Inhibition of MAPK Kinase Signaling Pathways Suppressed Renal Cell Carcinoma Growth and Angiogenesis In vivo
The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the activation of MAPK signaling pathways in tumorigenesis, metastasis, and angiogenesis of multiple human malignancies, including renal cell carcin...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 68; no. 1; pp. 81 - 88 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the activation of MAPK signaling pathways in tumorigenesis, metastasis, and angiogenesis of multiple human malignancies, including renal cell carcinoma (RCC). To assess the role of this pathway in regulating the proliferation and survival of RCC cells, we first examined the expression of MAPK kinase (MKK) and MAPK in clear cell RCC and confirmed the overexpression of MKK1 and extracellular signal-regulated kinase 2 (ERK2) in these tumors. We then tested the effects of pharmacologic inhibition of MKK on human RCC cell lines, both in vitro and in vivo, using anthrax lethal toxin (LeTx), which cleaves and inactivates several MKKs. Western blotting showed that the phosphorylation levels of ERK, c-Jun-NH(2) kinase, and p38 MAPK decreased after 72 h of LeTx treatment. Exposure to LeTx for 72 h reduced cell proliferation by 20% without significant effects on cell cycle distribution and apoptosis. Anchorage-independent growth of RCC cells was dramatically inhibited by LeTx. In vivo studies showed that tumor growth of RCC xenografts could be suppressed by LeTx. Extensive necrosis and decreased tumor neovascularization were observed after LeTx treatment. LeTx also showed direct inhibition of proliferation of endothelial cells in vitro. Our results suggest that suppression of one or more MAPK signaling pathways may inhibit RCC growth through the disruption of tumor vasculature. |
---|---|
AbstractList | The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the activation of MAPK signaling pathways in tumorigenesis, metastasis, and angiogenesis of multiple human malignancies, including renal cell carcinoma (RCC). To assess the role of this pathway in regulating the proliferation and survival of RCC cells, we first examined the expression of MAPK kinase (MKK) and MAPK in clear cell RCC and confirmed the overexpression of MKK1 and extracellular signal-regulated kinase 2 (ERK2) in these tumors. We then tested the effects of pharmacologic inhibition of MKK on human RCC cell lines, both in vitro and in vivo, using anthrax lethal toxin (LeTx), which cleaves and inactivates several MKKs. Western blotting showed that the phosphorylation levels of ERK, c-Jun-NH(2) kinase, and p38 MAPK decreased after 72 h of LeTx treatment. Exposure to LeTx for 72 h reduced cell proliferation by 20% without significant effects on cell cycle distribution and apoptosis. Anchorage-independent growth of RCC cells was dramatically inhibited by LeTx. In vivo studies showed that tumor growth of RCC xenografts could be suppressed by LeTx. Extensive necrosis and decreased tumor neovascularization were observed after LeTx treatment. LeTx also showed direct inhibition of proliferation of endothelial cells in vitro. Our results suggest that suppression of one or more MAPK signaling pathways may inhibit RCC growth through the disruption of tumor vasculature. The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the activation of MAPK signaling pathways in tumorigenesis, metastasis, and angiogenesis of multiple human malignancies, including renal cell carcinoma (RCC). To assess the role of this pathway in regulating the proliferation and survival of RCC cells, we first examined the expression of MAPK kinase (MKK) and MAPK in clear cell RCC and confirmed the overexpression of MKK1 and extracellular signal-regulated kinase 2 (ERK2) in these tumors. We then tested the effects of pharmacologic inhibition of MKK on human RCC cell lines, both in vitro and in vivo, using anthrax lethal toxin (LeTx), which cleaves and inactivates several MKKs. Western blotting showed that the phosphorylation levels of ERK, c-Jun-NH sub(2) kinase, and p38 MAPK decreased after 72 h of LeTx treatment. Exposure to LeTx for 72 h reduced cell proliferation by 20% without significant effects on cell cycle distribution and apoptosis. Anchorage-independent growth of RCC cells was dramatically inhibited by LeTx. In vivo studies showed that tumor growth of RCC xenografts could be suppressed by LeTx. Extensive necrosis and decreased tumor neovascularization were observed after LeTx treatment. LeTx also showed direct inhibition of proliferation of endothelial cells in vitro. Our results suggest that suppression of one or more MAPK signaling pathways may inhibit RCC growth through the disruption of tumor vasculature. [Cancer Res 2008; 68(1):81-8] Abstract The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the activation of MAPK signaling pathways in tumorigenesis, metastasis, and angiogenesis of multiple human malignancies, including renal cell carcinoma (RCC). To assess the role of this pathway in regulating the proliferation and survival of RCC cells, we first examined the expression of MAPK kinase (MKK) and MAPK in clear cell RCC and confirmed the overexpression of MKK1 and extracellular signal-regulated kinase 2 (ERK2) in these tumors. We then tested the effects of pharmacologic inhibition of MKK on human RCC cell lines, both in vitro and in vivo, using anthrax lethal toxin (LeTx), which cleaves and inactivates several MKKs. Western blotting showed that the phosphorylation levels of ERK, c-Jun-NH2 kinase, and p38 MAPK decreased after 72 h of LeTx treatment. Exposure to LeTx for 72 h reduced cell proliferation by 20% without significant effects on cell cycle distribution and apoptosis. Anchorage-independent growth of RCC cells was dramatically inhibited by LeTx. In vivo studies showed that tumor growth of RCC xenografts could be suppressed by LeTx. Extensive necrosis and decreased tumor neovascularization were observed after LeTx treatment. LeTx also showed direct inhibition of proliferation of endothelial cells in vitro. Our results suggest that suppression of one or more MAPK signaling pathways may inhibit RCC growth through the disruption of tumor vasculature. [Cancer Res 2008;68(1):81–8] |
Author | VANDENBELDT, Kristin YAN DING BENDER, Stephanie ZHANG, Zhong-Fa QIAN, Chao-Nan BIN TEAN TEH KORT, Eric DAN HUANG RESAU, James H LUO, Wang-Mei DUESBERY, Nicholas S |
Author_xml | – sequence: 1 surname: DAN HUANG fullname: DAN HUANG organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States – sequence: 2 surname: YAN DING fullname: YAN DING organization: Laboratory of Cancer and Developmental Cell Biology, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States – sequence: 3 surname: BIN TEAN TEH fullname: BIN TEAN TEH organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States – sequence: 4 givenname: Wang-Mei surname: LUO fullname: LUO, Wang-Mei organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States – sequence: 5 givenname: Stephanie surname: BENDER fullname: BENDER, Stephanie organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States – sequence: 6 givenname: Chao-Nan surname: QIAN fullname: QIAN, Chao-Nan organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States – sequence: 7 givenname: Eric surname: KORT fullname: KORT, Eric organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States – sequence: 8 givenname: Zhong-Fa surname: ZHANG fullname: ZHANG, Zhong-Fa organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States – sequence: 9 givenname: Kristin surname: VANDENBELDT fullname: VANDENBELDT, Kristin organization: Laboratory of Analytical, Cellular, and Molecular Microscopy, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States – sequence: 10 givenname: Nicholas S surname: DUESBERY fullname: DUESBERY, Nicholas S organization: Laboratory of Cancer and Developmental Cell Biology, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States – sequence: 11 givenname: James H surname: RESAU fullname: RESAU, James H organization: Laboratory of Analytical, Cellular, and Molecular Microscopy, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20109695$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18172299$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu2zAQRYkiQe2k_YQW3LQ7JRyJFKWlYeRhxGmDul0TQ4qyWcikS8o2_PeVEcNZZjODwZx54N4rcuGDt4R8AXYDIKpbxliVCS7zG4M-YzITBcAHMgZRVJnkXFyQ8ZkZkauU_g6lACY-khFUIPO8rsekm_mV0653wdPQ0ufJyxN9ch6TpQu39Ng5v6Qv2K_2eEh0sd1sok3JNvSXHZp0arshYDTOhzXShxj2_Yqib-jEL11YWm-TS3Tm6c7twidy2WKX7OdTviZ_7u9-Tx-z-c-H2XQyz0wJZZ-VeYF1mWPNa4ashKbhyETdaivQFNI0LYJsTdVIi6C14VwbpgVvNWrTlKa4Jt9f925i-Le1qVdrl8zwKnobtklJBlIKDu-COeO8KmU-gOIVNDGkFG2rNtGtMR4UMHX0Qx21Vket1XTyQzGpjn4Mc19PB7Z6bZu3qZMBA_DtBGAy2LURvXHpzOUMWF3WovgPfwWWqQ |
CODEN | CNREA8 |
CitedBy_id | crossref_primary_10_1016_j_jcyt_2019_01_001 crossref_primary_10_3892_ol_2016_4133 crossref_primary_10_3390_medsci4040016 crossref_primary_10_3892_ijo_2015_3257 crossref_primary_10_1038_bjc_2014_282 crossref_primary_10_1002_jcp_30260 crossref_primary_10_1016_j_urolonc_2017_01_019 crossref_primary_10_1007_s10330_009_0146_z crossref_primary_10_1088_1742_6596_1358_1_012021 crossref_primary_10_1186_s42269_021_00631_w crossref_primary_10_1158_0008_5472_CAN_08_2531 crossref_primary_10_7314_APJCP_2012_13_7_3403 crossref_primary_10_1302_2046_3758_75_BJR_2017_0284_R1 crossref_primary_10_1016_j_bmcl_2011_09_022 crossref_primary_10_1371_journal_pone_0145410 crossref_primary_10_1002_mc_23614 crossref_primary_10_1007_s11010_011_0986_z crossref_primary_10_3390_toxins8070197 crossref_primary_10_1093_carcin_bgs255 crossref_primary_10_1002_adfm_202205550 crossref_primary_10_1016_j_ejmech_2016_04_031 crossref_primary_10_1016_j_cellsig_2023_110914 crossref_primary_10_1002_cncr_24238 crossref_primary_10_1007_s00381_024_06463_z crossref_primary_10_1016_j_mam_2009_07_003 crossref_primary_10_1016_j_mcp_2023_101921 crossref_primary_10_1016_j_bmcl_2017_12_066 crossref_primary_10_1016_j_mvr_2021_104229 crossref_primary_10_1158_0008_5472_CAN_11_0076 crossref_primary_10_1371_journal_pone_0096836 crossref_primary_10_1631_jzus_B1100165 crossref_primary_10_5352_JLS_2016_26_1_91 crossref_primary_10_1093_toxsci_kfq279 crossref_primary_10_1016_j_yexcr_2016_08_024 crossref_primary_10_7314_APJCP_2014_15_1_167 crossref_primary_10_1016_j_biopha_2018_08_083 crossref_primary_10_1177_0962280218820356 crossref_primary_10_1007_s10637_009_9327_4 crossref_primary_10_1016_j_biopha_2017_08_059 crossref_primary_10_1158_1078_0432_CCR_09_0171 crossref_primary_10_1016_j_euo_2018_09_011 crossref_primary_10_1177_0300985813506918 crossref_primary_10_1002_cam4_4109 crossref_primary_10_1152_ajpcell_00283_2017 crossref_primary_10_1186_1479_5876_10_245 crossref_primary_10_1371_journal_pone_0161950 crossref_primary_10_1016_j_bbrc_2010_04_144 crossref_primary_10_3748_wjg_14_5816 crossref_primary_10_3892_or_2016_5109 crossref_primary_10_1016_j_acuro_2011_07_013 crossref_primary_10_1186_1756_3305_7_287 crossref_primary_10_1016_j_mvr_2009_02_007 crossref_primary_10_3892_mmr_2015_4555 crossref_primary_10_3892_ijo_2016_3431 crossref_primary_10_18632_oncotarget_6708 crossref_primary_10_1016_j_gene_2019_144299 crossref_primary_10_1007_s12094_023_03140_6 crossref_primary_10_1016_j_bcp_2018_01_051 crossref_primary_10_1080_01635581_2016_1158292 crossref_primary_10_1093_carcin_bgq052 crossref_primary_10_1080_15384101_2016_1235103 crossref_primary_10_1016_j_ejmech_2018_10_045 crossref_primary_10_1074_jbc_M117_805648 crossref_primary_10_1111_j_1349_7006_2012_02291_x crossref_primary_10_2217_fon_2021_0256 crossref_primary_10_1186_s10020_018_0059_9 crossref_primary_10_1007_s00432_017_2561_9 crossref_primary_10_3389_fphys_2021_683651 crossref_primary_10_1016_j_urolonc_2014_12_015 crossref_primary_10_1080_08977194_2017_1338694 crossref_primary_10_1016_j_bbrc_2008_09_001 crossref_primary_10_1186_s40001_024_01687_w crossref_primary_10_1093_narcan_zcad004 crossref_primary_10_3109_07357907_2015_1047505 crossref_primary_10_3892_ol_2016_4989 crossref_primary_10_18632_oncotarget_12937 crossref_primary_10_1002_path_5630 crossref_primary_10_1016_j_urology_2008_12_058 crossref_primary_10_1371_journal_pone_0232545 crossref_primary_10_11637_kjpa_2017_30_3_87 crossref_primary_10_1186_s12943_021_01451_2 crossref_primary_10_1016_j_bioorg_2019_01_006 crossref_primary_10_3892_or_2014_3240 crossref_primary_10_1158_0008_5472_CAN_09_3722 crossref_primary_10_1158_0008_5472_CAN_09_3965 crossref_primary_10_1186_s12920_020_00823_9 crossref_primary_10_1016_j_steroids_2014_12_019 crossref_primary_10_1186_1476_4598_8_31 crossref_primary_10_3389_fgene_2019_01333 crossref_primary_10_3892_ol_2016_4573 crossref_primary_10_1016_j_biochi_2014_09_016 crossref_primary_10_1016_j_molmet_2020_01_011 crossref_primary_10_1186_s12943_017_0681_0 crossref_primary_10_3892_ol_00000114 crossref_primary_10_1016_j_jmoldx_2014_10_005 crossref_primary_10_1002_cncr_24389 crossref_primary_10_3892_ol_2017_6084 crossref_primary_10_1038_s41598_022_06946_6 crossref_primary_10_3892_ijmm_2020_4589 crossref_primary_10_1002_ijc_25909 crossref_primary_10_1016_j_cell_2019_10_007 crossref_primary_10_18632_oncotarget_25481 crossref_primary_10_4161_cc_28416 crossref_primary_10_1007_s11010_022_04452_x crossref_primary_10_1097_JTO_0b013e31823085f4 crossref_primary_10_3390_jpm13020298 crossref_primary_10_1254_jphs_09213FP crossref_primary_10_1007_s10517_018_4327_z crossref_primary_10_1016_j_semcancer_2015_08_003 crossref_primary_10_1007_s11010_012_1440_6 crossref_primary_10_1038_s41388_019_1059_0 crossref_primary_10_1186_1472_6882_13_231 crossref_primary_10_1038_s10038_019_0640_2 crossref_primary_10_7717_peerj_10656 crossref_primary_10_1016_j_acuroe_2012_04_009 crossref_primary_10_1002_ijc_30429 crossref_primary_10_1158_1541_7786_MCR_13_0101_T crossref_primary_10_29169_1927_5951_2021_11_12 crossref_primary_10_1007_s00726_012_1247_5 crossref_primary_10_1038_s41416_020_0890_y crossref_primary_10_1158_1541_7786_MCR_08_0451 crossref_primary_10_3389_fgene_2022_897827 crossref_primary_10_3390_ijms241411584 crossref_primary_10_3390_molecules17066854 crossref_primary_10_1002_biof_1784 crossref_primary_10_1186_1471_2407_11_290 crossref_primary_10_1007_s11523_010_0149_2 crossref_primary_10_1093_carcin_bgr216 crossref_primary_10_1111_cpr_12314 crossref_primary_10_1186_1476_4598_8_123 crossref_primary_10_1016_j_ajpath_2012_01_014 crossref_primary_10_3892_ijo_2012_1633 crossref_primary_10_1016_j_archoralbio_2017_06_035 crossref_primary_10_1158_1535_7163_MCT_08_0124 crossref_primary_10_1002_ptr_4881 crossref_primary_10_1126_sciadv_abn9828 crossref_primary_10_3390_ijms20225720 crossref_primary_10_1002_ijc_26217 crossref_primary_10_3390_toxins13010036 crossref_primary_10_1111_j_1751_1097_2010_00853_x crossref_primary_10_1158_1535_7163_MCT_13_0189 crossref_primary_10_3390_ijms241210362 crossref_primary_10_1038_onc_2010_557 crossref_primary_10_3390_cancers13122991 crossref_primary_10_1166_jbt_2016_1488 crossref_primary_10_1007_s11538_014_9986_y crossref_primary_10_1111_cns_12853 crossref_primary_10_1074_jbc_M113_524900 crossref_primary_10_3233_CBM_210514 crossref_primary_10_1016_j_bmcl_2014_03_042 crossref_primary_10_1186_s12964_022_01019_7 crossref_primary_10_1038_s41416_024_02587_w crossref_primary_10_3858_emm_2011_43_3_017 crossref_primary_10_1002_pro_169 crossref_primary_10_1016_j_canlet_2016_05_017 crossref_primary_10_1186_s12014_023_09437_6 crossref_primary_10_1016_j_ejmech_2017_09_015 crossref_primary_10_1016_j_nano_2016_04_002 crossref_primary_10_3389_fgene_2022_985641 |
Cites_doi | 10.1080/09553009214551201 10.1128/MCB.21.17.5958-5969.2001 10.1073/pnas.061031898 10.1128/IAI.72.1.430-439.2004 10.1006/bbrc.1998.9040 10.1016/S1368-7646(03)00043-8 10.1073/pnas.052707699 10.1038/35065000 10.1038/sj.onc.1201380 10.1126/science.280.5364.734 10.3322/canjclin.56.2.106 10.1158/1078-0432.CCR-06-2328 10.1158/1535-7163.MCT-05-0145 10.1158/1078-0432.CCR-07-0732 10.1158/1078-0432.CCR-06-1249 10.1182/blood.V97.5.1321 10.1074/jbc.273.3.1741 10.1158/0008-5472.CAN-06-4571 10.1056/NEJM199609193351207 10.1158/1078-0432.CCR-06-2060 10.1073/pnas.95.24.14417 10.1016/S0006-2952(00)00423-8 10.1634/theoncologist.12-1-107 10.1016/S0955-0674(97)80124-X 10.1038/sj.onc.1202135 10.1172/JCI119309 10.1074/jbc.M409105200 10.1016/S0002-9440(10)65728-8 10.1083/jcb.140.5.1255 10.2353/ajpath.2006.050711 10.1242/jcs.02470 10.1038/sj.onc.1202367 10.1139/o04-121 10.1074/jbc.273.29.18165 10.1016/S0960-9822(99)80164-X 10.1158/1078-0432.CCR-06-2019 10.1126/science.1072682 10.1038/sj.onc.1210198 10.1016/S0014-5793(99)01502-1 10.1006/prep.2000.1208 10.1016/S0955-0674(99)00045-9 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TO H94 7X8 |
DOI | 10.1158/0008-5472.can-07-5311 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Oncogenes and Growth Factors Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 88 |
ExternalDocumentID | 10_1158_0008_5472_CAN_07_5311 18172299 20109695 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET .55 .GJ 08R 18M 29B 2WC 34G 39C 3O- 476 53G 5GY 5RE 5VS 6J9 8WZ A6W AAPBV AAUGY ABOCM ABPTK ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFFNX AFHIN AFOSN AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CS3 D0S DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 IQODW J5H KQ8 L7B LSO MVM OHT OK1 P0W P2P PQQKQ RCR RHF RHI RNS SJN TR2 UDS VH1 W2D W8F WH7 WHG WOQ X7M XFK XJT YKV YZZ ZA5 ZCG ZGI CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TO H94 7X8 |
ID | FETCH-LOGICAL-c616t-623a962a9490a061dd4a059fbe5ac37cdfa17fc8d7ea1bbc44bc0b54fbabcd6c3 |
ISSN | 0008-5472 |
IngestDate | Fri Oct 25 11:27:30 EDT 2024 Fri Oct 25 06:01:37 EDT 2024 Thu Sep 26 17:49:21 EDT 2024 Sat Sep 28 07:53:05 EDT 2024 Sun Oct 29 17:06:17 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Kidney disease Urinary system disease Carcinoma Enzyme Growth Transferases Mitogen-activated protein kinase Malignant tumor Angiogenesis In vivo Signal transduction Signaling pathway Kidney cancer Grawitz tumor Inhibitor Neovascularization Cancer |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c616t-623a962a9490a061dd4a059fbe5ac37cdfa17fc8d7ea1bbc44bc0b54fbabcd6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://cancerres.aacrjournals.org/content/canres/68/1/81.full.pdf |
PMID | 18172299 |
PQID | 20448672 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_70177541 proquest_miscellaneous_20448672 crossref_primary_10_1158_0008_5472_CAN_07_5311 pubmed_primary_18172299 pascalfrancis_primary_20109695 |
PublicationCentury | 2000 |
PublicationDate | 2008 2008-Jan-01 2008-01-01 20080101 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – year: 2008 text: 2008 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2008 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061623201863800_B22 2022061623201863800_B44 2022061623201863800_B21 2022061623201863800_B43 2022061623201863800_B20 2022061623201863800_B42 2022061623201863800_B41 2022061623201863800_B40 2022061623201863800_B29 2022061623201863800_B28 2022061623201863800_B27 2022061623201863800_B26 2022061623201863800_B48 2022061623201863800_B25 2022061623201863800_B47 2022061623201863800_B24 2022061623201863800_B46 2022061623201863800_B23 2022061623201863800_B45 2022061623201863800_B2 2022061623201863800_B1 2022061623201863800_B4 2022061623201863800_B3 2022061623201863800_B6 2022061623201863800_B5 2022061623201863800_B8 2022061623201863800_B11 2022061623201863800_B33 2022061623201863800_B7 2022061623201863800_B10 2022061623201863800_B32 2022061623201863800_B31 2022061623201863800_B9 2022061623201863800_B30 2022061623201863800_B19 2022061623201863800_B18 2022061623201863800_B17 2022061623201863800_B39 2022061623201863800_B16 2022061623201863800_B38 2022061623201863800_B15 2022061623201863800_B37 2022061623201863800_B14 2022061623201863800_B36 2022061623201863800_B13 2022061623201863800_B35 2022061623201863800_B12 2022061623201863800_B34 |
References_xml | – ident: 2022061623201863800_B38 doi: 10.1080/09553009214551201 – ident: 2022061623201863800_B37 – ident: 2022061623201863800_B12 doi: 10.1128/MCB.21.17.5958-5969.2001 – ident: 2022061623201863800_B27 doi: 10.1073/pnas.061031898 – ident: 2022061623201863800_B48 doi: 10.1128/IAI.72.1.430-439.2004 – ident: 2022061623201863800_B16 – ident: 2022061623201863800_B25 doi: 10.1006/bbrc.1998.9040 – ident: 2022061623201863800_B41 – ident: 2022061623201863800_B42 doi: 10.1016/S1368-7646(03)00043-8 – ident: 2022061623201863800_B28 doi: 10.1073/pnas.052707699 – ident: 2022061623201863800_B6 doi: 10.1038/35065000 – ident: 2022061623201863800_B39 doi: 10.1038/sj.onc.1201380 – ident: 2022061623201863800_B23 doi: 10.1126/science.280.5364.734 – ident: 2022061623201863800_B1 doi: 10.3322/canjclin.56.2.106 – ident: 2022061623201863800_B47 – ident: 2022061623201863800_B3 doi: 10.1158/1078-0432.CCR-06-2328 – ident: 2022061623201863800_B22 – ident: 2022061623201863800_B29 doi: 10.1158/1535-7163.MCT-05-0145 – ident: 2022061623201863800_B21 doi: 10.1158/1078-0432.CCR-07-0732 – ident: 2022061623201863800_B5 doi: 10.1158/1078-0432.CCR-06-1249 – ident: 2022061623201863800_B19 – ident: 2022061623201863800_B40 doi: 10.1182/blood.V97.5.1321 – ident: 2022061623201863800_B44 doi: 10.1074/jbc.273.3.1741 – ident: 2022061623201863800_B32 doi: 10.1158/0008-5472.CAN-06-4571 – ident: 2022061623201863800_B2 doi: 10.1056/NEJM199609193351207 – ident: 2022061623201863800_B34 doi: 10.1158/1078-0432.CCR-06-2060 – ident: 2022061623201863800_B10 doi: 10.1073/pnas.95.24.14417 – ident: 2022061623201863800_B18 doi: 10.1016/S0006-2952(00)00423-8 – ident: 2022061623201863800_B4 doi: 10.1634/theoncologist.12-1-107 – ident: 2022061623201863800_B9 – ident: 2022061623201863800_B36 doi: 10.1016/S0955-0674(97)80124-X – ident: 2022061623201863800_B11 doi: 10.1038/sj.onc.1202135 – ident: 2022061623201863800_B13 doi: 10.1172/JCI119309 – ident: 2022061623201863800_B26 doi: 10.1074/jbc.M409105200 – ident: 2022061623201863800_B14 doi: 10.1016/S0002-9440(10)65728-8 – ident: 2022061623201863800_B20 doi: 10.1083/jcb.140.5.1255 – ident: 2022061623201863800_B33 doi: 10.2353/ajpath.2006.050711 – ident: 2022061623201863800_B43 doi: 10.1242/jcs.02470 – ident: 2022061623201863800_B15 doi: 10.1038/sj.onc.1202367 – ident: 2022061623201863800_B8 doi: 10.1139/o04-121 – ident: 2022061623201863800_B46 doi: 10.1074/jbc.273.29.18165 – ident: 2022061623201863800_B17 doi: 10.1016/S0960-9822(99)80164-X – ident: 2022061623201863800_B30 doi: 10.1158/1078-0432.CCR-06-2019 – ident: 2022061623201863800_B7 doi: 10.1126/science.1072682 – ident: 2022061623201863800_B45 doi: 10.1038/sj.onc.1210198 – ident: 2022061623201863800_B24 doi: 10.1016/S0014-5793(99)01502-1 – ident: 2022061623201863800_B31 doi: 10.1006/prep.2000.1208 – ident: 2022061623201863800_B35 doi: 10.1016/S0955-0674(99)00045-9 |
SSID | ssj0005105 |
Score | 2.3977175 |
Snippet | The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the... Abstract The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also... |
SourceID | proquest crossref pubmed pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 81 |
SubjectTerms | Animals Antigens, Bacterial - pharmacology Antineoplastic agents Antineoplastic Agents - pharmacology Bacterial Toxins - pharmacology Biological and medical sciences Carcinoma, Renal Cell - blood supply Carcinoma, Renal Cell - enzymology Carcinoma, Renal Cell - pathology Cell Line, Tumor Cell Proliferation - drug effects Humans Kidney Neoplasms - blood supply Kidney Neoplasms - enzymology Kidney Neoplasms - pathology Kidneys Medical sciences Mice Mice, Inbred Strains Mitogen-Activated Protein Kinase Kinases - antagonists & inhibitors Mitogen-Activated Protein Kinase Kinases - metabolism Neovascularization, Pathologic - enzymology Nephrology. Urinary tract diseases Pharmacology. Drug treatments Phosphorylation - drug effects Signal Transduction - drug effects Tumors Tumors of the urinary system Xenograft Model Antitumor Assays |
Title | Inhibition of MAPK Kinase Signaling Pathways Suppressed Renal Cell Carcinoma Growth and Angiogenesis In vivo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18172299 https://search.proquest.com/docview/20448672 https://search.proquest.com/docview/70177541 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbKIiEkhLgpx-IH3qKUpmvneAztopbSgkQrLU-RnThtpOKstu2u4HfxA5mJc7TQFcdLlFppbHm-zIzHn2cIee2kKWb1Dmyvx2ObeZ6ywQjGtuDCSwIngW8dDwpPpu5wzt6f8bNW68cOa2m7kZ34-8FzJf8jVWgDueIp2X-QbP1SaIB7kC9cQcJw_SsZj_Qyk1nl803CT2NrnGmwS9bnbIEetl5gDv7llfi2trB-Z5EpHA8kog_ax7BdH2sJ6fyrwCjUVXnOLdSLLF-gFszWoEGsy-wy3_Vi-wiVC6tMFLQsdoINpaNQOatVZyfAMAin1nAeTusiXl-gYTBqfr8dTa0Zkglnp_W-1Yf5x4L9J_TCnqhsLzbhNziqtpt2QFbwJssBVrTCPdXs25yZOj4d1Whjj5l8k5W6dv3fYGl0ryn9Ullx_7B94L4hVJq-OjBEDNSCInIag1iRAH6xkzV7EQkEgRvwG-RmD9QbEkkHo3FDLCqJs1Un5bkx6PrNwY73PKI752INH2dqqqpcv-wp3J_ZPXK3XLfQ0IDwPmkp_YDcmpTMjIdk1WCR5ilFLFKDRVpjkVZYpA0WaYFFilikNRapwSIFLNJdLNKRpojFR2T-7nTWH9plJQ87dh13Y4OPLQK3JwIWdAV4kEnCBPj1qVRcxKAaklQ4Xhr7iaeEI2XMmIy7krNUChknbnzymBzpXKunhGKCRudEcM9JXKbAO-bSEUxJ31cSXu22SaeazejcJGyJioUu95Fo4Uc4_VE_nEZdL8Lpb5PjvTmv_1WJuU1eVUKIQPfihprQKt-u4QmGCSt71z_hgcHzOINOnhjpNWPyYekAvuCzP3X_nNw2HCUM-70gR5uLrXoJjvBGHhe4-wmNFLG9 |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+MAPK+Kinase+Signaling+Pathways+Suppressed+Renal+Cell+Carcinoma+Growth+and+Angiogenesis+In+vivo&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=DAN+HUANG&rft.au=YAN+DING&rft.au=BIN+TEAN+TEH&rft.au=LUO%2C+Wang-Mei&rft.date=2008&rft.pub=American+Association+for+Cancer+Research&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=68&rft.issue=1&rft.spage=81&rft.epage=88&rft_id=info:doi/10.1158%2F0008-5472.can-07-5311&rft.externalDBID=n%2Fa&rft.externalDocID=20109695 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |