Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures
A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3PMo12O40 (PMo12) was used as the electron and proton carrier in th...
Saved in:
Published in | ChemSusChem Vol. 9; no. 2; pp. 197 - 207 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.01.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3PMo12O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm−2, 560 times higher than that of phenol‐fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm−2. Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin.
POMs full of energy! Polyoxometalates (POMs) mediated direct biomass fuel cells (DBFC) are used to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. Continuous operation demonstrated that the fuel cells are promising as a stable electrochemical power sources. Both condensation and depolymerization took place during the POM oxidation of lignin. |
---|---|
AbstractList | A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin.A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3PMo12O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96mWcm-2, 560times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5mWcm-2. Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H 3 PMo 12 O 40 (PMo 12 ) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O 2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm −2 , 560 times higher than that of phenol‐fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo 12 , the power density could be greatly enhanced to 5 mW cm −2 . Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo 12 oxidation of lignin. A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H sub(3)PMo sub(12)O sub(40 ) (PMo sub(12)) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O sub(2) was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96mWcm super(-2), 560times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo sub(12), the power density could be greatly enhanced to 5mWcm super(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo sub(12) oxidation of lignin. POMs full of energy! Polyoxometalates (POMs) mediated direct biomass fuel cells (DBFC) are used to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. Continuous operation demonstrated that the fuel cells are promising as a stable electrochemical power sources. Both condensation and depolymerization took place during the POM oxidation of lignin. A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3PMo12O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm−2, 560 times higher than that of phenol‐fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm−2. Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. POMs full of energy! Polyoxometalates (POMs) mediated direct biomass fuel cells (DBFC) are used to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. Continuous operation demonstrated that the fuel cells are promising as a stable electrochemical power sources. Both condensation and depolymerization took place during the POM oxidation of lignin. A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. |
Author | Zhao, Xuebing Zhu, J. Y. |
Author_xml | – sequence: 1 givenname: Xuebing surname: Zhao fullname: Zhao, Xuebing organization: Department of Chemical Engineering, Tsinghua University, Beijing, P.R. China – sequence: 2 givenname: J. Y. surname: Zhu fullname: Zhu, J. Y. email: jzhu@fs.fed.us organization: Department of Biological Systems Engineering, University of Wisconsin, Madison, WI, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26692572$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhiNURD_gyhFZ4sJlF09iO8kRwm4BbRektiriYjnOpHJJ4sV22u4P6P-uV9uuUCXUk63x84zteQ-TvcEOmCRvgU6B0vSj9l5PUwqcAmPiRXIAhWATLtivvd0-g_3k0PsrSgUthXiV7KdClCnP04Pkbta2RhscAqnscI3OGzsQ25KFuRzMQIIlsw51cBEKa3LuzXBJFFnaa-zIF-PiEflsbK-8J_Mx1irsOnKCjVEBG1KvyU_bre2t7TGoLtY8UYEs7A05w36FToXRoX-dvGxV5_HNw3qUnM9nZ9XXyeLH8bfq02KiBeRiklHVZFCLUmc1LwvGWdswZE2qIC1Rcco45UWBOROiEUUNukYOmrcF6lJjkR0lH7Z9V87-HdEH2Ruv44vVgHb0Eoo8LwB4IZ5H8zhMyISAiL5_gl7Z0Q3xI5GKvQBEvrn73QM11j02cuVMr9xaPmYRAbYFtLPeO2xlHLkKMY_glOkkULmJXG4il7vIozZ9oj12_q9QboUb0-H6GVpWp6fVv-5k6xof8HbnKvdHijzLubxYHsslfL_4DfMTKbJ7txLNsQ |
CitedBy_id | crossref_primary_10_1016_j_jechem_2022_10_036 crossref_primary_10_3390_en15249450 crossref_primary_10_1016_j_biteb_2023_101463 crossref_primary_10_1002_slct_202304516 crossref_primary_10_1016_j_biortech_2021_126189 crossref_primary_10_1016_j_jechem_2020_08_060 crossref_primary_10_1021_jacs_2c10033 crossref_primary_10_1016_j_biortech_2022_128208 crossref_primary_10_1039_D3GC05108K crossref_primary_10_1002_aenm_202203751 crossref_primary_10_1002_cssc_202000203 crossref_primary_10_1016_j_apcatb_2024_124404 crossref_primary_10_1016_j_jpowsour_2016_03_074 crossref_primary_10_1016_j_electacta_2021_138681 crossref_primary_10_1016_j_enconman_2022_115343 crossref_primary_10_1002_jctb_5841 crossref_primary_10_1021_acssuschemeng_3c07415 crossref_primary_10_3390_pr11030836 crossref_primary_10_7849_ksnre_2023_0003 crossref_primary_10_6023_A20090453 crossref_primary_10_1007_s12088_024_01414_3 crossref_primary_10_1016_j_cej_2023_147874 crossref_primary_10_1021_acs_chemrev_9b00717 crossref_primary_10_1039_D2SE00930G crossref_primary_10_1021_acsenergylett_0c00631 crossref_primary_10_1002_bbb_2083 crossref_primary_10_1002_cssc_201601685 crossref_primary_10_1016_j_rser_2016_12_055 crossref_primary_10_1016_j_indcrop_2019_111526 crossref_primary_10_1016_j_apcatb_2023_123328 crossref_primary_10_1016_j_cej_2018_03_190 crossref_primary_10_1016_j_enconman_2022_115552 crossref_primary_10_1002_cctc_202301204 crossref_primary_10_1016_j_jpowsour_2019_227441 crossref_primary_10_1016_j_cej_2021_129716 crossref_primary_10_1002_fuce_202100109 crossref_primary_10_1016_j_apenergy_2021_117927 crossref_primary_10_1016_j_jece_2024_112116 crossref_primary_10_1016_j_ijhydene_2022_09_191 crossref_primary_10_1016_j_eng_2020_02_021 crossref_primary_10_1093_ce_zky001 crossref_primary_10_1002_ente_201600662 crossref_primary_10_1115_1_4062162 crossref_primary_10_1016_j_chempr_2019_05_021 crossref_primary_10_1016_j_jelechem_2017_12_085 crossref_primary_10_1016_j_jcis_2024_08_002 crossref_primary_10_1016_j_apcatb_2019_118578 crossref_primary_10_1016_j_ijhydene_2021_11_111 crossref_primary_10_1016_j_coelec_2023_101255 crossref_primary_10_1021_acs_iecr_9b06982 crossref_primary_10_1016_j_enconman_2023_117807 crossref_primary_10_1016_j_jechem_2018_02_015 crossref_primary_10_1016_j_apenergy_2017_05_073 crossref_primary_10_1016_j_ijhydene_2021_12_063 crossref_primary_10_1016_j_jechem_2020_09_009 crossref_primary_10_1016_j_biortech_2016_12_109 crossref_primary_10_1016_j_apenergy_2023_121568 crossref_primary_10_1002_cssc_202001807 crossref_primary_10_1007_s12155_024_10797_6 crossref_primary_10_1016_j_ijhydene_2019_02_031 |
Cites_doi | 10.1149/1.1836625 10.1016/j.ijhydene.2013.08.090 10.1016/j.biortech.2014.12.052 10.1111/1751-7915.12026 10.1126/science.1100860 10.1016/j.indcrop.2010.05.003 10.1016/j.watres.2011.12.060 10.3390/ma3031888 10.1115/1.2971172 10.1002/aenm.201100108 10.1038/ncomms5621 10.1002/cssc.201000157 10.1016/j.biombioe.2013.04.006 10.1002/ange.200701292 10.1016/j.ijhydene.2011.09.139 10.1016/j.cej.2013.05.077 10.1002/anie.201408226 10.1515/hf-2014-0332 10.1016/S0196-8904(00)00050-9 10.1080/02773810701702170 10.1016/j.biortech.2015.03.080 10.1016/j.jpowsour.2014.07.125 10.1021/ja803114r 10.1016/j.cej.2008.07.011 10.1016/j.ijhydene.2006.06.048 10.1016/j.ijhydene.2011.01.158 10.1039/b607824a 10.1038/ncomms4208 10.1080/02773813.2010.503980 10.1021/es3023495 10.1002/anie.200701292 10.1007/s10800-012-0513-2 10.1002/ange.201408226 10.1039/c3ra23418e 10.1007/s00449-013-0975-6 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 7ST C1K SOI |
DOI | 10.1002/cssc.201501446 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef Environment Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 207 |
ExternalDocumentID | 3928097181 26692572 10_1002_cssc_201501446 CSSC201501446 ark_67375_WNG_N1JWZ1FM_6 |
Genre | article Journal Article |
GroupedDBID | --- 05W 0R~ 1OC 29B 31~ 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAYOK AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAHQN AAMNL AAYCA AFWVQ ALVPJ AANHP AAYXX ACRPL ACYXJ ADNMO AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 K9. 7X8 7ST C1K SOI |
ID | FETCH-LOGICAL-c6176-30ad31b69c3b598454fd4e4d2a129ea50450588e7466d68b1cbe51c5f8ec9ce83 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Thu Jul 10 19:02:40 EDT 2025 Fri Jul 11 09:24:58 EDT 2025 Fri Jul 25 12:24:28 EDT 2025 Wed Feb 19 01:59:56 EST 2025 Tue Jul 01 00:35:56 EDT 2025 Thu Apr 24 22:55:19 EDT 2025 Wed Jan 22 16:19:52 EST 2025 Wed Oct 30 09:56:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | power density direct biomass fuel cells phosphomolybdic acids lignins polyoxometalates |
Language | English |
License | 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6176-30ad31b69c3b598454fd4e4d2a129ea50450588e7466d68b1cbe51c5f8ec9ce83 |
Notes | ArticleID:CSSC201501446 istex:4612652C2C256FEAC775698E389B5BF0C47372C0 ark:/67375/WNG-N1JWZ1FM-6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26692572 |
PQID | 1758611678 |
PQPubID | 986333 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1877811586 proquest_miscellaneous_1760913661 proquest_journals_1758611678 pubmed_primary_26692572 crossref_citationtrail_10_1002_cssc_201501446 crossref_primary_10_1002_cssc_201501446 wiley_primary_10_1002_cssc_201501446_CSSC201501446 istex_primary_ark_67375_WNG_N1JWZ1FM_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Jan |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-Jan |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | J. Xu, G. P. Sheng, W. H. Luo, W. W. Li, L. F. Wang, H. Q. Yu, Water Res. 2012, 46, 1817-1824. P. Cowin, C. Petit, R. Lan, J. Irvine, S. Tao, Adv. Energy Mater. 2011, 1, 314-332. H. Zhang, T. Wu, X. Yan, Y. Leng, S. Li, Chem. J. Chin. Univ. 1990, 11, 1096-1101. A. Elleuch, A. Boussetta, J. Yu, K. Halouani, Y. Li, Int. J. Hydrogen Energy 2013, 38, 16590-16604. W. Liu, W. Mu, M. Liu, X. Zhang, H. Cai, Y. Deng, Nat. Commun. 2014, 5, 3208. A. Demirbas, Energy Convers. Manage. 2001, 42, 183-188. B. Bujanovic, S. Ralph, R. Reiner, K. Hirth, R. Atalla, Materials 2010, 3, 1888-1903. H. Friman, A. Schechter, Y. Ioffe, Y. Nitzan, R. Cahan, Microb. Biotechnol. 2013, 6, 425-434. W. Yan, H. Chu, Y. Liu, F. Chen, J. Jang, Int. J. Hydrogen Energy 2011, 36, 5435-5441. J. Macht, M. Janik, M. Neurock, E. Iglesia, Angew. Chem. Int. Ed. 2007, 46, 7864-7868 Y. Kim, H. Chang, J. Kadla, J. Wood Chem. Technol. 2007, 27, 225-241. H. Luo, G. Liu, R. Zhang, S. Jin, Chem. Eng. J. 2009, 147, 259-264. W. Liu, W. Mu, Y. Deng, Angew. Chem. Int. Ed. 2014, 53, 13558-13562 A. Borole, C. Hamilton, D. Schell, Environ. Sci. Technol. 2013, 47, 642-648. A. Gaspar, J. Gamelas, D. Evtuguin, C. Neto, Green Chem. 2007, 9, 717-730. R. Lima, R. Raza, H. Qin, J. Li, M. Lindstrom, B. Zhu, RSC Adv. 2013, 3, 5083-5089. J. Macht, M. Janik, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 2008, 130, 10369-10379. R. El-Emam, I. Dincer, G. Naterer, Int. J. Hydrogen Energy 2012, 37, 1689-1697. B. Bujanovic, R. Reiner, S. Ralph, R. Atalla, J. Wood Chem. Technol. 2011, 31, 121-141. F. Calvo-Flores, J. Dobado, ChemSusChem 2010, 3, 1227-1235. J. Karl, N. Frank, S. Karellas, M. Saule, U. Hohenwarter, J. Fuel Cell Sci. Technol. 2009, 6, 021005. J. Yu, Y. Zhao, Y. Li, J. Power Sources 2014, 270, 312-317. J. Zhu, M. Chandra, F. Gu, R. Gleisner, R. Reiner, J. Sessions, G. Marrs, J. Gao, D. Anderson, Bioresour. Technol. 2015, 179, 390-397. F. Ahmad, M. Atiyeh, B. Pereira, G. Stephanopoulos, Biomass Bioenergy 2013, 56, 179-188. T. Springer, B. Kienitz in Proton Exchange Membrane Fuel Cells: Contamination and Mitigation Strategy (Eds.: H. Li, S. Knights, Z. Shi, J. Van Zee, J. Zhang), CRC Press, Boca Raton, FL, 2010, pp. 293-338. Y. Sone, P. Ekdunge, D. Simonsson, J. Electrochem. Soc. 1996, 143, 1254-1259. T. S. Song, X. Y. Wu, C. C. Zhou, Bioprocess Biosyst. Eng. 2014, 37, 133-138. X. Zhao, D. Liu, Ind. Crops Prod. 2010, 32, 284-291. C. Athanasiou, F. Coutelieris, E. Vakouftsi, V. Skoulou, E. Antonakou, G. Marnellos, A. Zabaniotou, Int. J. Hydrogen Energy 2007, 32, 337-342. A. Brouzgou, A. Podias, P. Tsiakaras, J. Appl. Electrochem. 2013, 43, 119-136. Angew. Chem. 2014, 126, 13776-13780. A. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, CRC Press, 1985, pp. 480. J. Zhang, F. Gu, J. Zhu, R. Zalesny, Bioresour. Technol. 2015, 186, 223-231. W. Kim, T. Voitl, G. Rodriguez-Rivera, J. Dumesic, Science 2004, 305, 1280-1283. Angew. Chem. 2007, 119, 8010-8014. L. E. Arteaga-Pérez, Y. Casas-Ledon, R. Perez-Bermudez, L. M. Peralta, J. Dewulf, W. Prins, Chem. Eng. J. 2013, 228, 1121-1132. B. B. Sarma, R. Neumann, Nat. Commun. 2014, 5, 4621. 2014 2014; 53 126 2010; 32 2013; 3 1990; 11 2013; 47 2011; 1 2013; 43 2010 2013; 228 2015; 186 2011; 31 1996; 143 2014; 270 2012; 37 2011; 36 2007; 32 2004; 305 2013; 6 2001; 42 2014; 5 2013; 38 2015; 179 2013; 56 2007 2007; 46 119 2014; 37 2007; 9 1985 2009; 6 2010; 3 2012; 46 2009; 147 2008; 130 2007; 27 e_1_2_2_4_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_8_1 Zhang H. (e_1_2_2_23_1) 1990; 11 e_1_2_2_28_1 e_1_2_2_27_1 Bard A. (e_1_2_2_36_1) 1985 e_1_2_2_14_1 e_1_2_2_13_1 e_1_2_2_12_1 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_30_1 e_1_2_2_31_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_15_1 Springer T. (e_1_2_2_26_1) 2010 |
References_xml | – reference: J. Macht, M. Janik, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 2008, 130, 10369-10379. – reference: B. Bujanovic, R. Reiner, S. Ralph, R. Atalla, J. Wood Chem. Technol. 2011, 31, 121-141. – reference: A. Brouzgou, A. Podias, P. Tsiakaras, J. Appl. Electrochem. 2013, 43, 119-136. – reference: L. E. Arteaga-Pérez, Y. Casas-Ledon, R. Perez-Bermudez, L. M. Peralta, J. Dewulf, W. Prins, Chem. Eng. J. 2013, 228, 1121-1132. – reference: F. Ahmad, M. Atiyeh, B. Pereira, G. Stephanopoulos, Biomass Bioenergy 2013, 56, 179-188. – reference: J. Xu, G. P. Sheng, W. H. Luo, W. W. Li, L. F. Wang, H. Q. Yu, Water Res. 2012, 46, 1817-1824. – reference: J. Yu, Y. Zhao, Y. Li, J. Power Sources 2014, 270, 312-317. – reference: A. Gaspar, J. Gamelas, D. Evtuguin, C. Neto, Green Chem. 2007, 9, 717-730. – reference: F. Calvo-Flores, J. Dobado, ChemSusChem 2010, 3, 1227-1235. – reference: J. Zhu, M. Chandra, F. Gu, R. Gleisner, R. Reiner, J. Sessions, G. Marrs, J. Gao, D. Anderson, Bioresour. Technol. 2015, 179, 390-397. – reference: X. Zhao, D. Liu, Ind. Crops Prod. 2010, 32, 284-291. – reference: H. Zhang, T. Wu, X. Yan, Y. Leng, S. Li, Chem. J. Chin. Univ. 1990, 11, 1096-1101. – reference: W. Kim, T. Voitl, G. Rodriguez-Rivera, J. Dumesic, Science 2004, 305, 1280-1283. – reference: H. Luo, G. Liu, R. Zhang, S. Jin, Chem. Eng. J. 2009, 147, 259-264. – reference: J. Zhang, F. Gu, J. Zhu, R. Zalesny, Bioresour. Technol. 2015, 186, 223-231. – reference: R. Lima, R. Raza, H. Qin, J. Li, M. Lindstrom, B. Zhu, RSC Adv. 2013, 3, 5083-5089. – reference: T. S. Song, X. Y. Wu, C. C. Zhou, Bioprocess Biosyst. Eng. 2014, 37, 133-138. – reference: J. Macht, M. Janik, M. Neurock, E. Iglesia, Angew. Chem. Int. Ed. 2007, 46, 7864-7868; – reference: A. Elleuch, A. Boussetta, J. Yu, K. Halouani, Y. Li, Int. J. Hydrogen Energy 2013, 38, 16590-16604. – reference: A. Demirbas, Energy Convers. Manage. 2001, 42, 183-188. – reference: J. Karl, N. Frank, S. Karellas, M. Saule, U. Hohenwarter, J. Fuel Cell Sci. Technol. 2009, 6, 021005. – reference: H. Friman, A. Schechter, Y. Ioffe, Y. Nitzan, R. Cahan, Microb. Biotechnol. 2013, 6, 425-434. – reference: Angew. Chem. 2007, 119, 8010-8014. – reference: A. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, CRC Press, 1985, pp. 480. – reference: A. Borole, C. Hamilton, D. Schell, Environ. Sci. Technol. 2013, 47, 642-648. – reference: B. B. Sarma, R. Neumann, Nat. Commun. 2014, 5, 4621. – reference: T. Springer, B. Kienitz in Proton Exchange Membrane Fuel Cells: Contamination and Mitigation Strategy (Eds.: H. Li, S. Knights, Z. Shi, J. Van Zee, J. Zhang), CRC Press, Boca Raton, FL, 2010, pp. 293-338. – reference: P. Cowin, C. Petit, R. Lan, J. Irvine, S. Tao, Adv. Energy Mater. 2011, 1, 314-332. – reference: W. Yan, H. Chu, Y. Liu, F. Chen, J. Jang, Int. J. Hydrogen Energy 2011, 36, 5435-5441. – reference: Y. Sone, P. Ekdunge, D. Simonsson, J. Electrochem. Soc. 1996, 143, 1254-1259. – reference: Y. Kim, H. Chang, J. Kadla, J. Wood Chem. Technol. 2007, 27, 225-241. – reference: C. Athanasiou, F. Coutelieris, E. Vakouftsi, V. Skoulou, E. Antonakou, G. Marnellos, A. Zabaniotou, Int. J. Hydrogen Energy 2007, 32, 337-342. – reference: R. El-Emam, I. Dincer, G. Naterer, Int. J. Hydrogen Energy 2012, 37, 1689-1697. – reference: Angew. Chem. 2014, 126, 13776-13780. – reference: W. Liu, W. Mu, Y. Deng, Angew. Chem. Int. Ed. 2014, 53, 13558-13562; – reference: W. Liu, W. Mu, M. Liu, X. Zhang, H. Cai, Y. Deng, Nat. Commun. 2014, 5, 3208. – reference: B. Bujanovic, S. Ralph, R. Reiner, K. Hirth, R. Atalla, Materials 2010, 3, 1888-1903. – volume: 186 start-page: 223 year: 2015 end-page: 231 publication-title: Bioresour. Technol. – volume: 3 start-page: 1888 year: 2010 end-page: 1903 publication-title: Materials – volume: 270 start-page: 312 year: 2014 end-page: 317 publication-title: J. Power Sources – volume: 143 start-page: 1254 year: 1996 end-page: 1259 publication-title: J. Electrochem. Soc. – volume: 31 start-page: 121 year: 2011 end-page: 141 publication-title: J. Wood Chem. Technol. – volume: 179 start-page: 390 year: 2015 end-page: 397 publication-title: Bioresour. Technol. – volume: 42 start-page: 183 year: 2001 end-page: 188 publication-title: Energy Convers. Manage. – volume: 147 start-page: 259 year: 2009 end-page: 264 publication-title: Chem. Eng. J. – start-page: 293 year: 2010 end-page: 338 – volume: 5 start-page: 4621 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 021005 year: 2009 publication-title: J. Fuel Cell Sci. Technol. – volume: 1 start-page: 314 year: 2011 end-page: 332 publication-title: Adv. Energy Mater. – volume: 37 start-page: 1689 year: 2012 end-page: 1697 publication-title: Int. J. Hydrogen Energy – volume: 56 start-page: 179 year: 2013 end-page: 188 publication-title: Biomass Bioenergy – volume: 46 119 start-page: 7864 8010 year: 2007 2007 end-page: 7868 8014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 130 start-page: 10369 year: 2008 end-page: 10379 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1227 year: 2010 end-page: 1235 publication-title: ChemSusChem – volume: 37 start-page: 133 year: 2014 end-page: 138 publication-title: Bioprocess Biosyst. Eng. – start-page: 480 year: 1985 – volume: 53 126 start-page: 13558 13776 year: 2014 2014 end-page: 13562 13780 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 642 year: 2013 end-page: 648 publication-title: Environ. Sci. Technol. – volume: 11 start-page: 1096 year: 1990 end-page: 1101 publication-title: Chem. J. Chin. Univ. – volume: 36 start-page: 5435 year: 2011 end-page: 5441 publication-title: Int. J. Hydrogen Energy – volume: 46 start-page: 1817 year: 2012 end-page: 1824 publication-title: Water Res. – volume: 38 start-page: 16590 year: 2013 end-page: 16604 publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 3208 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 425 year: 2013 end-page: 434 publication-title: Microb. Biotechnol. – volume: 43 start-page: 119 year: 2013 end-page: 136 publication-title: J. Appl. Electrochem. – volume: 3 start-page: 5083 year: 2013 end-page: 5089 publication-title: RSC Adv. – volume: 228 start-page: 1121 year: 2013 end-page: 1132 publication-title: Chem. Eng. J. – volume: 9 start-page: 717 year: 2007 end-page: 730 publication-title: Green Chem. – volume: 32 start-page: 284 year: 2010 end-page: 291 publication-title: Ind. Crops Prod. – volume: 305 start-page: 1280 year: 2004 end-page: 1283 publication-title: Science – volume: 27 start-page: 225 year: 2007 end-page: 241 publication-title: J. Wood Chem. Technol. – volume: 32 start-page: 337 year: 2007 end-page: 342 publication-title: Int. J. Hydrogen Energy – ident: e_1_2_2_27_1 doi: 10.1149/1.1836625 – ident: e_1_2_2_6_1 doi: 10.1016/j.ijhydene.2013.08.090 – ident: e_1_2_2_34_1 doi: 10.1016/j.biortech.2014.12.052 – ident: e_1_2_2_11_1 doi: 10.1111/1751-7915.12026 – ident: e_1_2_2_17_1 doi: 10.1126/science.1100860 – ident: e_1_2_2_35_1 doi: 10.1016/j.indcrop.2010.05.003 – ident: e_1_2_2_25_1 doi: 10.1016/j.watres.2011.12.060 – ident: e_1_2_2_28_1 doi: 10.3390/ma3031888 – ident: e_1_2_2_3_1 doi: 10.1115/1.2971172 – ident: e_1_2_2_31_1 doi: 10.1002/aenm.201100108 – volume: 11 start-page: 1096 year: 1990 ident: e_1_2_2_23_1 publication-title: Chem. J. Chin. Univ. – ident: e_1_2_2_18_1 doi: 10.1038/ncomms5621 – ident: e_1_2_2_1_1 doi: 10.1002/cssc.201000157 – ident: e_1_2_2_14_1 doi: 10.1016/j.biombioe.2013.04.006 – ident: e_1_2_2_21_2 doi: 10.1002/ange.200701292 – ident: e_1_2_2_8_1 doi: 10.1016/j.ijhydene.2011.09.139 – ident: e_1_2_2_9_1 doi: 10.1016/j.cej.2013.05.077 – ident: e_1_2_2_20_1 doi: 10.1002/anie.201408226 – ident: e_1_2_2_33_1 doi: 10.1515/hf-2014-0332 – ident: e_1_2_2_2_1 doi: 10.1016/S0196-8904(00)00050-9 – ident: e_1_2_2_30_1 doi: 10.1080/02773810701702170 – ident: e_1_2_2_32_1 doi: 10.1016/j.biortech.2015.03.080 – ident: e_1_2_2_7_1 doi: 10.1016/j.jpowsour.2014.07.125 – ident: e_1_2_2_22_1 doi: 10.1021/ja803114r – ident: e_1_2_2_10_1 doi: 10.1016/j.cej.2008.07.011 – ident: e_1_2_2_4_1 doi: 10.1016/j.ijhydene.2006.06.048 – ident: e_1_2_2_24_1 doi: 10.1016/j.ijhydene.2011.01.158 – ident: e_1_2_2_16_1 doi: 10.1039/b607824a – ident: e_1_2_2_19_1 doi: 10.1038/ncomms4208 – ident: e_1_2_2_29_1 doi: 10.1080/02773813.2010.503980 – ident: e_1_2_2_12_1 doi: 10.1021/es3023495 – start-page: 480 volume-title: Standard Potentials in Aqueous Solution year: 1985 ident: e_1_2_2_36_1 – ident: e_1_2_2_21_1 doi: 10.1002/anie.200701292 – ident: e_1_2_2_15_1 doi: 10.1007/s10800-012-0513-2 – ident: e_1_2_2_20_2 doi: 10.1002/ange.201408226 – ident: e_1_2_2_5_1 doi: 10.1039/c3ra23418e – ident: e_1_2_2_13_1 doi: 10.1007/s00449-013-0975-6 – start-page: 293 volume-title: Proton Exchange Membrane Fuel Cells: Contamination and Mitigation Strategy year: 2010 ident: e_1_2_2_26_1 |
SSID | ssj0060966 |
Score | 2.4084811 |
Snippet | A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 197 |
SubjectTerms | Bioelectric Energy Sources Biomass Catalysis direct biomass fuel cells Electrodes Fuel cells Industrial Waste Lignin Lignin - chemistry lignins Oxidants - chemistry Oxidation-Reduction phosphomolybdic acids polyoxometalates power density Temperature Tungsten Compounds - chemistry |
Title | Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures |
URI | https://api.istex.fr/ark:/67375/WNG-N1JWZ1FM-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201501446 https://www.ncbi.nlm.nih.gov/pubmed/26692572 https://www.proquest.com/docview/1758611678 https://www.proquest.com/docview/1760913661 https://www.proquest.com/docview/1877811586 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF92OhICMhOKVdJ7Y3OUK0S1V1V4i2asXFsh2nWjUkqMlClzv_mxnnAYt4SHDLYxz5MR5_sWe-IeR5qO3YaJcHOdNZwIWQQQI2EICc0BKs4dgyDE6eL-TeMd8_Fac_RPG3_BDDhhvODG-vcYJrU-9-Jw21dY0UhAwPxjhybqPDFqKidwN_lAR87sOLYskDISPWszaOw93N4hur0lXs4MtfQc5NBOuXoNlNovvKt54n5zurxuzYLz_xOv5P626RGx0-pa9ahbpNrrjyDrmW9mnh7pKvU086AWsVTdFj3W-30SqnB8uzclnSpqJTn1oHhJo19S4JVNNF9ckVtDWw9PUSvZJqOlvBs9QVBZ37jCEuo2ZN31bFurqsPjj4L0AkTHVDD6rP9MgBxG8poOt75Hg2PUr3gi6XQ2ABI6F7nc4iZmRiIyOSmAueZ9zxLNQAOJwWgCzHIo7dhEuZydgwa5xgVuSxs4l1cXSfbJVV6R4SasLQ5LkWecJzzlhkXAamyUnpAAyNdTwiQT-WynZE55hvo1AtRXOosHPV0Lkj8nKQ_9hSfPxW8oVXjUFMX5yjY9xEqJPFG7Vg-yfv2WyuQHC71x3V2YRaAVCLJR57QQ2fDa9h9PCIRpeuWqGMRKJWAE1_kIknGB4MHxuRB61eDhUCuJWAEQ5HJPTa9ZcGqfTwMB3uHv1LocfkOlx3u1LbZKu5WLkngNMa89TPxW8kaDQy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgexgvfH8UBhgJwVO2OLXd5BFCSxlthVinIV4s23Gmal2C1hRW3vm_uXOaoCI-JHiMc478cT7_cj7_jpCnkbah0S4PcqazgAshgwRsIAA5oSVYw9AyvJw8nsjhET_4IJpoQrwLU_NDtA43XBneXuMCR4f0_g_WULtYIAchw5MxLi-TbUzrjfT5r963DFISELq_YBRLHgjZZQ1vYxjtb9bf2Je2cYgvfgU6NzGs34QG14hpml_HnpzuLSuzZ7_-xOz4X_27Tq6uISp9UevUDXLJFTfJTtpkhrtFvvU97wRsVzTFoHXvcaNlTkezk2JW0KqkfZ9dB4SqFfVRCVTTSfnZzWltY-nLGQYmLehgCWWpm8_p2CcNcRk1K_qunK_Ki_LMwa8BgmGqKzoqv9CpA5Rfs0AvbpOjQX-aDoN1OofAAkzCCDuddZmRie0akcRc8DzjjmeRBszhtABwGYo4dj0uZSZjw6xxglmRx84m1sXdO2SrKAt3j1ATRSbPtcgTnnPGusZlYJ2clA7wUKjjDgmayVR2zXWOKTfmqmZpjhQOrmoHt0Oet_KfapaP30o-87rRiunzU4yN6wl1PHmtJuzg-CMbjBUI7jbKo9ZmYaEAq8UST76ghU_a1zB7eEqjC1cuUUYiVyvgpj_IxD28IQwf65C7tWK2DQLElYAdjjok8ur1lw6p9PAwbZ_u_0ulx2RnOB2P1OjN5O0DcgXK106qXbJVnS_dQ4BtlXnkF-Z3VoM4Tg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL78dCASMhOKWNE9ubHCHdpZTdVUVbterFsh0brbokVZOFLnf-N2MnG1jEQ4JjnHHkx3j8xTP-BqHnkdShksYGlsg8oIzxIAUbCECOSQ7WMNTEXU4eT_jOId09Zsc_3OJv-CG6Aze3Mry9dgv8LLdb30lDdVU5CkLiHGOUX0brlIepS96w_b4jkIIS760kCacB4zFZ0jaG0dZq_ZVtad2N8MWvMOcqhPV70PAGksvWN6Enp5vzWm3qLz8RO_5P926i6y1Axa8ajbqFLpniNrqaLfPC3UFfB551AjYrnLmQdX_ehkuLR9MPxbTAdYkHPrcOCNUL7GMSsMST8pOZ4cbC4tdTF5ZU4eEcyjIzm-GxTxlicqwWeK-cLcqL8qOBHwMHhbGs8aj8jA8MYPyGA7q6iw6Hg4NsJ2iTOQQaQJKLr5N5TBRPdaxYmlBGbU4NzSMJiMNIBtAyZEli-pTznCeKaGUY0cwmRqfaJPE9tFaUhXmAsIoiZa1kNqWWEhIrk4NtMpwbQEOhTHooWM6l0C3TuUu4MRMNR3Mk3OCKbnB76GUnf9ZwfPxW8oVXjU5Mnp-6yLg-E0eTN2JCdo9OyHAsQHBjqTuiNQqVAKSWcOf3ghY-617D7DkfjSxMOXcy3DG1Amr6g0zSd_eD4WM9dL_Ry65BgLdSsMJRD0Veu_7SIZHt72fd08N_qfQUXdnbHorR28m7R-gaFLcnVBtorT6fm8eA2Wr1xC_Lb3jiNv0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Conversion+of+Lignin+to+Electricity+Using+a+Novel+Direct+Biomass+Fuel+Cell+Mediated+by+Polyoxometalates+at+Low+Temperatures&rft.jtitle=ChemSusChem&rft.au=Zhao%2C+Xuebing&rft.au=Zhu%2C+J+Y&rft.date=2016-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=9&rft.issue=2&rft.spage=197&rft_id=info:doi/10.1002%2Fcssc.201501446&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3928097181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |