Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing....

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 4812 - 12
Main Authors Smyrlaki, Ioanna, Ekman, Martin, Lentini, Antonio, Rufino de Sousa, Nuno, Papanicolaou, Natali, Vondracek, Martin, Aarum, Johan, Safari, Hamzah, Muradrasoli, Shaman, Rothfuchs, Antonio Gigliotti, Albert, Jan, Högberg, Björn, Reinius, Björn
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.09.2020
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing. Methodological simplification could increase diagnostic availability and efficiency, benefitting patient care and infection control. Here, we describe methods circumventing RNA extraction in COVID-19 testing by performing RT-PCR directly on heat-inactivated or lysed samples. Our data, including benchmarking using 597 clinical patient samples and a standardised diagnostic system, demonstrate that direct RT-PCR is viable option to extraction-based tests. Using controlled amounts of active SARS-CoV-2, we confirm effectiveness of heat inactivation by plaque assay and evaluate various generic buffers as transport medium for direct RT-PCR. Significant savings in time and cost are achieved through RNA-extraction-free protocols that are directly compatible with established PCR-based testing pipelines. This could aid expansion of COVID-19 testing. SARS-CoV-2 infection is widely diagnosed by RT-PCR, but RNA extraction is a bottleneck for fast and cheap diagnosis. Here, the authors develop protocols to perform RT-PCR directly on heat-inactivated subject samples or samples lysed with readily available detergents and benchmark performance against 597 clinically diagnosed patient samples.
AbstractList SARS-CoV-2 infection is widely diagnosed by RT-PCR, but RNA extraction is a bottleneck for fast and cheap diagnosis. Here, the authors develop protocols to perform RT-PCR directly on heat-inactivated subject samples or samples lysed with readily available detergents and benchmark performance against 597 clinically diagnosed patient samples.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing. Methodological simplification could increase diagnostic availability and efficiency, benefitting patient care and infection control. Here, we describe methods circumventing RNA extraction in COVID-19 testing by performing RT-PCR directly on heat-inactivated or lysed samples. Our data, including benchmarking using 597 clinical patient samples and a standardised diagnostic system, demonstrate that direct RT-PCR is viable option to extraction-based tests. Using controlled amounts of active SARS-CoV-2, we confirm effectiveness of heat inactivation by plaque assay and evaluate various generic buffers as transport medium for direct RT-PCR. Significant savings in time and cost are achieved through RNA-extraction-free protocols that are directly compatible with established PCR-based testing pipelines. This could aid expansion of COVID-19 testing. SARS-CoV-2 infection is widely diagnosed by RT-PCR, but RNA extraction is a bottleneck for fast and cheap diagnosis. Here, the authors develop protocols to perform RT-PCR directly on heat-inactivated subject samples or samples lysed with readily available detergents and benchmark performance against 597 clinically diagnosed patient samples.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing. Methodological simplification could increase diagnostic availability and efficiency, benefitting patient care and infection control. Here, we describe methods circumventing RNA extraction in COVID-19 testing by performing RT-PCR directly on heat-inactivated or lysed samples. Our data, including benchmarking using 597 clinical patient samples and a standardised diagnostic system, demonstrate that direct RT-PCR is viable option to extraction-based tests. Using controlled amounts of active SARS-CoV-2, we confirm effectiveness of heat inactivation by plaque assay and evaluate various generic buffers as transport medium for direct RT-PCR. Significant savings in time and cost are achieved through RNA-extraction-free protocols that are directly compatible with established PCR-based testing pipelines. This could aid expansion of COVID-19 testing.Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing. Methodological simplification could increase diagnostic availability and efficiency, benefitting patient care and infection control. Here, we describe methods circumventing RNA extraction in COVID-19 testing by performing RT-PCR directly on heat-inactivated or lysed samples. Our data, including benchmarking using 597 clinical patient samples and a standardised diagnostic system, demonstrate that direct RT-PCR is viable option to extraction-based tests. Using controlled amounts of active SARS-CoV-2, we confirm effectiveness of heat inactivation by plaque assay and evaluate various generic buffers as transport medium for direct RT-PCR. Significant savings in time and cost are achieved through RNA-extraction-free protocols that are directly compatible with established PCR-based testing pipelines. This could aid expansion of COVID-19 testing.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription polymerase chain reaction (RT-PCR) to detect viral RNA in patient samples, but RNA extraction constitutes a major bottleneck in current testing. Methodological simplification could increase diagnostic availability and efficiency, benefitting patient care and infection control. Here, we describe methods circumventing RNA extraction in COVID-19 testing by performing RT-PCR directly on heat-inactivated or lysed samples. Our data, including benchmarking using 597 clinical patient samples and a standardised diagnostic system, demonstrate that direct RT-PCR is viable option to extraction-based tests. Using controlled amounts of active SARS-CoV-2, we confirm effectiveness of heat inactivation by plaque assay and evaluate various generic buffers as transport medium for direct RT-PCR. Significant savings in time and cost are achieved through RNA-extraction-free protocols that are directly compatible with established PCR-based testing pipelines. This could aid expansion of COVID-19 testing.
ArticleNumber 4812
Author Aarum, Johan
Safari, Hamzah
Lentini, Antonio
Reinius, Björn
Muradrasoli, Shaman
Vondracek, Martin
Rothfuchs, Antonio Gigliotti
Smyrlaki, Ioanna
Papanicolaou, Natali
Albert, Jan
Ekman, Martin
Rufino de Sousa, Nuno
Högberg, Björn
Author_xml – sequence: 1
  givenname: Ioanna
  surname: Smyrlaki
  fullname: Smyrlaki, Ioanna
  organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet
– sequence: 2
  givenname: Martin
  surname: Ekman
  fullname: Ekman, Martin
  organization: Department of Clinical Microbiology, Karolinska University Hospital
– sequence: 3
  givenname: Antonio
  orcidid: 0000-0003-1239-5495
  surname: Lentini
  fullname: Lentini, Antonio
  organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet
– sequence: 4
  givenname: Nuno
  orcidid: 0000-0002-0670-9788
  surname: Rufino de Sousa
  fullname: Rufino de Sousa, Nuno
  organization: Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet
– sequence: 5
  givenname: Natali
  surname: Papanicolaou
  fullname: Papanicolaou, Natali
  organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet
– sequence: 6
  givenname: Martin
  surname: Vondracek
  fullname: Vondracek, Martin
  organization: Department of Clinical Microbiology, Karolinska University Hospital
– sequence: 7
  givenname: Johan
  surname: Aarum
  fullname: Aarum, Johan
  organization: Department of Clinical Microbiology, Karolinska University Hospital
– sequence: 8
  givenname: Hamzah
  surname: Safari
  fullname: Safari, Hamzah
  organization: Department of Clinical Microbiology, Karolinska University Hospital
– sequence: 9
  givenname: Shaman
  surname: Muradrasoli
  fullname: Muradrasoli, Shaman
  organization: Public Health Agency of Sweden
– sequence: 10
  givenname: Antonio Gigliotti
  orcidid: 0000-0001-6001-7240
  surname: Rothfuchs
  fullname: Rothfuchs, Antonio Gigliotti
  organization: Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet
– sequence: 11
  givenname: Jan
  orcidid: 0000-0001-9020-0521
  surname: Albert
  fullname: Albert, Jan
  organization: Department of Clinical Microbiology, Karolinska University Hospital, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet
– sequence: 12
  givenname: Björn
  orcidid: 0000-0003-2715-7887
  surname: Högberg
  fullname: Högberg, Björn
  organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet
– sequence: 13
  givenname: Björn
  orcidid: 0000-0002-7021-5248
  surname: Reinius
  fullname: Reinius, Björn
  email: bjorn.reinius@ki.se
  organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32968075$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:144744856$$DView record from Swedish Publication Index
BookMark eNp9Uk1v1DAQjVARLaV_gAPKkYvBYztOfEGqwtdKRUW7pVfLcSaLl2y8tbOF_nu8zRZ1OdQXj2beeyO9Ny-zo8EPmGWvgb4Dyqv3UYCQJaGMEqgkACmeZSeMCiBQMn70qD7OzmJc0fS4gkqIF9kxZ0pWtCxOssU3E6O7xdwMbR7MxrV5fXk9-0hA5SPG0Q3L3MW8QxNd02Pe3OX4ZwzGjs4PpAuI-eJ8viC1vyYsn1-R7_X8Vfa8M33Es_1_mv34_Omq_kouLr_M6vMLYiXIkZSCWt4Bs0yYwnSmUq0VDBsmGLWFajhtwXQKS8GpNLKggpW8NdSyQlayVPw0m026rTcrvQlubcKd9sbp-4YPS23C6GyPGrrWGlGwRgkmeIeqAaskBTBSYGO6pEUmrfgbN9vmQG3f-pUq1Ml0BZDwHyZ8mqyxtTgkU_oD2uFkcD_10t_qsgBI5ieBt3uB4G-2yWm9dtFi35sB_TZqJkShSpGCStA3j3f9W_KQYgJUE8AGH2PATls3ml1CabXrNVC9uxk93YxON6Pvb0bvqOw_6oP6kyS-NyuBhyUGvfLbMKSsn2L9BeJ50Rs
CitedBy_id crossref_primary_10_1002_elps_202300205
crossref_primary_10_3390_v12121423
crossref_primary_10_1038_s41598_021_01744_y
crossref_primary_10_1371_journal_pone_0247792
crossref_primary_10_1080_21655979_2021_1987821
crossref_primary_10_1039_D2CC01297A
crossref_primary_10_1016_j_jcvp_2021_100032
crossref_primary_10_1128_JCM_02643_20
crossref_primary_10_3389_fcimb_2021_691538
crossref_primary_10_1021_acsnano_3c08400
crossref_primary_10_1021_acsinfecdis_2c00204
crossref_primary_10_1155_2022_7442907
crossref_primary_10_1021_acs_analchem_3c00061
crossref_primary_10_1038_s41551_020_00654_0
crossref_primary_10_1007_s11356_023_31776_y
crossref_primary_10_1016_j_snb_2021_131088
crossref_primary_10_1038_s41467_023_42439_4
crossref_primary_10_1002_admt_202200965
crossref_primary_10_1016_j_scitotenv_2021_152877
crossref_primary_10_1371_journal_pone_0261853
crossref_primary_10_1002_ange_202213920
crossref_primary_10_1093_clinchem_hvaa267
crossref_primary_10_1039_D2AN01679F
crossref_primary_10_1038_s41598_022_06873_6
crossref_primary_10_3390_genes12010090
crossref_primary_10_1038_s41563_020_00906_z
crossref_primary_10_1016_j_snb_2022_131906
crossref_primary_10_1016_j_bios_2022_114979
crossref_primary_10_3390_diagnostics12040909
crossref_primary_10_1016_j_cca_2022_08_031
crossref_primary_10_3390_applmicrobiol2040060
crossref_primary_10_1016_j_imu_2022_101037
crossref_primary_10_3390_bios13010122
crossref_primary_10_3390_molecules29071527
crossref_primary_10_1002_smll_202208167
crossref_primary_10_1038_s41598_024_54183_w
crossref_primary_10_1021_acssensors_1c02079
crossref_primary_10_3389_fmicb_2022_1003824
crossref_primary_10_1038_s43856_021_00066_4
crossref_primary_10_1631_jzus_B2200625
crossref_primary_10_3390_healthcare9010037
crossref_primary_10_1093_jpids_piab058
crossref_primary_10_2139_ssrn_4129312
crossref_primary_10_1016_j_diagmicrobio_2024_116210
crossref_primary_10_3390_v14061311
crossref_primary_10_1021_acsnano_1c02494
crossref_primary_10_1002_advs_202310066
crossref_primary_10_1038_s41596_021_00546_w
crossref_primary_10_1016_j_isci_2021_102960
crossref_primary_10_3390_diagnostics14020221
crossref_primary_10_1038_s42004_024_01214_2
crossref_primary_10_1038_s41598_021_84792_8
crossref_primary_10_1016_j_jmoldx_2022_02_001
crossref_primary_10_1093_jphsr_rmac037
crossref_primary_10_1155_2023_6624932
crossref_primary_10_1002_nau_24907
crossref_primary_10_1016_j_trac_2024_118046
crossref_primary_10_1128_spectrum_04073_23
crossref_primary_10_1360_TB_2024_0860
crossref_primary_10_1371_journal_pone_0263033
crossref_primary_10_1016_j_snb_2024_136706
crossref_primary_10_1016_j_bios_2022_114836
crossref_primary_10_2478_acph_2022_0014
crossref_primary_10_1016_j_cclet_2023_108688
crossref_primary_10_3390_bios12060410
crossref_primary_10_1016_j_jviromet_2021_114302
crossref_primary_10_1016_j_trac_2023_117107
crossref_primary_10_1021_acsanm_1c03520
crossref_primary_10_1039_D1LC00627D
crossref_primary_10_3390_v13122492
crossref_primary_10_3389_fnano_2020_593619
crossref_primary_10_3390_bios12100898
crossref_primary_10_3390_idr13040097
crossref_primary_10_1080_00032719_2021_2016791
crossref_primary_10_3390_ijms241713056
crossref_primary_10_1021_acs_analchem_1c04156
crossref_primary_10_1016_j_bioelechem_2024_108700
crossref_primary_10_1021_acs_analchem_1c00515
crossref_primary_10_1093_ajcp_aqab060
crossref_primary_10_3390_bios11120488
crossref_primary_10_3390_molecules26216617
crossref_primary_10_1016_j_talanta_2022_123835
crossref_primary_10_1016_j_trac_2023_117458
crossref_primary_10_1039_D3LC00753G
crossref_primary_10_1038_s41598_023_47645_0
crossref_primary_10_1038_s41378_022_00400_3
crossref_primary_10_1021_acs_analchem_3c02716
crossref_primary_10_1021_acssensors_2c02512
crossref_primary_10_1186_s12985_024_02381_3
crossref_primary_10_1021_acssynbio_1c00499
crossref_primary_10_1080_14737159_2022_2037425
crossref_primary_10_1371_journal_pone_0249149
crossref_primary_10_1016_j_diagmicrobio_2023_115974
crossref_primary_10_1016_j_diagmicrobio_2024_116325
crossref_primary_10_1590_s1678_9946202163052
crossref_primary_10_1016_j_diagmicrobio_2023_115975
crossref_primary_10_3390_diagnostics11020182
crossref_primary_10_1155_2021_5568350
crossref_primary_10_3389_fpubh_2021_766871
crossref_primary_10_1016_j_diagmicrobio_2021_115458
crossref_primary_10_1021_acs_analchem_3c02299
crossref_primary_10_1111_ina_13128
crossref_primary_10_1038_s41565_022_01175_4
crossref_primary_10_1364_JOSAB_422646
crossref_primary_10_1021_acs_biomac_0c01727
crossref_primary_10_1016_j_jviromet_2021_114086
crossref_primary_10_1016_j_crmeth_2022_100186
crossref_primary_10_1002_agt2_715
crossref_primary_10_1016_j_aca_2022_339915
crossref_primary_10_1021_acs_analchem_2c03813
crossref_primary_10_1016_j_pbiomolbio_2023_06_004
crossref_primary_10_1016_j_bios_2021_113944
crossref_primary_10_1016_j_susoc_2021_12_001
crossref_primary_10_1016_j_talanta_2023_125080
crossref_primary_10_1016_j_jviromet_2021_114199
crossref_primary_10_1016_j_microc_2023_109533
crossref_primary_10_2217_fvl_2020_0187
crossref_primary_10_1007_s00228_021_03102_3
crossref_primary_10_3390_bios13080822
crossref_primary_10_1016_j_bios_2021_113388
crossref_primary_10_1128_spectrum_01358_22
crossref_primary_10_1021_acs_est_1c04623
crossref_primary_10_1021_acs_analchem_1c01078
crossref_primary_10_1208_s12248_020_00532_2
crossref_primary_10_1016_j_aca_2022_339585
crossref_primary_10_1016_j_ijid_2021_07_054
crossref_primary_10_1016_j_aca_2023_341167
crossref_primary_10_1016_j_jmoldx_2021_08_004
crossref_primary_10_1016_j_crmeth_2022_100173
crossref_primary_10_1111_ina_13023
crossref_primary_10_1002_14651858_CD015618
crossref_primary_10_1016_j_talanta_2024_127327
crossref_primary_10_3389_fbioe_2021_800104
crossref_primary_10_1007_s11696_023_03271_8
crossref_primary_10_1016_j_bios_2021_112969
crossref_primary_10_1177_0272989X20969690
crossref_primary_10_1016_j_medj_2022_07_007
crossref_primary_10_1016_j_aca_2022_339909
crossref_primary_10_1093_jalm_jfab079
crossref_primary_10_1371_journal_pone_0248885
crossref_primary_10_3389_fmicb_2021_713713
crossref_primary_10_1016_j_aca_2022_339590
crossref_primary_10_1016_j_trac_2024_118131
crossref_primary_10_1038_s41565_022_01287_x
crossref_primary_10_1002_lpor_202401600
crossref_primary_10_1016_j_colsurfb_2022_112716
crossref_primary_10_3390_diagnostics11050904
crossref_primary_10_3390_diagnostics12051091
crossref_primary_10_1016_j_bios_2022_114904
crossref_primary_10_3389_fcimb_2022_799678
crossref_primary_10_1021_acsnano_4c05734
crossref_primary_10_3390_pathogens10121558
crossref_primary_10_1002_bmm2_12024
crossref_primary_10_1016_j_snb_2022_131764
crossref_primary_10_3390_s21196581
crossref_primary_10_3390_s22010133
crossref_primary_10_3390_v14071549
crossref_primary_10_1016_j_talanta_2022_123862
crossref_primary_10_1111_ina_13169
crossref_primary_10_24018_ejmed_2022_4_1_1164
crossref_primary_10_1002_bmb_21771
crossref_primary_10_1007_s00705_021_05165_0
crossref_primary_10_1088_1742_6596_2426_1_012065
crossref_primary_10_1099_jmm_0_001779
crossref_primary_10_1016_j_ebiom_2021_103236
crossref_primary_10_1055_s_0043_1760752
crossref_primary_10_1021_acsami_2c07497
crossref_primary_10_3390_vaccines10050730
crossref_primary_10_1186_s12951_023_01938_8
crossref_primary_10_1016_j_omtn_2023_02_010
crossref_primary_10_1016_j_jphotobiol_2022_112538
crossref_primary_10_3390_microorganisms9081738
crossref_primary_10_3390_s21134439
crossref_primary_10_1371_journal_pone_0310171
crossref_primary_10_1039_D1AN00367D
crossref_primary_10_1038_s41598_022_23285_8
crossref_primary_10_1038_s41598_022_05738_2
crossref_primary_10_1186_s12894_024_01464_1
crossref_primary_10_1371_journal_pone_0243333
crossref_primary_10_3389_fcimb_2021_678703
crossref_primary_10_1021_acsphotonics_1c01052
crossref_primary_10_1002_jmv_27709
crossref_primary_10_1021_jacs_1c09579
crossref_primary_10_3390_diagnostics12040775
crossref_primary_10_1016_j_cll_2022_02_004
crossref_primary_10_1038_s41598_022_07871_4
crossref_primary_10_1021_acs_analchem_3c01522
crossref_primary_10_1016_j_bios_2021_113629
crossref_primary_10_3390_covid3070075
crossref_primary_10_3390_diagnostics12030601
crossref_primary_10_1002_jmv_27039
crossref_primary_10_2166_wst_2023_197
crossref_primary_10_3390_diseases12090198
crossref_primary_10_1016_j_jviromet_2021_114153
crossref_primary_10_1021_acsabm_2c00984
crossref_primary_10_3390_ijms25126538
crossref_primary_10_1016_j_heliyon_2024_e33179
crossref_primary_10_1021_acsanm_1c03492
crossref_primary_10_1002_adma_202103646
crossref_primary_10_1016_j_chaos_2022_112823
crossref_primary_10_1016_j_compbiomed_2022_106092
crossref_primary_10_2217_fvl_2021_0256
crossref_primary_10_1016_j_aca_2021_338330
crossref_primary_10_1039_D2LC00434H
crossref_primary_10_1002_adsr_202400103
crossref_primary_10_1038_s43856_022_00147_y
crossref_primary_10_1002_adhm_202402506
crossref_primary_10_1016_j_microc_2021_106305
crossref_primary_10_1016_j_talanta_2023_124479
crossref_primary_10_3390_ph14101048
crossref_primary_10_3390_app12105137
crossref_primary_10_1093_ve_veab098
crossref_primary_10_1080_14737159_2022_2094250
crossref_primary_10_1016_j_tube_2023_102431
crossref_primary_10_1021_acs_analchem_2c03846
crossref_primary_10_1515_cclm_2022_0263
crossref_primary_10_1071_CP24053
crossref_primary_10_1016_j_trac_2021_116452
crossref_primary_10_1016_j_bios_2021_113736
crossref_primary_10_1016_j_heliyon_2022_e09735
crossref_primary_10_1038_s41598_022_16048_y
crossref_primary_10_1080_21505594_2022_2092941
crossref_primary_10_1021_acs_analchem_1c00192
crossref_primary_10_1039_D3MH00861D
crossref_primary_10_1016_j_scitotenv_2023_165098
crossref_primary_10_3390_v13122413
crossref_primary_10_1021_acs_analchem_4c00319
crossref_primary_10_1021_acs_analchem_1c02657
crossref_primary_10_1002_14651858_CD013705_pub2
crossref_primary_10_1002_bkcs_12418
crossref_primary_10_1080_23744235_2024_2374307
crossref_primary_10_1021_acs_analchem_3c01348
crossref_primary_10_1089_crispr_2021_0146
crossref_primary_10_1093_biomethods_bpae046
crossref_primary_10_1021_acsomega_4c07170
crossref_primary_10_1016_j_sjbs_2021_08_040
crossref_primary_10_1002_adma_202201085
crossref_primary_10_1021_jacs_1c06325
crossref_primary_10_1186_s12951_023_01981_5
crossref_primary_10_1128_CMR_00228_20
crossref_primary_10_1126_sciadv_adi4997
crossref_primary_10_1021_acsami_3c08819
crossref_primary_10_3390_bios13020275
crossref_primary_10_1021_acssensors_3c00031
crossref_primary_10_1128_cmr_00168_21
crossref_primary_10_1016_j_bios_2022_114379
crossref_primary_10_1016_j_talanta_2024_126413
crossref_primary_10_1186_s40348_021_00115_x
crossref_primary_10_3390_mps4010007
crossref_primary_10_1017_S0950268821002302
crossref_primary_10_1021_acsmeasuresciau_4c00032
crossref_primary_10_1021_acsomega_1c00008
crossref_primary_10_1002_advs_202406076
crossref_primary_10_1128_JCM_02403_20
crossref_primary_10_1016_j_apsb_2023_02_014
crossref_primary_10_1016_j_bspc_2022_103552
crossref_primary_10_1038_s41598_020_80715_1
crossref_primary_10_3390_v14030508
crossref_primary_10_1016_j_jviromet_2021_114241
crossref_primary_10_1007_s11901_021_00567_9
crossref_primary_10_1002_adsr_202300061
crossref_primary_10_1038_s41467_020_20699_8
crossref_primary_10_1111_risa_14263
crossref_primary_10_1016_j_aca_2022_340639
crossref_primary_10_1016_j_bios_2023_115179
crossref_primary_10_1016_j_ijid_2021_05_053
crossref_primary_10_1038_s41392_021_00731_z
crossref_primary_10_1039_D3TC03231K
crossref_primary_10_1111_jam_15788
crossref_primary_10_1038_s41586_021_03908_2
crossref_primary_10_1002_gch2_202000068
crossref_primary_10_1002_smtd_202300034
crossref_primary_10_1016_j_nantod_2023_101968
crossref_primary_10_1002_jmv_28287
crossref_primary_10_1016_j_bios_2021_113669
crossref_primary_10_1016_j_cca_2024_120054
crossref_primary_10_1016_j_jcvp_2023_100138
crossref_primary_10_1016_j_medj_2020_12_010
crossref_primary_10_1016_j_bios_2021_113541
crossref_primary_10_1021_acs_analchem_1c04984
crossref_primary_10_1186_s12985_021_01567_3
crossref_primary_10_1016_j_trac_2024_117676
crossref_primary_10_1016_j_talanta_2023_124711
crossref_primary_10_1021_acsinfecdis_0c00646
crossref_primary_10_3389_fbioe_2022_877603
crossref_primary_10_3390_ijms26020653
crossref_primary_10_1021_acsomega_3c04137
crossref_primary_10_1515_nanoph_2022_0706
crossref_primary_10_1136_bmjopen_2020_047832
crossref_primary_10_1016_j_microc_2021_107036
crossref_primary_10_1002_smsc_202100111
crossref_primary_10_1021_acs_analchem_2c01103
crossref_primary_10_1080_14647273_2022_2040750
crossref_primary_10_1038_s41586_022_05408_3
crossref_primary_10_3390_s23010426
crossref_primary_10_1016_j_heliyon_2024_e25377
crossref_primary_10_1016_j_talanta_2022_123209
crossref_primary_10_1039_D1RA07756B
crossref_primary_10_3390_mi14081627
crossref_primary_10_1016_j_ijid_2021_09_046
crossref_primary_10_1002_advs_202302072
crossref_primary_10_1186_s44149_024_00127_w
crossref_primary_10_1002_anie_202213920
crossref_primary_10_1371_journal_pone_0246867
Cites_doi 10.1529/biophysj.105.072892
10.18637/jss.v028.i05
10.1016/j.jhin.2004.12.023
10.1101/2020.04.06.028902
10.1101/2020.03.07.20032326
10.1080/21655979.2017.1313648
10.1016/S2666-5247(20)30003-3
10.2807/1560-7917.ES.2020.25.14.2000398
10.1101/2020.04.27.20078329
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1038/s41467-020-18611-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Selected full-text)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_1fdca452b94243fe9b1c96011a64ebaf
oai_swepub_ki_se_467911
PMC7511968
32968075
10_1038_s41467_020_18611_5
Genre Validation Study
Comparative Study
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GrantInformation_xml – fundername: Vetenskapsrådet (Swedish Research Council)
  grantid: 2017-01723
  funderid: https://doi.org/10.13039/501100004359
– fundername: Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
  grantid: 2020.0182
  funderid: https://doi.org/10.13039/501100004063
– fundername: Ragnar Söderbergs stiftelse (Ragnar Söderberg Foundation)
  grantid: M16/17
  funderid: https://doi.org/10.13039/100007459
– fundername: Science for Life Laboratory (SciLifeLab)
  grantid: 2020.0182
  funderid: https://doi.org/10.13039/501100009252
– fundername: SciLifeLab/KAW national COVID-19 research program project grant (2020.0182)
– fundername: Ragnar Söderbergs stiftelse (Ragnar Söderberg Foundation)
  grantid: M16/17
– fundername: Vetenskapsrådet (Swedish Research Council)
  grantid: 2017-01723
– fundername: Science for Life Laboratory (SciLifeLab)
  grantid: 2020.0182
– fundername: Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
  grantid: 2020.0182
– fundername: ;
– fundername: ;
  grantid: 2017-01723
– fundername: ;
  grantid: 2020.0182
– fundername: ;
  grantid: M16/17
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PPXIY
PQGLB
5PM
PJZUB
4.4
ABAWZ
ADTPV
AOWAS
BAPOH
CAG
COF
D8T
EJD
LGEZI
LOTEE
NADUK
NXXTH
PUEGO
ZZAVC
ID FETCH-LOGICAL-c616t-740c3f12c24a5afa89dc42eb2420c59b30d1af9e74306a6504273da0c25686793
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:24:52 EDT 2025
Mon Aug 25 03:39:30 EDT 2025
Thu Aug 21 13:23:00 EDT 2025
Thu Jul 10 20:38:52 EDT 2025
Wed Feb 19 02:30:21 EST 2025
Tue Jul 01 04:09:04 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Fri Feb 21 02:39:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c616t-740c3f12c24a5afa89dc42eb2420c59b30d1af9e74306a6504273da0c25686793
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-7021-5248
0000-0001-6001-7240
0000-0001-9020-0521
0000-0002-0670-9788
0000-0003-1239-5495
0000-0003-2715-7887
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-18611-5
PMID 32968075
PQID 2445974296
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1fdca452b94243fe9b1c96011a64ebaf
swepub_primary_oai_swepub_ki_se_467911
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7511968
proquest_miscellaneous_2445974296
pubmed_primary_32968075
crossref_citationtrail_10_1038_s41467_020_18611_5
crossref_primary_10_1038_s41467_020_18611_5
springer_journals_10_1038_s41467_020_18611_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-23
PublicationDateYYYYMMDD 2020-09-23
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References ChinAWHStability of SARS-CoV-2 in different environmental conditionsLancet Microbe20201e1010.1016/S2666-5247(20)30003-3
Bruce, E. A. et al. RT-qPCR DETECTION OF SARS-CoV-2 RNA FROM PATIENT NASOPHARYNGEAL SWAB USING QIAGEN RNEASY KITS OR DIRECTLY VIA OMISSION OF AN RNA EXTRACTION STEP. bioRxiv.org, 2020.03.20.001008 (2020).
Merindol, N. et al. Optimization of SARS-CoV-2 detection by RT-QPCR without RNA extraction. bioRxiv.org, 2020.04.06.028902 (2020).
Centers for Disease Control and Prevention. Real-Time RT-PCR Panel for Detection 2019-Novel Coronavirus. https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-for-detection-instructions.pdf (2020).
Ferguson, N. M. et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19 Response Team; https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf (2020).
Centers for Disease Control and Prevention. Information for Laboratories: 2019-nCoV | CDC. Acceptable Commercial Primers and Probes. https://www.cdc.gov/coronavirus/2019-ncov/lab/index.html (2020).
Barra, G. B., Santa Rita, T. H., Mesquita, P. G., Jacomo, R. H. & Nery, L. F. A. Analytical sensibility and specificity of two RT-qPCR protocols for SARS-CoV-2 detection performed in an automated workflow. medRxiv.org, 2020.03.07.20032326 (2020).
RabenauHFKampfGCinatlJDoerrHWEfficacy of various disinfectants against SARS coronavirusJ. Hospital Infect.2005611071111:STN:280:DC%2BD2Mvoslamtg%3D%3D10.1016/j.jhin.2004.12.023
FomsgaardASRosenstierneMWAn alternative workflow for molecular detection of SARS-CoV-2-escape from the NA extraction kit-shortage, Copenhagen, Denmark, March 2020Eurosurveillance2020256910.2807/1560-7917.ES.2020.25.14.2000398
EarlCCSmithMTLeaseRABundyBCPolyvinylsulfonic acid: a low-cost RNase inhibitor for enhanced RNA preservation and cell-free protein translationBioengineered20189909710.1080/21655979.2017.1313648
Taipale, J., Romer, P. & Linnarsson, S. Population-scale testing can suppress the spread of COVID-19. medRxiv.org, 2020.04.27.20078329 (2020).
CormanVMDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREurosurveillance2020252330
CormanVMAssays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infectionsEurosurveillance201217210
KhattariZSARS coronavirus E protein in phospholipid bilayers: an x-ray studyBiophys. J.200690203820502006BpJ....90.2038K1:CAS:528:DC%2BD28Xis1CktLg%3D10.1529/biophysj.105.072892
KuhnMBuilding predictive models in R using the caret packageJ. Stat. Softw.20082812610.18637/jss.v028.i05
VM Corman (18611_CR3) 2012; 17
AWH Chin (18611_CR11) 2020; 1
M Kuhn (18611_CR15) 2008; 28
HF Rabenau (18611_CR14) 2005; 61
18611_CR6
18611_CR5
18611_CR10
18611_CR2
18611_CR1
Z Khattari (18611_CR13) 2006; 90
18611_CR9
CC Earl (18611_CR12) 2018; 9
VM Corman (18611_CR4) 2020; 25
18611_CR7
AS Fomsgaard (18611_CR8) 2020; 25
References_xml – reference: Ferguson, N. M. et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19 Response Team; https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf (2020).
– reference: CormanVMAssays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infectionsEurosurveillance201217210
– reference: KhattariZSARS coronavirus E protein in phospholipid bilayers: an x-ray studyBiophys. J.200690203820502006BpJ....90.2038K1:CAS:528:DC%2BD28Xis1CktLg%3D10.1529/biophysj.105.072892
– reference: CormanVMDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREurosurveillance2020252330
– reference: ChinAWHStability of SARS-CoV-2 in different environmental conditionsLancet Microbe20201e1010.1016/S2666-5247(20)30003-3
– reference: Taipale, J., Romer, P. & Linnarsson, S. Population-scale testing can suppress the spread of COVID-19. medRxiv.org, 2020.04.27.20078329 (2020).
– reference: Merindol, N. et al. Optimization of SARS-CoV-2 detection by RT-QPCR without RNA extraction. bioRxiv.org, 2020.04.06.028902 (2020).
– reference: FomsgaardASRosenstierneMWAn alternative workflow for molecular detection of SARS-CoV-2-escape from the NA extraction kit-shortage, Copenhagen, Denmark, March 2020Eurosurveillance2020256910.2807/1560-7917.ES.2020.25.14.2000398
– reference: RabenauHFKampfGCinatlJDoerrHWEfficacy of various disinfectants against SARS coronavirusJ. Hospital Infect.2005611071111:STN:280:DC%2BD2Mvoslamtg%3D%3D10.1016/j.jhin.2004.12.023
– reference: KuhnMBuilding predictive models in R using the caret packageJ. Stat. Softw.20082812610.18637/jss.v028.i05
– reference: Centers for Disease Control and Prevention. Real-Time RT-PCR Panel for Detection 2019-Novel Coronavirus. https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-for-detection-instructions.pdf (2020).
– reference: Bruce, E. A. et al. RT-qPCR DETECTION OF SARS-CoV-2 RNA FROM PATIENT NASOPHARYNGEAL SWAB USING QIAGEN RNEASY KITS OR DIRECTLY VIA OMISSION OF AN RNA EXTRACTION STEP. bioRxiv.org, 2020.03.20.001008 (2020).
– reference: Barra, G. B., Santa Rita, T. H., Mesquita, P. G., Jacomo, R. H. & Nery, L. F. A. Analytical sensibility and specificity of two RT-qPCR protocols for SARS-CoV-2 detection performed in an automated workflow. medRxiv.org, 2020.03.07.20032326 (2020).
– reference: EarlCCSmithMTLeaseRABundyBCPolyvinylsulfonic acid: a low-cost RNase inhibitor for enhanced RNA preservation and cell-free protein translationBioengineered20189909710.1080/21655979.2017.1313648
– reference: Centers for Disease Control and Prevention. Information for Laboratories: 2019-nCoV | CDC. Acceptable Commercial Primers and Probes. https://www.cdc.gov/coronavirus/2019-ncov/lab/index.html (2020).
– ident: 18611_CR6
– ident: 18611_CR5
– ident: 18611_CR7
– volume: 90
  start-page: 2038
  year: 2006
  ident: 18611_CR13
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.072892
– volume: 28
  start-page: 1
  year: 2008
  ident: 18611_CR15
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v028.i05
– volume: 61
  start-page: 107
  year: 2005
  ident: 18611_CR14
  publication-title: J. Hospital Infect.
  doi: 10.1016/j.jhin.2004.12.023
– volume: 17
  start-page: 2
  year: 2012
  ident: 18611_CR3
  publication-title: Eurosurveillance
– ident: 18611_CR9
  doi: 10.1101/2020.04.06.028902
– ident: 18611_CR10
  doi: 10.1101/2020.03.07.20032326
– volume: 9
  start-page: 90
  year: 2018
  ident: 18611_CR12
  publication-title: Bioengineered
  doi: 10.1080/21655979.2017.1313648
– volume: 25
  start-page: 23
  year: 2020
  ident: 18611_CR4
  publication-title: Eurosurveillance
– volume: 1
  start-page: e10
  year: 2020
  ident: 18611_CR11
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(20)30003-3
– volume: 25
  start-page: 6
  year: 2020
  ident: 18611_CR8
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2020.25.14.2000398
– ident: 18611_CR1
  doi: 10.1101/2020.04.27.20078329
– ident: 18611_CR2
SSID ssj0000391844
Score 2.6931453
Snippet Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed by reverse transcription...
SARS-CoV-2 infection is widely diagnosed by RT-PCR, but RNA extraction is a bottleneck for fast and cheap diagnosis. Here, the authors develop protocols to...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4812
SubjectTerms 38/77
38/88
631/326/596/4130
692/699/255/2514
692/700/139/1420
Benchmarking
Betacoronavirus - genetics
Betacoronavirus - isolation & purification
Clinical Laboratory Techniques - methods
Clinical Laboratory Techniques - standards
Clinical Laboratory Techniques - statistics & numerical data
Coronavirus Infections - diagnosis
Coronavirus Infections - epidemiology
Coronavirus Infections - virology
COVID-19
COVID-19 Testing
DNA Primers - genetics
Hot Temperature
Humanities and Social Sciences
Humans
multidisciplinary
Pandemics
Pneumonia, Viral - diagnosis
Pneumonia, Viral - epidemiology
Pneumonia, Viral - virology
Reverse Transcriptase Polymerase Chain Reaction - methods
Reverse Transcriptase Polymerase Chain Reaction - standards
Reverse Transcriptase Polymerase Chain Reaction - statistics & numerical data
RNA, Viral - genetics
RNA, Viral - isolation & purification
SARS-CoV-2
Science
Science (multidisciplinary)
Sensitivity and Specificity
Sweden - epidemiology
Viral Plaque Assay - methods
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQJSQuiJ2wyUiIC1iNlzjxsQxUBamAZtqqN8trGVFlqpnpof-eZzszagCVC1IOkWMrsd_2vbzkM0JvuhCZA-9IPGecCKE4sa31pLEypvjObX6Zc_hVHhyLL6fN6bWtvtI3YYUeuCzcLo3eGdEwqwQTPAZlqQPUTamRIlgTk_eFmHctmco-mCtIXcTwl0zNu92VyD4hZUu0k5SSZhSJMmH_31Dmnx9Lbiumv7GL5oi0fw_dHaAk3itTuI9uhf4Bul02l7x6iGaHgIvBl2HTe7w0F3OPJ99OPn8kVOF14tboz_B8hWMwYBXnAdsrDI56WX50IHEZAp7tTWdksjghDE-PyPfJ9BE63v90NDkgwxYKxEkq16QVteORMseEaUw0nfJOMMimBatdoyyvPTVRBcARtTSA1gTAGW9qB0goUfHxx2inX_ThKcKwoMG0tYydNGD1rIs1HLTxMsbWcFUhullO7QZ-8bTNxbnOdW7e6SICDSLQWQS6qdC77ZiLwq5xY-8PSUrbnokZOzeAvuhBX_S_9KVCrzcy1mBJqTxi-rC4XGkAOim7YkpW6EmR-fZWHFoTbXOF2pE2jJ5lfKWf_8hs3W2q1MquQu83eqMHN7G6ca5vi26N7jA0_YSzoGEERKpn_2NRnqM7LFlGqrbxF2hnvbwMLwFsre2rbFe_AG4YIak
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9wwFBZpQqGX0L1O2qJC6aUVtRbL9nE6aUgH0paZJOQmJFlKhwRP8EwO-fd9khdwEwIFH4wsWbLfok960ieEPhbOMwvekVSccSJEyYnJTUUyI33o37mJkznHP-XRqZidZ-dbiPV7YeKi_UhpGd10vzrs61pEkw6DHVpISkn2CO0EqnbQ7Z3JZLaYDTMrgfO8EKLbIZPy4p7Co14okvXfhzDvLpQcoqX_MIvG3ujwKdrtYCSetA1_hrZc_Rw9bg-WvH2BFseAicGPYV1XuNHXywpPf539OCC0xJvAq1Ff4OUae6fBIq4cNrcYnHTTbnIgvnEOLybzBZmuzgjD8xPyezp_iU4Pv59Mj0h3fAKxksoNyUVquafMMqEz7XVRVlYwGEkLltqsNDytqPalAwyRSg1ITQCUqXRqAQUFGj7-Cm3Xq9q9QRh-qNN5Kn0hNVg8K3wKF80q6X2ueZkg2v9OZTtu8XDExZWKMW5eqFYECkSgoghUlqDPQ5nrllnjwdzfgpSGnIEVOyasmgvVaYmivrJaZMyUggnuXWmohREapVoKZ7RP0IdexgqsKIRGdO1WN2sFICeMrFgpE_S6lflQFYfUQNmcoHykDaO2jJ_Uyz-RqTsPUVpZJOhLrzeqcxHrB7_1U6tboxq6pEu4cwpKQC-193_v3UdPWLCBEFPjb9H2prlx7wBSbcz7zob-ApZ7F4Q
  priority: 102
  providerName: Springer Nature
Title Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR
URI https://link.springer.com/article/10.1038/s41467-020-18611-5
https://www.ncbi.nlm.nih.gov/pubmed/32968075
https://www.proquest.com/docview/2445974296
https://pubmed.ncbi.nlm.nih.gov/PMC7511968
http://kipublications.ki.se/Default.aspx?queryparsed=id:144744856
https://doaj.org/article/1fdca452b94243fe9b1c96011a64ebaf
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2EWgviDvhUhkJ8QKG-BIneUCoCyujUsfUrlPfLCexR0WVjrST6L_nOJdKgTKpaiM3VlKf23dy6u8g9CYylmXgHUnOGSdCxJykYZqTIJXWxXeeVg9zRmfydCqGs2C2h9p2R80Crnamdq6f1LRcfPj9a_MZDP5TvWU8-rgSlbm7RIhGklIS7KNDiEyh62gwauB-5Zl5DAmNaPbO7J56hO5yFkvH0dsJVRWj_y4Y-u-_Kbcl1b_oR6uQNbiP7jVYE_dr5XiA9kzxEN2pu09uHqHJCIAzODusixyX-nqe4-T75bcvhMZ47cg3iis8X2FrNJjNwuB0g8GTl_VOCGJLY_CkP56QZHlJGB5fkPNk_BhNBycXySlpeiyQTFK5JqHwM24py5jQgbY6ivNMMEi3BfOzIE65n1NtYwNAw5ca4JwAvJNrPwOo5Lj6-BN0UCwL8wxhWFujQ1_aSGpwCyyyPrxokEtrQ81jD9F2OVXWEJC7PhgLVRXCeaRqaSiQhqqkoQIPvdvOua7pN249-9hJaXumo86uBpbllWosUVGbZ1oELI0FE9yaOKUZpHGUailMqq2HXrcyVmBqrn6iC7O8WSlAQi79Au3w0NNa5ttLtTrjobCjDZ176X5TzH9UdN6hK-XKyEPvW71RrRnc-lvf1rrVuUIz9BOOjIIZEMqe__deX6Aj5jTf1dj4S3SwLm_MK4BY67SH9sNZCO_R4GsPHfb7w8kQPo9Pzs7HMJrIpFc9vOhV9vUHUrIiOQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZKEYILYidlMxLiAlbjJU5yLIFqCp2CZqZVb5bj2GXUKlNlpof-e56dRQpUlZByiBw7dvIWf_azPyP0IbOOGfCOpOKMEyFyTsq0rEhSSuf7d16GyZzpkZwci--nyekWYv1emLBoP1BaBjfdrw7bXYtg0n6wQzNJKUnuoLuAtaXX5EIWw7yKZzzPhOj2x8Q8u6HoqA8KVP034ct_l0kOsdK_eEVDX7T_CD3sQCTea5v9GG3Z-gm61x4ref0UzaeAiMGLYV1XuNGXywoXP08OvhKa441n1ajP8HKNndVgDxcWl9cYXHTTbnEgrrEWz_dmc1KsTgjDswX5VcyeoeP9b4tiQrrDE4iRVG5IKmLDHWWGCZ1op7O8MoLBOFqw2CR5yeOKapdbQBCx1IDTBACZSscGMJAn4ePP0Xa9qu1LhOGHWp3G0mVSg72zzMVw0aSSzqWa5xGi_e9UpmMW9wdcXKgQ4eaZakWgQAQqiEAlEfo0lLlseTVuzf3FS2nI6TmxQ8KqOVOdjijqKqNFwspcMMGdzUtqYHxGqZbCltpF6H0vYwU25AMjurarq7UCiOPHVSyXEXrRynyoikOqJ2yOUDrShlFbxk_q5e_A0536GK3MIvS51xvVOYj1rd_6sdWtUQ1d0jncWQUloI_a-b_3vkP3J4vpoTo8OPrxCj1g3h58dI2_Rtub5sq-AXC1Kd8Ga_oDNwcZGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4anUC8IO6Eq5EQL-ARX-Ikj6Wj2gobU7tNe7OcxN6qTWnVdg_79xw7aaTCNAkpD5HjW3x8jj_72J8BPmXW8RKtI60EF1TKXNAiLSqaFMr58V0UYTHn4FDtncjRWXK2BWp9FiZs2g-UlsFMr3eHfVvKoNJ-ssMyxRhNduaVuwfbiLeZ7MF2vz-ajLrVFc97nknZnpKJRXZLBhsjUSDsvw1l_rtZsvOY_sUuGkak4WN41EJJ0m8q_wS2bP0U7jeXS948g8kB4mK0ZcTUFVmY-bQig9-n-7uU5WTluTXqczJdEmcNasWVJcUNQUO9aA46ULewlkz64wkdzE4pJ-NjejQYP4eT4Y_jwR5tr1CgpWJqRVMZl8IxXnJpEuNMllel5Dibljwuk7wQccWMyy3iiFgZRGsS4Uxl4hKRkKfiEy-gV89q-woINqg1aaxcpgxqPc9cjA9LKuVcakQeAVs3py5bfnF_zcWVDn5ukelGBBpFoIMIdBLBly7NvGHXuDP2dy-lLqZnxg4Bs8W5bnuKZq4qjUx4kUsuhbN5wUqcpTFmlLSFcRF8XMtYoyZ594ip7ex6qRHo-NkVz1UELxuZd0UJDPW0zRGkG71hoy6bX-rpRWDrTr2nVmURfF33G92aieWd__q56VsbJbRBl_hmNabAker1_-X7AR4c7Q71r_3Dn2_gIffq4F1s4i30Votr-w4R1qp436rTH-mzG3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Massive+and+rapid+COVID-19+testing+is+feasible+by+extraction-free+SARS-CoV-2+RT-PCR&rft.jtitle=Nature+communications&rft.au=Smyrlaki%2C+Ioanna&rft.au=Ekman%2C+Martin&rft.au=Lentini%2C+Antonio&rft.au=Rufino+de+Sousa%2C+Nuno&rft.date=2020-09-23&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=4812&rft_id=info:doi/10.1038%2Fs41467-020-18611-5&rft_id=info%3Apmid%2F32968075&rft.externalDocID=32968075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon