Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing....
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 4812 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.09.2020
Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing. Methodological simplification could increase diagnostic availability and efficiency, benefitting patient care and infection control. Here, we describe methods circumventing RNA extraction in COVID-19 testing by performing RT-PCR directly on heat-inactivated or lysed samples. Our data, including benchmarking using 597 clinical patient samples and a standardised diagnostic system, demonstrate that direct RT-PCR is viable option to extraction-based tests. Using controlled amounts of active SARS-CoV-2, we confirm effectiveness of heat inactivation by plaque assay and evaluate various generic buffers as transport medium for direct RT-PCR. Significant savings in time and cost are achieved through RNA-extraction-free protocols that are directly compatible with established PCR-based testing pipelines. This could aid expansion of COVID-19 testing.
SARS-CoV-2 infection is widely diagnosed by RT-PCR, but RNA extraction is a bottleneck for fast and cheap diagnosis. Here, the authors develop protocols to perform RT-PCR directly on heat-inactivated subject samples or samples lysed with readily available detergents and benchmark performance against 597 clinically diagnosed patient samples. |
---|---|
AbstractList | SARS-CoV-2 infection is widely diagnosed by RT-PCR, but RNA extraction is a bottleneck for fast and cheap diagnosis. Here, the authors develop protocols to perform RT-PCR directly on heat-inactivated subject samples or samples lysed with readily available detergents and benchmark performance against 597 clinically diagnosed patient samples. Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing. Methodological simplification could increase diagnostic availability and efficiency, benefitting patient care and infection control. Here, we describe methods circumventing RNA extraction in COVID-19 testing by performing RT-PCR directly on heat-inactivated or lysed samples. Our data, including benchmarking using 597 clinical patient samples and a standardised diagnostic system, demonstrate that direct RT-PCR is viable option to extraction-based tests. Using controlled amounts of active SARS-CoV-2, we confirm effectiveness of heat inactivation by plaque assay and evaluate various generic buffers as transport medium for direct RT-PCR. Significant savings in time and cost are achieved through RNA-extraction-free protocols that are directly compatible with established PCR-based testing pipelines. This could aid expansion of COVID-19 testing. SARS-CoV-2 infection is widely diagnosed by RT-PCR, but RNA extraction is a bottleneck for fast and cheap diagnosis. Here, the authors develop protocols to perform RT-PCR directly on heat-inactivated subject samples or samples lysed with readily available detergents and benchmark performance against 597 clinically diagnosed patient samples. Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing. Methodological simplification could increase diagnostic availability and efficiency, benefitting patient care and infection control. Here, we describe methods circumventing RNA extraction in COVID-19 testing by performing RT-PCR directly on heat-inactivated or lysed samples. Our data, including benchmarking using 597 clinical patient samples and a standardised diagnostic system, demonstrate that direct RT-PCR is viable option to extraction-based tests. Using controlled amounts of active SARS-CoV-2, we confirm effectiveness of heat inactivation by plaque assay and evaluate various generic buffers as transport medium for direct RT-PCR. Significant savings in time and cost are achieved through RNA-extraction-free protocols that are directly compatible with established PCR-based testing pipelines. This could aid expansion of COVID-19 testing.Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing. Methodological simplification could increase diagnostic availability and efficiency, benefitting patient care and infection control. Here, we describe methods circumventing RNA extraction in COVID-19 testing by performing RT-PCR directly on heat-inactivated or lysed samples. Our data, including benchmarking using 597 clinical patient samples and a standardised diagnostic system, demonstrate that direct RT-PCR is viable option to extraction-based tests. Using controlled amounts of active SARS-CoV-2, we confirm effectiveness of heat inactivation by plaque assay and evaluate various generic buffers as transport medium for direct RT-PCR. Significant savings in time and cost are achieved through RNA-extraction-free protocols that are directly compatible with established PCR-based testing pipelines. This could aid expansion of COVID-19 testing. Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing. Methodological simplification could increase diagnostic availability and efficiency, benefitting patient care and infection control. Here, we describe methods circumventing RNA extraction in COVID-19 testing by performing RT-PCR directly on heat-inactivated or lysed samples. Our data, including benchmarking using 597 clinical patient samples and a standardised diagnostic system, demonstrate that direct RT-PCR is viable option to extraction-based tests. Using controlled amounts of active SARS-CoV-2, we confirm effectiveness of heat inactivation by plaque assay and evaluate various generic buffers as transport medium for direct RT-PCR. Significant savings in time and cost are achieved through RNA-extraction-free protocols that are directly compatible with established PCR-based testing pipelines. This could aid expansion of COVID-19 testing. |
ArticleNumber | 4812 |
Author | Aarum, Johan Safari, Hamzah Lentini, Antonio Reinius, Björn Muradrasoli, Shaman Vondracek, Martin Rothfuchs, Antonio Gigliotti Smyrlaki, Ioanna Papanicolaou, Natali Albert, Jan Ekman, Martin Rufino de Sousa, Nuno Högberg, Björn |
Author_xml | – sequence: 1 givenname: Ioanna surname: Smyrlaki fullname: Smyrlaki, Ioanna organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet – sequence: 2 givenname: Martin surname: Ekman fullname: Ekman, Martin organization: Department of Clinical Microbiology, Karolinska University Hospital – sequence: 3 givenname: Antonio orcidid: 0000-0003-1239-5495 surname: Lentini fullname: Lentini, Antonio organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet – sequence: 4 givenname: Nuno orcidid: 0000-0002-0670-9788 surname: Rufino de Sousa fullname: Rufino de Sousa, Nuno organization: Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – sequence: 5 givenname: Natali surname: Papanicolaou fullname: Papanicolaou, Natali organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet – sequence: 6 givenname: Martin surname: Vondracek fullname: Vondracek, Martin organization: Department of Clinical Microbiology, Karolinska University Hospital – sequence: 7 givenname: Johan surname: Aarum fullname: Aarum, Johan organization: Department of Clinical Microbiology, Karolinska University Hospital – sequence: 8 givenname: Hamzah surname: Safari fullname: Safari, Hamzah organization: Department of Clinical Microbiology, Karolinska University Hospital – sequence: 9 givenname: Shaman surname: Muradrasoli fullname: Muradrasoli, Shaman organization: Public Health Agency of Sweden – sequence: 10 givenname: Antonio Gigliotti orcidid: 0000-0001-6001-7240 surname: Rothfuchs fullname: Rothfuchs, Antonio Gigliotti organization: Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – sequence: 11 givenname: Jan orcidid: 0000-0001-9020-0521 surname: Albert fullname: Albert, Jan organization: Department of Clinical Microbiology, Karolinska University Hospital, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – sequence: 12 givenname: Björn orcidid: 0000-0003-2715-7887 surname: Högberg fullname: Högberg, Björn organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet – sequence: 13 givenname: Björn orcidid: 0000-0002-7021-5248 surname: Reinius fullname: Reinius, Björn email: bjorn.reinius@ki.se organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32968075$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:144744856$$DView record from Swedish Publication Index |
BookMark | eNp9Uk1v1DAQjVARLaV_gAPKkYvBYztOfEGqwtdKRUW7pVfLcSaLl2y8tbOF_nu8zRZ1OdQXj2beeyO9Ny-zo8EPmGWvgb4Dyqv3UYCQJaGMEqgkACmeZSeMCiBQMn70qD7OzmJc0fS4gkqIF9kxZ0pWtCxOssU3E6O7xdwMbR7MxrV5fXk9-0hA5SPG0Q3L3MW8QxNd02Pe3OX4ZwzGjs4PpAuI-eJ8viC1vyYsn1-R7_X8Vfa8M33Es_1_mv34_Omq_kouLr_M6vMLYiXIkZSCWt4Bs0yYwnSmUq0VDBsmGLWFajhtwXQKS8GpNLKggpW8NdSyQlayVPw0m026rTcrvQlubcKd9sbp-4YPS23C6GyPGrrWGlGwRgkmeIeqAaskBTBSYGO6pEUmrfgbN9vmQG3f-pUq1Ml0BZDwHyZ8mqyxtTgkU_oD2uFkcD_10t_qsgBI5ieBt3uB4G-2yWm9dtFi35sB_TZqJkShSpGCStA3j3f9W_KQYgJUE8AGH2PATls3ml1CabXrNVC9uxk93YxON6Pvb0bvqOw_6oP6kyS-NyuBhyUGvfLbMKSsn2L9BeJ50Rs |
CitedBy_id | crossref_primary_10_1002_elps_202300205 crossref_primary_10_3390_v12121423 crossref_primary_10_1038_s41598_021_01744_y crossref_primary_10_1371_journal_pone_0247792 crossref_primary_10_1080_21655979_2021_1987821 crossref_primary_10_1039_D2CC01297A crossref_primary_10_1016_j_jcvp_2021_100032 crossref_primary_10_1128_JCM_02643_20 crossref_primary_10_3389_fcimb_2021_691538 crossref_primary_10_1021_acsnano_3c08400 crossref_primary_10_1021_acsinfecdis_2c00204 crossref_primary_10_1155_2022_7442907 crossref_primary_10_1021_acs_analchem_3c00061 crossref_primary_10_1038_s41551_020_00654_0 crossref_primary_10_1007_s11356_023_31776_y crossref_primary_10_1016_j_snb_2021_131088 crossref_primary_10_1038_s41467_023_42439_4 crossref_primary_10_1002_admt_202200965 crossref_primary_10_1016_j_scitotenv_2021_152877 crossref_primary_10_1371_journal_pone_0261853 crossref_primary_10_1002_ange_202213920 crossref_primary_10_1093_clinchem_hvaa267 crossref_primary_10_1039_D2AN01679F crossref_primary_10_1038_s41598_022_06873_6 crossref_primary_10_3390_genes12010090 crossref_primary_10_1038_s41563_020_00906_z crossref_primary_10_1016_j_snb_2022_131906 crossref_primary_10_1016_j_bios_2022_114979 crossref_primary_10_3390_diagnostics12040909 crossref_primary_10_1016_j_cca_2022_08_031 crossref_primary_10_3390_applmicrobiol2040060 crossref_primary_10_1016_j_imu_2022_101037 crossref_primary_10_3390_bios13010122 crossref_primary_10_3390_molecules29071527 crossref_primary_10_1002_smll_202208167 crossref_primary_10_1038_s41598_024_54183_w crossref_primary_10_1021_acssensors_1c02079 crossref_primary_10_3389_fmicb_2022_1003824 crossref_primary_10_1038_s43856_021_00066_4 crossref_primary_10_1631_jzus_B2200625 crossref_primary_10_3390_healthcare9010037 crossref_primary_10_1093_jpids_piab058 crossref_primary_10_2139_ssrn_4129312 crossref_primary_10_1016_j_diagmicrobio_2024_116210 crossref_primary_10_3390_v14061311 crossref_primary_10_1021_acsnano_1c02494 crossref_primary_10_1002_advs_202310066 crossref_primary_10_1038_s41596_021_00546_w crossref_primary_10_1016_j_isci_2021_102960 crossref_primary_10_3390_diagnostics14020221 crossref_primary_10_1038_s42004_024_01214_2 crossref_primary_10_1038_s41598_021_84792_8 crossref_primary_10_1016_j_jmoldx_2022_02_001 crossref_primary_10_1093_jphsr_rmac037 crossref_primary_10_1155_2023_6624932 crossref_primary_10_1002_nau_24907 crossref_primary_10_1016_j_trac_2024_118046 crossref_primary_10_1128_spectrum_04073_23 crossref_primary_10_1360_TB_2024_0860 crossref_primary_10_1371_journal_pone_0263033 crossref_primary_10_1016_j_snb_2024_136706 crossref_primary_10_1016_j_bios_2022_114836 crossref_primary_10_2478_acph_2022_0014 crossref_primary_10_1016_j_cclet_2023_108688 crossref_primary_10_3390_bios12060410 crossref_primary_10_1016_j_jviromet_2021_114302 crossref_primary_10_1016_j_trac_2023_117107 crossref_primary_10_1021_acsanm_1c03520 crossref_primary_10_1039_D1LC00627D crossref_primary_10_3390_v13122492 crossref_primary_10_3389_fnano_2020_593619 crossref_primary_10_3390_bios12100898 crossref_primary_10_3390_idr13040097 crossref_primary_10_1080_00032719_2021_2016791 crossref_primary_10_3390_ijms241713056 crossref_primary_10_1021_acs_analchem_1c04156 crossref_primary_10_1016_j_bioelechem_2024_108700 crossref_primary_10_1021_acs_analchem_1c00515 crossref_primary_10_1093_ajcp_aqab060 crossref_primary_10_3390_bios11120488 crossref_primary_10_3390_molecules26216617 crossref_primary_10_1016_j_talanta_2022_123835 crossref_primary_10_1016_j_trac_2023_117458 crossref_primary_10_1039_D3LC00753G crossref_primary_10_1038_s41598_023_47645_0 crossref_primary_10_1038_s41378_022_00400_3 crossref_primary_10_1021_acs_analchem_3c02716 crossref_primary_10_1021_acssensors_2c02512 crossref_primary_10_1186_s12985_024_02381_3 crossref_primary_10_1021_acssynbio_1c00499 crossref_primary_10_1080_14737159_2022_2037425 crossref_primary_10_1371_journal_pone_0249149 crossref_primary_10_1016_j_diagmicrobio_2023_115974 crossref_primary_10_1016_j_diagmicrobio_2024_116325 crossref_primary_10_1590_s1678_9946202163052 crossref_primary_10_1016_j_diagmicrobio_2023_115975 crossref_primary_10_3390_diagnostics11020182 crossref_primary_10_1155_2021_5568350 crossref_primary_10_3389_fpubh_2021_766871 crossref_primary_10_1016_j_diagmicrobio_2021_115458 crossref_primary_10_1021_acs_analchem_3c02299 crossref_primary_10_1111_ina_13128 crossref_primary_10_1038_s41565_022_01175_4 crossref_primary_10_1364_JOSAB_422646 crossref_primary_10_1021_acs_biomac_0c01727 crossref_primary_10_1016_j_jviromet_2021_114086 crossref_primary_10_1016_j_crmeth_2022_100186 crossref_primary_10_1002_agt2_715 crossref_primary_10_1016_j_aca_2022_339915 crossref_primary_10_1021_acs_analchem_2c03813 crossref_primary_10_1016_j_pbiomolbio_2023_06_004 crossref_primary_10_1016_j_bios_2021_113944 crossref_primary_10_1016_j_susoc_2021_12_001 crossref_primary_10_1016_j_talanta_2023_125080 crossref_primary_10_1016_j_jviromet_2021_114199 crossref_primary_10_1016_j_microc_2023_109533 crossref_primary_10_2217_fvl_2020_0187 crossref_primary_10_1007_s00228_021_03102_3 crossref_primary_10_3390_bios13080822 crossref_primary_10_1016_j_bios_2021_113388 crossref_primary_10_1128_spectrum_01358_22 crossref_primary_10_1021_acs_est_1c04623 crossref_primary_10_1021_acs_analchem_1c01078 crossref_primary_10_1208_s12248_020_00532_2 crossref_primary_10_1016_j_aca_2022_339585 crossref_primary_10_1016_j_ijid_2021_07_054 crossref_primary_10_1016_j_aca_2023_341167 crossref_primary_10_1016_j_jmoldx_2021_08_004 crossref_primary_10_1016_j_crmeth_2022_100173 crossref_primary_10_1111_ina_13023 crossref_primary_10_1002_14651858_CD015618 crossref_primary_10_1016_j_talanta_2024_127327 crossref_primary_10_3389_fbioe_2021_800104 crossref_primary_10_1007_s11696_023_03271_8 crossref_primary_10_1016_j_bios_2021_112969 crossref_primary_10_1177_0272989X20969690 crossref_primary_10_1016_j_medj_2022_07_007 crossref_primary_10_1016_j_aca_2022_339909 crossref_primary_10_1093_jalm_jfab079 crossref_primary_10_1371_journal_pone_0248885 crossref_primary_10_3389_fmicb_2021_713713 crossref_primary_10_1016_j_aca_2022_339590 crossref_primary_10_1016_j_trac_2024_118131 crossref_primary_10_1038_s41565_022_01287_x crossref_primary_10_1002_lpor_202401600 crossref_primary_10_1016_j_colsurfb_2022_112716 crossref_primary_10_3390_diagnostics11050904 crossref_primary_10_3390_diagnostics12051091 crossref_primary_10_1016_j_bios_2022_114904 crossref_primary_10_3389_fcimb_2022_799678 crossref_primary_10_1021_acsnano_4c05734 crossref_primary_10_3390_pathogens10121558 crossref_primary_10_1002_bmm2_12024 crossref_primary_10_1016_j_snb_2022_131764 crossref_primary_10_3390_s21196581 crossref_primary_10_3390_s22010133 crossref_primary_10_3390_v14071549 crossref_primary_10_1016_j_talanta_2022_123862 crossref_primary_10_1111_ina_13169 crossref_primary_10_24018_ejmed_2022_4_1_1164 crossref_primary_10_1002_bmb_21771 crossref_primary_10_1007_s00705_021_05165_0 crossref_primary_10_1088_1742_6596_2426_1_012065 crossref_primary_10_1099_jmm_0_001779 crossref_primary_10_1016_j_ebiom_2021_103236 crossref_primary_10_1055_s_0043_1760752 crossref_primary_10_1021_acsami_2c07497 crossref_primary_10_3390_vaccines10050730 crossref_primary_10_1186_s12951_023_01938_8 crossref_primary_10_1016_j_omtn_2023_02_010 crossref_primary_10_1016_j_jphotobiol_2022_112538 crossref_primary_10_3390_microorganisms9081738 crossref_primary_10_3390_s21134439 crossref_primary_10_1371_journal_pone_0310171 crossref_primary_10_1039_D1AN00367D crossref_primary_10_1038_s41598_022_23285_8 crossref_primary_10_1038_s41598_022_05738_2 crossref_primary_10_1186_s12894_024_01464_1 crossref_primary_10_1371_journal_pone_0243333 crossref_primary_10_3389_fcimb_2021_678703 crossref_primary_10_1021_acsphotonics_1c01052 crossref_primary_10_1002_jmv_27709 crossref_primary_10_1021_jacs_1c09579 crossref_primary_10_3390_diagnostics12040775 crossref_primary_10_1016_j_cll_2022_02_004 crossref_primary_10_1038_s41598_022_07871_4 crossref_primary_10_1021_acs_analchem_3c01522 crossref_primary_10_1016_j_bios_2021_113629 crossref_primary_10_3390_covid3070075 crossref_primary_10_3390_diagnostics12030601 crossref_primary_10_1002_jmv_27039 crossref_primary_10_2166_wst_2023_197 crossref_primary_10_3390_diseases12090198 crossref_primary_10_1016_j_jviromet_2021_114153 crossref_primary_10_1021_acsabm_2c00984 crossref_primary_10_3390_ijms25126538 crossref_primary_10_1016_j_heliyon_2024_e33179 crossref_primary_10_1021_acsanm_1c03492 crossref_primary_10_1002_adma_202103646 crossref_primary_10_1016_j_chaos_2022_112823 crossref_primary_10_1016_j_compbiomed_2022_106092 crossref_primary_10_2217_fvl_2021_0256 crossref_primary_10_1016_j_aca_2021_338330 crossref_primary_10_1039_D2LC00434H crossref_primary_10_1002_adsr_202400103 crossref_primary_10_1038_s43856_022_00147_y crossref_primary_10_1002_adhm_202402506 crossref_primary_10_1016_j_microc_2021_106305 crossref_primary_10_1016_j_talanta_2023_124479 crossref_primary_10_3390_ph14101048 crossref_primary_10_3390_app12105137 crossref_primary_10_1093_ve_veab098 crossref_primary_10_1080_14737159_2022_2094250 crossref_primary_10_1016_j_tube_2023_102431 crossref_primary_10_1021_acs_analchem_2c03846 crossref_primary_10_1515_cclm_2022_0263 crossref_primary_10_1071_CP24053 crossref_primary_10_1016_j_trac_2021_116452 crossref_primary_10_1016_j_bios_2021_113736 crossref_primary_10_1016_j_heliyon_2022_e09735 crossref_primary_10_1038_s41598_022_16048_y crossref_primary_10_1080_21505594_2022_2092941 crossref_primary_10_1021_acs_analchem_1c00192 crossref_primary_10_1039_D3MH00861D crossref_primary_10_1016_j_scitotenv_2023_165098 crossref_primary_10_3390_v13122413 crossref_primary_10_1021_acs_analchem_4c00319 crossref_primary_10_1021_acs_analchem_1c02657 crossref_primary_10_1002_14651858_CD013705_pub2 crossref_primary_10_1002_bkcs_12418 crossref_primary_10_1080_23744235_2024_2374307 crossref_primary_10_1021_acs_analchem_3c01348 crossref_primary_10_1089_crispr_2021_0146 crossref_primary_10_1093_biomethods_bpae046 crossref_primary_10_1021_acsomega_4c07170 crossref_primary_10_1016_j_sjbs_2021_08_040 crossref_primary_10_1002_adma_202201085 crossref_primary_10_1021_jacs_1c06325 crossref_primary_10_1186_s12951_023_01981_5 crossref_primary_10_1128_CMR_00228_20 crossref_primary_10_1126_sciadv_adi4997 crossref_primary_10_1021_acsami_3c08819 crossref_primary_10_3390_bios13020275 crossref_primary_10_1021_acssensors_3c00031 crossref_primary_10_1128_cmr_00168_21 crossref_primary_10_1016_j_bios_2022_114379 crossref_primary_10_1016_j_talanta_2024_126413 crossref_primary_10_1186_s40348_021_00115_x crossref_primary_10_3390_mps4010007 crossref_primary_10_1017_S0950268821002302 crossref_primary_10_1021_acsmeasuresciau_4c00032 crossref_primary_10_1021_acsomega_1c00008 crossref_primary_10_1002_advs_202406076 crossref_primary_10_1128_JCM_02403_20 crossref_primary_10_1016_j_apsb_2023_02_014 crossref_primary_10_1016_j_bspc_2022_103552 crossref_primary_10_1038_s41598_020_80715_1 crossref_primary_10_3390_v14030508 crossref_primary_10_1016_j_jviromet_2021_114241 crossref_primary_10_1007_s11901_021_00567_9 crossref_primary_10_1002_adsr_202300061 crossref_primary_10_1038_s41467_020_20699_8 crossref_primary_10_1111_risa_14263 crossref_primary_10_1016_j_aca_2022_340639 crossref_primary_10_1016_j_bios_2023_115179 crossref_primary_10_1016_j_ijid_2021_05_053 crossref_primary_10_1038_s41392_021_00731_z crossref_primary_10_1039_D3TC03231K crossref_primary_10_1111_jam_15788 crossref_primary_10_1038_s41586_021_03908_2 crossref_primary_10_1002_gch2_202000068 crossref_primary_10_1002_smtd_202300034 crossref_primary_10_1016_j_nantod_2023_101968 crossref_primary_10_1002_jmv_28287 crossref_primary_10_1016_j_bios_2021_113669 crossref_primary_10_1016_j_cca_2024_120054 crossref_primary_10_1016_j_jcvp_2023_100138 crossref_primary_10_1016_j_medj_2020_12_010 crossref_primary_10_1016_j_bios_2021_113541 crossref_primary_10_1021_acs_analchem_1c04984 crossref_primary_10_1186_s12985_021_01567_3 crossref_primary_10_1016_j_trac_2024_117676 crossref_primary_10_1016_j_talanta_2023_124711 crossref_primary_10_1021_acsinfecdis_0c00646 crossref_primary_10_3389_fbioe_2022_877603 crossref_primary_10_3390_ijms26020653 crossref_primary_10_1021_acsomega_3c04137 crossref_primary_10_1515_nanoph_2022_0706 crossref_primary_10_1136_bmjopen_2020_047832 crossref_primary_10_1016_j_microc_2021_107036 crossref_primary_10_1002_smsc_202100111 crossref_primary_10_1021_acs_analchem_2c01103 crossref_primary_10_1080_14647273_2022_2040750 crossref_primary_10_1038_s41586_022_05408_3 crossref_primary_10_3390_s23010426 crossref_primary_10_1016_j_heliyon_2024_e25377 crossref_primary_10_1016_j_talanta_2022_123209 crossref_primary_10_1039_D1RA07756B crossref_primary_10_3390_mi14081627 crossref_primary_10_1016_j_ijid_2021_09_046 crossref_primary_10_1002_advs_202302072 crossref_primary_10_1186_s44149_024_00127_w crossref_primary_10_1002_anie_202213920 crossref_primary_10_1371_journal_pone_0246867 |
Cites_doi | 10.1529/biophysj.105.072892 10.18637/jss.v028.i05 10.1016/j.jhin.2004.12.023 10.1101/2020.04.06.028902 10.1101/2020.03.07.20032326 10.1080/21655979.2017.1313648 10.1016/S2666-5247(20)30003-3 10.2807/1560-7917.ES.2020.25.14.2000398 10.1101/2020.04.27.20078329 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 |
Copyright_xml | – notice: The Author(s) 2020 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.1038/s41467-020-18611-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Selected full-text) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_1fdca452b94243fe9b1c96011a64ebaf oai_swepub_ki_se_467911 PMC7511968 32968075 10_1038_s41467_020_18611_5 |
Genre | Validation Study Comparative Study Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
GeographicLocations | Sweden |
GeographicLocations_xml | – name: Sweden |
GrantInformation_xml | – fundername: Vetenskapsrådet (Swedish Research Council) grantid: 2017-01723 funderid: https://doi.org/10.13039/501100004359 – fundername: Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation) grantid: 2020.0182 funderid: https://doi.org/10.13039/501100004063 – fundername: Ragnar Söderbergs stiftelse (Ragnar Söderberg Foundation) grantid: M16/17 funderid: https://doi.org/10.13039/100007459 – fundername: Science for Life Laboratory (SciLifeLab) grantid: 2020.0182 funderid: https://doi.org/10.13039/501100009252 – fundername: SciLifeLab/KAW national COVID-19 research program project grant (2020.0182) – fundername: Ragnar Söderbergs stiftelse (Ragnar Söderberg Foundation) grantid: M16/17 – fundername: Vetenskapsrådet (Swedish Research Council) grantid: 2017-01723 – fundername: Science for Life Laboratory (SciLifeLab) grantid: 2020.0182 – fundername: Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation) grantid: 2020.0182 – fundername: ; – fundername: ; grantid: 2017-01723 – fundername: ; grantid: 2020.0182 – fundername: ; grantid: M16/17 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7X8 PPXIY PQGLB 5PM PJZUB 4.4 ABAWZ ADTPV AOWAS BAPOH CAG COF D8T EJD LGEZI LOTEE NADUK NXXTH PUEGO ZZAVC |
ID | FETCH-LOGICAL-c616t-740c3f12c24a5afa89dc42eb2420c59b30d1af9e74306a6504273da0c25686793 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:52 EDT 2025 Mon Aug 25 03:39:30 EDT 2025 Thu Aug 21 13:23:00 EDT 2025 Thu Jul 10 20:38:52 EDT 2025 Wed Feb 19 02:30:21 EST 2025 Tue Jul 01 04:09:04 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Fri Feb 21 02:39:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c616t-740c3f12c24a5afa89dc42eb2420c59b30d1af9e74306a6504273da0c25686793 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-7021-5248 0000-0001-6001-7240 0000-0001-9020-0521 0000-0002-0670-9788 0000-0003-1239-5495 0000-0003-2715-7887 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-18611-5 |
PMID | 32968075 |
PQID | 2445974296 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1fdca452b94243fe9b1c96011a64ebaf swepub_primary_oai_swepub_ki_se_467911 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7511968 proquest_miscellaneous_2445974296 pubmed_primary_32968075 crossref_citationtrail_10_1038_s41467_020_18611_5 crossref_primary_10_1038_s41467_020_18611_5 springer_journals_10_1038_s41467_020_18611_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-23 |
PublicationDateYYYYMMDD | 2020-09-23 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
References | ChinAWHStability of SARS-CoV-2 in different environmental conditionsLancet Microbe20201e1010.1016/S2666-5247(20)30003-3 Bruce, E. A. et al. RT-qPCR DETECTION OF SARS-CoV-2 RNA FROM PATIENT NASOPHARYNGEAL SWAB USING QIAGEN RNEASY KITS OR DIRECTLY VIA OMISSION OF AN RNA EXTRACTION STEP. bioRxiv.org, 2020.03.20.001008 (2020). Merindol, N. et al. Optimization of SARS-CoV-2 detection by RT-QPCR without RNA extraction. bioRxiv.org, 2020.04.06.028902 (2020). Centers for Disease Control and Prevention. Real-Time RT-PCR Panel for Detection 2019-Novel Coronavirus. https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-for-detection-instructions.pdf (2020). Ferguson, N. M. et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19 Response Team; https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf (2020). Centers for Disease Control and Prevention. Information for Laboratories: 2019-nCoV | CDC. Acceptable Commercial Primers and Probes. https://www.cdc.gov/coronavirus/2019-ncov/lab/index.html (2020). Barra, G. B., Santa Rita, T. H., Mesquita, P. G., Jacomo, R. H. & Nery, L. F. A. Analytical sensibility and specificity of two RT-qPCR protocols for SARS-CoV-2 detection performed in an automated workflow. medRxiv.org, 2020.03.07.20032326 (2020). RabenauHFKampfGCinatlJDoerrHWEfficacy of various disinfectants against SARS coronavirusJ. Hospital Infect.2005611071111:STN:280:DC%2BD2Mvoslamtg%3D%3D10.1016/j.jhin.2004.12.023 FomsgaardASRosenstierneMWAn alternative workflow for molecular detection of SARS-CoV-2-escape from the NA extraction kit-shortage, Copenhagen, Denmark, March 2020Eurosurveillance2020256910.2807/1560-7917.ES.2020.25.14.2000398 EarlCCSmithMTLeaseRABundyBCPolyvinylsulfonic acid: a low-cost RNase inhibitor for enhanced RNA preservation and cell-free protein translationBioengineered20189909710.1080/21655979.2017.1313648 Taipale, J., Romer, P. & Linnarsson, S. Population-scale testing can suppress the spread of COVID-19. medRxiv.org, 2020.04.27.20078329 (2020). CormanVMDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREurosurveillance2020252330 CormanVMAssays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infectionsEurosurveillance201217210 KhattariZSARS coronavirus E protein in phospholipid bilayers: an x-ray studyBiophys. J.200690203820502006BpJ....90.2038K1:CAS:528:DC%2BD28Xis1CktLg%3D10.1529/biophysj.105.072892 KuhnMBuilding predictive models in R using the caret packageJ. Stat. Softw.20082812610.18637/jss.v028.i05 VM Corman (18611_CR3) 2012; 17 AWH Chin (18611_CR11) 2020; 1 M Kuhn (18611_CR15) 2008; 28 HF Rabenau (18611_CR14) 2005; 61 18611_CR6 18611_CR5 18611_CR10 18611_CR2 18611_CR1 Z Khattari (18611_CR13) 2006; 90 18611_CR9 CC Earl (18611_CR12) 2018; 9 VM Corman (18611_CR4) 2020; 25 18611_CR7 AS Fomsgaard (18611_CR8) 2020; 25 |
References_xml | – reference: Ferguson, N. M. et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19 Response Team; https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf (2020). – reference: CormanVMAssays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infectionsEurosurveillance201217210 – reference: KhattariZSARS coronavirus E protein in phospholipid bilayers: an x-ray studyBiophys. J.200690203820502006BpJ....90.2038K1:CAS:528:DC%2BD28Xis1CktLg%3D10.1529/biophysj.105.072892 – reference: CormanVMDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREurosurveillance2020252330 – reference: ChinAWHStability of SARS-CoV-2 in different environmental conditionsLancet Microbe20201e1010.1016/S2666-5247(20)30003-3 – reference: Taipale, J., Romer, P. & Linnarsson, S. Population-scale testing can suppress the spread of COVID-19. medRxiv.org, 2020.04.27.20078329 (2020). – reference: Merindol, N. et al. Optimization of SARS-CoV-2 detection by RT-QPCR without RNA extraction. bioRxiv.org, 2020.04.06.028902 (2020). – reference: FomsgaardASRosenstierneMWAn alternative workflow for molecular detection of SARS-CoV-2-escape from the NA extraction kit-shortage, Copenhagen, Denmark, March 2020Eurosurveillance2020256910.2807/1560-7917.ES.2020.25.14.2000398 – reference: RabenauHFKampfGCinatlJDoerrHWEfficacy of various disinfectants against SARS coronavirusJ. Hospital Infect.2005611071111:STN:280:DC%2BD2Mvoslamtg%3D%3D10.1016/j.jhin.2004.12.023 – reference: KuhnMBuilding predictive models in R using the caret packageJ. Stat. Softw.20082812610.18637/jss.v028.i05 – reference: Centers for Disease Control and Prevention. Real-Time RT-PCR Panel for Detection 2019-Novel Coronavirus. https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-for-detection-instructions.pdf (2020). – reference: Bruce, E. A. et al. RT-qPCR DETECTION OF SARS-CoV-2 RNA FROM PATIENT NASOPHARYNGEAL SWAB USING QIAGEN RNEASY KITS OR DIRECTLY VIA OMISSION OF AN RNA EXTRACTION STEP. bioRxiv.org, 2020.03.20.001008 (2020). – reference: Barra, G. B., Santa Rita, T. H., Mesquita, P. G., Jacomo, R. H. & Nery, L. F. A. Analytical sensibility and specificity of two RT-qPCR protocols for SARS-CoV-2 detection performed in an automated workflow. medRxiv.org, 2020.03.07.20032326 (2020). – reference: EarlCCSmithMTLeaseRABundyBCPolyvinylsulfonic acid: a low-cost RNase inhibitor for enhanced RNA preservation and cell-free protein translationBioengineered20189909710.1080/21655979.2017.1313648 – reference: Centers for Disease Control and Prevention. Information for Laboratories: 2019-nCoV | CDC. Acceptable Commercial Primers and Probes. https://www.cdc.gov/coronavirus/2019-ncov/lab/index.html (2020). – ident: 18611_CR6 – ident: 18611_CR5 – ident: 18611_CR7 – volume: 90 start-page: 2038 year: 2006 ident: 18611_CR13 publication-title: Biophys. J. doi: 10.1529/biophysj.105.072892 – volume: 28 start-page: 1 year: 2008 ident: 18611_CR15 publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i05 – volume: 61 start-page: 107 year: 2005 ident: 18611_CR14 publication-title: J. Hospital Infect. doi: 10.1016/j.jhin.2004.12.023 – volume: 17 start-page: 2 year: 2012 ident: 18611_CR3 publication-title: Eurosurveillance – ident: 18611_CR9 doi: 10.1101/2020.04.06.028902 – ident: 18611_CR10 doi: 10.1101/2020.03.07.20032326 – volume: 9 start-page: 90 year: 2018 ident: 18611_CR12 publication-title: Bioengineered doi: 10.1080/21655979.2017.1313648 – volume: 25 start-page: 23 year: 2020 ident: 18611_CR4 publication-title: Eurosurveillance – volume: 1 start-page: e10 year: 2020 ident: 18611_CR11 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(20)30003-3 – volume: 25 start-page: 6 year: 2020 ident: 18611_CR8 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2020.25.14.2000398 – ident: 18611_CR1 doi: 10.1101/2020.04.27.20078329 – ident: 18611_CR2 |
SSID | ssj0000391844 |
Score | 2.6931453 |
Snippet | Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription... SARS-CoV-2 infection is widely diagnosed by RT-PCR, but RNA extraction is a bottleneck for fast and cheap diagnosis. Here, the authors develop protocols to... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4812 |
SubjectTerms | 38/77 38/88 631/326/596/4130 692/699/255/2514 692/700/139/1420 Benchmarking Betacoronavirus - genetics Betacoronavirus - isolation & purification Clinical Laboratory Techniques - methods Clinical Laboratory Techniques - standards Clinical Laboratory Techniques - statistics & numerical data Coronavirus Infections - diagnosis Coronavirus Infections - epidemiology Coronavirus Infections - virology COVID-19 COVID-19 Testing DNA Primers - genetics Hot Temperature Humanities and Social Sciences Humans multidisciplinary Pandemics Pneumonia, Viral - diagnosis Pneumonia, Viral - epidemiology Pneumonia, Viral - virology Reverse Transcriptase Polymerase Chain Reaction - methods Reverse Transcriptase Polymerase Chain Reaction - standards Reverse Transcriptase Polymerase Chain Reaction - statistics & numerical data RNA, Viral - genetics RNA, Viral - isolation & purification SARS-CoV-2 Science Science (multidisciplinary) Sensitivity and Specificity Sweden - epidemiology Viral Plaque Assay - methods |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQJSQuiJ2wyUiIC1iNlzjxsQxUBamAZtqqN8trGVFlqpnpof-eZzszagCVC1IOkWMrsd_2vbzkM0JvuhCZA-9IPGecCKE4sa31pLEypvjObX6Zc_hVHhyLL6fN6bWtvtI3YYUeuCzcLo3eGdEwqwQTPAZlqQPUTamRIlgTk_eFmHctmco-mCtIXcTwl0zNu92VyD4hZUu0k5SSZhSJMmH_31Dmnx9Lbiumv7GL5oi0fw_dHaAk3itTuI9uhf4Bul02l7x6iGaHgIvBl2HTe7w0F3OPJ99OPn8kVOF14tboz_B8hWMwYBXnAdsrDI56WX50IHEZAp7tTWdksjghDE-PyPfJ9BE63v90NDkgwxYKxEkq16QVteORMseEaUw0nfJOMMimBatdoyyvPTVRBcARtTSA1gTAGW9qB0goUfHxx2inX_ThKcKwoMG0tYydNGD1rIs1HLTxMsbWcFUhullO7QZ-8bTNxbnOdW7e6SICDSLQWQS6qdC77ZiLwq5xY-8PSUrbnokZOzeAvuhBX_S_9KVCrzcy1mBJqTxi-rC4XGkAOim7YkpW6EmR-fZWHFoTbXOF2pE2jJ5lfKWf_8hs3W2q1MquQu83eqMHN7G6ca5vi26N7jA0_YSzoGEERKpn_2NRnqM7LFlGqrbxF2hnvbwMLwFsre2rbFe_AG4YIak priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9wwFBZpQqGX0L1O2qJC6aUVtRbL9nE6aUgH0paZJOQmJFlKhwRP8EwO-fd9khdwEwIFH4wsWbLfok960ieEPhbOMwvekVSccSJEyYnJTUUyI33o37mJkznHP-XRqZidZ-dbiPV7YeKi_UhpGd10vzrs61pEkw6DHVpISkn2CO0EqnbQ7Z3JZLaYDTMrgfO8EKLbIZPy4p7Co14okvXfhzDvLpQcoqX_MIvG3ujwKdrtYCSetA1_hrZc_Rw9bg-WvH2BFseAicGPYV1XuNHXywpPf539OCC0xJvAq1Ff4OUae6fBIq4cNrcYnHTTbnIgvnEOLybzBZmuzgjD8xPyezp_iU4Pv59Mj0h3fAKxksoNyUVquafMMqEz7XVRVlYwGEkLltqsNDytqPalAwyRSg1ITQCUqXRqAQUFGj7-Cm3Xq9q9QRh-qNN5Kn0hNVg8K3wKF80q6X2ueZkg2v9OZTtu8XDExZWKMW5eqFYECkSgoghUlqDPQ5nrllnjwdzfgpSGnIEVOyasmgvVaYmivrJaZMyUggnuXWmohREapVoKZ7RP0IdexgqsKIRGdO1WN2sFICeMrFgpE_S6lflQFYfUQNmcoHykDaO2jJ_Uyz-RqTsPUVpZJOhLrzeqcxHrB7_1U6tboxq6pEu4cwpKQC-193_v3UdPWLCBEFPjb9H2prlx7wBSbcz7zob-ApZ7F4Q priority: 102 providerName: Springer Nature |
Title | Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR |
URI | https://link.springer.com/article/10.1038/s41467-020-18611-5 https://www.ncbi.nlm.nih.gov/pubmed/32968075 https://www.proquest.com/docview/2445974296 https://pubmed.ncbi.nlm.nih.gov/PMC7511968 http://kipublications.ki.se/Default.aspx?queryparsed=id:144744856 https://doaj.org/article/1fdca452b94243fe9b1c96011a64ebaf |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2EWgviDvhUhkJ8QKG-BIneUCoCyujUsfUrlPfLCexR0WVjrST6L_nOJdKgTKpaiM3VlKf23dy6u8g9CYylmXgHUnOGSdCxJykYZqTIJXWxXeeVg9zRmfydCqGs2C2h9p2R80Crnamdq6f1LRcfPj9a_MZDP5TvWU8-rgSlbm7RIhGklIS7KNDiEyh62gwauB-5Zl5DAmNaPbO7J56hO5yFkvH0dsJVRWj_y4Y-u-_Kbcl1b_oR6uQNbiP7jVYE_dr5XiA9kzxEN2pu09uHqHJCIAzODusixyX-nqe4-T75bcvhMZ47cg3iis8X2FrNJjNwuB0g8GTl_VOCGJLY_CkP56QZHlJGB5fkPNk_BhNBycXySlpeiyQTFK5JqHwM24py5jQgbY6ivNMMEi3BfOzIE65n1NtYwNAw5ca4JwAvJNrPwOo5Lj6-BN0UCwL8wxhWFujQ1_aSGpwCyyyPrxokEtrQ81jD9F2OVXWEJC7PhgLVRXCeaRqaSiQhqqkoQIPvdvOua7pN249-9hJaXumo86uBpbllWosUVGbZ1oELI0FE9yaOKUZpHGUailMqq2HXrcyVmBqrn6iC7O8WSlAQi79Au3w0NNa5ttLtTrjobCjDZ176X5TzH9UdN6hK-XKyEPvW71RrRnc-lvf1rrVuUIz9BOOjIIZEMqe__deX6Aj5jTf1dj4S3SwLm_MK4BY67SH9sNZCO_R4GsPHfb7w8kQPo9Pzs7HMJrIpFc9vOhV9vUHUrIiOQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZKEYILYidlMxLiAlbjJU5yLIFqCp2CZqZVb5bj2GXUKlNlpof-e56dRQpUlZByiBw7dvIWf_azPyP0IbOOGfCOpOKMEyFyTsq0rEhSSuf7d16GyZzpkZwci--nyekWYv1emLBoP1BaBjfdrw7bXYtg0n6wQzNJKUnuoLuAtaXX5EIWw7yKZzzPhOj2x8Q8u6HoqA8KVP034ct_l0kOsdK_eEVDX7T_CD3sQCTea5v9GG3Z-gm61x4ref0UzaeAiMGLYV1XuNGXywoXP08OvhKa441n1ajP8HKNndVgDxcWl9cYXHTTbnEgrrEWz_dmc1KsTgjDswX5VcyeoeP9b4tiQrrDE4iRVG5IKmLDHWWGCZ1op7O8MoLBOFqw2CR5yeOKapdbQBCx1IDTBACZSscGMJAn4ePP0Xa9qu1LhOGHWp3G0mVSg72zzMVw0aSSzqWa5xGi_e9UpmMW9wdcXKgQ4eaZakWgQAQqiEAlEfo0lLlseTVuzf3FS2nI6TmxQ8KqOVOdjijqKqNFwspcMMGdzUtqYHxGqZbCltpF6H0vYwU25AMjurarq7UCiOPHVSyXEXrRynyoikOqJ2yOUDrShlFbxk_q5e_A0536GK3MIvS51xvVOYj1rd_6sdWtUQ1d0jncWQUloI_a-b_3vkP3J4vpoTo8OPrxCj1g3h58dI2_Rtub5sq-AXC1Kd8Ga_oDNwcZGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4anUC8IO6Eq5EQL-ARX-Ikj6Wj2gobU7tNe7OcxN6qTWnVdg_79xw7aaTCNAkpD5HjW3x8jj_72J8BPmXW8RKtI60EF1TKXNAiLSqaFMr58V0UYTHn4FDtncjRWXK2BWp9FiZs2g-UlsFMr3eHfVvKoNJ-ssMyxRhNduaVuwfbiLeZ7MF2vz-ajLrVFc97nknZnpKJRXZLBhsjUSDsvw1l_rtZsvOY_sUuGkak4WN41EJJ0m8q_wS2bP0U7jeXS948g8kB4mK0ZcTUFVmY-bQig9-n-7uU5WTluTXqczJdEmcNasWVJcUNQUO9aA46ULewlkz64wkdzE4pJ-NjejQYP4eT4Y_jwR5tr1CgpWJqRVMZl8IxXnJpEuNMllel5Dibljwuk7wQccWMyy3iiFgZRGsS4Uxl4hKRkKfiEy-gV89q-woINqg1aaxcpgxqPc9cjA9LKuVcakQeAVs3py5bfnF_zcWVDn5ukelGBBpFoIMIdBLBly7NvGHXuDP2dy-lLqZnxg4Bs8W5bnuKZq4qjUx4kUsuhbN5wUqcpTFmlLSFcRF8XMtYoyZ594ip7ex6qRHo-NkVz1UELxuZd0UJDPW0zRGkG71hoy6bX-rpRWDrTr2nVmURfF33G92aieWd__q56VsbJbRBl_hmNabAker1_-X7AR4c7Q71r_3Dn2_gIffq4F1s4i30Votr-w4R1qp436rTH-mzG3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Massive+and+rapid+COVID-19+testing+is+feasible+by+extraction-free+SARS-CoV-2+RT-PCR&rft.jtitle=Nature+communications&rft.au=Smyrlaki%2C+Ioanna&rft.au=Ekman%2C+Martin&rft.au=Lentini%2C+Antonio&rft.au=Rufino+de+Sousa%2C+Nuno&rft.date=2020-09-23&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=4812&rft_id=info:doi/10.1038%2Fs41467-020-18611-5&rft_id=info%3Apmid%2F32968075&rft.externalDocID=32968075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |