Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures

A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3PMo12O40 (PMo12) was used as the electron and proton carrier in th...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 9; no. 2; pp. 197 - 207
Main Authors Zhao, Xuebing, Zhu, J. Y.
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.01.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3PMo12O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm−2, 560 times higher than that of phenol‐fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm−2. Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. POMs full of energy! Polyoxometalates (POMs) mediated direct biomass fuel cells (DBFC) are used to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. Continuous operation demonstrated that the fuel cells are promising as a stable electrochemical power sources. Both condensation and depolymerization took place during the POM oxidation of lignin.
AbstractList A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin.A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin.
A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3PMo12O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96mWcm-2, 560times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5mWcm-2. Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin.
A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H 3 PMo 12 O 40 (PMo 12 ) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O 2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm −2 , 560 times higher than that of phenol‐fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo 12 , the power density could be greatly enhanced to 5 mW cm −2 . Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo 12 oxidation of lignin.
A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H sub(3)PMo sub(12)O sub(40 ) (PMo sub(12)) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O sub(2) was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96mWcm super(-2), 560times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo sub(12), the power density could be greatly enhanced to 5mWcm super(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo sub(12) oxidation of lignin. POMs full of energy! Polyoxometalates (POMs) mediated direct biomass fuel cells (DBFC) are used to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. Continuous operation demonstrated that the fuel cells are promising as a stable electrochemical power sources. Both condensation and depolymerization took place during the POM oxidation of lignin.
A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3PMo12O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm−2, 560 times higher than that of phenol‐fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm−2. Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. POMs full of energy! Polyoxometalates (POMs) mediated direct biomass fuel cells (DBFC) are used to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. Continuous operation demonstrated that the fuel cells are promising as a stable electrochemical power sources. Both condensation and depolymerization took place during the POM oxidation of lignin.
A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin.
Author Zhao, Xuebing
Zhu, J. Y.
Author_xml – sequence: 1
  givenname: Xuebing
  surname: Zhao
  fullname: Zhao, Xuebing
  organization: Department of Chemical Engineering, Tsinghua University, Beijing, P.R. China
– sequence: 2
  givenname: J. Y.
  surname: Zhu
  fullname: Zhu, J. Y.
  email: jzhu@fs.fed.us
  organization: Department of Biological Systems Engineering, University of Wisconsin, Madison, WI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26692572$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhiNURD_gyhFZ4sJlF09iO8kRwm4BbRektiriYjnOpHJJ4sV22u4P6P-uV9uuUCXUk63x84zteQ-TvcEOmCRvgU6B0vSj9l5PUwqcAmPiRXIAhWATLtivvd0-g_3k0PsrSgUthXiV7KdClCnP04Pkbta2RhscAqnscI3OGzsQ25KFuRzMQIIlsw51cBEKa3LuzXBJFFnaa-zIF-PiEflsbK-8J_Mx1irsOnKCjVEBG1KvyU_bre2t7TGoLtY8UYEs7A05w36FToXRoX-dvGxV5_HNw3qUnM9nZ9XXyeLH8bfq02KiBeRiklHVZFCLUmc1LwvGWdswZE2qIC1Rcco45UWBOROiEUUNukYOmrcF6lJjkR0lH7Z9V87-HdEH2Ruv44vVgHb0Eoo8LwB4IZ5H8zhMyISAiL5_gl7Z0Q3xI5GKvQBEvrn73QM11j02cuVMr9xaPmYRAbYFtLPeO2xlHLkKMY_glOkkULmJXG4il7vIozZ9oj12_q9QboUb0-H6GVpWp6fVv-5k6xof8HbnKvdHijzLubxYHsslfL_4DfMTKbJ7txLNsQ
CitedBy_id crossref_primary_10_1016_j_jechem_2022_10_036
crossref_primary_10_3390_en15249450
crossref_primary_10_1016_j_biteb_2023_101463
crossref_primary_10_1002_slct_202304516
crossref_primary_10_1016_j_biortech_2021_126189
crossref_primary_10_1016_j_jechem_2020_08_060
crossref_primary_10_1021_jacs_2c10033
crossref_primary_10_1016_j_biortech_2022_128208
crossref_primary_10_1039_D3GC05108K
crossref_primary_10_1002_aenm_202203751
crossref_primary_10_1002_cssc_202000203
crossref_primary_10_1016_j_apcatb_2024_124404
crossref_primary_10_1016_j_jpowsour_2016_03_074
crossref_primary_10_1016_j_electacta_2021_138681
crossref_primary_10_1016_j_enconman_2022_115343
crossref_primary_10_1002_jctb_5841
crossref_primary_10_1021_acssuschemeng_3c07415
crossref_primary_10_3390_pr11030836
crossref_primary_10_7849_ksnre_2023_0003
crossref_primary_10_6023_A20090453
crossref_primary_10_1007_s12088_024_01414_3
crossref_primary_10_1016_j_cej_2023_147874
crossref_primary_10_1021_acs_chemrev_9b00717
crossref_primary_10_1039_D2SE00930G
crossref_primary_10_1021_acsenergylett_0c00631
crossref_primary_10_1002_bbb_2083
crossref_primary_10_1002_cssc_201601685
crossref_primary_10_1016_j_rser_2016_12_055
crossref_primary_10_1016_j_indcrop_2019_111526
crossref_primary_10_1016_j_apcatb_2023_123328
crossref_primary_10_1016_j_cej_2018_03_190
crossref_primary_10_1016_j_enconman_2022_115552
crossref_primary_10_1002_cctc_202301204
crossref_primary_10_1016_j_jpowsour_2019_227441
crossref_primary_10_1016_j_cej_2021_129716
crossref_primary_10_1002_fuce_202100109
crossref_primary_10_1016_j_apenergy_2021_117927
crossref_primary_10_1016_j_jece_2024_112116
crossref_primary_10_1016_j_ijhydene_2022_09_191
crossref_primary_10_1016_j_eng_2020_02_021
crossref_primary_10_1093_ce_zky001
crossref_primary_10_1002_ente_201600662
crossref_primary_10_1115_1_4062162
crossref_primary_10_1016_j_chempr_2019_05_021
crossref_primary_10_1016_j_jelechem_2017_12_085
crossref_primary_10_1016_j_jcis_2024_08_002
crossref_primary_10_1016_j_apcatb_2019_118578
crossref_primary_10_1016_j_ijhydene_2021_11_111
crossref_primary_10_1016_j_coelec_2023_101255
crossref_primary_10_1021_acs_iecr_9b06982
crossref_primary_10_1016_j_enconman_2023_117807
crossref_primary_10_1016_j_jechem_2018_02_015
crossref_primary_10_1016_j_apenergy_2017_05_073
crossref_primary_10_1016_j_ijhydene_2021_12_063
crossref_primary_10_1016_j_jechem_2020_09_009
crossref_primary_10_1016_j_biortech_2016_12_109
crossref_primary_10_1016_j_apenergy_2023_121568
crossref_primary_10_1002_cssc_202001807
crossref_primary_10_1007_s12155_024_10797_6
crossref_primary_10_1016_j_ijhydene_2019_02_031
Cites_doi 10.1149/1.1836625
10.1016/j.ijhydene.2013.08.090
10.1016/j.biortech.2014.12.052
10.1111/1751-7915.12026
10.1126/science.1100860
10.1016/j.indcrop.2010.05.003
10.1016/j.watres.2011.12.060
10.3390/ma3031888
10.1115/1.2971172
10.1002/aenm.201100108
10.1038/ncomms5621
10.1002/cssc.201000157
10.1016/j.biombioe.2013.04.006
10.1002/ange.200701292
10.1016/j.ijhydene.2011.09.139
10.1016/j.cej.2013.05.077
10.1002/anie.201408226
10.1515/hf-2014-0332
10.1016/S0196-8904(00)00050-9
10.1080/02773810701702170
10.1016/j.biortech.2015.03.080
10.1016/j.jpowsour.2014.07.125
10.1021/ja803114r
10.1016/j.cej.2008.07.011
10.1016/j.ijhydene.2006.06.048
10.1016/j.ijhydene.2011.01.158
10.1039/b607824a
10.1038/ncomms4208
10.1080/02773813.2010.503980
10.1021/es3023495
10.1002/anie.200701292
10.1007/s10800-012-0513-2
10.1002/ange.201408226
10.1039/c3ra23418e
10.1007/s00449-013-0975-6
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
7ST
C1K
SOI
DOI 10.1002/cssc.201501446
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef
Environment Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 207
ExternalDocumentID 3928097181
26692572
10_1002_cssc_201501446
CSSC201501446
ark_67375_WNG_N1JWZ1FM_6
Genre article
Journal Article
GroupedDBID ---
05W
0R~
1OC
29B
31~
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAHQN
AAMNL
AAYCA
AFWVQ
ALVPJ
AANHP
AAYXX
ACRPL
ACYXJ
ADNMO
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
K9.
7X8
7ST
C1K
SOI
ID FETCH-LOGICAL-c6176-30ad31b69c3b598454fd4e4d2a129ea50450588e7466d68b1cbe51c5f8ec9ce83
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Thu Jul 10 19:02:40 EDT 2025
Fri Jul 11 09:24:58 EDT 2025
Fri Jul 25 12:24:28 EDT 2025
Wed Feb 19 01:59:56 EST 2025
Tue Jul 01 00:35:56 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Wed Jan 22 16:19:52 EST 2025
Wed Oct 30 09:56:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords power density
direct biomass fuel cells
phosphomolybdic acids
lignins
polyoxometalates
Language English
License 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6176-30ad31b69c3b598454fd4e4d2a129ea50450588e7466d68b1cbe51c5f8ec9ce83
Notes ArticleID:CSSC201501446
istex:4612652C2C256FEAC775698E389B5BF0C47372C0
ark:/67375/WNG-N1JWZ1FM-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26692572
PQID 1758611678
PQPubID 986333
PageCount 11
ParticipantIDs proquest_miscellaneous_1877811586
proquest_miscellaneous_1760913661
proquest_journals_1758611678
pubmed_primary_26692572
crossref_citationtrail_10_1002_cssc_201501446
crossref_primary_10_1002_cssc_201501446
wiley_primary_10_1002_cssc_201501446_CSSC201501446
istex_primary_ark_67375_WNG_N1JWZ1FM_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jan
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References J. Xu, G. P. Sheng, W. H. Luo, W. W. Li, L. F. Wang, H. Q. Yu, Water Res. 2012, 46, 1817-1824.
P. Cowin, C. Petit, R. Lan, J. Irvine, S. Tao, Adv. Energy Mater. 2011, 1, 314-332.
H. Zhang, T. Wu, X. Yan, Y. Leng, S. Li, Chem. J. Chin. Univ. 1990, 11, 1096-1101.
A. Elleuch, A. Boussetta, J. Yu, K. Halouani, Y. Li, Int. J. Hydrogen Energy 2013, 38, 16590-16604.
W. Liu, W. Mu, M. Liu, X. Zhang, H. Cai, Y. Deng, Nat. Commun. 2014, 5, 3208.
A. Demirbas, Energy Convers. Manage. 2001, 42, 183-188.
B. Bujanovic, S. Ralph, R. Reiner, K. Hirth, R. Atalla, Materials 2010, 3, 1888-1903.
H. Friman, A. Schechter, Y. Ioffe, Y. Nitzan, R. Cahan, Microb. Biotechnol. 2013, 6, 425-434.
W. Yan, H. Chu, Y. Liu, F. Chen, J. Jang, Int. J. Hydrogen Energy 2011, 36, 5435-5441.
J. Macht, M. Janik, M. Neurock, E. Iglesia, Angew. Chem. Int. Ed. 2007, 46, 7864-7868
Y. Kim, H. Chang, J. Kadla, J. Wood Chem. Technol. 2007, 27, 225-241.
H. Luo, G. Liu, R. Zhang, S. Jin, Chem. Eng. J. 2009, 147, 259-264.
W. Liu, W. Mu, Y. Deng, Angew. Chem. Int. Ed. 2014, 53, 13558-13562
A. Borole, C. Hamilton, D. Schell, Environ. Sci. Technol. 2013, 47, 642-648.
A. Gaspar, J. Gamelas, D. Evtuguin, C. Neto, Green Chem. 2007, 9, 717-730.
R. Lima, R. Raza, H. Qin, J. Li, M. Lindstrom, B. Zhu, RSC Adv. 2013, 3, 5083-5089.
J. Macht, M. Janik, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 2008, 130, 10369-10379.
R. El-Emam, I. Dincer, G. Naterer, Int. J. Hydrogen Energy 2012, 37, 1689-1697.
B. Bujanovic, R. Reiner, S. Ralph, R. Atalla, J. Wood Chem. Technol. 2011, 31, 121-141.
F. Calvo-Flores, J. Dobado, ChemSusChem 2010, 3, 1227-1235.
J. Karl, N. Frank, S. Karellas, M. Saule, U. Hohenwarter, J. Fuel Cell Sci. Technol. 2009, 6, 021005.
J. Yu, Y. Zhao, Y. Li, J. Power Sources 2014, 270, 312-317.
J. Zhu, M. Chandra, F. Gu, R. Gleisner, R. Reiner, J. Sessions, G. Marrs, J. Gao, D. Anderson, Bioresour. Technol. 2015, 179, 390-397.
F. Ahmad, M. Atiyeh, B. Pereira, G. Stephanopoulos, Biomass Bioenergy 2013, 56, 179-188.
T. Springer, B. Kienitz in Proton Exchange Membrane Fuel Cells: Contamination and Mitigation Strategy (Eds.: H. Li, S. Knights, Z. Shi, J. Van Zee, J. Zhang), CRC Press, Boca Raton, FL, 2010, pp. 293-338.
Y. Sone, P. Ekdunge, D. Simonsson, J. Electrochem. Soc. 1996, 143, 1254-1259.
T. S. Song, X. Y. Wu, C. C. Zhou, Bioprocess Biosyst. Eng. 2014, 37, 133-138.
X. Zhao, D. Liu, Ind. Crops Prod. 2010, 32, 284-291.
C. Athanasiou, F. Coutelieris, E. Vakouftsi, V. Skoulou, E. Antonakou, G. Marnellos, A. Zabaniotou, Int. J. Hydrogen Energy 2007, 32, 337-342.
A. Brouzgou, A. Podias, P. Tsiakaras, J. Appl. Electrochem. 2013, 43, 119-136.
Angew. Chem. 2014, 126, 13776-13780.
A. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, CRC Press, 1985, pp. 480.
J. Zhang, F. Gu, J. Zhu, R. Zalesny, Bioresour. Technol. 2015, 186, 223-231.
W. Kim, T. Voitl, G. Rodriguez-Rivera, J. Dumesic, Science 2004, 305, 1280-1283.
Angew. Chem. 2007, 119, 8010-8014.
L. E. Arteaga-Pérez, Y. Casas-Ledon, R. Perez-Bermudez, L. M. Peralta, J. Dewulf, W. Prins, Chem. Eng. J. 2013, 228, 1121-1132.
B. B. Sarma, R. Neumann, Nat. Commun. 2014, 5, 4621.
2014 2014; 53 126
2010; 32
2013; 3
1990; 11
2013; 47
2011; 1
2013; 43
2010
2013; 228
2015; 186
2011; 31
1996; 143
2014; 270
2012; 37
2011; 36
2007; 32
2004; 305
2013; 6
2001; 42
2014; 5
2013; 38
2015; 179
2013; 56
2007 2007; 46 119
2014; 37
2007; 9
1985
2009; 6
2010; 3
2012; 46
2009; 147
2008; 130
2007; 27
e_1_2_2_4_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_8_1
Zhang H. (e_1_2_2_23_1) 1990; 11
e_1_2_2_28_1
e_1_2_2_27_1
Bard A. (e_1_2_2_36_1) 1985
e_1_2_2_14_1
e_1_2_2_13_1
e_1_2_2_12_1
e_1_2_2_11_1
e_1_2_2_10_1
e_1_2_2_30_1
e_1_2_2_31_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_15_1
Springer T. (e_1_2_2_26_1) 2010
References_xml – reference: J. Macht, M. Janik, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 2008, 130, 10369-10379.
– reference: B. Bujanovic, R. Reiner, S. Ralph, R. Atalla, J. Wood Chem. Technol. 2011, 31, 121-141.
– reference: A. Brouzgou, A. Podias, P. Tsiakaras, J. Appl. Electrochem. 2013, 43, 119-136.
– reference: L. E. Arteaga-Pérez, Y. Casas-Ledon, R. Perez-Bermudez, L. M. Peralta, J. Dewulf, W. Prins, Chem. Eng. J. 2013, 228, 1121-1132.
– reference: F. Ahmad, M. Atiyeh, B. Pereira, G. Stephanopoulos, Biomass Bioenergy 2013, 56, 179-188.
– reference: J. Xu, G. P. Sheng, W. H. Luo, W. W. Li, L. F. Wang, H. Q. Yu, Water Res. 2012, 46, 1817-1824.
– reference: J. Yu, Y. Zhao, Y. Li, J. Power Sources 2014, 270, 312-317.
– reference: A. Gaspar, J. Gamelas, D. Evtuguin, C. Neto, Green Chem. 2007, 9, 717-730.
– reference: F. Calvo-Flores, J. Dobado, ChemSusChem 2010, 3, 1227-1235.
– reference: J. Zhu, M. Chandra, F. Gu, R. Gleisner, R. Reiner, J. Sessions, G. Marrs, J. Gao, D. Anderson, Bioresour. Technol. 2015, 179, 390-397.
– reference: X. Zhao, D. Liu, Ind. Crops Prod. 2010, 32, 284-291.
– reference: H. Zhang, T. Wu, X. Yan, Y. Leng, S. Li, Chem. J. Chin. Univ. 1990, 11, 1096-1101.
– reference: W. Kim, T. Voitl, G. Rodriguez-Rivera, J. Dumesic, Science 2004, 305, 1280-1283.
– reference: H. Luo, G. Liu, R. Zhang, S. Jin, Chem. Eng. J. 2009, 147, 259-264.
– reference: J. Zhang, F. Gu, J. Zhu, R. Zalesny, Bioresour. Technol. 2015, 186, 223-231.
– reference: R. Lima, R. Raza, H. Qin, J. Li, M. Lindstrom, B. Zhu, RSC Adv. 2013, 3, 5083-5089.
– reference: T. S. Song, X. Y. Wu, C. C. Zhou, Bioprocess Biosyst. Eng. 2014, 37, 133-138.
– reference: J. Macht, M. Janik, M. Neurock, E. Iglesia, Angew. Chem. Int. Ed. 2007, 46, 7864-7868;
– reference: A. Elleuch, A. Boussetta, J. Yu, K. Halouani, Y. Li, Int. J. Hydrogen Energy 2013, 38, 16590-16604.
– reference: A. Demirbas, Energy Convers. Manage. 2001, 42, 183-188.
– reference: J. Karl, N. Frank, S. Karellas, M. Saule, U. Hohenwarter, J. Fuel Cell Sci. Technol. 2009, 6, 021005.
– reference: H. Friman, A. Schechter, Y. Ioffe, Y. Nitzan, R. Cahan, Microb. Biotechnol. 2013, 6, 425-434.
– reference: Angew. Chem. 2007, 119, 8010-8014.
– reference: A. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, CRC Press, 1985, pp. 480.
– reference: A. Borole, C. Hamilton, D. Schell, Environ. Sci. Technol. 2013, 47, 642-648.
– reference: B. B. Sarma, R. Neumann, Nat. Commun. 2014, 5, 4621.
– reference: T. Springer, B. Kienitz in Proton Exchange Membrane Fuel Cells: Contamination and Mitigation Strategy (Eds.: H. Li, S. Knights, Z. Shi, J. Van Zee, J. Zhang), CRC Press, Boca Raton, FL, 2010, pp. 293-338.
– reference: P. Cowin, C. Petit, R. Lan, J. Irvine, S. Tao, Adv. Energy Mater. 2011, 1, 314-332.
– reference: W. Yan, H. Chu, Y. Liu, F. Chen, J. Jang, Int. J. Hydrogen Energy 2011, 36, 5435-5441.
– reference: Y. Sone, P. Ekdunge, D. Simonsson, J. Electrochem. Soc. 1996, 143, 1254-1259.
– reference: Y. Kim, H. Chang, J. Kadla, J. Wood Chem. Technol. 2007, 27, 225-241.
– reference: C. Athanasiou, F. Coutelieris, E. Vakouftsi, V. Skoulou, E. Antonakou, G. Marnellos, A. Zabaniotou, Int. J. Hydrogen Energy 2007, 32, 337-342.
– reference: R. El-Emam, I. Dincer, G. Naterer, Int. J. Hydrogen Energy 2012, 37, 1689-1697.
– reference: Angew. Chem. 2014, 126, 13776-13780.
– reference: W. Liu, W. Mu, Y. Deng, Angew. Chem. Int. Ed. 2014, 53, 13558-13562;
– reference: W. Liu, W. Mu, M. Liu, X. Zhang, H. Cai, Y. Deng, Nat. Commun. 2014, 5, 3208.
– reference: B. Bujanovic, S. Ralph, R. Reiner, K. Hirth, R. Atalla, Materials 2010, 3, 1888-1903.
– volume: 186
  start-page: 223
  year: 2015
  end-page: 231
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 1888
  year: 2010
  end-page: 1903
  publication-title: Materials
– volume: 270
  start-page: 312
  year: 2014
  end-page: 317
  publication-title: J. Power Sources
– volume: 143
  start-page: 1254
  year: 1996
  end-page: 1259
  publication-title: J. Electrochem. Soc.
– volume: 31
  start-page: 121
  year: 2011
  end-page: 141
  publication-title: J. Wood Chem. Technol.
– volume: 179
  start-page: 390
  year: 2015
  end-page: 397
  publication-title: Bioresour. Technol.
– volume: 42
  start-page: 183
  year: 2001
  end-page: 188
  publication-title: Energy Convers. Manage.
– volume: 147
  start-page: 259
  year: 2009
  end-page: 264
  publication-title: Chem. Eng. J.
– start-page: 293
  year: 2010
  end-page: 338
– volume: 5
  start-page: 4621
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 021005
  year: 2009
  publication-title: J. Fuel Cell Sci. Technol.
– volume: 1
  start-page: 314
  year: 2011
  end-page: 332
  publication-title: Adv. Energy Mater.
– volume: 37
  start-page: 1689
  year: 2012
  end-page: 1697
  publication-title: Int. J. Hydrogen Energy
– volume: 56
  start-page: 179
  year: 2013
  end-page: 188
  publication-title: Biomass Bioenergy
– volume: 46 119
  start-page: 7864 8010
  year: 2007 2007
  end-page: 7868 8014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 130
  start-page: 10369
  year: 2008
  end-page: 10379
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1227
  year: 2010
  end-page: 1235
  publication-title: ChemSusChem
– volume: 37
  start-page: 133
  year: 2014
  end-page: 138
  publication-title: Bioprocess Biosyst. Eng.
– start-page: 480
  year: 1985
– volume: 53 126
  start-page: 13558 13776
  year: 2014 2014
  end-page: 13562 13780
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47
  start-page: 642
  year: 2013
  end-page: 648
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 1096
  year: 1990
  end-page: 1101
  publication-title: Chem. J. Chin. Univ.
– volume: 36
  start-page: 5435
  year: 2011
  end-page: 5441
  publication-title: Int. J. Hydrogen Energy
– volume: 46
  start-page: 1817
  year: 2012
  end-page: 1824
  publication-title: Water Res.
– volume: 38
  start-page: 16590
  year: 2013
  end-page: 16604
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 3208
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 425
  year: 2013
  end-page: 434
  publication-title: Microb. Biotechnol.
– volume: 43
  start-page: 119
  year: 2013
  end-page: 136
  publication-title: J. Appl. Electrochem.
– volume: 3
  start-page: 5083
  year: 2013
  end-page: 5089
  publication-title: RSC Adv.
– volume: 228
  start-page: 1121
  year: 2013
  end-page: 1132
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 717
  year: 2007
  end-page: 730
  publication-title: Green Chem.
– volume: 32
  start-page: 284
  year: 2010
  end-page: 291
  publication-title: Ind. Crops Prod.
– volume: 305
  start-page: 1280
  year: 2004
  end-page: 1283
  publication-title: Science
– volume: 27
  start-page: 225
  year: 2007
  end-page: 241
  publication-title: J. Wood Chem. Technol.
– volume: 32
  start-page: 337
  year: 2007
  end-page: 342
  publication-title: Int. J. Hydrogen Energy
– ident: e_1_2_2_27_1
  doi: 10.1149/1.1836625
– ident: e_1_2_2_6_1
  doi: 10.1016/j.ijhydene.2013.08.090
– ident: e_1_2_2_34_1
  doi: 10.1016/j.biortech.2014.12.052
– ident: e_1_2_2_11_1
  doi: 10.1111/1751-7915.12026
– ident: e_1_2_2_17_1
  doi: 10.1126/science.1100860
– ident: e_1_2_2_35_1
  doi: 10.1016/j.indcrop.2010.05.003
– ident: e_1_2_2_25_1
  doi: 10.1016/j.watres.2011.12.060
– ident: e_1_2_2_28_1
  doi: 10.3390/ma3031888
– ident: e_1_2_2_3_1
  doi: 10.1115/1.2971172
– ident: e_1_2_2_31_1
  doi: 10.1002/aenm.201100108
– volume: 11
  start-page: 1096
  year: 1990
  ident: e_1_2_2_23_1
  publication-title: Chem. J. Chin. Univ.
– ident: e_1_2_2_18_1
  doi: 10.1038/ncomms5621
– ident: e_1_2_2_1_1
  doi: 10.1002/cssc.201000157
– ident: e_1_2_2_14_1
  doi: 10.1016/j.biombioe.2013.04.006
– ident: e_1_2_2_21_2
  doi: 10.1002/ange.200701292
– ident: e_1_2_2_8_1
  doi: 10.1016/j.ijhydene.2011.09.139
– ident: e_1_2_2_9_1
  doi: 10.1016/j.cej.2013.05.077
– ident: e_1_2_2_20_1
  doi: 10.1002/anie.201408226
– ident: e_1_2_2_33_1
  doi: 10.1515/hf-2014-0332
– ident: e_1_2_2_2_1
  doi: 10.1016/S0196-8904(00)00050-9
– ident: e_1_2_2_30_1
  doi: 10.1080/02773810701702170
– ident: e_1_2_2_32_1
  doi: 10.1016/j.biortech.2015.03.080
– ident: e_1_2_2_7_1
  doi: 10.1016/j.jpowsour.2014.07.125
– ident: e_1_2_2_22_1
  doi: 10.1021/ja803114r
– ident: e_1_2_2_10_1
  doi: 10.1016/j.cej.2008.07.011
– ident: e_1_2_2_4_1
  doi: 10.1016/j.ijhydene.2006.06.048
– ident: e_1_2_2_24_1
  doi: 10.1016/j.ijhydene.2011.01.158
– ident: e_1_2_2_16_1
  doi: 10.1039/b607824a
– ident: e_1_2_2_19_1
  doi: 10.1038/ncomms4208
– ident: e_1_2_2_29_1
  doi: 10.1080/02773813.2010.503980
– ident: e_1_2_2_12_1
  doi: 10.1021/es3023495
– start-page: 480
  volume-title: Standard Potentials in Aqueous Solution
  year: 1985
  ident: e_1_2_2_36_1
– ident: e_1_2_2_21_1
  doi: 10.1002/anie.200701292
– ident: e_1_2_2_15_1
  doi: 10.1007/s10800-012-0513-2
– ident: e_1_2_2_20_2
  doi: 10.1002/ange.201408226
– ident: e_1_2_2_5_1
  doi: 10.1039/c3ra23418e
– ident: e_1_2_2_13_1
  doi: 10.1007/s00449-013-0975-6
– start-page: 293
  volume-title: Proton Exchange Membrane Fuel Cells: Contamination and Mitigation Strategy
  year: 2010
  ident: e_1_2_2_26_1
SSID ssj0060966
Score 2.4084811
Snippet A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 197
SubjectTerms Bioelectric Energy Sources
Biomass
Catalysis
direct biomass fuel cells
Electrodes
Fuel cells
Industrial Waste
Lignin
Lignin - chemistry
lignins
Oxidants - chemistry
Oxidation-Reduction
phosphomolybdic acids
polyoxometalates
power density
Temperature
Tungsten Compounds - chemistry
Title Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures
URI https://api.istex.fr/ark:/67375/WNG-N1JWZ1FM-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201501446
https://www.ncbi.nlm.nih.gov/pubmed/26692572
https://www.proquest.com/docview/1758611678
https://www.proquest.com/docview/1760913661
https://www.proquest.com/docview/1877811586
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF92OhICMhOKVdJ7Y3OUK0S1V1V4i2asXFsh2nWjUkqMlClzv_mxnnAYt4SHDLYxz5MR5_sWe-IeR5qO3YaJcHOdNZwIWQQQI2EICc0BKs4dgyDE6eL-TeMd8_Fac_RPG3_BDDhhvODG-vcYJrU-9-Jw21dY0UhAwPxjhybqPDFqKidwN_lAR87sOLYskDISPWszaOw93N4hur0lXs4MtfQc5NBOuXoNlNovvKt54n5zurxuzYLz_xOv5P626RGx0-pa9ahbpNrrjyDrmW9mnh7pKvU086AWsVTdFj3W-30SqnB8uzclnSpqJTn1oHhJo19S4JVNNF9ckVtDWw9PUSvZJqOlvBs9QVBZ37jCEuo2ZN31bFurqsPjj4L0AkTHVDD6rP9MgBxG8poOt75Hg2PUr3gi6XQ2ABI6F7nc4iZmRiIyOSmAueZ9zxLNQAOJwWgCzHIo7dhEuZydgwa5xgVuSxs4l1cXSfbJVV6R4SasLQ5LkWecJzzlhkXAamyUnpAAyNdTwiQT-WynZE55hvo1AtRXOosHPV0Lkj8nKQ_9hSfPxW8oVXjUFMX5yjY9xEqJPFG7Vg-yfv2WyuQHC71x3V2YRaAVCLJR57QQ2fDa9h9PCIRpeuWqGMRKJWAE1_kIknGB4MHxuRB61eDhUCuJWAEQ5HJPTa9ZcGqfTwMB3uHv1LocfkOlx3u1LbZKu5WLkngNMa89TPxW8kaDQy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgexgvfH8UBhgJwVO2OLXd5BFCSxlthVinIV4s23Gmal2C1hRW3vm_uXOaoCI-JHiMc478cT7_cj7_jpCnkbah0S4PcqazgAshgwRsIAA5oSVYw9AyvJw8nsjhET_4IJpoQrwLU_NDtA43XBneXuMCR4f0_g_WULtYIAchw5MxLi-TbUzrjfT5r963DFISELq_YBRLHgjZZQ1vYxjtb9bf2Je2cYgvfgU6NzGs34QG14hpml_HnpzuLSuzZ7_-xOz4X_27Tq6uISp9UevUDXLJFTfJTtpkhrtFvvU97wRsVzTFoHXvcaNlTkezk2JW0KqkfZ9dB4SqFfVRCVTTSfnZzWltY-nLGQYmLehgCWWpm8_p2CcNcRk1K_qunK_Ki_LMwa8BgmGqKzoqv9CpA5Rfs0AvbpOjQX-aDoN1OofAAkzCCDuddZmRie0akcRc8DzjjmeRBszhtABwGYo4dj0uZSZjw6xxglmRx84m1sXdO2SrKAt3j1ATRSbPtcgTnnPGusZlYJ2clA7wUKjjDgmayVR2zXWOKTfmqmZpjhQOrmoHt0Oet_KfapaP30o-87rRiunzU4yN6wl1PHmtJuzg-CMbjBUI7jbKo9ZmYaEAq8UST76ghU_a1zB7eEqjC1cuUUYiVyvgpj_IxD28IQwf65C7tWK2DQLElYAdjjok8ur1lw6p9PAwbZ_u_0ulx2RnOB2P1OjN5O0DcgXK106qXbJVnS_dQ4BtlXnkF-Z3VoM4Tg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL78dCASMhOKWNE9ubHCHdpZTdVUVbterFsh0brbokVZOFLnf-N2MnG1jEQ4JjnHHkx3j8xTP-BqHnkdShksYGlsg8oIzxIAUbCECOSQ7WMNTEXU4eT_jOId09Zsc_3OJv-CG6Aze3Mry9dgv8LLdb30lDdVU5CkLiHGOUX0brlIepS96w_b4jkIIS760kCacB4zFZ0jaG0dZq_ZVtad2N8MWvMOcqhPV70PAGksvWN6Enp5vzWm3qLz8RO_5P926i6y1Axa8ajbqFLpniNrqaLfPC3UFfB551AjYrnLmQdX_ehkuLR9MPxbTAdYkHPrcOCNUL7GMSsMST8pOZ4cbC4tdTF5ZU4eEcyjIzm-GxTxlicqwWeK-cLcqL8qOBHwMHhbGs8aj8jA8MYPyGA7q6iw6Hg4NsJ2iTOQQaQJKLr5N5TBRPdaxYmlBGbU4NzSMJiMNIBtAyZEli-pTznCeKaGUY0cwmRqfaJPE9tFaUhXmAsIoiZa1kNqWWEhIrk4NtMpwbQEOhTHooWM6l0C3TuUu4MRMNR3Mk3OCKbnB76GUnf9ZwfPxW8oVXjU5Mnp-6yLg-E0eTN2JCdo9OyHAsQHBjqTuiNQqVAKSWcOf3ghY-617D7DkfjSxMOXcy3DG1Amr6g0zSd_eD4WM9dL_Ry65BgLdSsMJRD0Veu_7SIZHt72fd08N_qfQUXdnbHorR28m7R-gaFLcnVBtorT6fm8eA2Wr1xC_Lb3jiNv0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Conversion+of+Lignin+to+Electricity+Using+a+Novel+Direct+Biomass+Fuel+Cell+Mediated+by+Polyoxometalates+at+Low+Temperatures&rft.jtitle=ChemSusChem&rft.au=Zhao%2C+Xuebing&rft.au=Zhu%2C+J+Y&rft.date=2016-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=9&rft.issue=2&rft.spage=197&rft_id=info:doi/10.1002%2Fcssc.201501446&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3928097181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon