Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG
In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent curre...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 39; no. 2; pp. 728 - 741 |
---|---|
Main Authors | , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
United States
Elsevier Inc
15.01.2008
Elsevier Limited Academic Press Inc Elsevier Science |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2007.09.005 |
Cover
Loading…
Abstract | In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models (
e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component. |
---|---|
AbstractList | In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models (e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component. In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models ( e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component. In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models (e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component. (C) 2007 Elsevier Inc. All rights reserved. In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models (e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component.In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models (e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component. |
Author | Phillips, Christophe Daunizeau, Jean Kiebel, Stefan J. Friston, Karl J. |
Author_xml | – sequence: 1 givenname: Stefan J. surname: Kiebel fullname: Kiebel, Stefan J. email: skiebel@fil.ion.ucl.ac.uk organization: The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London, WC1N 3AR, UK – sequence: 2 givenname: Jean surname: Daunizeau fullname: Daunizeau, Jean organization: The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London, WC1N 3AR, UK – sequence: 3 givenname: Christophe surname: Phillips fullname: Phillips, Christophe organization: Centre de Recherches du Cyclotron, Université de Liège, Liege, Belgium – sequence: 4 givenname: Karl J. surname: Friston fullname: Friston, Karl J. organization: The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London, WC1N 3AR, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17951076$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URD_gL6BISNyS2k7iOBcErZYtUhEcgOvIsWcXL954aycr7b-vQ1pV2tOeZjR63vcwzyU5632PhGSMFowycb0pehyDt1u1xoJT2hS0LSitX5ELRts6b-uGn017XeaSsfacXMa4oZS2rJJvyDlr2prRRlyQn39UsGqwvlcuu1EHjFb1me33GGI6Zn6VDX8xw4fR7pXDfsj0GMI0jd15h9nWG3QpkC0Wy-vvi-Vb8nqlXMR3T_OK_P66-HV7l9__WH67_XKfa8HEkDeykcZwYVDwrhVixXUtjGZMCa5QViVyWamqxVJ3RnGtO9VVknaa10YxtSqvCJ97ncU1gg-dhT0Hr-y8j24NSkOHwLmQUDIuZQp9nEO74B9GjANsbdTonOrRjxEaml7Gywn8cARu_BjSjyKwmja8EpSXiXr_RI3dFg3sQjISDvD83gTIGdDBxxhw9YJQmEzCBl5MwmQSaAvJZIp-OopqO_wXNQRl3SkFN3MBJgt7iwGitthrNDagHsB4e0rJ56MS7WxvtXL_8HBaxSN1U9aJ |
CitedBy_id | crossref_primary_10_1016_j_csda_2024_108055 crossref_primary_10_1016_j_neuroimage_2013_09_008 crossref_primary_10_1016_j_jneumeth_2020_108743 crossref_primary_10_1038_s41598_022_14217_7 crossref_primary_10_1016_j_neuroimage_2014_12_067 crossref_primary_10_1136_jnnp_2016_314621 crossref_primary_10_1007_s12559_022_10077_5 crossref_primary_10_1016_j_jneumeth_2020_108740 crossref_primary_10_3389_fnins_2019_00300 crossref_primary_10_1093_cercor_bhs365 crossref_primary_10_1109_TBME_2022_3161830 crossref_primary_10_1016_j_neuroimage_2008_12_041 crossref_primary_10_1109_JBHI_2016_2590434 crossref_primary_10_3389_fncom_2018_00060 crossref_primary_10_1016_j_neuroimage_2007_11_039 crossref_primary_10_1016_j_neuroimage_2011_12_027 crossref_primary_10_1113_JP277899 crossref_primary_10_1109_TBME_2010_2050318 crossref_primary_10_1007_s00422_014_0616_4 crossref_primary_10_1002_hbm_20775 crossref_primary_10_1016_j_jneumeth_2012_09_017 crossref_primary_10_1016_j_neuroimage_2012_10_001 crossref_primary_10_1016_j_neuroimage_2014_04_058 crossref_primary_10_1016_j_neuroimage_2015_06_028 crossref_primary_10_1016_j_neuroimage_2008_12_012 crossref_primary_10_1162_jocn_a_00481 crossref_primary_10_1016_j_neuroimage_2014_12_030 crossref_primary_10_1523_JNEUROSCI_3974_11_2012 crossref_primary_10_1016_j_neuroimage_2017_03_030 crossref_primary_10_1007_s00521_020_05603_1 crossref_primary_10_1016_j_neuroimage_2008_02_006 crossref_primary_10_1016_j_neuroimage_2010_03_059 crossref_primary_10_1016_j_neuroimage_2011_11_020 crossref_primary_10_1016_j_dsp_2010_09_005 crossref_primary_10_1016_j_neuroimage_2012_04_050 crossref_primary_10_1093_brain_awt186 crossref_primary_10_1109_TBME_2015_2450015 crossref_primary_10_1016_j_neuroimage_2011_08_098 crossref_primary_10_3902_jnns_18_214 crossref_primary_10_1016_j_neuroimage_2008_12_027 crossref_primary_10_1016_j_seizure_2011_09_003 crossref_primary_10_1371_journal_pone_0051985 crossref_primary_10_1016_j_neuroimage_2017_01_034 crossref_primary_10_1038_s41598_019_43885_1 crossref_primary_10_1007_s10548_022_00926_9 crossref_primary_10_1016_j_neuroimage_2008_03_026 crossref_primary_10_1016_j_neuroimage_2023_120490 crossref_primary_10_1007_s10548_018_0670_7 crossref_primary_10_1155_2011_852961 crossref_primary_10_1080_01621459_2017_1285773 crossref_primary_10_3379_msjmag_2211R001 crossref_primary_10_1109_JBHI_2015_2413752 crossref_primary_10_3389_fnins_2017_00504 crossref_primary_10_1016_j_neubiorev_2020_03_013 crossref_primary_10_1016_j_neuroimage_2013_04_087 crossref_primary_10_1016_j_neuroimage_2017_01_029 crossref_primary_10_1016_j_bspc_2025_107673 crossref_primary_10_1016_j_neuroimage_2016_03_078 crossref_primary_10_1007_s00521_023_09171_y crossref_primary_10_1016_j_neuroimage_2009_11_015 crossref_primary_10_1016_j_cortex_2016_05_001 crossref_primary_10_1016_j_neuroimage_2011_07_048 crossref_primary_10_3389_fpsyt_2022_938694 crossref_primary_10_1007_s12021_015_9281_6 crossref_primary_10_1016_j_neuroimage_2021_118662 crossref_primary_10_1093_brain_awt087 crossref_primary_10_1073_pnas_1523266113 crossref_primary_10_1038_s42003_021_01670_9 crossref_primary_10_1016_j_neuroimage_2014_08_012 |
ContentType | Journal Article Web Resource |
Copyright | 2007 Elsevier Inc. Copyright Elsevier Limited Jan 15, 2008 |
Copyright_xml | – notice: 2007 Elsevier Inc. – notice: Copyright Elsevier Limited Jan 15, 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 Q33 |
DOI | 10.1016/j.neuroimage.2007.09.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 741 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_31288 3246196251 17951076 10_1016_j_neuroimage_2007_09_005 S105381190700794X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 Q33 |
ID | FETCH-LOGICAL-c616t-7878dd26de62b966f2c56dc11a62ae843e284a49e3cbda2ccbab480bc25da1af3 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 25 15:36:45 EDT 2025 Mon Jul 21 10:50:18 EDT 2025 Wed Aug 13 11:41:55 EDT 2025 Thu Apr 03 07:00:00 EDT 2025 Tue Jul 01 02:14:18 EDT 2025 Thu Apr 24 23:11:59 EDT 2025 Fri Feb 23 02:25:14 EST 2024 Tue Aug 26 16:31:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Equivalent current dipole Variational Bayes EEG MEG |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c616t-7878dd26de62b966f2c56dc11a62ae843e284a49e3cbda2ccbab480bc25da1af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 scopus-id:2-s2.0-36148984293 |
OpenAccessLink | http://orbi.ulg.ac.be/handle/2268/31288 |
PMID | 17951076 |
PQID | 1507246023 |
PQPubID | 2031077 |
PageCount | 14 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_31288 proquest_miscellaneous_70105238 proquest_journals_1507246023 pubmed_primary_17951076 crossref_primary_10_1016_j_neuroimage_2007_09_005 crossref_citationtrail_10_1016_j_neuroimage_2007_09_005 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2007_09_005 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2007_09_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-01-15 |
PublicationDateYYYYMMDD | 2008-01-15 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2008 |
Publisher | Elsevier Inc Elsevier Limited Academic Press Inc Elsevier Science |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Academic Press Inc Elsevier Science |
References | Radich, Buckley (bib30) 1995; 42 Mosher, Spencer, Leahy, Lewis (bib23) 1993; 86 Friston, Mattout, Trujillo-Barreto, Ashburner, Penny (bib10) 2007; 34 Nummenmaa, Auranen, Hamalainen, Jaaskelainen, Lampinen, Sams, Vehtari (bib24) 2007; 35 Phillips, Mattout, Rugg, Maquet, Friston (bib28) 2005; 24 Zhang (bib36) 1995; 40 Auranen, Nummenmaa, Hamalainen, Jaaskelainen, Lampinen, Vehtari, Sams (bib1) 2007; 28 Penny, Kiebel, Friston (bib26) 2003; 19 Supek, Aine (bib33) 1993; 40 Penny, Stephan, Mechelli, Friston (bib27) 2004; 22 Sato, Yoshioka, Kajihara, Toyama, Goda, Doya, Kawato (bib31) 2004; 23 Braun, Kaiser, Kincses, Elbert (bib5) 1997; 10 Friston, Harrison, Penny (bib11) 2003; 19 Kiebel, David, Friston (bib18) 2006; 30 Oostenveld, Praamstra (bib25) 2001; 112 David, Kiebel, Harrison, Mattout, Kilner, Friston (bib7) 2006; 30 Daunizeau, Grova, Marrelec, Mattout, Jbabdi, Pelegrini-Issac, Lina, Benali (bib6) 2007; 36 Flandin, Penny (bib9) 2007; 34 Lutkenhoner, Steinstrater (bib19) 1998; 3 Phillips, Rugg, Friston (bib29) 2002; 16 Fuchs, Wagner, Kastner (bib12) 2004; 115 Jun, George, Pare-Blagoev, Plis, Ranken, Schmidt, Wood (bib15) 2005; 28 Mosher, Lewis, Leahy (bib22) 1992; 39 Garrido, Kilner, Kiebel, Stephan, Friston (bib13) 2007; 36 Deffke, Sander, Heidenreich, Sommer, Curio, Trahms, Lueschow (bib8) 2007; 35 Baillet, Garnero (bib2) 1997; 44 Beal (bib4) 2003 Woolrich, Behrens (bib34) 2006; 25 Kass, Wasserman (bib17) 1996; 91 Oostenveld, R., 2003. Improving EEG Source Analysis using Prior Knowledge. Thesis, Katholieke Universiteit Nijmegen. Baillet, Mosher, Leahy (bib3) 2001; 18 Jun, George, Plis, Ranken, Schmidt, Wood (bib16) 2006; 51 Huang, Aine, Supek, Best, Ranken, Flynn (bib14) 1998; 108 Yvert, Crouzeix-Cheylus, Pernier (bib35) 2001; 14 Mattout, Phillips, Penny, Rugg, Friston (bib20) 2006; 30 Mosher, Leahy, Lewis (bib21) 1999; 46 Schmidt, George, Wood (bib32) 1999; 7 |
References_xml | – volume: 108 start-page: 32 year: 1998 end-page: 44 ident: bib14 article-title: Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography publication-title: Electroencephalogr. Clin. Neurophysiol. – year: 2003 ident: bib4 article-title: Variational Algorithms for Approximate Bayesian Inference – volume: 30 start-page: 1255 year: 2006 end-page: 1272 ident: bib7 article-title: Abstract Dynamic causal modeling of evoked responses in EEG and MEG publication-title: NeuroImage – volume: 19 start-page: 727 year: 2003 end-page: 741 ident: bib26 article-title: Variational Bayesian inference for fMRI time series publication-title: NeuroImage – volume: 46 start-page: 245 year: 1999 end-page: 259 ident: bib21 article-title: EEG and MEG: forward solutions for inverse methods publication-title: IEEE Trans. Biomed. Eng. – volume: 24 start-page: 997 year: 2005 end-page: 1011 ident: bib28 article-title: An empirical Bayesian solution to the source reconstruction problem in EEG publication-title: NeuroImage – volume: 18 start-page: 14 year: 2001 end-page: 30 ident: bib3 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Process. Mag. – volume: 34 start-page: 220 year: 2007 end-page: 234 ident: bib10 article-title: Variational free energy and the Laplace approximation publication-title: NeuroImage – volume: 39 start-page: 541 year: 1992 end-page: 557 ident: bib22 article-title: Multiple dipole modeling and localization from spatio-temporal MEG data publication-title: IEEE Trans. Biomed. Eng. – volume: 16 start-page: 678 year: 2002 end-page: 695 ident: bib29 article-title: Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints publication-title: NeuroImage – volume: 42 start-page: 233 year: 1995 end-page: 241 ident: bib30 article-title: EEG dipole localization bounds and MAP algorithms for head models with parameter uncertainties publication-title: IEEE Trans. Biomed. Eng. – volume: 25 start-page: 1380 year: 2006 end-page: 1391 ident: bib34 article-title: Variational Bayes inference of spatial mixture models for segmentation publication-title: IEEE Trans. Med. Imag. – volume: 14 start-page: 48 year: 2001 end-page: 63 ident: bib35 article-title: Fast realistic modeling in bioelectromagnetism using lead-field interpolation publication-title: Hum. Brain Mapp. – volume: 30 start-page: 753 year: 2006 end-page: 767 ident: bib20 article-title: MEG source localization under multiple constraints: an extended Bayesian framework publication-title: NeuroImage – volume: 10 start-page: 31 year: 1997 end-page: 39 ident: bib5 article-title: Abstract Confidence interval of single dipole locations based on EEG data publication-title: Brain Topogr. – volume: 28 start-page: 84 year: 2005 end-page: 98 ident: bib15 article-title: Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data publication-title: NeuroImage – volume: 30 start-page: 1273 year: 2006 end-page: 1284 ident: bib18 article-title: Abstract Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization publication-title: NeuroImage – volume: 40 start-page: 529 year: 1993 end-page: 540 ident: bib33 article-title: Simulation studies of multiple dipole neuromagnetic source localization: model order and limits of source resolution publication-title: IEEE Trans. Biomed. Eng. – volume: 35 start-page: 1495 year: 2007 end-page: 1501 ident: bib8 article-title: Abstract MEG/EEG sources of the 170-ms response to faces are co-localized in the fusiform gyrus publication-title: NeuroImage – volume: 7 start-page: 195 year: 1999 end-page: 212 ident: bib32 article-title: Bayesian inference applied to the electromagnetic inverse problem publication-title: Hum. Brain Mapp. – volume: 44 start-page: 374 year: 1997 end-page: 385 ident: bib2 article-title: A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem publication-title: IEEE Trans. Biomed. Eng. – volume: 115 start-page: 1442 year: 2004 end-page: 1451 ident: bib12 article-title: Confidence limits of dipole source reconstruction results publication-title: Clin. Neurophysiol. – volume: 22 start-page: 1157 year: 2004 end-page: 1172 ident: bib27 article-title: Comparing dynamic causal models publication-title: NeuroImage – volume: 36 start-page: 571 year: 2007 end-page: 580 ident: bib13 article-title: Dynamic causal modelling of evoked potentials: a reproducibility study publication-title: NeuroImage – volume: 51 start-page: 2395 year: 2006 end-page: 2414 ident: bib16 article-title: Improving source detection and separation in a spatiotemporal Bayesian inference dipole analysis publication-title: Phys. Med. Biol. – volume: 36 start-page: 69 year: 2007 end-page: 87 ident: bib6 article-title: Free Full Text Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework publication-title: NeuroImage – reference: Oostenveld, R., 2003. Improving EEG Source Analysis using Prior Knowledge. Thesis, Katholieke Universiteit Nijmegen. – volume: 40 start-page: 335 year: 1995 end-page: 349 ident: bib36 article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres publication-title: Phys. Med. Biol. – volume: 34 start-page: 1108 year: 2007 end-page: 1125 ident: bib9 article-title: Bayesian fMRI data analysis with sparse spatial basis function priors publication-title: NeuroImage – volume: 91 start-page: 1343 year: 1996 end-page: 1370 ident: bib17 article-title: The selection of prior distributions by formal rules publication-title: J. Am. Stat. Assoc. – volume: 28 start-page: 979 year: 2007 end-page: 994 ident: bib1 article-title: Related Articles, Links Abstract Bayesian inverse analysis of neuromagnetic data using cortically constrained multiple dipoles publication-title: Hum. Brain Mapp. – volume: 19 start-page: 1273 year: 2003 end-page: 1302 ident: bib11 article-title: Dynamic causal modelling publication-title: NeuroImage – volume: 86 start-page: 303 year: 1993 end-page: 321 ident: bib23 article-title: Error bounds for EEG and MEG dipole source localization publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 23 start-page: 806 year: 2004 end-page: 826 ident: bib31 article-title: Hierarchical Bayesian estimation for MEG inverse problem publication-title: NeuroImage – volume: 35 start-page: 669 year: 2007 end-page: 685 ident: bib24 article-title: Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods publication-title: NeuroImage – volume: 112 start-page: 713 year: 2001 end-page: 719 ident: bib25 article-title: The five percent electrode system for high-resolution EEG and ERP measurements publication-title: Clin. Neurophysiol. – volume: 3 start-page: 191 year: 1998 end-page: 213 ident: bib19 article-title: High-precision neuromagnetic study of the functional organization of the human auditory cortex publication-title: Audiol. Neuro-otol. |
RestrictionsOnAccess | open access |
SSID | ssj0009148 |
Score | 2.2117467 |
Snippet | In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source... |
SourceID | liege proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 728 |
SubjectTerms | Algorithms Approximation Bayes Theorem EEG Electroencephalography Electroencephalography - statistics & numerical data Equivalent current dipole Evoked Potentials - physiology Evoked Potentials, Auditory - physiology Human health sciences Humans Magnetoencephalography - statistics & numerical data Markov Chains MEG Models, Statistical Neurosciences & behavior Neurosciences & comportement Physiology Radiologie, médecine & imagerie nucléaire Radiology, nuclear medicine & imaging Reproducibility of Results Sciences de la santé humaine Sciences sociales & comportementales, psychologie Sensors Social & behavioral sciences, psychology Software Variational Bayes |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaglRAXxJtAAR-4Iaux49iJOCBA21ZIizhQtDfLr6CgJdl2dyvx7xk_snsq2lukZHIYjz2fx-PvQ-id4daaUlpiaAcbFFeWJNCmk9JVQrdMcxkZ-ObfxMUl_7qoF7ngts5tldOaGBdqN9pQIz8NwIVxASnm4-qKBNWocLqaJTTuouNAXRZauuRC7kl3KU9X4eqKNPBB7uRJ_V2RL7L_A7M2ExkG4sr6tvR0vAxn2LfD0JiOzh6iBxlH4k9p4B-hO354jO7N80n5E_T9J2yCc6EPf9Z_fbgsifvhJtXH8NhhgH7YX217iDXIPNgmpibs-tW49DhK5IABns3OT-ez86fo8mz248sFyeoJxAoqNgRmYuMcE84LZmBT0zFbC2cp1YJp3_DKQ2bSvPWVNU4zGDJteFMay2qnqe6qZ-hoGAf_AmEvg7Kj060sO95Y3UYJdW-dZ9QwUxVITk5TNlOLB4WLpZp6yH6rvbuD8qVUZavA3QWiO8tVotc4wKadxkVN10dhwVOQAw6w_bCzzRAjQYcDrd_HMFDjtenVDVOBmzs-b5e_lLbKwOdMNKqCrN8U6GQKFpUXhrXah3GB3u5ew5QO5zR68ON2rWRQLQUoVaDnKcT2rpEBEEvx8v-_foXup7YWSmh9go4211v_GrDTxryJE-Qfqa8Ydg priority: 102 providerName: ProQuest |
Title | Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381190700794X https://dx.doi.org/10.1016/j.neuroimage.2007.09.005 https://www.ncbi.nlm.nih.gov/pubmed/17951076 https://www.proquest.com/docview/1507246023 https://www.proquest.com/docview/70105238 http://orbi.ulg.ac.be/handle/2268/31288 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF61jYS4IN41lLAHbsjEu7Z3bXFqI7fhkSgqFOW22peRUbBDm1Tiwm9n1l4n4lApEpckSjJSMp6Z71vv7DcIvVGJ1iriOlSkhAWKiaLQyaaHkYmZzKlMeKvAN52xyVXycZEuDtC4Pwvj2ip97e9qelut_Tsj783RqqpGX4AZANwAoHHAuTxZHKIBjXMGoT04_fBpMttp75KkOxGXxqEz8A09XZtXKxtZ_YTk9XqGTr8yvQulBku3lX03G21R6fwheuDpJD7tfvEjdGDrx-je1G-YP0Hzb7AW9vf78Jn8bd2ZSVzVt91tMtyUGBggtr82FYQcABDWnWATNtWqWVrcTsoBA1wUF6NpcfEUXZ0XX8eT0A9RCDUjbB1CQmbGUGYsowrWNiXVKTOaEMmotFkSWwAomeQ21spICldOqiSLlKapkUSW8TN0VDe1PUbYcjfg0cicR2WSaZm3k9StNpYSRVUcIN47TWivMO4GXSxF30r2Q-zc7QZgchHlAtwdILK1XHUqG3vY5P11Ef0pUqh7AqBgD9v3W9t_om1P67dtGIjmWlXilgon0d2-3iy_C6mFgq9TlokYwD8L0EkfLMLXhxvhaDhNGBCmAL3efgyZ7bZrZG2bzY3gbngpMKoAPe9CbOca7ngxZy_-62-8RPe75hcSkvQEHa2vN_YVMKy1GqLDd38IPPIFH0I2jS8_z4c-q-D5rJjNL_8CX4sqhQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRAIuiDeGQvcAJ2TVu7bXthBCFNymtIkq1KLetvsycpXGaZMU9U_xG5n1IzkV5dKbJXsseTw78-3u7PcBvFeR1ipItK9ogRMUEwS-o033AxNymTEZJTUD33DEByfRj9P4dAP-dmdhXFtllxPrRG0q7dbItx1wYRHHEvNleuk71Si3u9pJaDRhcWBv_uCUbfZ5_zv-3w-M7ebH3wZ-qyrga0753McITY1h3FjOFIL9gumYG02p5EzaNAotZmwZZTbUykiGnyJVlAZKs9hIKosQ33sP-lGIU5ke9Hfy0dHPFc0vjZrDd3Hop5Rmbe9Q01FWM1SWF5gnWupER5UZ31YQ-2O3a3478K0L4O5jeNQiV_K1CbUnsGEnT-H-sN2bfwZHv3Da3S4tkh15Y93xTFJOrpsVOVIVBMEmsZeLEqMbax3RDTcUMeW0GltSi_KgAcnzve1hvvccTu7Esy-gN6km9hUQmzgtSSOzJCiiVMusFm232lhGFVOhB0nnNKFbMnOnqTEWXdfauVi522ltJiLIBLrbA7q0nDaEHmvYZN1_Ed2BVUyxAqvOGraflrYtqGnAyprWH-swENWVKsU1E44NvL5ejH8LqYXCxxlPRYg4I_VgswsW0aaimVgNHA-2lrcxibidITmx1WImEqeTiuDNg5dNiK1ckzgInvDX_3_1FjwYHA8PxeH-6OANPGyaaqhP403oza8W9i0it7l61w4XAmd3PUL_AXk_WKM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKK1VcEN-kFOoDnFDU2EnsRAghoLttKVv1QNHejL-CgrbJtrtb1L_Gr2McO7unor30FimZSJnMjJ_t8XsIvVGZ1irhOlakggmKSZLY0abHiUmZLKnMeMfANzplR-fZ13E-3kB_-7Mwrq2yr4ldoTatdmvk-w640Iw5Wp4qtEWcHQw_Ti9jpyDldlp7OQ0fIif25g9M32Yfjg_gX7-ldDj4_uUoDgoDsWaEzWOI1sIYyoxlVAHwr6jOmdGESEalLbLUQvWWWWlTrYyk8FlSZUWiNM2NJLJK4b330BZPc-JyjI_5ivCXZP4YXp7GBSFl6CLyvWUdV2V9ARUjkCg60sz8tqFxa-L2z2-HwN1QOHyIHgQMiz_5oHuENmzzGG2Pwi79E3T2AybgYZERf5Y31h3UxHVz7dfmcFthgJ3YXi5qiHMY9bD2LFHY1NN2YnEnzwMGeDA43B8NDp-i8zvx6zO02bSNfYGw5U5V0siSJ1VWaFl28u1WG0uJoiqNEO-dJnSgNXfqGhPR96_9Fit3O9VNLpJSgLsjRJaWU0_tsYZN2f8X0R9dhWIrYPxZw_b90jbAGw9b1rR-14WBaK9ULa6pcLzg3fVi8ktILRQ8TlkhUkAcRYR2-2ARoSjNxCqFIrS3vA3lxO0Ryca2i5ngTjEVYFyEnvsQW7mGOzDO2c7_X72HtiEvxbfj05OX6L7vriExyXfR5vxqYV8BhJur112uYPTzrpPzH4yBW3M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Bayesian+inversion+of+the+equivalent+current+dipole+model+in+EEG%2FMEG&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kiebel%2C+Stefan+J.&rft.au=Daunizeau%2C+Jean&rft.au=Phillips%2C+Christophe&rft.au=Friston%2C+Karl+J.&rft.date=2008-01-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=39&rft.issue=2&rft.spage=728&rft.epage=741&rft_id=info:doi/10.1016%2Fj.neuroimage.2007.09.005&rft.externalDocID=S105381190700794X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |