). Journal of Zoology 207, 63-85. – reference: Ransome, R. (1990). The Natural History of Hibernating Bats. C. Helm, London. – reference: Augee, M. L. & Ealey, E. H. M. (1968). Torpor in the Echidna, Tachyglossus aculeatus. Journal of Mammalogy 49, 446-454. – reference: MacMillen, R. E. & Trost, C. H. (1967). Nocturnal hypothermia in the Inca dove, Scardafella inca. Comparative Biochemistry and Physiology 23, 243-253. – reference: Neumann, R. L. & Cade, T. J. (1965). Torpidity in the Mexican ground squirrel Citellus mexicanus parvidens (Mearns). Canadian Journal of Zoology 43, 133-140. – reference: Norman, J. A., Ericson, P. G. P., Jønsson, K. A., Fjeldså, J. & Christidis, L. (2009). A multi-gene phylogeny reveals novel relationships for aberrant genera of Australo-Papuan core Corvoidea and polyphyly of the Pachycephalidae and Psophodidae (Aves: Passeriformes). Molecular Phylogenetics and Evolution 52, 488-497. – reference: Geiser, F. (1987). Hibernation and daily torpor in two pygmy possums (Cercartetus spp., Marsupialia). Physiological Zoology 60, 93-102. – reference: Körtner, G., Rojas, A. D. & Geiser, F. (2010). Thermal biology, torpor use and activity patterns of a small diurnal marsupial from a tropical desert: sexual differences. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 180, 869-876. – reference: Brown, C. R. & Bernard, R. T. (1994). Thermal preference of Schreiber's long-fingered (Miniopterus schreiberisii) and Cape horseshoe (Rhinolophus capensis) bats. Comparative Biochemistry and Physiology Part A: Physiology 107, 439-449. – reference: Lee, T. N., Barnes, B. M. & Buck, C. L. (2009). Body temperature patterns during hibernation in a free-living Alaska marmot (Marmota broweri). Ethology Ecology & Evolution 21, 403-413. – reference: Riedesel, M. L. & Williams, B. A. (1976). Continuous 24-hour oxygen consumption studies of Myotis velifer. Comparative Biochemistry and Physiology Part A: Physiology 54, 95-99. – reference: Clegg, J. (1997). Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. The Journal of Experimental Biology 200, 467-475. – reference: Cory Toussaint, D. & McKechnie, A. E. (2012). Interspecific variation in thermoregulation among three sympatric bats inhabiting a hot, semi-arid environment. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 182, 1129-1140. – reference: Thompson, D. C. & Thompson, P. S. (1980). Food habits and caching behavior of urban grey squirrels. Canadian Journal of Zoology 58, 701-710. – reference: Kart Gür, M., Refinetti, R. & Gür, H. (2009). Daily rhythmicity and hibernation in the Anatolian ground squirrel under natural and laboratory conditions. Journal of Comparative Physiology B 179, 155-164. – reference: Oelkrug, R., Meyer, C. W., Heldmaier, G. & Mzilikazi, N. (2012). Seasonal changes in thermogenesis of a free-ranging afrotherian small mammal, the Western rock elephant shrew (Elephantulus rupestris). Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 182, 715-727. – reference: Turbill, C., Bieber, C. & Ruf, T. (2011). Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proceedings of the Royal Society B: Biological Sciences 278, 3355-3363. – reference: Twente, J. W. & Twente, J. A. (1965). Regulation of hibernating periods by temperature. Proceedings of the National Academy of Sciences of the United States of America 54, 1058-1061. – reference: Gür, H. (2010). Why do Anatolian ground squirrels exhibit a Bergmannian size pattern? A phylogenetic comparative analysis of geographic variation in body size. Biological Journal of the Linnean Society 100, 695-710. – reference: Carey, H. V., Frank, C. L. & Seifert, J. P. (2000). Hibernation induces oxidative stress and activation of NF-κB in ground squirrel intestine. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 170, 551-559. – reference: Willis, C. K. R., Turbill, C. & Geiser, F. (2005b). Torpor and thermal energetics in a tiny Australian vespertilionid, the little forest bat (Vespadelus vulturnus). Journal of Comparative Physiology B 175, 479-486. – reference: Körtner, G., Brigham, R. M. & Geiser, F. (2001). Torpor in free-ranging tawny frogmouths (Podargus strigoides). Physiological and Biochemical Zoology 74, 789-797. – reference: Kulzer, E., Nelson, J. E., McKean, J. L. & Möhres, F. P. (1970). Untersuchungen über die Temperaturregulation australischer Fledermäuse (Microchiroptera). Zeitschrift für vergleichende Physiologie 69, 426-451. – reference: Nowack, J., Mzilikazi, N. & Dausmann, K. H. (2010). Torpor on demand: heterothermy in the non-lemur primate Galago moholi. PLoS ONE 5, e10797. – reference: Ives, A. R., Midford, P. E. & Garland, T. Jr. (2007). Within-species variation and measurement error in phylogenetic comparative methods. Systematic Biology 56, 252-270. – reference: Brown, J. H. & Bartholomew, G. A. (1969). Periodicity and energetics of torpor in the Kangaroo Mouse, Microdipodops pallidus. Ecology 50, 705-709. – reference: Bieber, C., Lebl, K., Stalder, G., Geiser, F. & Ruf, T. (2014). Body mass dependent use of hibernation: why not prolong the active season, if they can? Functional Ecology 28, 167-177. – reference: Fisher, K. C. (1964). On the mechanism of periodic arousal in the hibernating ground squirrel. Annales Academiae Scientiarum Fennicae Series A 71, 143-156. – reference: Florant, G. L. & Heller, H. C. (1977). CNS regulation of body temperature in euthermic and hibernating marmots (Marmota flaviventris). American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 232, R203-R208. – reference: Silva-Duran, I. P. & Bozinovic, F. (1999). Food availability regulates energy expenditure and torpor in the Chilean mouse-opossum Thylamys elegans. Revista Chilena de Historia Natural 72, 371-375. – reference: Pohl, H. (1961). Temperaturregulation und Tagesperiodik des Stoffwechsels bei Winterschläfern. Zeitschrift für vergleichende Physiologie 45, 109-153. – reference: Secord, R., Bloch, J. I., Chester, S. G. B., Boyer, D. M., Wood, A. R., Wing, S. L., Kraus, M. J., McInerney, F. A. & Krigbaum, J. (2012). Evolution of the earliest horses driven by climate change in the paleocene-eocene thermal maximum. Science 335, 959-962. – reference: Withers, P. C. (1977). Respiration, metabolism, and heat exchange of euthermic and torpid poorwills and hummingbirds. Physiological Zoology 50, 43-52. – reference: French, A. R. (1982). Effects of temperature on the duration of arousal episodes during hibernation. Journal of Applied Physiology - Respiratory Environmental and Exercise Physiology 52, 216-220. – reference: Hudson, J. W. & Deavers, D. R. (1973). Thermoregulation at high ambient temperatures of six species of ground squirrels (Spermophilus spp.) from different habitats. Physiological Zoology 46, 95-109. – reference: Park, K. J., Jones, G. & Ransome, R. D. (2000). Torpor, arousal and activity of hibernating Greater Horseshoe Bats (Rhinolophus ferrumequinum). Functional Ecology 14, 580-588. – reference: Millesi, E., Prossinger, H., Dittami, J. P. & Fieder, M. (2001). Hibernation effects on memory in European ground squirrels (Spermophilus citellus). Journal of Biological Rhythms 16, 264-271. – reference: Bartholomew, G. A., Dawson, W. R. & Lasiewski, R. C. (1970). Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea. Zeitschrift für vergleichende Physiologie 70, 196-209. – reference: Geiser, F. (1993). Hibernation in the eastern pygmy possum, Cercartetus nanus (Marsupialia, Burramyidae). Australian Journal of Zoology 41, 67-75. – reference: Hope, P. R. & Jones, G. (2012). Warming up for dinner: torpor and arousal in hibernating Natterer's bats (Myotis nattereri) studied by radio telemetry. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 182, 569-578. – reference: Audet, D. & Thomas, D. W. (1997). Facultative hypothermia as a thermoregulatory strategy in the phyllostomid bats, Carollia perspicillata and Sturnira lilium. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 167, 146-152. – reference: Hildwein, G. (1970). Capacités thermorégulatrices d'un mammifère insectivore primitif, le tenrec: leurs variations saisonnières. Archives des Sciences Physiologiques 24, 55-71. – reference: Dausmann, K. H., Glos, J., Ganzhorn, J. U. & Heldmaier, G. (2005). Hibernation in the tropics: lessons from a primate. Journal of Comparative Physiology B 175, 147-155. – reference: Pohl, H. (1987). Circadian pacemaker does not arrest in deep hibernation. Evidence for desynchronization from the light cycle. Experientia (Basel) 43, 293-294. – reference: Ni, Z. L. & Storey, K. B. (2010). Heme oxygenase expression and Nrf2 signaling during hibernation in ground squirrels. Canadian Journal of Physiology and Pharmacology 88, 379-387. – reference: R Development Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. – reference: Signer, C., Ruf, T. & Arnold, W. (2011). Hypometabolism and basking: the strategies of Alpine ibex to endure harsh over-wintering conditions. Functional Ecology 25, 537-547. – reference: Barger, J. L., Brand, M. D., Barnes, B. M. & Boyer, B. B. (2003). Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 284, R1306-R1313. – reference: Lyman, C. P. (1948). The oxygen consumption and temperature regulation of hibernating hamsters. Journal of Experimental Zoology 109, 55-78. – reference: Carey, H. V., Andrews, M. T. & Martin, S. L. (2003). Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews 83, 1153-1181. – reference: Ruf, T. & Arnold, W. (2008). Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis. American Journal of Physiology - Regulatory and Integrative Comparative Physiology 294, R1044-R1052. – reference: Hosken, D. J. & Withers, P. C. (1997). Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic and torpid. Journal of Comparative Physiology B 167, 71-80. – reference: Tøien, Ø., Blake, J., Edgar, D. M., Grahn, D. A., Heller, H. C. & Barnes, B. M. (2011). Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331, 906-909. – reference: Stephenson, P. J. & Racey, P. A. (1993a). Reproductive energetics of the tenrecidae (Mammalia: Insectivora). I. The large-eared tenrec, Geogale aurita. Physiological Zoology 66, 643-663. – reference: Sheriff, M. J., Williams, C. T., Kenagy, G. J., Buck, C. L. & Barnes, B. M. (2012). Thermoregulatory changes anticipate hibernation onset by 45 days: data from free-living arctic ground squirrels. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 182, 841-847. – reference: MacMillen, R. E. (1983). Adaptive physiology of heteromyid rodents. Great Basin Naturalist Memoirs 7, 65-76. – reference: Scholl, P. (1974). Temperaturregulation beim madegassischen Igeltanrek Echinops telfairi (Martin, 1838). Journal of Comparative Physiology A 89, 175-195. – reference: Geiser, F., Hiebert, S. M. & Kenagy, G. J. (1990). Torpor bout duration during the hibernation season of two sciurid rodents: interrelations with temperature and metabolism. Physiological Zoology 63, 489-503. – reference: Hokkanen, J. E. I. (1990). Temperature regulation of marine mammals. Journal of Theoretical Biology 145, 465-485. – reference: Boyer, B. B. & Barnes, B. M. (1999). Molecular and metabolic aspects of mammalian hibernation. BioScience 49, 713-724. – reference: Bieber, C. & Ruf, T. (2009). Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96, 165-171. – reference: Gil-Delgado, J. A., Cabaret, P., Declercq, S., Gomez, J. & Sánchez, I. (2006). Winter reproduction of Eliomys quercinus (Rodentia) in the orange groves of Sagunto (Valencia, Spain) / La reproduction en hiver d'Eliomys quercinus (Rodentia) dans les orangeraies de Sagunto (Valence, Espagne). Mammalia 70, 76-79. – reference: Geiser, F. & Baudinette, R. V. (1988). Daily torpor and thermoregulation in the small dasyurid marsupials Planigale gilesi and Ningaui yvonneae. Australian Journal of Zoology 36, 473-481. – reference: Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O'Dell, J., Orme, C. D. L., Safi, K., Sechrest, W., Boakes, E. H., Carbone, C., Connolly, C., Cutts, M. J., Foster, J. K., Grenyer, R., Habib, M., Plaster, C. A., Price, S. A., Rigby, E. A., Rist, J., Teacher, A., Bininda-Emonds, O. R. P., Gittleman, J. L., Mace, G. M., Purvis, A. & Michener, W. K. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648. – reference: Dawson, T. J. & Wolfers, J. M. (1978). Metabolism, thermoregulation and torpor in shrew sized marsupials of the genus planigale. Comparative Biochemistry and Physiology Part A: Physiology 59, 305-309. – reference: Thäti, H. (1978). Seasonal differences in O2 consumption and respiratory quotient in a hibernator (Erinaceus europaeus L.). Annales Zoologici Fennici 15, 69-75. – reference: Ellison, G. T. H. (1995). Thermoregulatory responses of cold-acclimated fat mice (Steatomys pratensis). Journal of Mammalogy 76, 240-247. – reference: Harmata, W. (1987). The frequency of winter sleep interruptions in two species of bats hibernating in limestone tunnels. Acta Theriologica 32, 331-332. – reference: Ricklefs, R. E. (2008). The evolution of senescence from a comparative perspective. Functional Ecology 22, 379-392. – reference: Sibley, C. G. & Ahlquist, J. E. (1990). Phylogeny and Classification of Birds. A Study in Molecular Evolution. Yale University Press, New Haven. – reference: Bozinovic, F. & Rosenmann, M. (1988). Daily torpor in Calomys musculinus, a south-american rodent. Journal of Mammalogy 69, 150-152. – reference: Brigham, R. M., Körtner, G., Maddocks, T. A. & Geiser, F. (2000). Seasonal use of torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Physiological and Biochemical Zoology 73, 613-620. – reference: Lehmer, E. M. & Biggins, D. E. (2005). Variation in torpor patterns of free-ranging black-tailed and Utah prairie dogs across gradients of elevation. Journal of Mammalogy 86, 15-21. – reference: Bartholomew, G. A., Howell, T. R. & Cade, T. J. (1957). Torpidity in the white-throated swift, Anna hummingbird, and poor-will. The Condor 59, 145-155. – reference: Lehmer, E. M., Savage, L. T., Antolin, M. F. & Biggins, D. E. (2006). Extreme plasticity in thermoregulatory behaviors of free-ranging black-tailed prairie dogs. Physiological and Biochemical Zoology 79, 454-467. – reference: Morhardt, J. E. (1970). Body temperatures of white-footed mice (Peromyscus sp.) during daily torpor. Comparative Biochemistry and Physiology 33, 423-439. – reference: Hock, R. J. (1960). Seasonal variations in physiologic functions of arctic ground squirrels and black bears. Bulletin of the Museum of Comparative Zoology 124, 155-171. – reference: Lovegrove, B. G., Lawes, M. J. & Roxburgh, L. (1999). Confirmation of pleisiomorphic daily torpor in mammals: the round-eared elephant shrew Macroscelides proboscideus (Macroscelidea). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 169, 453-460. – reference: Wolf, L. L. & Hainsworth, F. R. (1972). Environmental influence on regulated body temperature in torpid hummingbirds. Comparative Biochemistry and Physiology Part A: Physiology 41, 167-173. – reference: McNab, B. K. & Bonaccorso, F. J. (1995). The energetics of Australasian swifts, frogmouths, and nightjars. Physiological Zoology 68, 245-261. – reference: Bergmann, C. G. L. C. (1848). Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Vandenhoeck und Ruprecht, Göttingen. – reference: Koteja, P., Jurczyszyn, M. & Wołoszyn, B. (2001). Energy balance of hibernating mouse-eared bat Myotis myotis: a study with a TOBEC instrument. Acta Theriologica 46, 1-12. – reference: Calder, W. A. & Booser, J. (1973). Hypothermia of broad-tailed hummingbirds during incubation in nature with ecological correlations. Science 180, 751-753. – reference: Geiser, F. & Pavey, C. R. (2007). Basking and torpor in a rock-dwelling desert marsupial: survival strategies in a resource-poor environment. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 177, 885-892. – reference: Bininda-Edmonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L. & Purvis, A. (2007). The delayed rise of present-day mammals. Nature 446, 507-512. – reference: Bartholomew, G. A. & Cade, T. J. (1957). Temperature regulation, hibernation, and aestivation in the Little Pocket Mouse, Perognathus longimembris. Journal of Mammalogy 38, 60-72. – reference: Packard, G. C. & Boardman, T. J. (1988). The misuse of ratios, indexes, and percentages in ecophysiological research. Physiological Zoology 61, 1-9. – reference: Hill, R. W. (1975). Daily torpor in Peromyscus leucopus on an adequate diet. Comparative Biochemistry and Physiology Part A: Physioloy 51, 413-423. – reference: Bartholomew, G. A. & MacMillen, R. E. (1961). Oxygen consumption, estivation, and hibernation in the Kangaroo Mouse, Microdipodops pallidus. Physiological Zoology 34, 177-183. – reference: Stoddart, D. M. (1979). Ecology of Small Mammals. Chapman and Hall, Wiley, London, New York. – reference: Fowler, P. A. & Racey, P. A. (1988). Overwintering strategies of the badger, Meles meles, at 57 °N. Journal of Zoology (London) 214, 635-651. – reference: Brigham, R. M. (1992). Daily torpor in a free-ranging goatsucker, the common poorwill (Phalaenoptilus nuttallii). Physiological Zoology 65, 457-472. – reference: Bozinovic, F. & Marquet, P. A. (1991). Energetics and torpor in the Atacama desert-dwelling rodent Phyllotis darwini rupestris. Journal of Mammalogy 72, 734-738. – reference: Pengelley, E. T. & Asmundson, S. M. (1969). Free-running periods of endogenous circannual rhythms in the golden mantled ground squirrel, Citellus lateralis. Comparative Biochemistry and Physiology 30, 177-183. – reference: Ruby, N. F. (2003). Hibernation: when good clocks go cold. Journal of Biological Rhythms 18, 275-286. – reference: Franco, M., Contreras, C., Cortes, P., Chappell, M. A., Soto-Gamboa, M. & Nespolo, R. F. (2012). Aerobic power, huddling and the efficiency of torpor in the South American marsupial, Dromiciops gliroides. Biology Open 1, 1178-1184. – reference: Speakman, J. R. & Król, E. (2010). Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. Journal of Animal Ecology 79, 726-746. – reference: Hiebert, S. M. (1990). Energy costs and temporal organization of torpor in the rufous hummingbird (Selasphorus rufus). Physiological Zoology 63, 1082-1097. – reference: Perret, M. (1998). Energetic advantage of nest-sharing in a solitary primate, the lesser mouse lemur (Microcebus murinus). Journal of Mammalogy 79, 1093-1102. – reference: Stawski, C. & Geiser, F. (2011). Do season and distribution affect thermal energetics of a hibernating bat endemic to the tropics and subtropics? American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 301, R542-R547. – reference: Merritt, J. F. (1986). Winter survival adaptations of the short-tailed shrew (Blarina brevicauda) in Appalachian montane forest. Journal of Mammalogy 67, 450-464. – reference: Schmid, J., Ruf, T. & Heldmaier, G. (2000). Metabolism and temperature regulation during daily torpor in the smallest primate, the pygmy mouse lemour (Microcebus myoxinus) in Madagascar. Journal of Comparative Physiology B 170, 59-68. – reference: Bartholomew, G. A., Vleck, C. M. & Bucher, T. L. (1983). Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores, Manacus vitellinus and Pipra mentalis. Physiological Zoology 56, 370-379. – reference: Turbill, C., Ruf, T., Smith, S. & Bieber, C. (2013). Seasonal variation in telomere length of a hibernating rodent. Biology Letters 9, 20121095. – reference: Körtner, G., Pavey, C. R. & Geiser, F. (2008). Thermal biology, torpor, and activity in free-living mulgaras in arid zone australia during the winter reproductive season. Physiological and Biochemical Zoology 81, 442-451. – reference: Paradis, E., Claude, J. & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289-290. – reference: Zervanos, S. M., Maher, C. R. & Florant, G. L. (2013). Effect of body mass on hibernation strategies of woodchucks (Marmota monax). Integrative and Comparative Biology (doi: 10.1093/icb/ict100). – reference: Lyman, C. P., Willis, J. S., Malan, A. & Wang, L. C. H. (1982). Hibernation and Torpor in Mammals and Birds. Academic Press, New York, San Diego. – reference: Lynch, G. R., Bunin, J. & Schneider, J. E. (1980). The effect of constant light and dark on the circadian nature of daily torpor in Peromyscus leucopus. Journal of Interdisciplinary Cycle Research 11, 85-93. – reference: Willis, C. K. R., Brigham, R. M. & Geiser, F. (2006). Deep, prolonged torpor by pregnant, free-ranging bats. Naturwissenschaften 93, 80-83. – reference: Turbill, C., Smith, S., Deimel, C. & Ruf, T. (2012). Daily torpor is associated with telomere length change over winter in Djungarian hamsters. Biology Letters 8, 304-307. – reference: Kelm, D. H. & von Helversen, O. (2007). How to budget metabolic energy: torpor in a small Neotropical mammal. Journal of Comparative Physiology B 177, 667-677. – reference: Morrison, P. & McNab, B. K. (1962). Daily torpor in a brazilian murine opossum (Marmosa). Comparative Biochemistry and Physiology 6, 57-68. – reference: Harlow, H. J. (1981). Torpor and other physiological adaptations of the badger (Taxidea taxus) to cold environment. Physiological Zoology 54, 267-275. – reference: Turbill, C. & Geiser, F. (2008). Hibernation by tree-roosting bats. Journal of Comparative Physiology B 178, 597-605. – reference: Bartels, W., Law, B. S. & Geiser, F. (1998). Daily torpor and energetics in a tropical mammal, the northern blossom-bat Macroglossus minimus (Megachiroptera). Journal of Comparative Physiology B 168, 233-239. – reference: Bouma, H. R., Carey, H. V. & Kroese, F. G. M. (2010). Hibernation: the immune system at rest? Journal of Leukocyte Biology 88, 619-624. – reference: Lasiewski, R. C. (1963). Oxygen consumption of torpid, resting, active and flying hummingbirds. Physiological Zoology 36, 122-140. – reference: Geiser, F., Augee, M. L., McCarron, H. C. K. & Raison, J. K. (1984). Correlates of torpor in the insectivorous dasyurid marsupial Sminthopsis murina. Australian Mammalogy 7, 185-191. – reference: Buzadžić, B., Blagojević, D., Korać, B., Saičic, Z. S., Spasić, M. B. & Petrović, V. M. (1997). Seasonal variation in the antioxidant defense system of the brain of the ground squirrel (Citellus citellus) and response to low temperature compared with rat. Comparative Biochemistry and Physiology C: Pharmacology, Toxicology and Endocrinology 117, 141-149. – reference: Hammel, H. T., Dawson, T. J., Abrams, R. M. & Anderson, H. J. (1968). Total calorimetric measurements on Citellus lateralis in hibernation. Physiological Zoology 41, 341-357. – reference: Fraley, C. & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97, 611-631. – reference: Tannenbaum, M. G. & Pivorun, E. B. (1984). Differences in daily torpor patterns among three southeastern species of Peromyscus. Journal of Comparative Physiology B 154, 233-236. – reference: Prinzinger, R. & Siedle, K. (1986). Experimenteller Nachweis von Torpor bei jungen Mehlschwalben, Delichon urbica. Journal für Ornithologie 127, 95-96. – reference: Storey, K. B. & Storey, J. M. (2013). Molecular biology of freezing tolerance. Comprehensive Physiology 3, 1283-1308. – reference: Hut, R. A., Van der Zee, E. A., Jansen, K., Gerkema, M. P. & Daan, S. (2002b). Gradual reappearance of post-hibernation circadian rhythmicity correlates with numbers of vasopressin-containing neurons in the suprachiasmatic nuclei of European ground squirrels. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 172, 59-70. – reference: Hainsworth, F. R., Collins, B. G. & Wolf, L. L. (1977). The function of torpor in hummingbirds. Physiological Zoology 50, 215-222. – reference: Nagel, A. (1985). Sauerstoffverbrauch, Temperaturregulation und Herzfrequenz bei europäischen Spitzmäusen (Soricidae). Zeitschrift für Säugetierkunde 50, 249-266. – reference: Vogel, P. (1974). Kälteresistenz und reversible Hypothermie der Etruskerspitzmaus (Suncus etruscus, Soricidae, Insectivora). Zeitschrift für Säugetierkunde 39, 78-88. – reference: Ehrhardt, N., Heldmaier, G. & Exner, C. (2005). Adaptive mechanisms during food restriction in Acomys russatus: the use of torpor for desert survival. Journal of Comparative Physiology B 175, 193-200. – reference: Nicol, S. & Andersen, N. A. (2002). The timing of hibernation in Tasmanian echidnas: why do they do it when they do? Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology 131, 603-611. – reference: Withers, P. C., Richardson, K. C. & Wooller, R. D. (1990). Metabolic physiology of euthermic and torpid honey possums, Tarsipes rostratus. Australian Journal of Zoology 37, 685-693. – reference: Lynch, G. R., White, S. E., Grundel, R. & Berger, M. S. (1978). Effects of photoperiod, melatonin administration and thyroid block on spontaneous daily torpor and temperature regulation in the white-footed mouse, Peromyscus leucopus. Journal of Comparative Physiology B 125, 157-163. – reference: Bech, C., Steffensen, J. F., Berger, M., Abe, A. S. & Bicudo, J. E. P. W. (2006). Metabolic aspects of torpor in hummingbirds. Acta Zoologica Sinica 52 (Suppl.), 397-400. – reference: Coburn, D. K. & Geiser, F. (1998). Seasonal changes in energetics and torpor patterns in the subtropical blossom-bat Syconycteris australis (Megachiroptera). Oecologia 113, 467-473. – reference: Dunbar, M. B. & Tomasi, T. E. (2006). Arousal patterns, metabolic rate, and an energy budget of Eastern Red Bats (Lasiurus borealis) in winter. Journal of Mammalogy 87, 1096-1102. – reference: Hall, M. (1832). On hybernation. Philosophical Transactions of the Royal Society of London 122, 335-360. – reference: Lyman, C. P. (1958). Oxygen consumption, body temperature and heart rate of woodchucks entering hibernation. American Journal of Physiology 194, 83-91. – reference: Johnson, G. E. (1931). Hibernation in mammals. The Quarterly Review of Biology 6, 439-461. – reference: Fleming, M. R. (1985). The thermal physiology of the feathertail glider, Acrobates pygmaeus (Marsupialia, Burramyidae). Australian Journal of Zoology 33, 667-681. – reference: Kisser, B. & Goodwin, H. T. (2012). Hibernation and overwinter body temperatures in free-ranging thirteen-lined ground squirrels, Ictidomys tridecemlineatus. The American Midland Naturalist 167, 396-409. – reference: Peiponen, V. A. (1965). On hypothermia and torpidity in the nightjar (Caprimulgus europaeus L.). Annales Academiae Scientiarum Fennicae A IV. Biologica 87, 1-15. – reference: Scantlebury, M., Lovegrove, B., Jackson, C., Bennett, N. & Lutermann, H. (2008). Hibernation and non-shivering thermogenesis in the Hottentot golden mole (Amblysomus hottentottus longiceps). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 178, 887-897. – reference: Thompson, S. D. (1985). Subspecific differences in metabolism, thermoregulation, and torpor in the western harvest mouse Reithrodontomys megalotis. Physiological Zoology 58, 430-444. – reference: Morris, P. (1973). Winter nests of the hedgehog (Erinaceus europaeus L.). Oecologia 11, 299-313. – reference: Otsu, R. & Kimura, T. (1993). Effects of food availability and ambient temperature on hibernation in the Japanese dormouse, Glirulus japonicus. Journal of Ethology 11, 37-42. – reference: Schaub, R., Prinzinger, R. & Schleucher, E. (1999). Energy metabolism and body temperature in the Blue-naped Mousebird (Urocolius macrourus) during torpor. Ornis Fennica 76, 211-219. – reference: Hudson, J. W. & Scott, I. M. (1979). Daily torpor in the laboratory mouse Mus musculus var. albino. Physiological Zoology 52, 205-218. – reference: Warnecke, L., Turner, J. M. & Geiser, F. (2008). Torpor and basking in a small arid zone marsupial. Naturwissenschaften 95, 73-78. – reference: Geiser, F. & Ruf, T. (1995). Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiological Zoology 68, 935-966. – reference: Koskimies, J. (1948). On temperature regulation and metabolism in the swift, Micropus a. apus L., during fasting. Experientia 4, 274-276. – reference: Bech, C. & Nicol, S. C. (1999). Thermoregulation and ventilation in the tawny frogmouth, Podargus strigoides: a low-metabolic avian species. Australian Journal of Zoology 47, 143-153. – reference: Jonasson, K. A. & Willis, C. K. R. (2012). Hibernation energetics of free-ranging little brown bats. The Journal of Experimental Biology 215, 2141-2149. – reference: Lovegrove, B. G., Canale, C., Levesque, D., Fluch, G., Řeháková, P. & Ruf, T. (2013). Are tropical small mammals physiologically vulnerable to arrhenius effects and climate change? Physiological and Biochemical Zoology 87, 30-45. – reference: Calder, W. A. (1996). Size, Function, and Life History. Second Edition. Dover Publications, Mineola. – reference: Tomlinson, S., Withers, P. C. & Cooper, C. (2007). Hypothermia versus torpor in response to cold stress in the native Australian mouse Pseudomys hermannsburgensis and the introduced house mouse Mus musculus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 148, 645-650. – reference: Clarke, A. & Pörtner, H.-O. (2010). Temperature, metabolic power and the evolution of endothermy. Biological Reviews 85, 703-727. – reference: Geiser, F. & Mzilikazi, N. (2011). Does torpor of elephant shrews differ from that of other heterothermic mammals? Journal of Mammalogy 92, 452-459. – reference: Geiser, F., Holloway, J. C. & Körtner, G. (2007). Thermal biology, torpor and behaviour in sugar gliders: a laboratory-field comparison. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 177, 495-501. – reference: Pengelley, E. T. & Fisher, K. C. (1961). Rhythmical arousal from hibernation in the golden-mantled ground squirrel, Citellus lateralis tescorum. Canadian Journal of Zoology 39, 105-120. – reference: Bickler, P. E. (1984). CO2 balance of a heterothermic rodent: comparison of sleep, torpor, and awake states. American Journal of Physiology - Regulatory, Integrative Comparative Physiology 246, R49-R55. – reference: Lasiewski, R. C. & Dawson, W. R. (1964). Physiological responses to temperature in the Common Nighthawk. The Condor 66, 477-490. – reference: Kobbe, S., Ganzhorn, J. U. & Dausmann, K. H. (2011). Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). Journal of Comparative Physiology B 181, 165-173. – reference: Lovegrove, B. G. (2012c). The evolution of mammalian body temperature: the Cenozoic supraendothermic pulses. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 182, 579-589. – reference: Muchlinski, A. E. & Rybak, E. N. (1978). Energy consumption of resting and hibernating meadow jumping mice. Journal of Mammalogy 59, 435-437. – reference: Prinzinger, R. & Siedle, K. (1988). Ontogeny of metabolism, thermoregulation and torpor in the house martin Delichon u. urbica (L.) and its ecological significance. Oecologia 76, 307-312. – reference: Stawski, C. & Geiser, F. (2010). Seasonality of torpor patterns and physiological variables of a free-ranging subtropical bat. The Journal of Experimental Biology 213, 393-399. – reference: Wang, L. C. H. & Hudson, J. W. (1970). Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse, Perognathus hispidus. Comparative Biochemistry and Physiology 32, 275-293. – reference: Cade, T. J. (1964). The evolution of torpidity in rodents. Annales Academiae Scientiarum Fennicae Series A 4 Biologica 71, 77-111. – reference: Watts, P. D., Øritsland, N. A., Jonkel, C. & Ronald, K. (1981). Mammalian hibernation and the oxygen consumption of a denning black bear (Ursus americanas). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 69, 121-123. – reference: Downs, C. T. & Brown, M. (2002). Nocturnal heterothermy and torpor in the malachite sunbird (Nectarinia famosa). The Auk 119, 251-260. – reference: Lindstedt, S. L. (1980). Regulated hypothermia in the desert shrew. Journal of Comparative Physiology 137, 173-176. – reference: Dausmann, K. H., Glos, J. & Heldmaier, G. (2009). Energetics of tropical hibernation. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 179, 345-357. – reference: Körtner, G., Brigham, R. M. & Geiser, F. (2000). Metabolism: winter torpor in a large bird. Nature 407, 318. – reference: Körtner, G. & Geiser, F. (2000a). The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiology International 17, 103-128. – reference: Smit, B. & McKechnie, A. E. (2010). Do owls use torpor? Winter thermoregulation in free-ranging pearl-spotted owlets and African scops-owls. Physiological and Biochemical Zoology 83, 149-156. – reference: MacMillen, R. E. & Nelson, J. E. (1969). Bioenergetics and body size in dasyruid marsupials. American Journal of Physiology 217, 1246-1251. – reference: Hock, R. J. (1951). The metabolic rates and body temperatures of bats. The Biological Bulletin 101, 289-299. – reference: Hut, R. A., Barnes, B. M. & Daan, S. (2002a). Body temperature patterns before, during, and after semi-natural hibernation in the European ground squirrel. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 172, 47-58. – reference: Geiser, F. & Broome, L. S. (1991). Hibernation in the mountain pygmy possum Burramys parvus (Marsupialia). Journal of Zoology (London) 223, 593-602. – reference: Kristoffersson, R. & Soivio, A. (1964). Hibernation of the hedgehog (Erinaceus europaeus L.): the periodicity of hibernation of undisturbed animals during the winter in a constant ambient temperature. Annales Academiae Scientiarum Fennicae A IV Biologica 80, 3-22. – reference: Kulzer, E. & Storf, R. (1980). Schlaf-Lethargie bei dem afrikanischen Langzungenflughund Megaloglossus woermanni Pagenstecher, 1885. Zeitschrift für Säugetierkunde 45, 23-29. – reference: Pajunen, I. (1984). Ambient temperature dependence of the periodic respiratory pattern during longterm hibernation in the garden dormouse, Eliomys quercinus L. Annales Zoologici Fennici 21, 143-148. – reference: Herreid, C. F. (1963). Metabolism of the Mexican free-tailed bat. Journal of Cellular and Comparative Physiology 61, 201-207. – reference: Lovegrove, B. G. (2000). The zoogeography of mammalian basal metabolic rate. The American Naturalist 156, 210-219. – reference: French, A. R. (1985). Allometries of the durations of torpid and euthermic intervals during mammalian hibernation: a test of the theory of metabolic control of the timing of changes in body temperature. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 156, 13-19. – reference: Guppy, M. & Withers, P. (1999). Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biological Reviews of the Cambridge Philosophical Society 74, 1-40. – reference: Stephenson, P. J. & Racey, P. A. (1993b). Reproductive energetics of the tenrecidae (Mammalia: Insectivora). II. The shrew-tenrecs, Microgale spp. Physiological Zoology 66, 664-685. – reference: Deavers, D. R. & Hudson, J. W. (1981). Temperature regulation in two rodents (Clethrionomys gapperi and Peromyscus leucopus) and a shrew (Blarina brevicaudata) inhabiting the same environment. Physiological Zoology 54, 94-108. – volume: 172 start-page: 59 year: 2002b end-page: 70 article-title: Gradual reappearance of post‐hibernation circadian rhythmicity correlates with numbers of vasopressin‐containing neurons in the suprachiasmatic nuclei of European ground squirrels publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – start-page: 53 year: 1989 end-page: 62 – volume: 40 start-page: 471 year: 2006 end-page: 483 article-title: Higher‐level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannida) publication-title: Molecular Phylogenetics and Evolution – volume: 73 start-page: 679 year: 1982 end-page: 689 article-title: Torpor and metabolism in hummingbirds publication-title: Comparative Biochemistry and Physiology Part A: Physiology – volume: 20 start-page: 289 year: 2004 end-page: 290 article-title: APE: analyses of phylogenetics and evolution in R language publication-title: Bioinformatics – volume: 154 start-page: 233 year: 1984 end-page: 236 article-title: Differences in daily torpor patterns among three southeastern species of publication-title: Journal of Comparative Physiology B – volume: 49 start-page: 446 year: 1968 end-page: 454 article-title: Torpor in the Echidna, publication-title: Journal of Mammalogy – volume: 177 start-page: 495 year: 2007 end-page: 501 article-title: Thermal biology, torpor and behaviour in sugar gliders: a laboratory‐field comparison publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 65 start-page: 465 year: 1980 end-page: 476 article-title: A re‐examination of the relationship between thermal conductance and body weight in mammals publication-title: Comparative Biochemistry and Physiology Part A: Physiology – volume: 80 start-page: 3 year: 1964 end-page: 22 article-title: Hibernation of the hedgehog ( L.): the periodicity of hibernation of undisturbed animals during the winter in a constant ambient temperature publication-title: Annales Academiae Scientiarum Fennicae A IV Biologica – volume: 52 start-page: 205 year: 1979 end-page: 218 article-title: Daily torpor in the laboratory mouse var. albino publication-title: Physiological Zoology – year: 1961 – volume: 148 start-page: 893 year: 2007 end-page: 898 article-title: Hibernation and daily torpor in an armadillo, the pichi ( ) publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology – volume: 46 start-page: 1 year: 2001 end-page: 12 article-title: Energy balance of hibernating mouse‐eared bat : a study with a TOBEC instrument publication-title: Acta Theriologica – volume: 65 start-page: 393 year: 1965 end-page: 403 article-title: Oxygen consumption, thermal conductance, and torpor in the California pocket mouse, publication-title: Journal of Cellular and Comparative Physiology – volume: 182 start-page: 569 year: 2012 end-page: 578 article-title: Warming up for dinner: torpor and arousal in hibernating Natterer's bats ( ) studied by radio telemetry publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 67 start-page: 576 year: 1986 end-page: 578 article-title: Torpor patterns in captive white‐tailed prairie dogs ( ) publication-title: Journal of Mammalogy – start-page: 41 year: 2012 end-page: 50 – volume: 61 start-page: 442 year: 1988 end-page: 449 article-title: Torpor duration in relation to temperature and metabolism in hibernating ground squirrels publication-title: Physiological Zoology – volume: 38 start-page: 243 year: 1965 end-page: 254 article-title: Temperature regulation and torpidity in the pygmy mouse, publication-title: Physiological Zoology – volume: 3 start-page: 1283 year: 2013 end-page: 1308 article-title: Molecular biology of freezing tolerance publication-title: Comprehensive Physiology – volume: 171 start-page: 569 year: 2001 end-page: 576 article-title: Intraspecific differences in behaviour and physiology: effects of captive breeding on patterns of torpor in feathertail gliders publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 174 start-page: 293 year: 2004 end-page: 297 article-title: Energetics and torpor of a South American “living fossil”, the microbiotheriid publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 78 start-page: 192 year: 1997 end-page: 203 article-title: Effects of hoard manipulations on life history and reproductive success of female red squirrels ( ) publication-title: Journal of Mammalogy – volume: 244 start-page: 1593 year: 1989 end-page: 1595 article-title: Freeze avoidance in a mammal: body temperatures below 0°C in an arctic hibernator publication-title: Science – volume: 18 start-page: 137 year: 1964 end-page: 150 article-title: La dépense d'énergie des mammiferes en hibernation publication-title: Archives des Sciences Physiologiques – volume: 30 start-page: 177 year: 1969 end-page: 183 article-title: Free‐running periods of endogenous circannual rhythms in the golden mantled ground squirrel, publication-title: Comparative Biochemistry and Physiology – year: 1845 – volume: 331 start-page: 906 year: 2011 end-page: 909 article-title: Hibernation in black bears: independence of metabolic suppression from body temperature publication-title: Science – volume: 170 start-page: 153 year: 2000 end-page: 162 article-title: Torpor, thermal biology, and energetics in Australian long‐eared bats ( ) publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 74 start-page: 595 year: 1983 end-page: 599 article-title: Body temperature, heart rate and oxygen consumption of normothermic and heterothermic Western jumping mice ( ) publication-title: Biochemical Physiology – volume: 93 start-page: 220 year: 2012 end-page: 228 article-title: Metabolism during winter in a subtropical hibernating bat, the Formosan leaf‐nosed bat ( ) publication-title: Journal of Mammalogy – year: 2013 article-title: nlme: linear and nonlinear mixed effects models. R package – start-page: 188 year: 1970 end-page: 233 – volume: 179 start-page: 691 year: 2009 end-page: 700 article-title: Energetics of arousal episodes in hibernating arctic ground squirrels publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 24 start-page: 55 year: 1970 end-page: 71 article-title: Capacités thermorégulatrices d'un mammifère insectivore primitif, le tenrec: leurs variations saisonnières publication-title: Archives des Sciences Physiologiques – volume: 181 start-page: 299 year: 2011 end-page: 309 article-title: Overwinter body temperature patterns in captive jerboas ( ): influence of sex and group publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 54 start-page: 95 year: 1976 end-page: 99 article-title: Continuous 24‐hour oxygen consumption studies of publication-title: Comparative Biochemistry and Physiology Part A: Physiology – year: 2013 – volume: 54 start-page: 1058 year: 1965 end-page: 1061 article-title: Regulation of hibernating periods by temperature publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 96 start-page: 165 year: 2009 end-page: 171 article-title: Summer dormancy in edible dormice ( ) without energetic constraints publication-title: Naturwissenschaften – volume: 16 start-page: 264 year: 2001 end-page: 271 article-title: Hibernation effects on memory in European ground squirrels ( ) publication-title: Journal of Biological Rhythms – volume: 87 start-page: 739 year: 1980 end-page: 748 article-title: Le métabolisme énergétique de (Soricidae, Insectivora) en torpeur publication-title: Revue Suisse de Zoologie – volume: 15 start-page: 69 year: 1978 end-page: 75 article-title: Seasonal differences in O consumption and respiratory quotient in a hibernator ( L.) publication-title: Annales Zoologici Fennici – volume: 179 start-page: 433 year: 2009 end-page: 441 article-title: Hibernation by a free‐ranging subtropical bat ( ) publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 466 start-page: 482 year: 2010 end-page: 487 article-title: Coupled dynamics of body mass and population growth in response to environmental change publication-title: Nature – volume: 63 start-page: 489 year: 1990 end-page: 503 article-title: Torpor bout duration during the hibernation season of two sciurid rodents: interrelations with temperature and metabolism publication-title: Physiological Zoology – volume: 170 start-page: 551 year: 2000 end-page: 559 article-title: Hibernation induces oxidative stress and activation of NF‐κB in ground squirrel intestine publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 85 start-page: 883 year: 2007 end-page: 890 article-title: Thermoregulation in two free‐ranging subtropical insectivorous bat species: species (Vespertilionidae) publication-title: Canadian Journal of Zoology‐Revue Canadienne De Zoologie – volume: 76 start-page: 211 year: 1999 end-page: 219 article-title: Energy metabolism and body temperature in the Blue‐naped Mousebird ( ) during torpor publication-title: Ornis Fennica – volume: 182 start-page: 841 year: 2012 end-page: 847 article-title: Thermoregulatory changes anticipate hibernation onset by 45 days: data from free‐living arctic ground squirrels publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – start-page: 110 year: 1967 end-page: 139 – volume: 223 start-page: 593 year: 1991 end-page: 602 article-title: Hibernation in the mountain pygmy possum (Marsupialia) publication-title: Journal of Zoology (London) – volume: 56 start-page: 370 year: 1983 end-page: 379 article-title: Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores, and publication-title: Physiological Zoology – volume: 123 start-page: 350 year: 2000b end-page: 357 article-title: Torpor and activity patterns in free‐ranging sugar gliders (Marsupialia) publication-title: Oecologia – volume: 13 start-page: 232 year: 1999 end-page: 237 article-title: Does immune challenge affect torpor duration? publication-title: Functional Ecology – volume: 167 start-page: 71 year: 1997 end-page: 80 article-title: Temperature regulation and metabolism of an Australian bat, (Chiroptera: Vespertilionidae) when euthermic and torpid publication-title: Journal of Comparative Physiology B – volume: 59 start-page: 99 year: 2004 end-page: 104 article-title: Aardwolf adaptations: a review publication-title: Transactions of the Royal Society of South Africa – volume: 64 start-page: 793 year: 1986 end-page: 796 article-title: A comparison of hibernation in the black‐tailed prairie dog, white‐tailed prairie dog, and Wyoming ground squirrel publication-title: Canadian Journal of Zoology – volume: 45 start-page: 109 year: 1961 end-page: 153 article-title: Temperaturregulation und Tagesperiodik des Stoffwechsels bei Winterschläfern publication-title: Zeitschrift für vergleichende Physiologie – volume: 170 start-page: 59 year: 2000 end-page: 68 article-title: Metabolism and temperature regulation during daily torpor in the smallest primate, the pygmy mouse lemour ( ) in Madagascar publication-title: Journal of Comparative Physiology B – volume: 167 start-page: 396 year: 2012 end-page: 409 article-title: Hibernation and overwinter body temperatures in free‐ranging thirteen‐lined ground squirrels, publication-title: The American Midland Naturalist – volume: 172 start-page: 7 year: 2002 end-page: 16 article-title: Reproductive activity influences thermoregulation and torpor in pouched mice, publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 49 start-page: 713 year: 1999 end-page: 724 article-title: Molecular and metabolic aspects of mammalian hibernation publication-title: BioScience – volume: 175 start-page: 193 year: 2005 end-page: 200 article-title: Adaptive mechanisms during food restriction in : the use of torpor for desert survival publication-title: Journal of Comparative Physiology B – volume: 6 start-page: e18641 year: 2011 article-title: Diet‐independent remodeling of cellular membranes precedes seasonally changing body temperature in a hibernator publication-title: PLoS ONE – start-page: 25 year: 1993 end-page: 32 – volume: 85 start-page: 200 year: 1985 end-page: 201 article-title: Nocturnal hypothermia in the white‐throated needletail, publication-title: Emu – volume: 99 start-page: 225 year: 1950 end-page: 236 article-title: Body insulation of some arctic and tropical mammals and birds publication-title: Biological Bulletin – year: 2013 article-title: caper: comparative analyses of phylogenetics and evolution in R. R package – start-page: 41 year: 2000 end-page: 47 – volume: 83 start-page: 135 year: 2010 end-page: 141 article-title: Latitudinal differences in the hibernation characteristics of woodchucks ( ) publication-title: Physiological and Biochemical Zoology – year: 1996 – volume: 182 start-page: 715 year: 2012 end-page: 727 article-title: Seasonal changes in thermogenesis of a free‐ranging afrotherian small mammal, the Western rock elephant shrew ( ) publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 278 start-page: 698 year: 2000 end-page: 704 article-title: Regulation of body temperatures and energy requirements of hibernating Alpine marmots ( ) publication-title: American Journal of Physiology ‐ Regulatory, Integrative and Comparative Physiology – start-page: 1 year: 1996 end-page: 6 – volume: 33 start-page: 63 year: 1963 end-page: 82 article-title: Body temperature and metabolism in subspecies of from arid and mesic environments publication-title: Ecological Monographs – volume: 47 start-page: 143 year: 1999 end-page: 153 article-title: Thermoregulation and ventilation in the tawny frogmouth, : a low‐metabolic avian species publication-title: Australian Journal of Zoology – volume: 83 start-page: 871 year: 2005a end-page: 879 article-title: Thermal energetics of female big brown bats ( ) publication-title: Canadian Journal of Zoology – volume: 7 start-page: 185 year: 1984 end-page: 191 article-title: Correlates of torpor in the insectivorous dasyurid marsupial publication-title: Australian Mammalogy – volume: 58 start-page: 320 year: 1985 end-page: 328 article-title: The effect of starvation, food restriction, and water deprivation on thermoregulation and average daily metabolic rates in publication-title: Physiological Zoology – volume: 22 start-page: 379 year: 2008 end-page: 392 article-title: The evolution of senescence from a comparative perspective publication-title: Functional Ecology – volume: 74 start-page: 1 year: 1999 end-page: 40 article-title: Metabolic depression in animals: physiological perspectives and biochemical generalizations publication-title: Biological Reviews of the Cambridge Philosophical Society – volume: 100 start-page: 695 year: 2010 end-page: 710 article-title: Why do Anatolian ground squirrels exhibit a Bergmannian size pattern? A phylogenetic comparative analysis of geographic variation in body size publication-title: Biological Journal of the Linnean Society – volume: 115 start-page: 87 year: 1977 end-page: 100 article-title: Periodicity of recurrent hypothermia during hibernation in the pocket mouse, publication-title: Journal of Comparative Physiology A – volume: 76 start-page: 180 year: 2003a end-page: 186 article-title: The role of energy availability in mammalian hibernation: an experimental test in free‐ranging eastern chipmunks publication-title: Physiological and Biochemical Zoology – volume: 168 start-page: 121 year: 1991 end-page: 128 article-title: Daily torpor in the Djungarian hamster ( ): photoperiodic regulation, characteristics and circadian organization publication-title: Journal of Comparative Physiology A – volume: 160 start-page: 712 year: 2002 end-page: 726 article-title: Phylogenetic analysis and comparative data: a test and review of evidence publication-title: The American Naturalist – volume: 97 start-page: 945 year: 2010 end-page: 950 article-title: First direct evidence of hibernation in an eastern dwarf lemur species ( ) from the high‐altitude forest of Tsinjoarivo, central‐eastern Madagascar publication-title: Naturwissenschaften – volume: 33 start-page: 1455 year: 1977 end-page: 1456 article-title: Torpor in the European white‐toothed shrews publication-title: Experientia – volume: 104 start-page: 13816 year: 2007 end-page: 13820 article-title: The circadian clock stops ticking during deep hibernation in the European hamster publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 56 start-page: 252 year: 2007 end-page: 270 article-title: Within‐species variation and measurement error in phylogenetic comparative methods publication-title: Systematic Biology – volume: 79 start-page: 944 year: 2006 end-page: 956 article-title: Energy metabolism and evaporative water loss in the European free‐tailed bat and hemprich's long‐eared bat (Microchiroptera): species sympatric in the negev desert publication-title: Physiological and Biochemical Zoology – volume: 73 start-page: 613 year: 2000 end-page: 620 article-title: Seasonal use of torpor by free‐ranging Australian owlet‐nightjars ( ) publication-title: Physiological and Biochemical Zoology – volume: 208 start-page: 1593 year: 2005 end-page: 1599 article-title: Membranes and the setting of energy demand publication-title: The Journal of Experimental Biology – volume: 87 start-page: 1 year: 1965 end-page: 15 article-title: On hypothermia and torpidity in the nightjar (Caprimulgus europaeus L.) publication-title: Annales Academiae Scientiarum Fennicae A IV. Biologica – volume: 98 start-page: 78 year: 2009 end-page: 84 article-title: Keep cool: memory is retained during hibernation in Alpine marmots publication-title: Physiology & Behavior – volume: 17 start-page: 103 year: 2000a end-page: 128 article-title: The temporal organization of daily torpor and hibernation: circadian and circannual rhythms publication-title: Chronobiology International – volume: 54 start-page: 94 year: 1981 end-page: 108 article-title: Temperature regulation in two rodents ( and ) and a shrew ( ) inhabiting the same environment publication-title: Physiological Zoology – volume: 181 start-page: 165 year: 2011 end-page: 173 article-title: Extreme individual flexibility of heterothermy in free‐ranging Malagasy mouse lemurs ( ) publication-title: Journal of Comparative Physiology B – volume: 180 start-page: 857 year: 2010 end-page: 868 article-title: Comparative physiology of Australian quolls (Dasyurus; Marsupialia) publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 170 start-page: 511 year: 2000 end-page: 521 article-title: Comparison of hibernation, estivation and daily torpor in the edible dormouse, publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 84 start-page: 175 year: 2011 end-page: 184 article-title: Adaptive thermoregulation in golden spiny mice: the influence of season and food availability on body temperature publication-title: Physiological and Biochemical Zoology – volume: 68 start-page: 935 year: 1995 end-page: 966 article-title: Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns publication-title: Physiological Zoology – volume: 92 start-page: 452 year: 2011 end-page: 459 article-title: Does torpor of elephant shrews differ from that of other heterothermic mammals? publication-title: Journal of Mammalogy – start-page: 119 year: 1993 end-page: 130 – volume: 320 start-page: 1763 year: 2008 end-page: 1768 article-title: A phylogenomic study of birds reveals their evolutionary history publication-title: Science – volume: 97 start-page: 611 year: 2002 end-page: 631 article-title: Model‐based clustering, discriminant analysis, and density estimation publication-title: Journal of the American Statistical Association – volume: 72 start-page: 734 year: 1991 end-page: 738 article-title: Energetics and torpor in the Atacama desert‐dwelling rodent publication-title: Journal of Mammalogy – volume: 46 start-page: 95 year: 1973 end-page: 109 article-title: Thermoregulation at high ambient temperatures of six species of ground squirrels (S spp.) from different habitats publication-title: Physiological Zoology – start-page: 51 year: 2012 article-title: Heterothermy and the evolution of endothermy: lessons from – volume: 294 start-page: R1044 year: 2008 end-page: R1052 article-title: Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis publication-title: American Journal of Physiology ‐ Regulatory and Integrative Comparative Physiology – volume: 193 start-page: 117 year: 1989 end-page: 119 – volume: 88 start-page: 619 year: 2010 end-page: 624 article-title: Hibernation: the immune system at rest? publication-title: Journal of Leukocyte Biology – start-page: 231 year: 2004 end-page: 240 – start-page: 13 year: 2012 end-page: 27 – year: 1969 – volume: 31 start-page: 387 year: 2011 end-page: 395 article-title: Hibernation patterns and changes of body temperature in Daurian ground squirrels ( ) during hibernation publication-title: Acta Theriologica Sinica – volume: 87 start-page: 204 year: 2009 end-page: 210 article-title: Ambient temperature and annual timing affect torpor bouts and euthermic phases of hibernating European ground squirrels ( ) publication-title: Canadian Journal of Zoology‐Revue Canadienne de Zoologie – year: 1993 – volume: 211 start-page: 1108 year: 1966 end-page: 1112 article-title: Oxygen consumption temperature and water loss in bats from different environments publication-title: American Journal of Physiology – start-page: 109 year: 2012 end-page: 121 – volume: 179 start-page: 345 year: 2009 end-page: 357 article-title: Energetics of tropical hibernation publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 25 start-page: 166 year: 2010 end-page: 175 article-title: Is the torpor‐arousal cycle of hibernation controlled by a non‐temperature‐compensated circadian clock? publication-title: Journal of Biological Rhythms – volume: 63 start-page: 2952 year: 1985 end-page: 2954 article-title: The duration of the period of hibernation of 3 species of vespertilionid bats. 1. Field studies publication-title: Canadian Journal of Zoology – volume: 215 start-page: 2236 year: 2012 end-page: 2246 article-title: Flexibility in thermoregulatory physiology of two dunnarts, and (Marsupialia; Dasyuridae) publication-title: The Journal of Experimental Biology – volume: 110 start-page: 110 year: 2008 end-page: 115 article-title: Body temperature and activity patterns of free‐living laughing Kookaburras: the largest kingfisher is heterothermic publication-title: The Condor – start-page: 29 year: 2012 end-page: 40 – volume: 148 start-page: 571 year: 2007 end-page: 577 article-title: Heterothermy in an Australian passerine, the Dusky Woodswallow ( ) publication-title: Journal of Ornithology – volume: 124 start-page: 282 year: 1960 end-page: 320 article-title: Some physiological principles governing hibernation in publication-title: Bulletin of the Museum of Comparative Zoology – volume: 175 start-page: 147 year: 2005 end-page: 155 article-title: Hibernation in the tropics: lessons from a primate publication-title: Journal of Comparative Physiology B – volume: 58 start-page: 430 year: 1985 end-page: 444 article-title: Subspecific differences in metabolism, thermoregulation, and torpor in the western harvest mouse publication-title: Physiological Zoology – volume: 173 start-page: 223 year: 2003 end-page: 230 article-title: Thermoenergetics of pre‐moulting and moulting kookaburras ( ): they're laughing publication-title: Journal of Comparative Physiology B – volume: 8 start-page: 304 year: 2012 end-page: 307 article-title: Daily torpor is associated with telomere length change over winter in Djungarian hamsters publication-title: Biology Letters – volume: 21 start-page: 328 year: 2012 end-page: 340 article-title: Bird dietary guild richness across latitudes, environments and biogeographic regions publication-title: Global Ecology and Biogeography – volume: 72 start-page: 371 year: 1999 end-page: 375 article-title: Food availability regulates energy expenditure and torpor in the Chilean mouse‐opossum publication-title: Revista Chilena de Historia Natural – volume: 279 start-page: 185 year: 2012 end-page: 193 article-title: Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 42 start-page: 50 year: 2011 end-page: 58 article-title: The incidence of torpor in winter and summer in the Angolan free‐tailed bat, (Microchiroptera: Molossidae), in a subtropical environment, Mpumulanga, South Africa publication-title: African Zoology – volume: 54 start-page: 89 year: 1999 end-page: 105 article-title: Quolls on the run publication-title: Australian Geographic – volume: 79 start-page: 726 year: 2010 end-page: 746 article-title: Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms publication-title: Journal of Animal Ecology – volume: 93 start-page: 80 year: 2006 end-page: 83 article-title: Deep, prolonged torpor by pregnant, free‐ranging bats publication-title: Naturwissenschaften – volume: 76 start-page: 165 year: 2003b end-page: 179 article-title: The role of energy availability in mammalian hibernation: a cost‐benefit approach publication-title: Physiological and Biochemical Zoology – volume: 80 start-page: 138 year: 2007 end-page: 145 article-title: Energetic consequences and ecological significance of heterothermy and social thermoregulation in striped skunks ( ) publication-title: Physiological and Biochemical Zoology – volume: 19 start-page: 48 year: 1933 end-page: 63 article-title: Winterstarre, Winterschlaf und Winterruhe. Eine kurze biologischphysiologische Studie publication-title: Mitteilungen aus dem Zoologischen Museum in Berlin – volume: 50 start-page: 1 year: 1965 end-page: 34 article-title: Temperaturregulation bei Fledermäusen (Chiroptera) aus verschiedenen Klimazonen publication-title: Zeitschrift für vergleichende Physiologie – start-page: 26 year: 2010 article-title: Some like it hot: hibernation patterns of the greater mouse‐tailed bat ( ) – volume: 71 start-page: 72 year: 1990 end-page: 75 article-title: Facultative torpor in the south american rodent (Rodentia: Cricetidae) publication-title: Journal of Mammalogy – volume: 429 start-page: 825 year: 2004 end-page: 826 article-title: Hibernation in a tropical primate publication-title: Nature – volume: 74 start-page: 238 year: 2001b end-page: 249 article-title: Thermoregulation and the energetic significance of clustering behavior in the white‐backed mousebird ( ) publication-title: Physiological and Biochemical Zoology – volume: 52 start-page: 216 year: 1982 end-page: 220 article-title: Effects of temperature on the duration of arousal episodes during hibernation publication-title: Journal of Applied Physiology – Respiratory Environmental and Exercise Physiology – volume: 177 start-page: 667 year: 2007 end-page: 677 article-title: How to budget metabolic energy: torpor in a small Neotropical mammal publication-title: Journal of Comparative Physiology B – volume: 83 start-page: 1153 year: 2003 end-page: 1181 article-title: Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature publication-title: Physiological Reviews – volume: 95 start-page: 73 year: 2008 end-page: 78 article-title: Torpor and basking in a small arid zone marsupial publication-title: Naturwissenschaften – volume: 26 start-page: 287 year: 2001 end-page: 293 article-title: Heterothermia in pigeons and doves reduces energetic costs publication-title: Journal of Thermal Biology – volume: 57 start-page: 129 year: 1955 end-page: 134 article-title: Hibernation in captive goatsuckers publication-title: The Condor – year: 2012 article-title: Foraging and roosting behaviors of Rafinesque's big‐eared bat (Corynorhinus rafinesquii) as the northern edge of the species' range – volume: 70 start-page: 196 year: 1970 end-page: 209 article-title: Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea publication-title: Zeitschrift für vergleichende Physiologie – start-page: 5 year: 1989 end-page: 15 – volume: 81 start-page: 990 year: 2000 end-page: 1003 article-title: Ecological energetics of the Puerto Rican tody: heterothermy, torpor, and intra‐island variation publication-title: Ecology – volume: 66 start-page: 664 year: 1993b end-page: 685 article-title: Reproductive energetics of the tenrecidae (Mammalia: Insectivora). II. The shrew‐tenrecs, spp publication-title: Physiological Zoology – volume: 41 start-page: 167 year: 1972 end-page: 173 article-title: Environmental influence on regulated body temperature in torpid hummingbirds publication-title: Comparative Biochemistry and Physiology Part A: Physiology – volume: 33 start-page: 423 year: 1970 end-page: 439 article-title: Body temperatures of white‐footed mice ( sp.) during daily torpor publication-title: Comparative Biochemistry and Physiology – volume: 63 start-page: 1082 year: 1990 end-page: 1097 article-title: Energy costs and temporal organization of torpor in the rufous hummingbird ( ) publication-title: Physiological Zoology – year: 1982 – volume: 75 start-page: 466 year: 2010 end-page: 470 article-title: Heterothermy in free‐ranging male Egyptian Free‐tailed bats ( ) in a subtropical climate publication-title: Mammalian Biology – volume: 168 start-page: 233 year: 1998 end-page: 239 article-title: Daily torpor and energetics in a tropical mammal, the northern blossom‐bat (Megachiroptera) publication-title: Journal of Comparative Physiology B – volume: 59 start-page: 145 year: 1957 end-page: 155 article-title: Torpidity in the white‐throated swift, Anna hummingbird, and poor‐will publication-title: The Condor – volume: 19 start-page: 603 year: 1966 end-page: 617 article-title: A “circannian” rhythm in hibernating species of the genus with observation on their physiological evolution publication-title: Comparative Biochemistry and Physiology – start-page: 109 year: 1978 end-page: 145 – volume: 18 start-page: 275 year: 2003 end-page: 286 article-title: Hibernation: when good clocks go cold publication-title: Journal of Biological Rhythms – volume: 15 start-page: 1087 year: 1939 end-page: 1219 article-title: Exchanges respiratoires des hibernants réveillés publication-title: Annales de Physiologie et de Physicochimie Biologique – volume: 11 start-page: 299 year: 1973 end-page: 313 article-title: Winter nests of the hedgehog ( L.) publication-title: Oecologia – volume: 51 start-page: 349 year: 2011 end-page: 363 article-title: Heterothermy in afrotropical mammals and birds: a review publication-title: Integrative and Comparative Biology – volume: 136 start-page: 380 year: 1962 end-page: 381 article-title: Diurnal torpidity in the California pocket mouse publication-title: Science – volume: 168 start-page: 368 year: 1970 end-page: 369 article-title: Regulation of oxygen consumption and body temperature during torpor in a hummingbird, publication-title: Science – volume: 30 start-page: 33 year: 2005 end-page: 40 article-title: Body temperature profiles of the Korean field mouse during winter aggregation publication-title: Mammal Study – volume: 51 start-page: 413 year: 1975 end-page: 423 article-title: Daily torpor in on an adequate diet publication-title: Comparative Biochemistry and Physiology Part A: Physioloy – start-page: 307 year: 2008 end-page: 316 – volume: 82 start-page: 153 year: 2009 end-page: 162 article-title: Metabolic, ventilatory, and hygric physiology of the gracile mouse opossum ( ) publication-title: Physiological and Biochemical Zoology – volume: 96 start-page: 525 year: 2009 end-page: 530 article-title: The key to winter survival: daily torpor in a small arid‐zone marsupial publication-title: Naturwissenschaften – volume: 215 start-page: 2141 year: 2012 end-page: 2149 article-title: Hibernation energetics of free‐ranging little brown bats publication-title: The Journal of Experimental Biology – volume: 161 start-page: 590 year: 1991 end-page: 597 article-title: The effect of unsaturated and saturated dietary lipids on the pattern of daily torpor and the fatty‐acid composition of tissues and membranes of the deer mouse publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – start-page: 411 year: 1986 end-page: 418 – volume: 156 start-page: 13 year: 1985 end-page: 19 article-title: Allometries of the durations of torpid and euthermic intervals during mammalian hibernation: a test of the theory of metabolic control of the timing of changes in body temperature publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 200 start-page: 467 year: 1997 end-page: 475 article-title: Embryos of survive four years of continuous anoxia: the case for complete metabolic rate depression publication-title: The Journal of Experimental Biology – volume: 12 start-page: 538 year: 2009 end-page: 549 article-title: Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics publication-title: Ecology Letters – volume: 50 start-page: 43 year: 1977 end-page: 52 article-title: Respiration, metabolism, and heat exchange of euthermic and torpid poorwills and hummingbirds publication-title: Physiological Zoology – volume: 122 start-page: 335 year: 1832 end-page: 360 article-title: On hybernation publication-title: Philosophical Transactions of the Royal Society of London – volume: 15 start-page: 131 year: 1980 end-page: 137 article-title: Energetics and water relations of Namib desert rodents publication-title: South African Journal of Zoology – volume: 52 start-page: 397 year: 2006 end-page: 400 article-title: Metabolic aspects of torpor in hummingbirds publication-title: Acta Zoologica Sinica – volume: 22 start-page: 105 year: 1998 end-page: 117 article-title: Ecology and biology of , and (Rodentia: Dipodidae) in Turkey publication-title: Turkish Journal of Zoology – volume: 90 start-page: 2648 year: 2009 article-title: PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals publication-title: Ecology – volume: 107 start-page: 439 year: 1994 end-page: 449 article-title: Thermal preference of Schreiber's long‐fingered ( ) and Cape horseshoe ( ) bats publication-title: Comparative Biochemistry and Physiology Part A: Physiology – start-page: 7 year: 1996 end-page: 12 – volume: 69 start-page: 689 year: 1981 end-page: 692 article-title: Body temperature and metabolism in the red‐backed mousebird ( ) during fasting and torpor publication-title: Comparative Biochemistry and Physiology Part A: Physiology – start-page: 130 year: 1989 end-page: 139 – volume: 162 start-page: 696 year: 1992 end-page: 706 article-title: Body temperature and metabolic rate during natural hypothermia in endotherms publication-title: Journal of Comparative Physiology B – volume: 286 start-page: R174 year: 2004 end-page: R181 article-title: Nocturnal hypometabolism as an overwintering strategy of red deer ( ) publication-title: American Journal of Physiology ‐ Regulatory and Integrative Comparative Physiology – volume: 69 start-page: 150 year: 1988 end-page: 152 article-title: Daily torpor in , a south‐american rodent publication-title: Journal of Mammalogy – volume: 41 start-page: 341 year: 1968 end-page: 357 article-title: Total calorimetric measurements on in hibernation publication-title: Physiological Zoology – start-page: 323 year: 2011 end-page: 334 – year: 1990 – volume: 22 start-page: 1029 year: 2013 end-page: 1039 article-title: A global heterothermic continuum in mammals publication-title: Global Ecology and Biogeography – volume: 171 start-page: 507 year: 2001a end-page: 518 article-title: Heterothermic responses in the speckled mousebird ( ) publication-title: Journal of Comparative Physiology – volume: 11 start-page: 37 year: 1993 end-page: 42 article-title: Effects of food availability and ambient temperature on hibernation in the Japanese dormouse, publication-title: Journal of Ethology – volume: 5 start-page: e10797 year: 2010 article-title: Torpor on demand: heterothermy in the non‐lemur primate publication-title: PLoS ONE – volume: 23 start-page: 237 year: 1973 end-page: 265 article-title: Periodicity of heterothermy in the garden doormouse, (L.) publication-title: Netherlands Journal of Zoology – volume: 11 start-page: 85 year: 1980 end-page: 93 article-title: The effect of constant light and dark on the circadian nature of daily torpor in publication-title: Journal of Interdisciplinary Cycle Research – volume: 59 start-page: 435 year: 1978 end-page: 437 article-title: Energy consumption of resting and hibernating meadow jumping mice publication-title: Journal of Mammalogy – volume: 7 start-page: 129 year: 1982 end-page: 136 article-title: The effect of cave microclimate on winter roosting behavior in the bat, publication-title: Australian Journal of Ecology – volume: 125 start-page: 873 year: 1985 end-page: 878 article-title: Seasonality, fasting endurance, and body size in mammals publication-title: The American Naturalist – volume: 148 start-page: 645 year: 2007 end-page: 650 article-title: Hypothermia torpor in response to cold stress in the native Australian mouse and the introduced house mouse publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology – volume: 172 start-page: 47 year: 2002a end-page: 58 article-title: Body temperature patterns before, during, and after semi‐natural hibernation in the European ground squirrel publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 71 start-page: 77 year: 1964 end-page: 111 article-title: The evolution of torpidity in rodents publication-title: Annales Academiae Scientiarum Fennicae Series A 4 Biologica – volume: 16 start-page: 227 year: 1965 end-page: 248 article-title: Aestivation in the cactus mouse, publication-title: Comparative Biochemistry and Physiology – volume: 266 start-page: R1251 year: 1994 end-page: R1258 article-title: Persistence of circadian rhythmicity in hibernating ground squirrels publication-title: American Journal of Physiology ‐ Regulatory Integrative Comparative Physiology – volume: 182 start-page: 579 year: 2012c end-page: 589 article-title: The evolution of mammalian body temperature: the Cenozoic supraendothermic pulses publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 88 start-page: 379 year: 2010 end-page: 387 article-title: Heme oxygenase expression and Nrf2 signaling during hibernation in ground squirrels publication-title: Canadian Journal of Physiology and Pharmacology – volume: 60 start-page: 93 year: 1987 end-page: 102 article-title: Hibernation and daily torpor in two pygmy possums ( spp., Marsupialia) publication-title: Physiological Zoology – year: 1839 – volume: 194 start-page: 83 year: 1958 end-page: 91 article-title: Oxygen consumption, body temperature and heart rate of woodchucks entering hibernation publication-title: American Journal of Physiology – start-page: 273 year: 1987 end-page: 277 – volume: 36 start-page: 473 year: 1988 end-page: 481 article-title: Daily torpor and thermoregulation in the small dasyurid marsupials and publication-title: Australian Journal of Zoology – volume: 167 start-page: 270 year: 1997 end-page: 279 article-title: Timing of torpor bouts during hibernation in European hamsters ( L.) publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 37 start-page: 212 year: 1964 end-page: 223 article-title: Body temperatures, heart and breathing rate, and evaporative water loss in hummingbirds publication-title: Physiological Zoology – volume: 41 start-page: 103 year: 1991 end-page: 110 article-title: Grey squirrels remember the locations of buried nuts publication-title: Animal Behaviour – volume: 71 start-page: 143 year: 1964 end-page: 156 article-title: On the mechanism of periodic arousal in the hibernating ground squirrel publication-title: Annales Academiae Scientiarum Fennicae Series A – volume: 19 start-page: 33 year: 1994 end-page: 40 article-title: Torpor in relation to reproduction in the mulgara, (Dasyuridae, Marsupialia) publication-title: Journal of Thermal Biology – volume: 127 start-page: 95 year: 1986 end-page: 96 article-title: Experimenteller Nachweis von Torpor bei jungen Mehlschwalben, publication-title: Journal für Ornithologie – year: 2013 article-title: Effect of body mass on hibernation strategies of woodchucks ( ) publication-title: Integrative and Comparative Biology – volume: 156 start-page: 751 year: 1986 end-page: 757 article-title: Thermoregulation and torpor in the Kultarr, (Marsupialia: Dasyuridae) publication-title: Journal of Comparative Physiology B – volume: 50 start-page: 705 year: 1969 end-page: 709 article-title: Periodicity and energetics of torpor in the Kangaroo Mouse, publication-title: Ecology – volume: 65 start-page: 978 year: 1992 end-page: 993 article-title: Ventilatory and metabolic dynamics during entry into and arousal from torpor in hummingbirds publication-title: Physiological Zoology – volume: 92 start-page: 609 year: 1989 end-page: 612 article-title: Hibernation in a monotreme, the echidna ( ) publication-title: Comparative Biochemistry and Physiology Part A: Physiology – volume: 77 start-page: 395 year: 1988 end-page: 399 article-title: Daily torpor and thermoregulation in (Marsupialia): influence of body mass, season, development, reproduction, and sex publication-title: Oecologia – volume: 273 start-page: R2097 year: 1997 end-page: R2104 article-title: Thermal relations of metabolic rate reduction in a hibernating marsupial publication-title: American Journal of Physiology ‐ Regulatory, Integrative and Comparative Physiology – volume: 232 start-page: R203 year: 1977 end-page: R208 article-title: CNS regulation of body temperature in euthermic and hibernating marmots ( ) publication-title: American Journal of Physiology ‐ Regulatory, Integrative and Comparative Physiology – volume: 21 start-page: 403 year: 2009 end-page: 413 article-title: Body temperature patterns during hibernation in a free‐living Alaska marmot ( ) publication-title: Ethology Ecology & Evolution – volume: 171 start-page: 1 year: 2001 end-page: 10 article-title: Heterothermy in elephant shrews, spp. (Macroscelidea): daily torpor or hibernation? publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 125 start-page: 225 year: 1984 end-page: 237 article-title: Torpor und Nahrungsausnutzung bei 4 Mausvogelarten (Coliiformes) publication-title: Journal für Ornithologie – start-page: 155 year: 2012 end-page: 165 – year: 1956 – volume: 144 start-page: 249 year: 1990 end-page: 257 article-title: Lower critical temperatures of blue whales, publication-title: Journal of Theoretical Biology – volume: 43 start-page: 293 year: 1987 end-page: 294 article-title: Circadian pacemaker does not arrest in deep hibernation. Evidence for desynchronization from the light cycle publication-title: Experientia (Basel) – volume: 150 start-page: 176 year: 2008 end-page: 180 article-title: Ontogeny and phylogeny of endothermy and torpor in mammals and birds publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology – volume: 21 start-page: 143 year: 1984 end-page: 148 article-title: Ambient temperature dependence of the periodic respiratory pattern during longterm hibernation in the garden dormouse, L publication-title: Annales Zoologici Fennici – year: 2010 article-title: The effect of environmental variables on patterns of body temperature in the Damaraland mole‐rat, (Ogilby 1838) – volume: 101 start-page: 289 year: 1951 end-page: 299 article-title: The metabolic rates and body temperatures of bats publication-title: The Biological Bulletin – volume: 119 start-page: 251 year: 2002 end-page: 260 article-title: Nocturnal heterothermy and torpor in the malachite sunbird ( ) publication-title: The Auk – volume: 156 start-page: 210 year: 2000 end-page: 219 article-title: The zoogeography of mammalian basal metabolic rate publication-title: The American Naturalist – volume: 66 start-page: 643 year: 1993a end-page: 663 article-title: Reproductive energetics of the tenrecidae (Mammalia: Insectivora). I. The large‐eared tenrec, publication-title: Physiological Zoology – volume: 182 start-page: 1129 year: 2012 end-page: 1140 article-title: Interspecific variation in thermoregulation among three sympatric bats inhabiting a hot, semi‐arid environment publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – year: 1979 – volume: 69 start-page: 426 year: 1970 end-page: 451 article-title: Untersuchungen über die Temperaturregulation australischer Fledermäuse ( ) publication-title: Zeitschrift für vergleichende Physiologie – volume: 77 start-page: 982 year: 2004 end-page: 997 article-title: The evolution of endothermy and its diversity in mammals and birds publication-title: Physiological and Biochemical Zoology – volume: 32 start-page: 331 year: 1987 end-page: 332 article-title: The frequency of winter sleep interruptions in two species of bats hibernating in limestone tunnels publication-title: Acta Theriologica – volume: 209 start-page: 4557 year: 2006 end-page: 4565 article-title: Seasonal adjustment of energy budget in a large wild mammal, the Przewalski horse ( ) I. Energy intake publication-title: The Journal of Experimental Biology – volume: 61 start-page: 201 year: 1963 end-page: 207 article-title: Metabolism of the Mexican free‐tailed bat publication-title: Journal of Cellular and Comparative Physiology – volume: 51 start-page: 337 year: 2011 end-page: 348 article-title: Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy publication-title: Integrative and Comparative Biology – volume: 335 start-page: 959 year: 2012 end-page: 962 article-title: Evolution of the earliest horses driven by climate change in the paleocene‐eocene thermal maximum publication-title: Science – volume: 86 start-page: 15 year: 2005 end-page: 21 article-title: Variation in torpor patterns of free‐ranging black‐tailed and Utah prairie dogs across gradients of elevation publication-title: Journal of Mammalogy – volume: 3 start-page: 117 year: 1978 end-page: 120 article-title: Thermoregulation and metabolism in (Marsupialia Dasyuridae) publication-title: Journal of Thermal Biology – volume: 81 start-page: 442 year: 2008 end-page: 451 article-title: Thermal biology, torpor, and activity in free‐living mulgaras in arid zone australia during the winter reproductive season publication-title: Physiological and Biochemical Zoology – volume: 289 start-page: R1297 year: 2005 end-page: R1306 article-title: Absence of cellular stress in brain after hypoxia induced by arousal from hibernation in Arctic ground squirrels publication-title: American Journal of Physiology‐Regulatory Integrative and Comparative Physiology – volume: 180 start-page: 885 year: 2010 end-page: 893 article-title: Thermoregulatory variation among populations of bats along a latitudinal gradient publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 145 start-page: 465 year: 1990 end-page: 485 article-title: Temperature regulation of marine mammals publication-title: Journal of Theoretical Biology – volume: 70 start-page: 76 year: 2006 end-page: 79 article-title: Winter reproduction of (Rodentia) in the orange groves of Sagunto (Valencia, Spain) / La reproduction en hiver d' (Rodentia) dans les orangeraies de Sagunto (Valence, Espagne) publication-title: Mammalia – volume: 45 start-page: 23 year: 1980 end-page: 29 article-title: Schlaf‐Lethargie bei dem afrikanischen Langzungenflughund Pagenstecher, 1885 publication-title: Zeitschrift für Säugetierkunde – volume: 36 start-page: 122 year: 1963 end-page: 140 article-title: Oxygen consumption of torpid, resting, active and flying hummingbirds publication-title: Physiological Zoology – volume: 67 start-page: 450 year: 1986 end-page: 464 article-title: Winter survival adaptations of the short‐tailed shrew ( ) in Appalachian montane forest publication-title: Journal of Mammalogy – volume: 34 start-page: 177 year: 1961 end-page: 183 article-title: Oxygen consumption, estivation, and hibernation in the Kangaroo Mouse, publication-title: Physiological Zoology – volume: 86 start-page: 653 year: 1979 end-page: 662 article-title: La température corporelle de (Soricidae, Insectivora) au cours de l'activité, du repos normothermique et de la torpeur publication-title: Revue Suisse de Zoologie – volume: 29 start-page: 277 year: 2004 end-page: 284 article-title: Patterns of body temperature variation and torpor in the numbat, (Marsupialia: Myrmecobiidae) publication-title: Journal of Thermal Biology – volume: 207 start-page: 63 year: 1985 end-page: 85 article-title: Ecological energetics of two European shrews: and (Soricidae: Mammalia) publication-title: Journal of Zoology – volume: 54 start-page: 267 year: 1981 end-page: 275 article-title: Torpor and other physiological adaptations of the badger ( ) to cold environment publication-title: Physiological Zoology – volume: 8 start-page: e63111 year: 2013 article-title: Membrane phospholipid fatty acid composition regulates cardiac SERCA activity in a hibernator, the syrian hamster ( ) publication-title: PLoS ONE – volume: 66 start-page: 239 year: 2004 end-page: 274 article-title: Metabolic rate and body temperature reduction during hibernation and daily torpor publication-title: Annual Review of Physiology – volume: 125 start-page: 157 year: 1978 end-page: 163 article-title: Effects of photoperiod, melatonin administration and thyroid block on spontaneous daily torpor and temperature regulation in the white‐footed mouse, publication-title: Journal of Comparative Physiology B – volume: 71 start-page: 49 year: 1969 end-page: 53 article-title: Responses to temperature by the Spotted Nightjar ( ) publication-title: The Condor – volume: 179 start-page: 155 year: 2009 end-page: 164 article-title: Daily rhythmicity and hibernation in the Anatolian ground squirrel under natural and laboratory conditions publication-title: Journal of Comparative Physiology B – volume: 38 start-page: 59 year: 1971 end-page: 90 article-title: Temperature regulation in normothermic and hibernating eastern chipmunk, publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology – volume: 407 start-page: 318 year: 2000 article-title: Metabolism: winter torpor in a large bird publication-title: Nature – volume: 89 start-page: 175 year: 1974 end-page: 195 article-title: Temperaturregulation beim madegassischen Igeltanrek (Martin, 1838) publication-title: Journal of Comparative Physiology A – volume: 32 start-page: 275 year: 1970 end-page: 293 article-title: Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse, publication-title: Comparative Biochemistry and Physiology – volume: 52 start-page: 488 year: 2009 end-page: 497 article-title: A multi‐gene phylogeny reveals novel relationships for aberrant genera of Australo‐Papuan core Corvoidea and polyphyly of the Pachycephalidae and Psophodidae (Aves: Passeriformes) publication-title: Molecular Phylogenetics and Evolution – volume: 175 start-page: 479 year: 2005b end-page: 486 article-title: Torpor and thermal energetics in a tiny Australian vespertilionid, the little forest bat ( ) publication-title: Journal of Comparative Physiology B – volume: 284 start-page: R1306 year: 2003 end-page: R1313 article-title: Tissue‐specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels publication-title: American Journal of Physiology ‐ Regulatory, Integrative and Comparative Physiology – volume: 43 start-page: 133 year: 1965 end-page: 140 article-title: Torpidity in the Mexican ground squirrel (Mearns) publication-title: Canadian Journal of Zoology – volume: 77 start-page: 173 year: 2008 end-page: 183 article-title: Predator–prey size relationships in an African large‐mammal food web publication-title: Journal of Animal Ecology – volume: 23 start-page: 446 year: 1978 end-page: 448 article-title: Observations of torpor‐like behavior in the shrew, publication-title: Acta Theriologica – volume: 23 start-page: 243 year: 1967 end-page: 253 article-title: Nocturnal hypothermia in the Inca dove, publication-title: Comparative Biochemistry and Physiology – volume: 214 start-page: 635 year: 1988 end-page: 651 article-title: Overwintering strategies of the badger, , at 57 °N publication-title: Journal of Zoology (London) – volume: 83 start-page: 149 year: 2010 end-page: 156 article-title: Do owls use torpor? Winter thermoregulation in free‐ranging pearl‐spotted owlets and African scops‐owls publication-title: Physiological and Biochemical Zoology – volume: 53A start-page: 265 year: 1976 end-page: 271 article-title: A biotelemetry study of the thermoregulatory patterns of and during hibernation publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology – volume: 282 start-page: R1054 year: 2002 end-page: R1082 article-title: Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels publication-title: American Journal of Physiology – Regulatory, Integrative and Comparative Physiology – volume: 11 start-page: 51 year: 1987 end-page: 57 article-title: Torpor by the honey possum, (Marsupialia: Tarsipedidae), in response to food intake and low environmental temperature publication-title: Australian Mammalogy – start-page: 223 year: 2000 end-page: 231 – volume: 123 start-page: 393 year: 1999 end-page: 397 article-title: Arousal from torpor in the chilean mouse‐opposum ( ): does non‐shivering thermogenesis play a role? publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology – volume: 183 start-page: 545 year: 1974 end-page: 547 article-title: Torpor in an Andean hummingbird: its ecological significance publication-title: Science – volume: 37 start-page: 685 year: 1990 end-page: 693 article-title: Metabolic physiology of euthermic and torpid honey possums, publication-title: Australian Journal of Zoology – volume: 180 start-page: 869 year: 2010 end-page: 876 article-title: Thermal biology, torpor use and activity patterns of a small diurnal marsupial from a tropical desert: sexual differences publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – start-page: 85 year: 2012 end-page: 97 – volume: 6 start-page: 57 year: 1962 end-page: 68 article-title: Daily torpor in a brazilian murine opossum ( ) publication-title: Comparative Biochemistry and Physiology – volume: 23 start-page: 528 year: 1990 end-page: 537 article-title: Echidnas in the high country publication-title: Australian Natural History – volume: 213 start-page: 393 year: 2010 end-page: 399 article-title: Seasonality of torpor patterns and physiological variables of a free‐ranging subtropical bat publication-title: The Journal of Experimental Biology – volume: 77 start-page: 285 year: 2004 end-page: 296 article-title: Daily torpor in free‐ranging rock elephant shrews, : a year‐long study publication-title: Physiological and Biochemical Zoology – volume: 69 start-page: 121 year: 1981 end-page: 123 article-title: Mammalian hibernation and the oxygen consumption of a denning black bear ( ) publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology – start-page: 174 year: 1992 end-page: 176 – volume: 87 start-page: 1096 year: 2006 end-page: 1102 article-title: Arousal patterns, metabolic rate, and an energy budget of Eastern Red Bats ( ) in winter publication-title: Journal of Mammalogy – volume: 124 start-page: 155 year: 1960 end-page: 171 article-title: Seasonal variations in physiologic functions of arctic ground squirrels and black bears publication-title: Bulletin of the Museum of Comparative Zoology – volume: 123 start-page: 175 year: 2000 end-page: 183 article-title: Daily torpor in the gray mouse lemur ( ) in Madagascar: energetic consequences and biological significance publication-title: Oecologia – volume: 41 start-page: 327 year: 1996 end-page: 330 article-title: Evidence for spontaneous torpor in publication-title: Acta Theriologica – volume: 14 start-page: 580 year: 2000 end-page: 588 article-title: Torpor, arousal and activity of hibernating Greater Horseshoe Bats ( ) publication-title: Functional Ecology – volume: 109 start-page: 55 year: 1948 end-page: 78 article-title: The oxygen consumption and temperature regulation of hibernating hamsters publication-title: Journal of Experimental Zoology – volume: 26 start-page: 241 year: 2011 end-page: 248 article-title: Torpor in dark times: patterns of heterothermy are associated with the lunar cycle in a nocturnal bird publication-title: Journal of Biological Rhythms – volume: 61 start-page: 1 year: 1988 end-page: 9 article-title: The misuse of ratios, indexes, and percentages in ecophysiological research publication-title: Physiological Zoology – volume: 104 start-page: 705 year: 2002 end-page: 724 article-title: Avian facultative hypothermic responses: a review publication-title: The Condor – volume: 76 start-page: 307 year: 1988 end-page: 312 article-title: Ontogeny of metabolism, thermoregulation and torpor in the house martin (L.) and its ecological significance publication-title: Oecologia – volume: 85 start-page: 703 year: 2010 end-page: 727 article-title: Temperature, metabolic power and the evolution of endothermy publication-title: Biological Reviews – start-page: 81 year: 2000 end-page: 94 – volume: 131 start-page: 603 year: 2002 end-page: 611 article-title: The timing of hibernation in Tasmanian echidnas: why do they do it when they do? publication-title: Comparative Biochemistry and Physiology ‐ Part B: Biochemistry and Molecular Biology – volume: 93 start-page: 751 year: 2012 end-page: 758 article-title: Sex differences in torpor patterns during natural hibernation in golden‐mantled ground squirrels ( ) publication-title: Journal of Mammalogy – volume: 82 start-page: 551 year: 2001 end-page: 557 article-title: Facultative torpor in free‐ranging black‐tailed prairie dogs ( ) publication-title: Journal of Mammalogy – volume: 246 start-page: R49 year: 1984 end-page: R55 article-title: CO balance of a heterothermic rodent: comparison of sleep, torpor, and awake states publication-title: American Journal of Physiology ‐ Regulatory, Integrative Comparative Physiology – volume: 157 start-page: 335 year: 1987 end-page: 344 article-title: Seasonality of torpor and thermoregulation in three dasyurid marsupials publication-title: Journal of Comparative Physiology B – volume: 4 start-page: 274 year: 1948 end-page: 276 article-title: On temperature regulation and metabolism in the swift, L., during fasting publication-title: Experientia – volume: 8 start-page: 868 year: 2012 end-page: 870 article-title: Cool running: locomotor performance at low body temperature in mammals publication-title: Biology Letters – volume: 267 start-page: 104 year: 1993 end-page: 112 article-title: Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters ( ) publication-title: Journal of Experimental Zoology – volume: 39 start-page: 78 year: 1974 end-page: 88 article-title: Kälteresistenz und reversible Hypothermie der Etruskerspitzmaus ( , Soricidae, Insectivora) publication-title: Zeitschrift für Säugetierkunde – volume: 74 start-page: 147 year: 2001 end-page: 150 article-title: Mass‐specific and whole‐animal metabolism are not the same concept publication-title: Physiological and Biochemical Zoology – volume: 66 start-page: 477 year: 1964 end-page: 490 article-title: Physiological responses to temperature in the Common Nighthawk publication-title: The Condor – volume: 178 start-page: 887 year: 2008 end-page: 897 article-title: Hibernation and non‐shivering thermogenesis in the Hottentot golden mole ( ) publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 446 start-page: 507 year: 2007 end-page: 512 article-title: The delayed rise of present‐day mammals publication-title: Nature – volume: 5 start-page: 141 year: 2013 end-page: 145 article-title: A new thermoregulatory index for heterothermy publication-title: Methods in Ecology and Evolution – volume: 401 start-page: 877 year: 1999 end-page: 884 article-title: Inferring the historical patterns of biological evolution publication-title: Nature – volume: 167 start-page: 146 year: 1997 end-page: 152 article-title: Facultative hypothermia as a thermoregulatory strategy in the phyllostomid bats, and publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 1 start-page: 1178 year: 2012 end-page: 1184 article-title: Aerobic power, huddling and the efficiency of torpor in the South American marsupial, publication-title: Biology Open – volume: 181 start-page: 125 year: 2011 end-page: 135 article-title: Hibernation in warm hibernacula by free‐ranging Formosan leaf‐nosed bats, , in subtropical Taiwan publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 58 start-page: 701 year: 1980 end-page: 710 article-title: Food habits and caching behavior of urban grey squirrels publication-title: Canadian Journal of Zoology – start-page: 73 year: 2000 end-page: 80 – volume: 50 start-page: 249 year: 1985 end-page: 266 article-title: Sauerstoffverbrauch, Temperaturregulation und Herzfrequenz bei europäischen Spitzmäusen (Soricidae) publication-title: Zeitschrift für Säugetierkunde – volume: 77 start-page: 297 year: 2004 end-page: 304 article-title: Daily torpor in free‐ranging whip‐poor‐wills ( ) publication-title: Physiological and Biochemical Zoology – year: 1848 – volume: 87 start-page: 30 year: 2013 end-page: 45 article-title: Are tropical small mammals physiologically vulnerable to arrhenius effects and climate change? publication-title: Physiological and Biochemical Zoology – volume: 79 start-page: 1093 year: 1998 end-page: 1102 article-title: Energetic advantage of nest‐sharing in a solitary primate, the lesser mouse lemur ( ) publication-title: Journal of Mammalogy – volume: 169 start-page: 361 year: 2012 end-page: 372 article-title: Prey availability affects daily torpor by free‐ranging Australian owlet‐nightjars ( ) publication-title: Oecologia – volume: 178 start-page: 597 year: 2008 end-page: 605 article-title: Hibernation by tree‐roosting bats publication-title: Journal of Comparative Physiology B – volume: 25 start-page: 736 year: 1998 end-page: 739 article-title: Evolution of daily torpor and hibernation in birds and mammals: importance of body size publication-title: Clinical and Experimental Pharmacology and Physiology – volume: 87 start-page: 128 year: 2012b end-page: 162 article-title: The evolution of endothermy in Cenozoic mammals: a plesiomorphic‐apomorphic continuum publication-title: Biological Reviews – volume: 203 start-page: 892 year: 1964 article-title: Responses of a new hibernator ( ) to controlled environments publication-title: Nature – volume: 50 start-page: 215 year: 1977 end-page: 222 article-title: The function of torpor in hummingbirds publication-title: Physiological Zoology – volume: 181 start-page: 437 year: 2011 end-page: 445 article-title: Heterothermy in the southern African hedgehog, publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 28 start-page: 167 year: 2014 end-page: 177 article-title: Body mass dependent use of hibernation: why not prolong the active season, if they can? publication-title: Functional Ecology – volume: 301 start-page: R542 year: 2011 end-page: R547 article-title: Do season and distribution affect thermal energetics of a hibernating bat endemic to the tropics and subtropics? publication-title: American Journal of Physiology ‐ Regulatory, Integrative and Comparative Physiology – volume: 9 start-page: 20121095 year: 2013 article-title: Seasonal variation in telomere length of a hibernating rodent publication-title: Biology Letters – volume: 65 start-page: 457 year: 1992 end-page: 472 article-title: Daily torpor in a free‐ranging goatsucker, the common poorwill ( ) publication-title: Physiological Zoology – volume: 39 start-page: 105 year: 1961 end-page: 120 article-title: Rhythmical arousal from hibernation in the golden‐mantled ground squirrel, publication-title: Canadian Journal of Zoology – volume: 61 start-page: 10 year: 1988 end-page: 16 article-title: Seasonal study of daily torpor in southeastern and from mountains and foothills publication-title: Physiological Zoology – volume: 278 start-page: 3355 year: 2011 end-page: 3363 article-title: Hibernation is associated with increased survival and the evolution of slow life histories among mammals publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 206 start-page: 3381 year: 2003 end-page: 3390 article-title: Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat, , during its spring migration publication-title: The Journal of Experimental Biology – volume: 76 start-page: 240 year: 1995 end-page: 247 article-title: Thermoregulatory responses of cold‐acclimated fat mice ( ) publication-title: Journal of Mammalogy – volume: 117 start-page: 141 year: 1997 end-page: 149 article-title: Seasonal variation in the antioxidant defense system of the brain of the ground squirrel ( ) and response to low temperature compared with rat publication-title: Comparative Biochemistry and Physiology C: Pharmacology, Toxicology and Endocrinology – volume: 113 start-page: 467 year: 1998 end-page: 473 article-title: Seasonal changes in energetics and torpor patterns in the subtropical blossom‐bat (Megachiroptera) publication-title: Oecologia – volume: 94 start-page: 941 year: 2007 end-page: 944 article-title: Yearlong hibernation in a marsupial mammal publication-title: Naturwissenschaften – volume: 279 start-page: R255 year: 2000 end-page: R262 article-title: Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator publication-title: American Journal of Physiology ‐ Regulatory, Integrative and Comparative Physiology – volume: 41 start-page: 67 year: 1993 end-page: 75 article-title: Hibernation in the eastern pygmy possum, (Marsupialia, Burramyidae) publication-title: Australian Journal of Zoology – volume: 41 start-page: 1103 year: 1963 end-page: 1120 article-title: The effect of temperature and photoperiod on the yearly hibernating behavior of captive golden‐mantled ground squirrels ( ) publication-title: Canadian Journal of Zoology – volume: 162 start-page: 274 year: 2012 end-page: 280 article-title: Summer and winter torpor use by a free‐ranging marsupial publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology – year: 1976 – volume: 74 start-page: 789 year: 2001 end-page: 797 article-title: Torpor in free‐ranging tawny frogmouths ( ) publication-title: Physiological and Biochemical Zoology – volume: 180 start-page: 279 year: 2010 end-page: 292 article-title: Seasonal torpor and normothermic energy metabolism in the Eastern chipmunk ( ) publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 177 start-page: 885 year: 2007 end-page: 892 article-title: Basking and torpor in a rock‐dwelling desert marsupial: survival strategies in a resource‐poor environment publication-title: Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology – volume: 68 start-page: 245 year: 1995 end-page: 261 article-title: The energetics of Australasian swifts, frogmouths, and nightjars publication-title: Physiological Zoology – volume: 46 start-page: 612 year: 1965 end-page: 633 article-title: A study of hibernating populations of in northwestern Texas publication-title: Journal of Mammalogy – volume: 79 start-page: 454 year: 2006 end-page: 467 article-title: Extreme plasticity in thermoregulatory behaviors of free‐ranging black‐tailed prairie dogs publication-title: Physiological and Biochemical Zoology – volume: 38 start-page: 60 year: 1957 end-page: 72 article-title: Temperature regulation, hibernation, and aestivation in the Little Pocket Mouse, publication-title: Journal of Mammalogy – volume: 246 start-page: R161 year: 1984 end-page: R178 article-title: Timing of human sleep: recovery process gated by a circadian pacemaker publication-title: American Journal of Physiology – volume: 137 start-page: 173 year: 1980 end-page: 176 article-title: Regulated hypothermia in the desert shrew publication-title: Journal of Comparative Physiology – volume: 59 start-page: 305 year: 1978 end-page: 309 article-title: Metabolism, thermoregulation and torpor in shrew sized marsupials of the genus planigale publication-title: Comparative Biochemistry and Physiology Part A: Physiology – start-page: 3 year: 2012a end-page: 11 – volume: 169 start-page: 453 year: 1999 end-page: 460 article-title: Confirmation of pleisiomorphic daily torpor in mammals: the round‐eared elephant shrew (Macroscelidea) publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 217 start-page: 1246 year: 1969 end-page: 1251 article-title: Bioenergetics and body size in dasyruid marsupials publication-title: American Journal of Physiology – volume: 7 start-page: 65 year: 1983 end-page: 76 article-title: Adaptive physiology of heteromyid rodents publication-title: Great Basin Naturalist Memoirs – volume: 180 start-page: 751 year: 1973 end-page: 753 article-title: Hypothermia of broad‐tailed hummingbirds during incubation in nature with ecological correlations publication-title: Science – year: 2012 – volume: 28 start-page: 521 year: 1980 end-page: 534 article-title: Thermoregulation and torpor in the sugar glider, (Marsupialia, Petauridae) publication-title: Australian Journal of Zoology – volume: 33 start-page: 667 year: 1985 end-page: 681 article-title: The thermal physiology of the feathertail glider, (Marsupialia, Burramyidae) publication-title: Australian Journal of Zoology – volume: 34 start-page: 267 year: 1997 end-page: 287 article-title: Physiology of the European brown bear ( ) publication-title: Annales Zoologici Fennici – volume: 229 start-page: 599 year: 1932 end-page: 635 article-title: Winterschlaf und Wärmehaushalt, untersucht am Siebenschläfer ( ) publication-title: Pflüger's Archiv für die Gesamte Physiologie des Menschen und der Tiere – volume: 19 start-page: 453 year: 1974 end-page: 461 article-title: Oxygen consumption by nursling and adult musk shrews publication-title: Acta Theriologica – volume: 81 start-page: 1004 year: 2000 end-page: 1014 article-title: Physiological traits affecting the distribution and wintering strategy of the bat publication-title: Ecology – volume: 35 start-page: 204 year: 2010 end-page: 215 article-title: Hibernation and daily torpor in Australian mammals publication-title: Australian Zoologist – volume: 6 start-page: 439 year: 1931 end-page: 461 article-title: Hibernation in mammals publication-title: The Quarterly Review of Biology – volume: 99 start-page: 780 year: 1997 end-page: 788 article-title: Torpor in three species of brazilian hummingbirds under semi‐natural conditions publication-title: The Condor – start-page: 65 year: 1993 end-page: 80 – volume: 83 start-page: 504 year: 1990 end-page: 511 article-title: Hibernating patterns of free‐ranging Columbian Ground Squirrels publication-title: Oecologia – volume: 25 start-page: 537 year: 2011 end-page: 547 article-title: Hypometabolism and basking: the strategies of Alpine ibex to endure harsh over‐wintering conditions publication-title: Functional Ecology – volume: 12 start-page: 253 year: 1999 end-page: 266 article-title: Thermoregulation and patterns of torpor in the spectacled dormouse, (A. Smith 1829) (Gliridae) publication-title: Tropical Zoology – volume: 74 start-page: 399 year: 1983 end-page: 407 article-title: Temperature regulation and water metabolism in the elephant shrew publication-title: Comparative Biochemistry and Physiology Part A: Physiology – ident: e_1_2_7_241_1 doi: 10.1111/j.1469-185X.2011.00188.x – ident: e_1_2_7_35_1 doi: 10.1111/geb.12077 – ident: e_1_2_7_160_1 doi: 10.1644/11-MAMM-A-120.1 – ident: e_1_2_7_113_1 doi: 10.1007/BF00692755 – volume-title: The Natural History of Hibernating Bats year: 1990 ident: e_1_2_7_323_1 – ident: e_1_2_7_100_1 doi: 10.1071/ZO9850667 – ident: e_1_2_7_114_1 doi: 10.1086/physzool.60.1.30158631 – ident: e_1_2_7_171_1 doi: 10.2307/1538547 – ident: e_1_2_7_40_1 doi: 10.1016/0300-9629(80)90060-2 – ident: e_1_2_7_209_1 doi: 10.1086/589545 – ident: e_1_2_7_135_1 doi: 10.1007/s00360-007-0186-z – ident: e_1_2_7_311_1 doi: 10.1080/03946975.1999.10539392 – ident: e_1_2_7_362_1 – ident: e_1_2_7_223_1 doi: 10.1086/physzool.37.2.30152332 – ident: e_1_2_7_30_1 doi: 10.1038/nature05634 – ident: e_1_2_7_39_1 doi: 10.1139/z85-442 – ident: e_1_2_7_36_1 doi: 10.2307/1381835 – ident: e_1_2_7_200_1 doi: 10.1007/BF00217110 – ident: e_1_2_7_228_1 doi: 10.1086/502816 – ident: e_1_2_7_277_1 – ident: e_1_2_7_126_1 doi: 10.1007/978-3-642-28678-0_10 – ident: e_1_2_7_68_1 doi: 10.1086/595967 – ident: e_1_2_7_193_1 doi: 10.1007/s00360-009-0350-8 – ident: e_1_2_7_326_1 doi: 10.1073/pnas.0704699104 – ident: e_1_2_7_289_1 doi: 10.1016/S1096-4959(02)00018-0 – ident: e_1_2_7_369_1 doi: 10.1086/physzool.58.4.30156018 – ident: e_1_2_7_381_1 doi: 10.1016/j.cbpa.2012.03.017 – ident: e_1_2_7_242_1 doi: 10.1007/s00360-011-0642-7 – ident: e_1_2_7_378_1 doi: 10.1007/s00360-007-0249-1 – ident: e_1_2_7_285_1 doi: 10.1139/z65-011 – ident: e_1_2_7_348_1 doi: 10.1111/j.1365-2435.2010.01806.x – ident: e_1_2_7_391_1 doi: 10.1007/s00114-005-0063-0 – ident: e_1_2_7_139_1 doi: 10.1515/MAMM.2006.017 – ident: e_1_2_7_86_1 doi: 10.1007/s00442-011-2214-7 – ident: e_1_2_7_397_1 doi: 10.1071/ZO9890685 – ident: e_1_2_7_54_1 doi: 10.1007/978-3-642-28678-0_3 – start-page: 119 volume-title: Life in the Cold: Ecological, Physiological, and Molecular Mechanisms year: 1993 ident: e_1_2_7_15_1 – ident: e_1_2_7_272_1 doi: 10.1007/BF00345702 – ident: e_1_2_7_183_1 doi: 10.1007/s003600100226 – ident: e_1_2_7_296_1 doi: 10.1007/BF02350004 – ident: e_1_2_7_129_1 doi: 10.1086/physzool.63.3.30156224 – ident: e_1_2_7_74_1 doi: 10.1163/002829673X00067 – ident: e_1_2_7_307_1 doi: 10.1139/z61-013 – ident: e_1_2_7_78_1 doi: 10.1007/978-3-662-04162-8_4 – ident: e_1_2_7_130_1 doi: 10.1007/s00360-007-0147-6 – ident: e_1_2_7_232_1 – ident: e_1_2_7_215_1 doi: 10.1016/0300-9629(82)90275-4 – ident: e_1_2_7_251_1 doi: 10.1152/ajpregu.00260.2005 – ident: e_1_2_7_252_1 doi: 10.1016/0010-406X(65)90062-9 – ident: e_1_2_7_358_1 doi: 10.1086/physzool.66.5.30163816 – ident: e_1_2_7_61_1 doi: 10.1016/j.physbeh.2009.04.013 – ident: e_1_2_7_134_1 doi: 10.1644/10-MAMM-A-097.1 – ident: e_1_2_7_119_1 doi: 10.1146/annurev.physiol.66.032102.115105 – volume: 23 start-page: 528 year: 1990 ident: e_1_2_7_145_1 article-title: Echidnas in the high country publication-title: Australian Natural History – start-page: 117 volume-title: Living in the Cold: 2nd International Symposium year: 1989 ident: e_1_2_7_32_1 – ident: e_1_2_7_97_1 doi: 10.1016/j.ympev.2006.03.031 – volume: 19 start-page: 48 year: 1933 ident: e_1_2_7_93_1 article-title: Winterstarre, Winterschlaf und Winterruhe. Eine kurze biologischphysiologische Studie publication-title: Mitteilungen aus dem Zoologischen Museum in Berlin – volume-title: Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of H.M.S. Beagle Round the World: Under the Command of Capt. Fitz Roy, R.N year: 1845 ident: e_1_2_7_77_1 – start-page: 307 volume-title: Hypometabolism in Animals: Torpor, Hibernation and Cryobiology. 13th International Hibernation Symposium year: 2008 ident: e_1_2_7_275_1 – volume: 87 start-page: 739 year: 1980 ident: e_1_2_7_111_1 article-title: Le métabolisme énergétique de Suncus etruscus (Soricidae, Insectivora) en torpeur publication-title: Revue Suisse de Zoologie doi: 10.5962/bhl.part.85543 – ident: e_1_2_7_217_1 doi: 10.1007/BF00333769 – ident: e_1_2_7_269_1 doi: 10.2307/1381276 – ident: e_1_2_7_22_1 doi: 10.4098/AT.arch.96-31 – ident: e_1_2_7_317_1 doi: 10.1098/rspb.2011.0881 – volume: 71 start-page: 77 year: 1964 ident: e_1_2_7_51_1 article-title: The evolution of torpidity in rodents publication-title: Annales Academiae Scientiarum Fennicae Series A 4 Biologica – ident: e_1_2_7_173_1 doi: 10.1007/BF01640590 – volume: 76 start-page: 211 year: 1999 ident: e_1_2_7_337_1 article-title: Energy metabolism and body temperature in the Blue‐naped Mousebird (Urocolius macrourus) during torpor publication-title: Ornis Fennica – ident: e_1_2_7_133_1 doi: 10.1016/0306-4565(94)90007-8 – ident: e_1_2_7_212_1 doi: 10.1007/BF03192411 – ident: e_1_2_7_398_1 doi: 10.1016/0300-9629(72)90044-8 – ident: e_1_2_7_404_1 doi: 10.1086/648736 – ident: e_1_2_7_2_1 doi: 10.1080/00359190409519168 – start-page: 73 volume-title: Life in the Cold. 11th International Hibernation Symposium year: 2000 ident: e_1_2_7_4_1 – ident: e_1_2_7_361_1 doi: 10.1002/cphy.c130007 – ident: e_1_2_7_162_1 doi: 10.1007/BF00301619 – ident: e_1_2_7_204_1 doi: 10.1038/35030297 – ident: e_1_2_7_332_1 doi: 10.1152/ajpregu.00688.2007 – ident: e_1_2_7_144_1 doi: 10.1016/0300-9629(89)90375-7 – volume: 217 start-page: 1246 year: 1969 ident: e_1_2_7_254_1 article-title: Bioenergetics and body size in dasyruid marsupials publication-title: American Journal of Physiology doi: 10.1152/ajplegacy.1969.217.4.1246 – ident: e_1_2_7_394_1 doi: 10.1007/s003600000129 – ident: e_1_2_7_273_1 doi: 10.1016/0010-406X(62)90043-9 – ident: e_1_2_7_224_1 doi: 10.2307/1365224 – ident: e_1_2_7_10_1 doi: 10.2307/1378202 – ident: e_1_2_7_56_1 doi: 10.1007/s003600000135 – start-page: 174 volume-title: Platypus and Echidnas year: 1992 ident: e_1_2_7_11_1 – ident: e_1_2_7_115_1 doi: 10.1007/BF00378050 – ident: e_1_2_7_321_1 doi: 10.1007/BF01641448 – ident: e_1_2_7_344_1 doi: 10.1007/BF00694790 – ident: e_1_2_7_390_1 doi: 10.1016/0300-9629(81)90645-9 – ident: e_1_2_7_57_1 doi: 10.1126/science.183.4124.545 – ident: e_1_2_7_294_1 – ident: e_1_2_7_385_1 doi: 10.1007/s003600050074 – ident: e_1_2_7_8_1 doi: 10.1152/ajpregu.00593.2002 – ident: e_1_2_7_255_1 doi: 10.1016/0010-406X(67)90492-6 – ident: e_1_2_7_221_1 doi: 10.2307/1382652 – start-page: 65 volume-title: Life in the Cold: Ecological, Physiological, and Molecular Mechanisms year: 1993 ident: e_1_2_7_6_1 – ident: e_1_2_7_335_1 doi: 10.1002/jez.1402670203 – ident: e_1_2_7_396_1 doi: 10.1080/02541858.1980.11447700 – ident: e_1_2_7_249_1 doi: 10.1080/09291018009359691 – ident: e_1_2_7_297_1 doi: 10.1111/j.1365-2656.2007.01314.x – ident: e_1_2_7_302_1 doi: 10.1093/bioinformatics/btg412 – ident: e_1_2_7_327_1 doi: 10.1111/j.1365-2435.2008.01420.x – ident: e_1_2_7_343_1 doi: 10.2307/1538740 – ident: e_1_2_7_366_1 doi: 10.1007/BF02464401 – ident: e_1_2_7_190_1 – start-page: 7 volume-title: Adaptations to the Cold. Tenth International Hibernation Symposium year: 1996 ident: e_1_2_7_288_1 – start-page: 188 volume-title: About Bats year: 1970 ident: e_1_2_7_163_1 – ident: e_1_2_7_206_1 doi: 10.1081/CBI-100101036 – ident: e_1_2_7_353_1 doi: 10.1152/ajpregu.1997.273.6.R2097 – ident: e_1_2_7_66_1 doi: 10.1016/j.jtherbio.2004.05.003 – ident: e_1_2_7_153_1 doi: 10.1111/j.1442-9993.1982.tb01586.x – volume: 211 start-page: 1108 year: 1966 ident: e_1_2_7_165_1 article-title: Oxygen consumption temperature and water loss in bats from different environments publication-title: American Journal of Physiology doi: 10.1152/ajplegacy.1966.211.5.1108 – ident: e_1_2_7_341_1 doi: 10.1007/s003600050008 – ident: e_1_2_7_313_1 – volume-title: Animal Physiology: Adaptation and Environment year: 1979 ident: e_1_2_7_342_1 – ident: e_1_2_7_367_1 doi: 10.1086/physzool.61.1.30163731 – ident: e_1_2_7_28_1 doi: 10.1111/1365-2435.12173 – ident: e_1_2_7_374_1 doi: 10.1242/jeb.065516 – start-page: 25 volume-title: Life in the Cold: Ecological, Physiological and Molecular Mechanisms year: 1993 ident: e_1_2_7_167_1 – volume-title: R: A Language and Environment for Statistical Computing year: 2013 ident: e_1_2_7_324_1 – volume: 15 start-page: 69 year: 1978 ident: e_1_2_7_368_1 article-title: Seasonal differences in O2 consumption and respiratory quotient in a hibernator (Erinaceus europaeus L.) publication-title: Annales Zoologici Fennici – ident: e_1_2_7_92_1 doi: 10.1007/s00360-005-0475-3 – ident: e_1_2_7_237_1 doi: 10.1644/11-MAMM-A-144.1 – ident: e_1_2_7_185_1 doi: 10.1086/509211 – ident: e_1_2_7_188_1 doi: 10.1016/S0003-3472(05)80506-8 – volume: 124 start-page: 282 year: 1960 ident: e_1_2_7_363_1 article-title: Some physiological principles governing hibernation in Citellus beecheyi publication-title: Bulletin of the Museum of Comparative Zoology – ident: e_1_2_7_319_1 doi: 10.1007/978-3-642-28678-0_8 – ident: e_1_2_7_104_1 doi: 10.1198/016214502760047131 – ident: e_1_2_7_103_1 doi: 10.1111/j.1469-7998.1988.tb03763.x – ident: e_1_2_7_346_1 doi: 10.1007/s00360-012-0661-z – ident: e_1_2_7_147_1 doi: 10.1111/j.1469-185X.1999.tb00180.x – volume: 50 start-page: 249 year: 1985 ident: e_1_2_7_283_1 article-title: Sauerstoffverbrauch, Temperaturregulation und Herzfrequenz bei europäischen Spitzmäusen (Soricidae) publication-title: Zeitschrift für Säugetierkunde – ident: e_1_2_7_258_1 doi: 10.1177/0748730410368621 – ident: e_1_2_7_83_1 doi: 10.2307/1366047 – ident: e_1_2_7_181_1 doi: 10.1086/367949 – ident: e_1_2_7_187_1 doi: 10.1139/Z07-067 – ident: e_1_2_7_50_1 doi: 10.1016/S0742-8413(97)00061-3 – ident: e_1_2_7_42_1 doi: 10.1086/317755 – ident: e_1_2_7_231_1 doi: 10.1007/s00360-009-0405-x – ident: e_1_2_7_85_1 doi: 10.1086/physzool.54.1.30155808 – ident: e_1_2_7_376_1 doi: 10.1002/jcp.1030650313 – ident: e_1_2_7_329_1 doi: 10.1098/rsbl.2012.0269 – ident: e_1_2_7_271_1 doi: 10.1016/0010-406X(70)90359-2 – ident: e_1_2_7_380_1 doi: 10.1098/rsbl.2011.0758 – ident: e_1_2_7_340_1 doi: 10.1007/s004420051003 – ident: e_1_2_7_387_1 doi: 10.1016/0010-406X(70)90941-2 – volume: 41 start-page: 341 year: 1968 ident: e_1_2_7_155_1 article-title: Total calorimetric measurements on Citellus lateralis in hibernation publication-title: Physiological Zoology doi: 10.1086/physzool.41.3.30155466 – ident: e_1_2_7_379_1 doi: 10.1098/rsbl.2012.1095 – ident: e_1_2_7_69_1 doi: 10.1007/s00360-012-0683-6 – ident: e_1_2_7_12_1 doi: 10.2307/1381290 – volume: 11 start-page: 51 year: 1987 ident: e_1_2_7_64_1 article-title: Torpor by the honey possum, Tarsipes rostratus (Marsupialia: Tarsipedidae), in response to food intake and low environmental temperature publication-title: Australian Mammalogy doi: 10.1071/AM88005 – ident: e_1_2_7_333_1 doi: 10.1007/978-3-642-28678-0 – ident: e_1_2_7_198_1 doi: 10.1007/s00360-007-0164-5 – ident: e_1_2_7_238_1 – ident: e_1_2_7_280_1 doi: 10.1086/381470 – ident: e_1_2_7_31_1 doi: 10.1007/s00114-010-0707-6 – ident: e_1_2_7_355_1 doi: 10.1242/jeb.038224 – ident: e_1_2_7_34_1 doi: 10.2307/1313595 – ident: e_1_2_7_184_1 doi: 10.1007/s003600100227 – ident: e_1_2_7_49_1 doi: 10.1007/s00360-003-0326-z – ident: e_1_2_7_156_1 doi: 10.1086/physzool.54.3.30159941 – ident: e_1_2_7_306_1 doi: 10.1016/0010-406X(69)91312-7 – ident: e_1_2_7_230_1 doi: 10.1016/0300-9629(83)90623-0 – ident: e_1_2_7_3_1 doi: 10.1890/0012-9658(2000)081[1004:PTATDA]2.0.CO;2 – ident: e_1_2_7_59_1 doi: 10.1111/j.1469-185X.2010.00122.x – start-page: 130 volume-title: Energy Transformations in Cells and Organisms year: 1989 ident: e_1_2_7_161_1 – ident: e_1_2_7_287_1 doi: 10.1139/Y10-017 – ident: e_1_2_7_88_1 doi: 10.4098/AT.arch.74-37 – ident: e_1_2_7_75_1 doi: 10.1152/ajpregu.1984.246.2.R161 – ident: e_1_2_7_276_1 doi: 10.2307/1379934 – ident: e_1_2_7_127_1 doi: 10.1111/j.1469-7998.1991.tb04390.x – ident: e_1_2_7_339_1 doi: 10.1016/S0306-4565(01)00032-8 – ident: e_1_2_7_373_1 doi: 10.1016/j.cbpa.2007.08.013 – volume-title: Hibernation and Torpor in Mammals and Birds year: 1982 ident: e_1_2_7_248_1 – ident: e_1_2_7_176_1 doi: 10.1007/s003600050049 – ident: e_1_2_7_320_1 doi: 10.1016/0300-9629(81)90157-2 – ident: e_1_2_7_286_1 doi: 10.4098/AT.arch.78-36 – ident: e_1_2_7_13_1 doi: 10.1152/ajpregu.00579.2002 – ident: e_1_2_7_91_1 doi: 10.1007/978-1-4899-4541-9 – ident: e_1_2_7_105_1 doi: 10.1242/bio.20122790 – ident: e_1_2_7_220_1 doi: 10.1086/380210 – ident: e_1_2_7_393_1 doi: 10.1007/s00360-005-0008-0 – volume: 7 start-page: 185 year: 1984 ident: e_1_2_7_122_1 article-title: Correlates of torpor in the insectivorous dasyurid marsupial Sminthopsis murina publication-title: Australian Mammalogy doi: 10.1071/AM84020 – ident: e_1_2_7_328_1 doi: 10.1016/S0300-9629(76)80076-X – ident: e_1_2_7_81_1 doi: 10.1007/s00360-008-0318-0 – ident: e_1_2_7_132_1 doi: 10.7882/AZ.2010.009 – ident: e_1_2_7_243_1 doi: 10.1086/673313 – ident: e_1_2_7_262_1 doi: 10.1007/s003600100201 – ident: e_1_2_7_151_1 doi: 10.1126/science.168.3929.368 – ident: e_1_2_7_291_1 doi: 10.1371/journal.pone.0010797 – volume: 124 start-page: 155 year: 1960 ident: e_1_2_7_172_1 article-title: Seasonal variations in physiologic functions of arctic ground squirrels and black bears publication-title: Bulletin of the Museum of Comparative Zoology – ident: e_1_2_7_211_1 doi: 10.1007/BF02164408 – ident: e_1_2_7_314_1 doi: 10.1016/S0300-9629(76)80034-5 – volume: 266 start-page: R1251 year: 1994 ident: e_1_2_7_142_1 article-title: Persistence of circadian rhythmicity in hibernating ground squirrels publication-title: American Journal of Physiology ‐ Regulatory Integrative Comparative Physiology doi: 10.1152/ajpregu.1994.266.4.R1251 – volume: 39 start-page: 78 year: 1974 ident: e_1_2_7_384_1 article-title: Kälteresistenz und reversible Hypothermie der Etruskerspitzmaus (Suncus etruscus, Soricidae, Insectivora) publication-title: Zeitschrift für Säugetierkunde – ident: e_1_2_7_227_1 doi: 10.1644/1545-1542(2005)086<0015:VITPOF>2.0.CO;2 – ident: e_1_2_7_203_1 doi: 10.1007/s00360-010-0507-5 – ident: e_1_2_7_20_1 doi: 10.1086/physzool.34.3.30152696 – ident: e_1_2_7_67_1 doi: 10.1007/s00360-010-0452-3 – ident: e_1_2_7_225_1 doi: 10.1016/S0022-5193(05)80323-6 – ident: e_1_2_7_244_1 doi: 10.1007/s003600050242 – volume: 15 start-page: 1087 year: 1939 ident: e_1_2_7_195_1 article-title: Exchanges respiratoires des hibernants réveillés publication-title: Annales de Physiologie et de Physicochimie Biologique – ident: e_1_2_7_356_1 doi: 10.1152/ajpregu.00792.2010 – volume-title: The Physiology of Natural Hibernation year: 1961 ident: e_1_2_7_196_1 – volume: 87 start-page: 1 year: 1965 ident: e_1_2_7_304_1 article-title: On hypothermia and torpidity in the nightjar (Caprimulgus europaeus L.) publication-title: Annales Academiae Scientiarum Fennicae A IV. Biologica – ident: e_1_2_7_392_1 doi: 10.1139/z05-074 – ident: e_1_2_7_150_1 doi: 10.1086/physzool.50.3.30155724 – ident: e_1_2_7_350_1 doi: 10.1007/978-3-642-28678-0_14 – ident: e_1_2_7_330_1 doi: 10.1177/0748730403254971 – ident: e_1_2_7_202_1 doi: 10.1111/j.1466-8238.2011.00679.x – ident: e_1_2_7_159_1 doi: 10.1086/319310 – ident: e_1_2_7_166_1 doi: 10.1086/physzool.63.6.30152634 – ident: e_1_2_7_123_1 doi: 10.1007/BF00693360 – ident: e_1_2_7_312_1 doi: 10.1071/MU9850200 – ident: e_1_2_7_24_1 doi: 10.1071/ZO98058 – ident: e_1_2_7_194_1 doi: 10.1007/s00360-008-0298-0 – ident: e_1_2_7_118_1 doi: 10.1111/j.1440-1681.1998.tb02287.x – ident: e_1_2_7_19_1 doi: 10.2307/1364720 – ident: e_1_2_7_235_1 doi: 10.1086/284385 – ident: e_1_2_7_386_1 doi: 10.1016/B978-0-12-734550-5.50009-0 – ident: e_1_2_7_102_1 doi: 10.1007/978-3-662-04162-8_24 – ident: e_1_2_7_201_1 doi: 10.1674/0003-0031-167.2.396 – ident: e_1_2_7_29_1 doi: 10.1007/s00114-008-0471-z – ident: e_1_2_7_154_1 doi: 10.1007/s00360-010-0531-5 – ident: e_1_2_7_210_1 doi: 10.1007/s00360-010-0459-9 – ident: e_1_2_7_261_1 doi: 10.3106/1348-6160(2005)30[33:BTPOTK]2.0.CO;2 – ident: e_1_2_7_298_1 doi: 10.1038/nature09210 – volume: 80 start-page: 3 year: 1964 ident: e_1_2_7_214_1 article-title: Hibernation of the hedgehog (Erinaceus europaeus L.): the periodicity of hibernation of undisturbed animals during the winter in a constant ambient temperature publication-title: Annales Academiae Scientiarum Fennicae A IV Biologica – ident: e_1_2_7_250_1 doi: 10.1007/BF00686752 – ident: e_1_2_7_259_1 doi: 10.1086/505999 – ident: e_1_2_7_240_1 doi: 10.1007/978-3-642-28678-0_1 – ident: e_1_2_7_284_1 doi: 10.1139/Z08-150 – ident: e_1_2_7_7_1 doi: 10.1371/journal.pone.0018641 – ident: e_1_2_7_357_1 doi: 10.1007/s00360-008-0328-y – ident: e_1_2_7_146_1 doi: 10.1086/425188 – ident: e_1_2_7_207_1 doi: 10.1007/s004420051021 – ident: e_1_2_7_65_1 doi: 10.1525/cond.2008.110.1.110 – ident: e_1_2_7_99_1 doi: 10.1071/ZO9800521 – ident: e_1_2_7_131_1 doi: 10.1086/physzool.61.5.30161266 – ident: e_1_2_7_38_1 doi: 10.1007/s00360-004-0414-8 – start-page: 411 volume-title: Living in the Cold: Physiological and Biochemical Adaptations year: 1986 ident: e_1_2_7_72_1 – ident: e_1_2_7_87_1 doi: 10.1642/0004-8038(2002)119[0251:NHATIT]2.0.CO;2 – ident: e_1_2_7_372_1 doi: 10.1126/science.1199435 – ident: e_1_2_7_308_1 doi: 10.1139/z63-087 – ident: e_1_2_7_389_1 doi: 10.1007/s00114-007-0293-4 – ident: e_1_2_7_293_1 doi: 10.1016/S1095-6433(99)00081-1 – ident: e_1_2_7_90_1 doi: 10.1644/05-MAMM-A-254R3.1 – start-page: 5 volume-title: Living in the Cold: 2nd International Symposium year: 1989 ident: e_1_2_7_141_1 – ident: e_1_2_7_315_1 doi: 10.1007/BF00297762 – ident: e_1_2_7_124_1 doi: 10.1071/ZO9880473 – ident: e_1_2_7_192_1 doi: 10.1890/08-1494.1 – ident: e_1_2_7_274_1 doi: 10.1016/0306-4565(78)90003-7 – start-page: 53 volume-title: Living in the Cold: 2nd International Symposium year: 1989 ident: e_1_2_7_334_1 – ident: e_1_2_7_229_1 doi: 10.1644/1545-1542(2001)082<0551:FTIFRB>2.0.CO;2 – ident: e_1_2_7_322_1 doi: 10.1007/BF00379969 – ident: e_1_2_7_222_1 doi: 10.1086/physzool.36.2.30155436 – ident: e_1_2_7_270_1 doi: 10.1177/074873001129001971 – volume-title: Der Winterschlaf mit seinen ökologischen und physiologischen Begleiterscheinungen year: 1956 ident: e_1_2_7_94_1 – ident: e_1_2_7_125_1 doi: 10.1007/s003600050270 – volume: 21 start-page: 143 year: 1984 ident: e_1_2_7_301_1 article-title: Ambient temperature dependence of the periodic respiratory pattern during longterm hibernation in the garden dormouse, Eliomys quercinus L publication-title: Annales Zoologici Fennici – ident: e_1_2_7_112_1 doi: 10.1111/j.1461-0248.2009.01307.x – volume-title: Der Ziegenmelker (Caprimulgus europaeus L.) year: 1969 ident: e_1_2_7_338_1 – ident: e_1_2_7_388_1 doi: 10.1016/0300-9629(71)90098-3 – volume: 46 start-page: 95 year: 1973 ident: e_1_2_7_178_1 article-title: Thermoregulation at high ambient temperatures of six species of ground squirrels (Spermophilus spp.) from different habitats publication-title: Physiological Zoology doi: 10.1086/physzool.46.2.30155591 – ident: e_1_2_7_205_1 doi: 10.1086/324097 – volume: 18 start-page: 137 year: 1964 ident: e_1_2_7_197_1 article-title: La dépense d'énergie des mammiferes en hibernation publication-title: Archives des Sciences Physiologiques – ident: e_1_2_7_213_1 doi: 10.1016/B978-1-4160-6645-3.00028-1 – ident: e_1_2_7_281_1 doi: 10.1007/978-3-642-28678-0_4 – ident: e_1_2_7_265_1 doi: 10.1093/icb/icr035 – ident: e_1_2_7_365_1 doi: 10.1016/j.cbpa.2007.09.005 – start-page: 273 volume-title: Possums and Opossums: Studies in Evolution year: 1987 ident: e_1_2_7_143_1 – ident: e_1_2_7_236_1 doi: 10.1007/s00360-010-0509-3 – ident: e_1_2_7_116_1 doi: 10.1007/BF00260749 – ident: e_1_2_7_17_1 doi: 10.2307/1376476 – ident: e_1_2_7_267_1 doi: 10.2307/1948477 – ident: e_1_2_7_109_1 doi: 10.1007/BF00692921 – ident: e_1_2_7_80_1 doi: 10.1007/s00360-004-0470-0 – ident: e_1_2_7_233_1 doi: 10.1086/658171 – ident: e_1_2_7_110_1 doi: 10.5962/bhl.part.82328 – volume: 7 start-page: 65 year: 1983 ident: e_1_2_7_253_1 article-title: Adaptive physiology of heteromyid rodents publication-title: Great Basin Naturalist Memoirs – ident: e_1_2_7_352_1 doi: 10.1086/605457 – ident: e_1_2_7_266_1 doi: 10.1086/physzool.68.2.30166502 – ident: e_1_2_7_191_1 doi: 10.1242/jeb.066514 – ident: e_1_2_7_186_1 doi: 10.1080/10635150701313830 – ident: e_1_2_7_199_1 doi: 10.1007/978-3-642-68651-1_35 – ident: e_1_2_7_48_1 doi: 10.1046/j.1365-2435.1999.00302.x – ident: e_1_2_7_278_1 doi: 10.1111/2041-210X.12131 – volume-title: Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse year: 1848 ident: e_1_2_7_26_1 – ident: e_1_2_7_310_1 doi: 10.2307/1383001 – ident: e_1_2_7_216_1 doi: 10.1007/BF00388050 – ident: e_1_2_7_256_1 doi: 10.1007/s10336-007-0205-6 – ident: e_1_2_7_43_1 doi: 10.2307/1936263 – ident: e_1_2_7_360_1 doi: 10.1007/978-94-009-5772-5 – volume: 45 start-page: 23 year: 1980 ident: e_1_2_7_218_1 article-title: Schlaf‐Lethargie bei dem afrikanischen Langzungenflughund Megaloglossus woermanni Pagenstecher, 1885 publication-title: Zeitschrift für Säugetierkunde – ident: e_1_2_7_359_1 doi: 10.1086/physzool.66.5.30163817 – volume: 34 start-page: 267 year: 1997 ident: e_1_2_7_170_1 article-title: Physiology of the European brown bear (Ursus arctos arctos) publication-title: Annales Zoologici Fennici – ident: e_1_2_7_177_1 doi: 10.1086/physzool.38.3.30152836 – start-page: 110 volume-title: Mammalian Hibernation III year: 1967 ident: e_1_2_7_364_1 – volume: 54 start-page: 89 year: 1999 ident: e_1_2_7_325_1 article-title: Quolls on the run publication-title: Australian Geographic – ident: e_1_2_7_44_1 doi: 10.1016/0300-9629(94)90023-X – volume-title: Journal and Remarks: 1832–1836 year: 1839 ident: e_1_2_7_76_1 – ident: e_1_2_7_290_1 doi: 10.1016/j.ympev.2009.03.019 – ident: e_1_2_7_79_1 doi: 10.1038/429825a – ident: e_1_2_7_149_1 doi: 10.1126/science.1157704 – ident: e_1_2_7_264_1 doi: 10.1650/0010-5422(2002)104[0705:AFHRAR]2.0.CO;2 – ident: e_1_2_7_179_1 doi: 10.1086/physzool.52.2.30152564 – volume: 246 start-page: R49 year: 1984 ident: e_1_2_7_27_1 article-title: CO2 balance of a heterothermic rodent: comparison of sleep, torpor, and awake states publication-title: American Journal of Physiology ‐ Regulatory, Integrative Comparative Physiology doi: 10.1152/ajpregu.1984.246.1.R49 – ident: e_1_2_7_174_1 doi: 10.1016/S0022-5193(05)80482-5 – ident: e_1_2_7_375_1 doi: 10.1126/science.136.3514.380 – volume: 194 start-page: 83 year: 1958 ident: e_1_2_7_247_1 article-title: Oxygen consumption, body temperature and heart rate of woodchucks entering hibernation publication-title: American Journal of Physiology doi: 10.1152/ajplegacy.1958.194.1.83 – ident: e_1_2_7_383_1 doi: 10.3377/1562-7020(2007)42[50:TIOTIW]2.0.CO;2 – ident: e_1_2_7_219_1 doi: 10.1242/jeb.02535 – ident: e_1_2_7_305_1 doi: 10.1038/203892a0 – ident: e_1_2_7_82_1 doi: 10.1007/978-3-642-28678-0_2 – ident: e_1_2_7_136_1 doi: 10.1086/physzool.68.6.30163788 – volume-title: Phylogeny and Classification of Birds. A Study in Molecular Evolution year: 1990 ident: e_1_2_7_347_1 – volume: 72 start-page: 371 year: 1999 ident: e_1_2_7_349_1 article-title: Food availability regulates energy expenditure and torpor in the Chilean mouse‐opossum Thylamys elegans publication-title: Revista Chilena de Historia Natural – ident: e_1_2_7_18_1 doi: 10.1007/BF00297716 – volume: 22 start-page: 105 year: 1998 ident: e_1_2_7_63_1 article-title: Ecology and biology of Allactaga elater, Allactaga euphratica and Allactaga williamsi (Rodentia: Dipodidae) in Turkey publication-title: Turkish Journal of Zoology – ident: e_1_2_7_152_1 doi: 10.1098/rstl.1832.0017 – ident: e_1_2_7_282_1 doi: 10.1007/BF01918804 – ident: e_1_2_7_148_1 doi: 10.1111/j.1095-8312.2010.01447.x – ident: e_1_2_7_268_1 doi: 10.1890/0012-9658(2000)081[0990:EEOTPR]2.0.CO;2 – volume: 71 start-page: 143 year: 1964 ident: e_1_2_7_98_1 article-title: On the mechanism of periodic arousal in the hibernating ground squirrel publication-title: Annales Academiae Scientiarum Fennicae Series A – ident: e_1_2_7_120_1 doi: 10.1007/s00114-007-0274-7 – ident: e_1_2_7_295_1 doi: 10.1152/ajpregu.2000.278.3.R698 – ident: e_1_2_7_84_1 doi: 10.1016/0300-9629(78)90167-6 – volume: 200 start-page: 467 year: 1997 ident: e_1_2_7_60_1 article-title: Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.200.3.467 – ident: e_1_2_7_316_1 doi: 10.1007/BF01945554 – ident: e_1_2_7_370_1 doi: 10.1139/z80-101 – volume: 65 start-page: 978 year: 1992 ident: e_1_2_7_45_1 article-title: Ventilatory and metabolic dynamics during entry into and arousal from torpor in Selasphorus hummingbirds publication-title: Physiological Zoology doi: 10.1086/physzool.65.5.30158553 – ident: e_1_2_7_137_1 doi: 10.1093/icb/icr042 – ident: e_1_2_7_71_1 doi: 10.1016/0300-9629(83)90553-4 – ident: e_1_2_7_37_1 doi: 10.2307/1381762 – ident: e_1_2_7_303_1 doi: 10.1046/j.1365-2435.2000.t01-1-00460.x – start-page: 231 volume-title: Life in the Cold V: Evolution, Mechanism, Adaptation, and Application. 12th International Hibernation Symposium. Biological Papers of the University of Alaska, number 27 year: 2004 ident: e_1_2_7_399_1 – ident: e_1_2_7_46_1 doi: 10.1152/ajpregu.2000.279.1.R255 – volume-title: Size, Function, and Life History year: 1996 ident: e_1_2_7_52_1 – ident: e_1_2_7_14_1 doi: 10.1126/science.2740905 – ident: e_1_2_7_95_1 doi: 10.2307/1382332 – volume: 52 start-page: 216 year: 1982 ident: e_1_2_7_108_1 article-title: Effects of temperature on the duration of arousal episodes during hibernation publication-title: Journal of Applied Physiology – Respiratory Environmental and Exercise Physiology – ident: e_1_2_7_117_1 doi: 10.1071/ZO9930067 – ident: e_1_2_7_47_1 doi: 10.1086/physzool.58.3.30156003 – ident: e_1_2_7_336_1 doi: 10.1007/s00360-008-0277-5 – ident: e_1_2_7_21_1 doi: 10.1086/physzool.56.3.30152601 – ident: e_1_2_7_331_1 doi: 10.1007/978-3-662-04162-8_9 – ident: e_1_2_7_9_1 doi: 10.1007/s003600050058 – ident: e_1_2_7_208_1 doi: 10.1007/s00114-008-0492-7 – ident: e_1_2_7_128_1 doi: 10.1007/s003600100207 – ident: e_1_2_7_140_1 doi: 10.1371/journal.pone.0063111 – ident: e_1_2_7_354_1 doi: 10.1111/j.1365-2656.2010.01689.x – ident: e_1_2_7_382_1 doi: 10.1073/pnas.54.4.1058 – ident: e_1_2_7_53_1 doi: 10.1126/science.180.4087.751 – ident: e_1_2_7_157_1 doi: 10.1139/z86-118 – ident: e_1_2_7_299_1 doi: 10.1086/physzool.61.1.30163730 – ident: e_1_2_7_279_1 doi: 10.1007/s003600100221 – ident: e_1_2_7_169_1 doi: 10.1016/0300-9629(75)90389-8 – ident: e_1_2_7_16_1 doi: 10.1007/s003600050141 – ident: e_1_2_7_395_1 doi: 10.1086/physzool.50.1.30155714 – ident: e_1_2_7_189_1 doi: 10.1086/394389 – ident: e_1_2_7_245_1 doi: 10.1007/s003600000139 – ident: e_1_2_7_107_1 doi: 10.1007/BF00667787 – ident: e_1_2_7_351_1 doi: 10.1177/0748730411402632 – ident: e_1_2_7_175_1 doi: 10.1007/s00360-011-0631-x – ident: e_1_2_7_73_1 doi: 10.1242/jeb.00574 – volume: 31 start-page: 387 year: 2011 ident: e_1_2_7_401_1 article-title: Hibernation patterns and changes of body temperature in Daurian ground squirrels (Spermophilus dauricus) during hibernation publication-title: Acta Theriologica Sinica – ident: e_1_2_7_62_1 doi: 10.1007/s004420050399 – start-page: 1 volume-title: Adaptations to the Cold. 10th International Hibernation Symposium year: 1996 ident: e_1_2_7_257_1 – ident: e_1_2_7_292_1 doi: 10.1007/s00360-012-0647-x – ident: e_1_2_7_5_1 – ident: e_1_2_7_138_1 doi: 10.1111/j.1469-7998.1985.tb04916.x – ident: e_1_2_7_96_1 doi: 10.1007/s00360-010-0519-1 – ident: e_1_2_7_263_1 doi: 10.1086/319669 – volume: 52 start-page: 397 year: 2006 ident: e_1_2_7_25_1 article-title: Metabolic aspects of torpor in hummingbirds publication-title: Acta Zoologica Sinica – ident: e_1_2_7_403_1 doi: 10.1093/icb/ict100 – ident: e_1_2_7_164_1 doi: 10.1002/jcp.1030610210 – ident: e_1_2_7_239_1 doi: 10.1086/303383 – ident: e_1_2_7_182_1 doi: 10.1086/367950 – ident: e_1_2_7_158_1 doi: 10.4098/AT.arch.87-23 – ident: e_1_2_7_234_1 doi: 10.1007/BF00689217 – ident: e_1_2_7_402_1 doi: 10.1007/BF00317201 – ident: e_1_2_7_400_1 doi: 10.1007/BF01754494 – ident: e_1_2_7_260_1 doi: 10.2307/1364860 – ident: e_1_2_7_371_1 doi: 10.2307/1377932 – ident: e_1_2_7_70_1 doi: 10.1016/j.mambio.2009.06.001 – ident: e_1_2_7_121_1 doi: 10.1016/j.cbpa.2007.02.041 – ident: e_1_2_7_33_1 doi: 10.1189/jlb.0310174 – volume: 160 start-page: 712 year: 2002 ident: e_1_2_7_106_1 article-title: Phylogenetic analysis and comparative data: a test and review of evidence publication-title: The American Naturalist doi: 10.1086/343873 – volume: 24 start-page: 55 year: 1970 ident: e_1_2_7_168_1 article-title: Capacités thermorégulatrices d'un mammifère insectivore primitif, le tenrec: leurs variations saisonnières publication-title: Archives des Sciences Physiologiques – ident: e_1_2_7_226_1 doi: 10.1080/08927014.2009.9522495 – ident: e_1_2_7_246_1 doi: 10.1002/jez.1401090105 – ident: e_1_2_7_377_1 doi: 10.1098/rspb.2011.0190 – ident: e_1_2_7_180_1 doi: 10.1242/jeb.01482 – ident: e_1_2_7_309_1 doi: 10.1016/0010-406X(66)90043-0 – ident: e_1_2_7_345_1 doi: 10.1126/science.1213859 – ident: e_1_2_7_55_1 doi: 10.1152/physrev.00008.2003 – volume: 232 start-page: R203 year: 1977 ident: e_1_2_7_101_1 article-title: CNS regulation of body temperature in euthermic and hibernating marmots (Marmota flaviventris) publication-title: American Journal of Physiology ‐ Regulatory, Integrative and Comparative Physiology doi: 10.1152/ajpregu.1977.232.5.R203 – ident: e_1_2_7_300_1 doi: 10.1038/44766 – ident: e_1_2_7_58_1 doi: 10.2307/1381319 – ident: e_1_2_7_89_1 doi: 10.1007/s00360-010-0457-y – ident: e_1_2_7_318_1 doi: 10.1152/ajpregu.00562.2001 – ident: e_1_2_7_23_1 doi: 10.2307/1370489 – ident: e_1_2_7_41_1 doi: 10.1086/physzool.65.2.30158263 |
SSID | ssj0014663 |
Score | 2.6307697 |
Snippet | ABSTRACT
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning... Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 891 |
SubjectTerms | Animals Birds Birds - physiology Body Temperature Circadian Clocks - physiology Cluster Analysis daily torpor Drought endotherms Energy Metabolism Energy reserves energy savings Foraging behavior Genotype & phenotype Geographical distribution heterothermy Hibernation Hibernation - physiology High temperature hypometabolism hypothermia Low temperature Mammals Mammals - physiology Metabolism over-wintering thermoregulation Torpor - physiology |
Title | Daily torpor and hibernation in birds and mammals |
URI | https://api.istex.fr/ark:/67375/WNG-DJ7K4Z17-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbrv.12137 https://www.ncbi.nlm.nih.gov/pubmed/25123049 https://www.proquest.com/docview/1697515726 https://www.proquest.com/docview/1812881651 https://pubmed.ncbi.nlm.nih.gov/PMC4351926 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSx0xEB6sRehLb9p2WytbEfFlZbObTfbQp1prRVFEvCGFkGyyeNCzlnMptb--M9kLnlZBfNqFzLIkM5P5kky-AVhBEJITaIviMhERFw59LilM1EupKiwzsdV0UXhvX2wf852z7GwGPrd3YWp-iG7DjTzDz9fk4NqMbjm5Gf4iaoSUbpJTrhYBosOOOgonAF9FDZ88QhtkDasQZfF0X07Foqc0rL_vApr_50vexrE-EG29gB9tF-r8k8v1ydisF3_-YXd8ZB9fwvMGoIZfaot6BTOueg1zdcnKm3lgm7p_dROOPQFyqCsbXlDOSb2nGPar0PSHduQbBnowQONegOOtb0dft6Om7EJUIJzBmMVQYymdwSBUQe0xK7MyFs6Igq7BpkJoxjWPXYkra23LHMMsRn5cafGkjEuZvoHZ6rpy7yAsLMrGNs_TEtc5UujUFplzPWm4K2PLA1hrFaCKhpOcSmNcqXZtgiOg_AgEsNyJ_qyJOO4SWvVa7CT08JIy12SmTve_q80ducvPmVQbASy2alaN044UEz2J8E4mIoBPXTO6G52h6MpdT1AGAVGOI5SxAN7WVtH9jKAinVoGIKfspRMgKu_plqp_4Sm9OdVJpP-ueXO4v4dq4_DEv7x_uOgHeIYwL6vTFhdhdjycuI8IpcZmCZ4k_GDJe85fJPIYLg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xEBovbGMbhDGWoQnxEhQ3jp1KvMAY6_joAwKGkCbLiR1RQQMq7TT467lzPkSBSdOeWskXRfbd5X5nn38H8AVBSEKgLQjzlgi4sOhzrSwN2hF1hWVpaDRdFD7ois4x3z2NTydgo74LU_JDNBtu5Bnue00OThvSD7w8HfwmboRIvoAp6ujtEqrDhjwKPwGujxr-8gCtkFW8QlTH0zw6Fo2maGH_PAc1n1ZMPkSyLhTtvIJf9STKCpSL9dEwXc_uHvE7_u8sX8NshVH9zdKo3sCELeZguuxaefsW2LbuXd76Q8eB7OvC-OdUdlJuK_q9wk97A3PjBvq630f7fgfHO9-OvnaCqvNCkCGiwbDFUGkRHcMgWkEFMiPjPBQ2FRndhI2E0IxrHtock2tt8gQjLQZ_TLZ4Kw9zGb2HyeKqsAvgZwZlQ5MkUY6pjhQ6MllsbVum3Oah4R6s1RpQWUVLTt0xLlWdnuAKKLcCHqw0otclF8dzQqtOjY2EHlxQ8ZqM1c_ud7W9K_f4GZNqy4OlWs-q8tsbxURbIsKTLeHB52YYPY6OUXRhr0Yog5gowRWKmQfzpVk0LyO0SAeXHsgxg2kEiM17fKTonTtWb06tEum9a84e_j5DtXV44v4s_rvoJ3jZOTrYV_s_unsfYAZRX1xWMS7B5HAwsh8RWQ3TZedA9_n6G3I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8gRMMLfsMi6mqM4WXJ9rbb7sUn4DwR9GKIKDEmTXfbhgvcQo47Ivz1zHQ_wikmxqfdpLPZtDPT-bWd_gbgDYKQjEBbFLuOiLiw6HOdIo-6CVWFZXlsNF0U_jwQOwd89zA9nIN3zV2Yih-i3XAjz_DzNTn4mXE3nDwfXxA1QiLvwAIXcUYm3dtvuaNwBvBl1PDJIzRCVtMKURpP--lMMFqgcf11G9L8M2HyJpD1kah_H342fagSUI43ppN8o7j6jd7xPzv5AJZqhBpuVib1EOZs-QjuVjUrLx8D6-nhyWU48QzIoS5NeERJJ9WmYjgsw3w4Nue-YaRHI7TuJ3DQf_91eyeq6y5EBeIZDFoMVZbQIQxiFVQfMzJ1sbC5KOgebCKEZlzz2DpcWmvjMoyzGPpxqcU7LnYyeQrz5WlpVyAsDMrGJssShwsdKXRiitTarsy5dbHhAaw3ClBFTUpOtTFOVLM4wRFQfgQCeN2KnlVMHLcJvfVabCX0-JhS12Sqvg8-qN6u3OM_mFRbAaw1ala1154rJroS8Z3siABetc3ob3SIokt7OkUZREQZjlDKAliurKL9GWFFOrYMQM7YSytAXN6zLeXwyHN6cyqUSP9d9-bw9x6qrf1v_mX130Vfwr0vvb769HGw9wwWEfKlVQrjGsxPxlP7HGHVJH_h3ecasQIaKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Daily+torpor+and+hibernation+in+birds+and+mammals&rft.jtitle=Biological+reviews+of+the+Cambridge+Philosophical+Society&rft.au=RUF%2C+THOMAS&rft.au=GEISER%2C+FRITZ&rft.date=2015-08-01&rft.issn=1464-7931&rft.eissn=1469-185X&rft.volume=90&rft.issue=3&rft.spage=891&rft.epage=926&rft_id=info:doi/10.1111%2Fbrv.12137&rft_id=info%3Apmid%2F25123049&rft.externalDocID=PMC4351926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7931&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7931&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7931&client=summon |