Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG

In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent curre...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 39; no. 2; pp. 728 - 741
Main Authors Kiebel, Stefan J., Daunizeau, Jean, Phillips, Christophe, Friston, Karl J.
Format Journal Article Web Resource
LanguageEnglish
Published United States Elsevier Inc 15.01.2008
Elsevier Limited
Academic Press Inc Elsevier Science
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2007.09.005

Cover

Loading…
Abstract In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models ( e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component.
AbstractList In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models (e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component.
In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models ( e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component.
In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models (e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component. (C) 2007 Elsevier Inc. All rights reserved.
In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models (e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component.In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models (e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component.
Author Phillips, Christophe
Daunizeau, Jean
Kiebel, Stefan J.
Friston, Karl J.
Author_xml – sequence: 1
  givenname: Stefan J.
  surname: Kiebel
  fullname: Kiebel, Stefan J.
  email: skiebel@fil.ion.ucl.ac.uk
  organization: The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London, WC1N 3AR, UK
– sequence: 2
  givenname: Jean
  surname: Daunizeau
  fullname: Daunizeau, Jean
  organization: The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London, WC1N 3AR, UK
– sequence: 3
  givenname: Christophe
  surname: Phillips
  fullname: Phillips, Christophe
  organization: Centre de Recherches du Cyclotron, Université de Liège, Liege, Belgium
– sequence: 4
  givenname: Karl J.
  surname: Friston
  fullname: Friston, Karl J.
  organization: The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London, WC1N 3AR, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17951076$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URD_gL6BISNyS2k7iOBcErZYtUhEcgOvIsWcXL954aycr7b-vQ1pV2tOeZjR63vcwzyU5632PhGSMFowycb0pehyDt1u1xoJT2hS0LSitX5ELRts6b-uGn017XeaSsfacXMa4oZS2rJJvyDlr2prRRlyQn39UsGqwvlcuu1EHjFb1me33GGI6Zn6VDX8xw4fR7pXDfsj0GMI0jd15h9nWG3QpkC0Wy-vvi-Vb8nqlXMR3T_OK_P66-HV7l9__WH67_XKfa8HEkDeykcZwYVDwrhVixXUtjGZMCa5QViVyWamqxVJ3RnGtO9VVknaa10YxtSqvCJ97ncU1gg-dhT0Hr-y8j24NSkOHwLmQUDIuZQp9nEO74B9GjANsbdTonOrRjxEaml7Gywn8cARu_BjSjyKwmja8EpSXiXr_RI3dFg3sQjISDvD83gTIGdDBxxhw9YJQmEzCBl5MwmQSaAvJZIp-OopqO_wXNQRl3SkFN3MBJgt7iwGitthrNDagHsB4e0rJ56MS7WxvtXL_8HBaxSN1U9aJ
CitedBy_id crossref_primary_10_1016_j_csda_2024_108055
crossref_primary_10_1016_j_neuroimage_2013_09_008
crossref_primary_10_1016_j_jneumeth_2020_108743
crossref_primary_10_1038_s41598_022_14217_7
crossref_primary_10_1016_j_neuroimage_2014_12_067
crossref_primary_10_1136_jnnp_2016_314621
crossref_primary_10_1007_s12559_022_10077_5
crossref_primary_10_1016_j_jneumeth_2020_108740
crossref_primary_10_3389_fnins_2019_00300
crossref_primary_10_1093_cercor_bhs365
crossref_primary_10_1109_TBME_2022_3161830
crossref_primary_10_1016_j_neuroimage_2008_12_041
crossref_primary_10_1109_JBHI_2016_2590434
crossref_primary_10_3389_fncom_2018_00060
crossref_primary_10_1016_j_neuroimage_2007_11_039
crossref_primary_10_1016_j_neuroimage_2011_12_027
crossref_primary_10_1113_JP277899
crossref_primary_10_1109_TBME_2010_2050318
crossref_primary_10_1007_s00422_014_0616_4
crossref_primary_10_1002_hbm_20775
crossref_primary_10_1016_j_jneumeth_2012_09_017
crossref_primary_10_1016_j_neuroimage_2012_10_001
crossref_primary_10_1016_j_neuroimage_2014_04_058
crossref_primary_10_1016_j_neuroimage_2015_06_028
crossref_primary_10_1016_j_neuroimage_2008_12_012
crossref_primary_10_1162_jocn_a_00481
crossref_primary_10_1016_j_neuroimage_2014_12_030
crossref_primary_10_1523_JNEUROSCI_3974_11_2012
crossref_primary_10_1016_j_neuroimage_2017_03_030
crossref_primary_10_1007_s00521_020_05603_1
crossref_primary_10_1016_j_neuroimage_2008_02_006
crossref_primary_10_1016_j_neuroimage_2010_03_059
crossref_primary_10_1016_j_neuroimage_2011_11_020
crossref_primary_10_1016_j_dsp_2010_09_005
crossref_primary_10_1016_j_neuroimage_2012_04_050
crossref_primary_10_1093_brain_awt186
crossref_primary_10_1109_TBME_2015_2450015
crossref_primary_10_1016_j_neuroimage_2011_08_098
crossref_primary_10_3902_jnns_18_214
crossref_primary_10_1016_j_neuroimage_2008_12_027
crossref_primary_10_1016_j_seizure_2011_09_003
crossref_primary_10_1371_journal_pone_0051985
crossref_primary_10_1016_j_neuroimage_2017_01_034
crossref_primary_10_1038_s41598_019_43885_1
crossref_primary_10_1007_s10548_022_00926_9
crossref_primary_10_1016_j_neuroimage_2008_03_026
crossref_primary_10_1016_j_neuroimage_2023_120490
crossref_primary_10_1007_s10548_018_0670_7
crossref_primary_10_1155_2011_852961
crossref_primary_10_1080_01621459_2017_1285773
crossref_primary_10_3379_msjmag_2211R001
crossref_primary_10_1109_JBHI_2015_2413752
crossref_primary_10_3389_fnins_2017_00504
crossref_primary_10_1016_j_neubiorev_2020_03_013
crossref_primary_10_1016_j_neuroimage_2013_04_087
crossref_primary_10_1016_j_neuroimage_2017_01_029
crossref_primary_10_1016_j_bspc_2025_107673
crossref_primary_10_1016_j_neuroimage_2016_03_078
crossref_primary_10_1007_s00521_023_09171_y
crossref_primary_10_1016_j_neuroimage_2009_11_015
crossref_primary_10_1016_j_cortex_2016_05_001
crossref_primary_10_1016_j_neuroimage_2011_07_048
crossref_primary_10_3389_fpsyt_2022_938694
crossref_primary_10_1007_s12021_015_9281_6
crossref_primary_10_1016_j_neuroimage_2021_118662
crossref_primary_10_1093_brain_awt087
crossref_primary_10_1073_pnas_1523266113
crossref_primary_10_1038_s42003_021_01670_9
crossref_primary_10_1016_j_neuroimage_2014_08_012
ContentType Journal Article
Web Resource
Copyright 2007 Elsevier Inc.
Copyright Elsevier Limited Jan 15, 2008
Copyright_xml – notice: 2007 Elsevier Inc.
– notice: Copyright Elsevier Limited Jan 15, 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
Q33
DOI 10.1016/j.neuroimage.2007.09.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest One Psychology



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 741
ExternalDocumentID oai_orbi_ulg_ac_be_2268_31288
3246196251
17951076
10_1016_j_neuroimage_2007_09_005
S105381190700794X
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
Q33
ID FETCH-LOGICAL-c616t-7878dd26de62b966f2c56dc11a62ae843e284a49e3cbda2ccbab480bc25da1af3
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 25 15:36:45 EDT 2025
Mon Jul 21 10:50:18 EDT 2025
Wed Aug 13 11:41:55 EDT 2025
Thu Apr 03 07:00:00 EDT 2025
Tue Jul 01 02:14:18 EDT 2025
Thu Apr 24 23:11:59 EDT 2025
Fri Feb 23 02:25:14 EST 2024
Tue Aug 26 16:31:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Equivalent current dipole
Variational Bayes
EEG
MEG
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c616t-7878dd26de62b966f2c56dc11a62ae843e284a49e3cbda2ccbab480bc25da1af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
scopus-id:2-s2.0-36148984293
OpenAccessLink http://orbi.ulg.ac.be/handle/2268/31288
PMID 17951076
PQID 1507246023
PQPubID 2031077
PageCount 14
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_31288
proquest_miscellaneous_70105238
proquest_journals_1507246023
pubmed_primary_17951076
crossref_primary_10_1016_j_neuroimage_2007_09_005
crossref_citationtrail_10_1016_j_neuroimage_2007_09_005
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2007_09_005
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2007_09_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-15
PublicationDateYYYYMMDD 2008-01-15
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2008
Publisher Elsevier Inc
Elsevier Limited
Academic Press Inc Elsevier Science
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Academic Press Inc Elsevier Science
References Radich, Buckley (bib30) 1995; 42
Mosher, Spencer, Leahy, Lewis (bib23) 1993; 86
Friston, Mattout, Trujillo-Barreto, Ashburner, Penny (bib10) 2007; 34
Nummenmaa, Auranen, Hamalainen, Jaaskelainen, Lampinen, Sams, Vehtari (bib24) 2007; 35
Phillips, Mattout, Rugg, Maquet, Friston (bib28) 2005; 24
Zhang (bib36) 1995; 40
Auranen, Nummenmaa, Hamalainen, Jaaskelainen, Lampinen, Vehtari, Sams (bib1) 2007; 28
Penny, Kiebel, Friston (bib26) 2003; 19
Supek, Aine (bib33) 1993; 40
Penny, Stephan, Mechelli, Friston (bib27) 2004; 22
Sato, Yoshioka, Kajihara, Toyama, Goda, Doya, Kawato (bib31) 2004; 23
Braun, Kaiser, Kincses, Elbert (bib5) 1997; 10
Friston, Harrison, Penny (bib11) 2003; 19
Kiebel, David, Friston (bib18) 2006; 30
Oostenveld, Praamstra (bib25) 2001; 112
David, Kiebel, Harrison, Mattout, Kilner, Friston (bib7) 2006; 30
Daunizeau, Grova, Marrelec, Mattout, Jbabdi, Pelegrini-Issac, Lina, Benali (bib6) 2007; 36
Flandin, Penny (bib9) 2007; 34
Lutkenhoner, Steinstrater (bib19) 1998; 3
Phillips, Rugg, Friston (bib29) 2002; 16
Fuchs, Wagner, Kastner (bib12) 2004; 115
Jun, George, Pare-Blagoev, Plis, Ranken, Schmidt, Wood (bib15) 2005; 28
Mosher, Lewis, Leahy (bib22) 1992; 39
Garrido, Kilner, Kiebel, Stephan, Friston (bib13) 2007; 36
Deffke, Sander, Heidenreich, Sommer, Curio, Trahms, Lueschow (bib8) 2007; 35
Baillet, Garnero (bib2) 1997; 44
Beal (bib4) 2003
Woolrich, Behrens (bib34) 2006; 25
Kass, Wasserman (bib17) 1996; 91
Oostenveld, R., 2003. Improving EEG Source Analysis using Prior Knowledge. Thesis, Katholieke Universiteit Nijmegen.
Baillet, Mosher, Leahy (bib3) 2001; 18
Jun, George, Plis, Ranken, Schmidt, Wood (bib16) 2006; 51
Huang, Aine, Supek, Best, Ranken, Flynn (bib14) 1998; 108
Yvert, Crouzeix-Cheylus, Pernier (bib35) 2001; 14
Mattout, Phillips, Penny, Rugg, Friston (bib20) 2006; 30
Mosher, Leahy, Lewis (bib21) 1999; 46
Schmidt, George, Wood (bib32) 1999; 7
References_xml – volume: 108
  start-page: 32
  year: 1998
  end-page: 44
  ident: bib14
  article-title: Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– year: 2003
  ident: bib4
  article-title: Variational Algorithms for Approximate Bayesian Inference
– volume: 30
  start-page: 1255
  year: 2006
  end-page: 1272
  ident: bib7
  article-title: Abstract Dynamic causal modeling of evoked responses in EEG and MEG
  publication-title: NeuroImage
– volume: 19
  start-page: 727
  year: 2003
  end-page: 741
  ident: bib26
  article-title: Variational Bayesian inference for fMRI time series
  publication-title: NeuroImage
– volume: 46
  start-page: 245
  year: 1999
  end-page: 259
  ident: bib21
  article-title: EEG and MEG: forward solutions for inverse methods
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 24
  start-page: 997
  year: 2005
  end-page: 1011
  ident: bib28
  article-title: An empirical Bayesian solution to the source reconstruction problem in EEG
  publication-title: NeuroImage
– volume: 18
  start-page: 14
  year: 2001
  end-page: 30
  ident: bib3
  article-title: Electromagnetic brain mapping
  publication-title: IEEE Signal Process. Mag.
– volume: 34
  start-page: 220
  year: 2007
  end-page: 234
  ident: bib10
  article-title: Variational free energy and the Laplace approximation
  publication-title: NeuroImage
– volume: 39
  start-page: 541
  year: 1992
  end-page: 557
  ident: bib22
  article-title: Multiple dipole modeling and localization from spatio-temporal MEG data
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 16
  start-page: 678
  year: 2002
  end-page: 695
  ident: bib29
  article-title: Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints
  publication-title: NeuroImage
– volume: 42
  start-page: 233
  year: 1995
  end-page: 241
  ident: bib30
  article-title: EEG dipole localization bounds and MAP algorithms for head models with parameter uncertainties
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 25
  start-page: 1380
  year: 2006
  end-page: 1391
  ident: bib34
  article-title: Variational Bayes inference of spatial mixture models for segmentation
  publication-title: IEEE Trans. Med. Imag.
– volume: 14
  start-page: 48
  year: 2001
  end-page: 63
  ident: bib35
  article-title: Fast realistic modeling in bioelectromagnetism using lead-field interpolation
  publication-title: Hum. Brain Mapp.
– volume: 30
  start-page: 753
  year: 2006
  end-page: 767
  ident: bib20
  article-title: MEG source localization under multiple constraints: an extended Bayesian framework
  publication-title: NeuroImage
– volume: 10
  start-page: 31
  year: 1997
  end-page: 39
  ident: bib5
  article-title: Abstract Confidence interval of single dipole locations based on EEG data
  publication-title: Brain Topogr.
– volume: 28
  start-page: 84
  year: 2005
  end-page: 98
  ident: bib15
  article-title: Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data
  publication-title: NeuroImage
– volume: 30
  start-page: 1273
  year: 2006
  end-page: 1284
  ident: bib18
  article-title: Abstract Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization
  publication-title: NeuroImage
– volume: 40
  start-page: 529
  year: 1993
  end-page: 540
  ident: bib33
  article-title: Simulation studies of multiple dipole neuromagnetic source localization: model order and limits of source resolution
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 35
  start-page: 1495
  year: 2007
  end-page: 1501
  ident: bib8
  article-title: Abstract MEG/EEG sources of the 170-ms response to faces are co-localized in the fusiform gyrus
  publication-title: NeuroImage
– volume: 7
  start-page: 195
  year: 1999
  end-page: 212
  ident: bib32
  article-title: Bayesian inference applied to the electromagnetic inverse problem
  publication-title: Hum. Brain Mapp.
– volume: 44
  start-page: 374
  year: 1997
  end-page: 385
  ident: bib2
  article-title: A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 115
  start-page: 1442
  year: 2004
  end-page: 1451
  ident: bib12
  article-title: Confidence limits of dipole source reconstruction results
  publication-title: Clin. Neurophysiol.
– volume: 22
  start-page: 1157
  year: 2004
  end-page: 1172
  ident: bib27
  article-title: Comparing dynamic causal models
  publication-title: NeuroImage
– volume: 36
  start-page: 571
  year: 2007
  end-page: 580
  ident: bib13
  article-title: Dynamic causal modelling of evoked potentials: a reproducibility study
  publication-title: NeuroImage
– volume: 51
  start-page: 2395
  year: 2006
  end-page: 2414
  ident: bib16
  article-title: Improving source detection and separation in a spatiotemporal Bayesian inference dipole analysis
  publication-title: Phys. Med. Biol.
– volume: 36
  start-page: 69
  year: 2007
  end-page: 87
  ident: bib6
  article-title: Free Full Text Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework
  publication-title: NeuroImage
– reference: Oostenveld, R., 2003. Improving EEG Source Analysis using Prior Knowledge. Thesis, Katholieke Universiteit Nijmegen.
– volume: 40
  start-page: 335
  year: 1995
  end-page: 349
  ident: bib36
  article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres
  publication-title: Phys. Med. Biol.
– volume: 34
  start-page: 1108
  year: 2007
  end-page: 1125
  ident: bib9
  article-title: Bayesian fMRI data analysis with sparse spatial basis function priors
  publication-title: NeuroImage
– volume: 91
  start-page: 1343
  year: 1996
  end-page: 1370
  ident: bib17
  article-title: The selection of prior distributions by formal rules
  publication-title: J. Am. Stat. Assoc.
– volume: 28
  start-page: 979
  year: 2007
  end-page: 994
  ident: bib1
  article-title: Related Articles, Links Abstract Bayesian inverse analysis of neuromagnetic data using cortically constrained multiple dipoles
  publication-title: Hum. Brain Mapp.
– volume: 19
  start-page: 1273
  year: 2003
  end-page: 1302
  ident: bib11
  article-title: Dynamic causal modelling
  publication-title: NeuroImage
– volume: 86
  start-page: 303
  year: 1993
  end-page: 321
  ident: bib23
  article-title: Error bounds for EEG and MEG dipole source localization
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 23
  start-page: 806
  year: 2004
  end-page: 826
  ident: bib31
  article-title: Hierarchical Bayesian estimation for MEG inverse problem
  publication-title: NeuroImage
– volume: 35
  start-page: 669
  year: 2007
  end-page: 685
  ident: bib24
  article-title: Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods
  publication-title: NeuroImage
– volume: 112
  start-page: 713
  year: 2001
  end-page: 719
  ident: bib25
  article-title: The five percent electrode system for high-resolution EEG and ERP measurements
  publication-title: Clin. Neurophysiol.
– volume: 3
  start-page: 191
  year: 1998
  end-page: 213
  ident: bib19
  article-title: High-precision neuromagnetic study of the functional organization of the human auditory cortex
  publication-title: Audiol. Neuro-otol.
RestrictionsOnAccess open access
SSID ssj0009148
Score 2.2117467
Snippet In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source...
SourceID liege
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 728
SubjectTerms Algorithms
Approximation
Bayes Theorem
EEG
Electroencephalography
Electroencephalography - statistics & numerical data
Equivalent current dipole
Evoked Potentials - physiology
Evoked Potentials, Auditory - physiology
Human health sciences
Humans
Magnetoencephalography - statistics & numerical data
Markov Chains
MEG
Models, Statistical
Neurosciences & behavior
Neurosciences & comportement
Physiology
Radiologie, médecine & imagerie nucléaire
Radiology, nuclear medicine & imaging
Reproducibility of Results
Sciences de la santé humaine
Sciences sociales & comportementales, psychologie
Sensors
Social & behavioral sciences, psychology
Software
Variational Bayes
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaglRAXxJtAAR-4Iaux49iJOCBA21ZIizhQtDfLr6CgJdl2dyvx7xk_snsq2lukZHIYjz2fx-PvQ-id4daaUlpiaAcbFFeWJNCmk9JVQrdMcxkZ-ObfxMUl_7qoF7ngts5tldOaGBdqN9pQIz8NwIVxASnm4-qKBNWocLqaJTTuouNAXRZauuRC7kl3KU9X4eqKNPBB7uRJ_V2RL7L_A7M2ExkG4sr6tvR0vAxn2LfD0JiOzh6iBxlH4k9p4B-hO354jO7N80n5E_T9J2yCc6EPf9Z_fbgsifvhJtXH8NhhgH7YX217iDXIPNgmpibs-tW49DhK5IABns3OT-ez86fo8mz248sFyeoJxAoqNgRmYuMcE84LZmBT0zFbC2cp1YJp3_DKQ2bSvPWVNU4zGDJteFMay2qnqe6qZ-hoGAf_AmEvg7Kj060sO95Y3UYJdW-dZ9QwUxVITk5TNlOLB4WLpZp6yH6rvbuD8qVUZavA3QWiO8tVotc4wKadxkVN10dhwVOQAw6w_bCzzRAjQYcDrd_HMFDjtenVDVOBmzs-b5e_lLbKwOdMNKqCrN8U6GQKFpUXhrXah3GB3u5ew5QO5zR68ON2rWRQLQUoVaDnKcT2rpEBEEvx8v-_foXup7YWSmh9go4211v_GrDTxryJE-Qfqa8Ydg
  priority: 102
  providerName: ProQuest
Title Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381190700794X
https://dx.doi.org/10.1016/j.neuroimage.2007.09.005
https://www.ncbi.nlm.nih.gov/pubmed/17951076
https://www.proquest.com/docview/1507246023
https://www.proquest.com/docview/70105238
http://orbi.ulg.ac.be/handle/2268/31288
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF61jYS4IN41lLAHbsjEu7Z3bXFqI7fhkSgqFOW22peRUbBDm1Tiwm9n1l4n4lApEpckSjJSMp6Z71vv7DcIvVGJ1iriOlSkhAWKiaLQyaaHkYmZzKlMeKvAN52xyVXycZEuDtC4Pwvj2ip97e9qelut_Tsj783RqqpGX4AZANwAoHHAuTxZHKIBjXMGoT04_fBpMttp75KkOxGXxqEz8A09XZtXKxtZ_YTk9XqGTr8yvQulBku3lX03G21R6fwheuDpJD7tfvEjdGDrx-je1G-YP0Hzb7AW9vf78Jn8bd2ZSVzVt91tMtyUGBggtr82FYQcABDWnWATNtWqWVrcTsoBA1wUF6NpcfEUXZ0XX8eT0A9RCDUjbB1CQmbGUGYsowrWNiXVKTOaEMmotFkSWwAomeQ21spICldOqiSLlKapkUSW8TN0VDe1PUbYcjfg0cicR2WSaZm3k9StNpYSRVUcIN47TWivMO4GXSxF30r2Q-zc7QZgchHlAtwdILK1XHUqG3vY5P11Ef0pUqh7AqBgD9v3W9t_om1P67dtGIjmWlXilgon0d2-3iy_C6mFgq9TlokYwD8L0EkfLMLXhxvhaDhNGBCmAL3efgyZ7bZrZG2bzY3gbngpMKoAPe9CbOca7ngxZy_-62-8RPe75hcSkvQEHa2vN_YVMKy1GqLDd38IPPIFH0I2jS8_z4c-q-D5rJjNL_8CX4sqhQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRAIuiDeGQvcAJ2TVu7bXthBCFNymtIkq1KLetvsycpXGaZMU9U_xG5n1IzkV5dKbJXsseTw78-3u7PcBvFeR1ipItK9ogRMUEwS-o033AxNymTEZJTUD33DEByfRj9P4dAP-dmdhXFtllxPrRG0q7dbItx1wYRHHEvNleuk71Si3u9pJaDRhcWBv_uCUbfZ5_zv-3w-M7ebH3wZ-qyrga0753McITY1h3FjOFIL9gumYG02p5EzaNAotZmwZZTbUykiGnyJVlAZKs9hIKosQ33sP-lGIU5ke9Hfy0dHPFc0vjZrDd3Hop5Rmbe9Q01FWM1SWF5gnWupER5UZ31YQ-2O3a3478K0L4O5jeNQiV_K1CbUnsGEnT-H-sN2bfwZHv3Da3S4tkh15Y93xTFJOrpsVOVIVBMEmsZeLEqMbax3RDTcUMeW0GltSi_KgAcnzve1hvvccTu7Esy-gN6km9hUQmzgtSSOzJCiiVMusFm232lhGFVOhB0nnNKFbMnOnqTEWXdfauVi522ltJiLIBLrbA7q0nDaEHmvYZN1_Ed2BVUyxAqvOGraflrYtqGnAyprWH-swENWVKsU1E44NvL5ejH8LqYXCxxlPRYg4I_VgswsW0aaimVgNHA-2lrcxibidITmx1WImEqeTiuDNg5dNiK1ckzgInvDX_3_1FjwYHA8PxeH-6OANPGyaaqhP403oza8W9i0it7l61w4XAmd3PUL_AXk_WKM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKK1VcEN-kFOoDnFDU2EnsRAghoLttKVv1QNHejL-CgrbJtrtb1L_Gr2McO7unor30FimZSJnMjJ_t8XsIvVGZ1irhOlakggmKSZLY0abHiUmZLKnMeMfANzplR-fZ13E-3kB_-7Mwrq2yr4ldoTatdmvk-w640Iw5Wp4qtEWcHQw_Ti9jpyDldlp7OQ0fIif25g9M32Yfjg_gX7-ldDj4_uUoDgoDsWaEzWOI1sIYyoxlVAHwr6jOmdGESEalLbLUQvWWWWlTrYyk8FlSZUWiNM2NJLJK4b330BZPc-JyjI_5ivCXZP4YXp7GBSFl6CLyvWUdV2V9ARUjkCg60sz8tqFxa-L2z2-HwN1QOHyIHgQMiz_5oHuENmzzGG2Pwi79E3T2AybgYZERf5Y31h3UxHVz7dfmcFthgJ3YXi5qiHMY9bD2LFHY1NN2YnEnzwMGeDA43B8NDp-i8zvx6zO02bSNfYGw5U5V0siSJ1VWaFl28u1WG0uJoiqNEO-dJnSgNXfqGhPR96_9Fit3O9VNLpJSgLsjRJaWU0_tsYZN2f8X0R9dhWIrYPxZw_b90jbAGw9b1rR-14WBaK9ULa6pcLzg3fVi8ktILRQ8TlkhUkAcRYR2-2ARoSjNxCqFIrS3vA3lxO0Ryca2i5ngTjEVYFyEnvsQW7mGOzDO2c7_X72HtiEvxbfj05OX6L7vriExyXfR5vxqYV8BhJur112uYPTzrpPzH4yBW3M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Bayesian+inversion+of+the+equivalent+current+dipole+model+in+EEG%2FMEG&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kiebel%2C+Stefan+J.&rft.au=Daunizeau%2C+Jean&rft.au=Phillips%2C+Christophe&rft.au=Friston%2C+Karl+J.&rft.date=2008-01-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=39&rft.issue=2&rft.spage=728&rft.epage=741&rft_id=info:doi/10.1016%2Fj.neuroimage.2007.09.005&rft.externalDocID=S105381190700794X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon