Inhibition of MAPK Kinase Signaling Pathways Suppressed Renal Cell Carcinoma Growth and Angiogenesis In vivo

The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the activation of MAPK signaling pathways in tumorigenesis, metastasis, and angiogenesis of multiple human malignancies, including renal cell carcin...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 68; no. 1; pp. 81 - 88
Main Authors DAN HUANG, YAN DING, BIN TEAN TEH, LUO, Wang-Mei, BENDER, Stephanie, QIAN, Chao-Nan, KORT, Eric, ZHANG, Zhong-Fa, VANDENBELDT, Kristin, DUESBERY, Nicholas S, RESAU, James H
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the activation of MAPK signaling pathways in tumorigenesis, metastasis, and angiogenesis of multiple human malignancies, including renal cell carcinoma (RCC). To assess the role of this pathway in regulating the proliferation and survival of RCC cells, we first examined the expression of MAPK kinase (MKK) and MAPK in clear cell RCC and confirmed the overexpression of MKK1 and extracellular signal-regulated kinase 2 (ERK2) in these tumors. We then tested the effects of pharmacologic inhibition of MKK on human RCC cell lines, both in vitro and in vivo, using anthrax lethal toxin (LeTx), which cleaves and inactivates several MKKs. Western blotting showed that the phosphorylation levels of ERK, c-Jun-NH(2) kinase, and p38 MAPK decreased after 72 h of LeTx treatment. Exposure to LeTx for 72 h reduced cell proliferation by 20% without significant effects on cell cycle distribution and apoptosis. Anchorage-independent growth of RCC cells was dramatically inhibited by LeTx. In vivo studies showed that tumor growth of RCC xenografts could be suppressed by LeTx. Extensive necrosis and decreased tumor neovascularization were observed after LeTx treatment. LeTx also showed direct inhibition of proliferation of endothelial cells in vitro. Our results suggest that suppression of one or more MAPK signaling pathways may inhibit RCC growth through the disruption of tumor vasculature.
AbstractList The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the activation of MAPK signaling pathways in tumorigenesis, metastasis, and angiogenesis of multiple human malignancies, including renal cell carcinoma (RCC). To assess the role of this pathway in regulating the proliferation and survival of RCC cells, we first examined the expression of MAPK kinase (MKK) and MAPK in clear cell RCC and confirmed the overexpression of MKK1 and extracellular signal-regulated kinase 2 (ERK2) in these tumors. We then tested the effects of pharmacologic inhibition of MKK on human RCC cell lines, both in vitro and in vivo, using anthrax lethal toxin (LeTx), which cleaves and inactivates several MKKs. Western blotting showed that the phosphorylation levels of ERK, c-Jun-NH(2) kinase, and p38 MAPK decreased after 72 h of LeTx treatment. Exposure to LeTx for 72 h reduced cell proliferation by 20% without significant effects on cell cycle distribution and apoptosis. Anchorage-independent growth of RCC cells was dramatically inhibited by LeTx. In vivo studies showed that tumor growth of RCC xenografts could be suppressed by LeTx. Extensive necrosis and decreased tumor neovascularization were observed after LeTx treatment. LeTx also showed direct inhibition of proliferation of endothelial cells in vitro. Our results suggest that suppression of one or more MAPK signaling pathways may inhibit RCC growth through the disruption of tumor vasculature.
The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the activation of MAPK signaling pathways in tumorigenesis, metastasis, and angiogenesis of multiple human malignancies, including renal cell carcinoma (RCC). To assess the role of this pathway in regulating the proliferation and survival of RCC cells, we first examined the expression of MAPK kinase (MKK) and MAPK in clear cell RCC and confirmed the overexpression of MKK1 and extracellular signal-regulated kinase 2 (ERK2) in these tumors. We then tested the effects of pharmacologic inhibition of MKK on human RCC cell lines, both in vitro and in vivo, using anthrax lethal toxin (LeTx), which cleaves and inactivates several MKKs. Western blotting showed that the phosphorylation levels of ERK, c-Jun-NH sub(2) kinase, and p38 MAPK decreased after 72 h of LeTx treatment. Exposure to LeTx for 72 h reduced cell proliferation by 20% without significant effects on cell cycle distribution and apoptosis. Anchorage-independent growth of RCC cells was dramatically inhibited by LeTx. In vivo studies showed that tumor growth of RCC xenografts could be suppressed by LeTx. Extensive necrosis and decreased tumor neovascularization were observed after LeTx treatment. LeTx also showed direct inhibition of proliferation of endothelial cells in vitro. Our results suggest that suppression of one or more MAPK signaling pathways may inhibit RCC growth through the disruption of tumor vasculature. [Cancer Res 2008; 68(1):81-8]
Abstract The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the activation of MAPK signaling pathways in tumorigenesis, metastasis, and angiogenesis of multiple human malignancies, including renal cell carcinoma (RCC). To assess the role of this pathway in regulating the proliferation and survival of RCC cells, we first examined the expression of MAPK kinase (MKK) and MAPK in clear cell RCC and confirmed the overexpression of MKK1 and extracellular signal-regulated kinase 2 (ERK2) in these tumors. We then tested the effects of pharmacologic inhibition of MKK on human RCC cell lines, both in vitro and in vivo, using anthrax lethal toxin (LeTx), which cleaves and inactivates several MKKs. Western blotting showed that the phosphorylation levels of ERK, c-Jun-NH2 kinase, and p38 MAPK decreased after 72 h of LeTx treatment. Exposure to LeTx for 72 h reduced cell proliferation by 20% without significant effects on cell cycle distribution and apoptosis. Anchorage-independent growth of RCC cells was dramatically inhibited by LeTx. In vivo studies showed that tumor growth of RCC xenografts could be suppressed by LeTx. Extensive necrosis and decreased tumor neovascularization were observed after LeTx treatment. LeTx also showed direct inhibition of proliferation of endothelial cells in vitro. Our results suggest that suppression of one or more MAPK signaling pathways may inhibit RCC growth through the disruption of tumor vasculature. [Cancer Res 2008;68(1):81–8]
Author VANDENBELDT, Kristin
YAN DING
BENDER, Stephanie
ZHANG, Zhong-Fa
QIAN, Chao-Nan
BIN TEAN TEH
KORT, Eric
DAN HUANG
RESAU, James H
LUO, Wang-Mei
DUESBERY, Nicholas S
Author_xml – sequence: 1
  surname: DAN HUANG
  fullname: DAN HUANG
  organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States
– sequence: 2
  surname: YAN DING
  fullname: YAN DING
  organization: Laboratory of Cancer and Developmental Cell Biology, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States
– sequence: 3
  surname: BIN TEAN TEH
  fullname: BIN TEAN TEH
  organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States
– sequence: 4
  givenname: Wang-Mei
  surname: LUO
  fullname: LUO, Wang-Mei
  organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States
– sequence: 5
  givenname: Stephanie
  surname: BENDER
  fullname: BENDER, Stephanie
  organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States
– sequence: 6
  givenname: Chao-Nan
  surname: QIAN
  fullname: QIAN, Chao-Nan
  organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States
– sequence: 7
  givenname: Eric
  surname: KORT
  fullname: KORT, Eric
  organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States
– sequence: 8
  givenname: Zhong-Fa
  surname: ZHANG
  fullname: ZHANG, Zhong-Fa
  organization: Laboratory of Cancer Genetics, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States
– sequence: 9
  givenname: Kristin
  surname: VANDENBELDT
  fullname: VANDENBELDT, Kristin
  organization: Laboratory of Analytical, Cellular, and Molecular Microscopy, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States
– sequence: 10
  givenname: Nicholas S
  surname: DUESBERY
  fullname: DUESBERY, Nicholas S
  organization: Laboratory of Cancer and Developmental Cell Biology, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States
– sequence: 11
  givenname: James H
  surname: RESAU
  fullname: RESAU, James H
  organization: Laboratory of Analytical, Cellular, and Molecular Microscopy, Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20109695$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18172299$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu2zAQRYkiQe2k_YQW3LQ7JRyJFKWlYeRhxGmDul0TQ4qyWcikS8o2_PeVEcNZZjODwZx54N4rcuGDt4R8AXYDIKpbxliVCS7zG4M-YzITBcAHMgZRVJnkXFyQ8ZkZkauU_g6lACY-khFUIPO8rsekm_mV0653wdPQ0ufJyxN9ch6TpQu39Ng5v6Qv2K_2eEh0sd1sok3JNvSXHZp0arshYDTOhzXShxj2_Yqib-jEL11YWm-TS3Tm6c7twidy2WKX7OdTviZ_7u9-Tx-z-c-H2XQyz0wJZZ-VeYF1mWPNa4ashKbhyETdaivQFNI0LYJsTdVIi6C14VwbpgVvNWrTlKa4Jt9f925i-Le1qVdrl8zwKnobtklJBlIKDu-COeO8KmU-gOIVNDGkFG2rNtGtMR4UMHX0Qx21Vket1XTyQzGpjn4Mc19PB7Z6bZu3qZMBA_DtBGAy2LURvXHpzOUMWF3WovgPfwWWqQ
CODEN CNREA8
CitedBy_id crossref_primary_10_1016_j_jcyt_2019_01_001
crossref_primary_10_3892_ol_2016_4133
crossref_primary_10_3390_medsci4040016
crossref_primary_10_3892_ijo_2015_3257
crossref_primary_10_1038_bjc_2014_282
crossref_primary_10_1002_jcp_30260
crossref_primary_10_1016_j_urolonc_2017_01_019
crossref_primary_10_1007_s10330_009_0146_z
crossref_primary_10_1088_1742_6596_1358_1_012021
crossref_primary_10_1186_s42269_021_00631_w
crossref_primary_10_1158_0008_5472_CAN_08_2531
crossref_primary_10_7314_APJCP_2012_13_7_3403
crossref_primary_10_1302_2046_3758_75_BJR_2017_0284_R1
crossref_primary_10_1016_j_bmcl_2011_09_022
crossref_primary_10_1371_journal_pone_0145410
crossref_primary_10_1002_mc_23614
crossref_primary_10_1007_s11010_011_0986_z
crossref_primary_10_3390_toxins8070197
crossref_primary_10_1093_carcin_bgs255
crossref_primary_10_1002_adfm_202205550
crossref_primary_10_1016_j_ejmech_2016_04_031
crossref_primary_10_1016_j_cellsig_2023_110914
crossref_primary_10_1002_cncr_24238
crossref_primary_10_1007_s00381_024_06463_z
crossref_primary_10_1016_j_mam_2009_07_003
crossref_primary_10_1016_j_mcp_2023_101921
crossref_primary_10_1016_j_bmcl_2017_12_066
crossref_primary_10_1016_j_mvr_2021_104229
crossref_primary_10_1158_0008_5472_CAN_11_0076
crossref_primary_10_1371_journal_pone_0096836
crossref_primary_10_1631_jzus_B1100165
crossref_primary_10_5352_JLS_2016_26_1_91
crossref_primary_10_1093_toxsci_kfq279
crossref_primary_10_1016_j_yexcr_2016_08_024
crossref_primary_10_7314_APJCP_2014_15_1_167
crossref_primary_10_1016_j_biopha_2018_08_083
crossref_primary_10_1177_0962280218820356
crossref_primary_10_1007_s10637_009_9327_4
crossref_primary_10_1016_j_biopha_2017_08_059
crossref_primary_10_1158_1078_0432_CCR_09_0171
crossref_primary_10_1016_j_euo_2018_09_011
crossref_primary_10_1177_0300985813506918
crossref_primary_10_1002_cam4_4109
crossref_primary_10_1152_ajpcell_00283_2017
crossref_primary_10_1186_1479_5876_10_245
crossref_primary_10_1371_journal_pone_0161950
crossref_primary_10_1016_j_bbrc_2010_04_144
crossref_primary_10_3748_wjg_14_5816
crossref_primary_10_3892_or_2016_5109
crossref_primary_10_1016_j_acuro_2011_07_013
crossref_primary_10_1186_1756_3305_7_287
crossref_primary_10_1016_j_mvr_2009_02_007
crossref_primary_10_3892_mmr_2015_4555
crossref_primary_10_3892_ijo_2016_3431
crossref_primary_10_18632_oncotarget_6708
crossref_primary_10_1016_j_gene_2019_144299
crossref_primary_10_1007_s12094_023_03140_6
crossref_primary_10_1016_j_bcp_2018_01_051
crossref_primary_10_1080_01635581_2016_1158292
crossref_primary_10_1093_carcin_bgq052
crossref_primary_10_1080_15384101_2016_1235103
crossref_primary_10_1016_j_ejmech_2018_10_045
crossref_primary_10_1074_jbc_M117_805648
crossref_primary_10_1111_j_1349_7006_2012_02291_x
crossref_primary_10_2217_fon_2021_0256
crossref_primary_10_1186_s10020_018_0059_9
crossref_primary_10_1007_s00432_017_2561_9
crossref_primary_10_3389_fphys_2021_683651
crossref_primary_10_1016_j_urolonc_2014_12_015
crossref_primary_10_1080_08977194_2017_1338694
crossref_primary_10_1016_j_bbrc_2008_09_001
crossref_primary_10_1186_s40001_024_01687_w
crossref_primary_10_1093_narcan_zcad004
crossref_primary_10_3109_07357907_2015_1047505
crossref_primary_10_3892_ol_2016_4989
crossref_primary_10_18632_oncotarget_12937
crossref_primary_10_1002_path_5630
crossref_primary_10_1016_j_urology_2008_12_058
crossref_primary_10_1371_journal_pone_0232545
crossref_primary_10_11637_kjpa_2017_30_3_87
crossref_primary_10_1186_s12943_021_01451_2
crossref_primary_10_1016_j_bioorg_2019_01_006
crossref_primary_10_3892_or_2014_3240
crossref_primary_10_1158_0008_5472_CAN_09_3722
crossref_primary_10_1158_0008_5472_CAN_09_3965
crossref_primary_10_1186_s12920_020_00823_9
crossref_primary_10_1016_j_steroids_2014_12_019
crossref_primary_10_1186_1476_4598_8_31
crossref_primary_10_3389_fgene_2019_01333
crossref_primary_10_3892_ol_2016_4573
crossref_primary_10_1016_j_biochi_2014_09_016
crossref_primary_10_1016_j_molmet_2020_01_011
crossref_primary_10_1186_s12943_017_0681_0
crossref_primary_10_3892_ol_00000114
crossref_primary_10_1016_j_jmoldx_2014_10_005
crossref_primary_10_1002_cncr_24389
crossref_primary_10_3892_ol_2017_6084
crossref_primary_10_1038_s41598_022_06946_6
crossref_primary_10_3892_ijmm_2020_4589
crossref_primary_10_1002_ijc_25909
crossref_primary_10_1016_j_cell_2019_10_007
crossref_primary_10_18632_oncotarget_25481
crossref_primary_10_4161_cc_28416
crossref_primary_10_1007_s11010_022_04452_x
crossref_primary_10_1097_JTO_0b013e31823085f4
crossref_primary_10_3390_jpm13020298
crossref_primary_10_1254_jphs_09213FP
crossref_primary_10_1007_s10517_018_4327_z
crossref_primary_10_1016_j_semcancer_2015_08_003
crossref_primary_10_1007_s11010_012_1440_6
crossref_primary_10_1038_s41388_019_1059_0
crossref_primary_10_1186_1472_6882_13_231
crossref_primary_10_1038_s10038_019_0640_2
crossref_primary_10_7717_peerj_10656
crossref_primary_10_1016_j_acuroe_2012_04_009
crossref_primary_10_1002_ijc_30429
crossref_primary_10_1158_1541_7786_MCR_13_0101_T
crossref_primary_10_29169_1927_5951_2021_11_12
crossref_primary_10_1007_s00726_012_1247_5
crossref_primary_10_1038_s41416_020_0890_y
crossref_primary_10_1158_1541_7786_MCR_08_0451
crossref_primary_10_3389_fgene_2022_897827
crossref_primary_10_3390_ijms241411584
crossref_primary_10_3390_molecules17066854
crossref_primary_10_1002_biof_1784
crossref_primary_10_1186_1471_2407_11_290
crossref_primary_10_1007_s11523_010_0149_2
crossref_primary_10_1093_carcin_bgr216
crossref_primary_10_1111_cpr_12314
crossref_primary_10_1186_1476_4598_8_123
crossref_primary_10_1016_j_ajpath_2012_01_014
crossref_primary_10_3892_ijo_2012_1633
crossref_primary_10_1016_j_archoralbio_2017_06_035
crossref_primary_10_1158_1535_7163_MCT_08_0124
crossref_primary_10_1002_ptr_4881
crossref_primary_10_1126_sciadv_abn9828
crossref_primary_10_3390_ijms20225720
crossref_primary_10_1002_ijc_26217
crossref_primary_10_3390_toxins13010036
crossref_primary_10_1111_j_1751_1097_2010_00853_x
crossref_primary_10_1158_1535_7163_MCT_13_0189
crossref_primary_10_3390_ijms241210362
crossref_primary_10_1038_onc_2010_557
crossref_primary_10_3390_cancers13122991
crossref_primary_10_1166_jbt_2016_1488
crossref_primary_10_1007_s11538_014_9986_y
crossref_primary_10_1111_cns_12853
crossref_primary_10_1074_jbc_M113_524900
crossref_primary_10_3233_CBM_210514
crossref_primary_10_1016_j_bmcl_2014_03_042
crossref_primary_10_1186_s12964_022_01019_7
crossref_primary_10_1038_s41416_024_02587_w
crossref_primary_10_3858_emm_2011_43_3_017
crossref_primary_10_1002_pro_169
crossref_primary_10_1016_j_canlet_2016_05_017
crossref_primary_10_1186_s12014_023_09437_6
crossref_primary_10_1016_j_ejmech_2017_09_015
crossref_primary_10_1016_j_nano_2016_04_002
crossref_primary_10_3389_fgene_2022_985641
Cites_doi 10.1080/09553009214551201
10.1128/MCB.21.17.5958-5969.2001
10.1073/pnas.061031898
10.1128/IAI.72.1.430-439.2004
10.1006/bbrc.1998.9040
10.1016/S1368-7646(03)00043-8
10.1073/pnas.052707699
10.1038/35065000
10.1038/sj.onc.1201380
10.1126/science.280.5364.734
10.3322/canjclin.56.2.106
10.1158/1078-0432.CCR-06-2328
10.1158/1535-7163.MCT-05-0145
10.1158/1078-0432.CCR-07-0732
10.1158/1078-0432.CCR-06-1249
10.1182/blood.V97.5.1321
10.1074/jbc.273.3.1741
10.1158/0008-5472.CAN-06-4571
10.1056/NEJM199609193351207
10.1158/1078-0432.CCR-06-2060
10.1073/pnas.95.24.14417
10.1016/S0006-2952(00)00423-8
10.1634/theoncologist.12-1-107
10.1016/S0955-0674(97)80124-X
10.1038/sj.onc.1202135
10.1172/JCI119309
10.1074/jbc.M409105200
10.1016/S0002-9440(10)65728-8
10.1083/jcb.140.5.1255
10.2353/ajpath.2006.050711
10.1242/jcs.02470
10.1038/sj.onc.1202367
10.1139/o04-121
10.1074/jbc.273.29.18165
10.1016/S0960-9822(99)80164-X
10.1158/1078-0432.CCR-06-2019
10.1126/science.1072682
10.1038/sj.onc.1210198
10.1016/S0014-5793(99)01502-1
10.1006/prep.2000.1208
10.1016/S0955-0674(99)00045-9
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TO
H94
7X8
DOI 10.1158/0008-5472.can-07-5311
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Oncogenes and Growth Factors Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 88
ExternalDocumentID 10_1158_0008_5472_CAN_07_5311
18172299
20109695
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
.55
.GJ
08R
18M
29B
2WC
34G
39C
3O-
476
53G
5GY
5RE
5VS
6J9
8WZ
A6W
AAPBV
AAUGY
ABOCM
ABPTK
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CS3
D0S
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
IQODW
J5H
KQ8
L7B
LSO
MVM
OHT
OK1
P0W
P2P
PQQKQ
RCR
RHF
RHI
RNS
SJN
TR2
UDS
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
YKV
YZZ
ZA5
ZCG
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TO
H94
7X8
ID FETCH-LOGICAL-c616t-623a962a9490a061dd4a059fbe5ac37cdfa17fc8d7ea1bbc44bc0b54fbabcd6c3
ISSN 0008-5472
IngestDate Fri Oct 25 11:27:30 EDT 2024
Fri Oct 25 06:01:37 EDT 2024
Thu Sep 26 17:49:21 EDT 2024
Sat Sep 28 07:53:05 EDT 2024
Sun Oct 29 17:06:17 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Kidney disease
Urinary system disease
Carcinoma
Enzyme
Growth
Transferases
Mitogen-activated protein kinase
Malignant tumor
Angiogenesis
In vivo
Signal transduction
Signaling pathway
Kidney cancer
Grawitz tumor
Inhibitor
Neovascularization
Cancer
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c616t-623a962a9490a061dd4a059fbe5ac37cdfa17fc8d7ea1bbc44bc0b54fbabcd6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/68/1/81.full.pdf
PMID 18172299
PQID 20448672
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_70177541
proquest_miscellaneous_20448672
crossref_primary_10_1158_0008_5472_CAN_07_5311
pubmed_primary_18172299
pascalfrancis_primary_20109695
PublicationCentury 2000
PublicationDate 2008
2008-Jan-01
2008-01-01
20080101
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2008
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061623201863800_B22
2022061623201863800_B44
2022061623201863800_B21
2022061623201863800_B43
2022061623201863800_B20
2022061623201863800_B42
2022061623201863800_B41
2022061623201863800_B40
2022061623201863800_B29
2022061623201863800_B28
2022061623201863800_B27
2022061623201863800_B26
2022061623201863800_B48
2022061623201863800_B25
2022061623201863800_B47
2022061623201863800_B24
2022061623201863800_B46
2022061623201863800_B23
2022061623201863800_B45
2022061623201863800_B2
2022061623201863800_B1
2022061623201863800_B4
2022061623201863800_B3
2022061623201863800_B6
2022061623201863800_B5
2022061623201863800_B8
2022061623201863800_B11
2022061623201863800_B33
2022061623201863800_B7
2022061623201863800_B10
2022061623201863800_B32
2022061623201863800_B31
2022061623201863800_B9
2022061623201863800_B30
2022061623201863800_B19
2022061623201863800_B18
2022061623201863800_B17
2022061623201863800_B39
2022061623201863800_B16
2022061623201863800_B38
2022061623201863800_B15
2022061623201863800_B37
2022061623201863800_B14
2022061623201863800_B36
2022061623201863800_B13
2022061623201863800_B35
2022061623201863800_B12
2022061623201863800_B34
References_xml – ident: 2022061623201863800_B38
  doi: 10.1080/09553009214551201
– ident: 2022061623201863800_B37
– ident: 2022061623201863800_B12
  doi: 10.1128/MCB.21.17.5958-5969.2001
– ident: 2022061623201863800_B27
  doi: 10.1073/pnas.061031898
– ident: 2022061623201863800_B48
  doi: 10.1128/IAI.72.1.430-439.2004
– ident: 2022061623201863800_B16
– ident: 2022061623201863800_B25
  doi: 10.1006/bbrc.1998.9040
– ident: 2022061623201863800_B41
– ident: 2022061623201863800_B42
  doi: 10.1016/S1368-7646(03)00043-8
– ident: 2022061623201863800_B28
  doi: 10.1073/pnas.052707699
– ident: 2022061623201863800_B6
  doi: 10.1038/35065000
– ident: 2022061623201863800_B39
  doi: 10.1038/sj.onc.1201380
– ident: 2022061623201863800_B23
  doi: 10.1126/science.280.5364.734
– ident: 2022061623201863800_B1
  doi: 10.3322/canjclin.56.2.106
– ident: 2022061623201863800_B47
– ident: 2022061623201863800_B3
  doi: 10.1158/1078-0432.CCR-06-2328
– ident: 2022061623201863800_B22
– ident: 2022061623201863800_B29
  doi: 10.1158/1535-7163.MCT-05-0145
– ident: 2022061623201863800_B21
  doi: 10.1158/1078-0432.CCR-07-0732
– ident: 2022061623201863800_B5
  doi: 10.1158/1078-0432.CCR-06-1249
– ident: 2022061623201863800_B19
– ident: 2022061623201863800_B40
  doi: 10.1182/blood.V97.5.1321
– ident: 2022061623201863800_B44
  doi: 10.1074/jbc.273.3.1741
– ident: 2022061623201863800_B32
  doi: 10.1158/0008-5472.CAN-06-4571
– ident: 2022061623201863800_B2
  doi: 10.1056/NEJM199609193351207
– ident: 2022061623201863800_B34
  doi: 10.1158/1078-0432.CCR-06-2060
– ident: 2022061623201863800_B10
  doi: 10.1073/pnas.95.24.14417
– ident: 2022061623201863800_B18
  doi: 10.1016/S0006-2952(00)00423-8
– ident: 2022061623201863800_B4
  doi: 10.1634/theoncologist.12-1-107
– ident: 2022061623201863800_B9
– ident: 2022061623201863800_B36
  doi: 10.1016/S0955-0674(97)80124-X
– ident: 2022061623201863800_B11
  doi: 10.1038/sj.onc.1202135
– ident: 2022061623201863800_B13
  doi: 10.1172/JCI119309
– ident: 2022061623201863800_B26
  doi: 10.1074/jbc.M409105200
– ident: 2022061623201863800_B14
  doi: 10.1016/S0002-9440(10)65728-8
– ident: 2022061623201863800_B20
  doi: 10.1083/jcb.140.5.1255
– ident: 2022061623201863800_B33
  doi: 10.2353/ajpath.2006.050711
– ident: 2022061623201863800_B43
  doi: 10.1242/jcs.02470
– ident: 2022061623201863800_B15
  doi: 10.1038/sj.onc.1202367
– ident: 2022061623201863800_B8
  doi: 10.1139/o04-121
– ident: 2022061623201863800_B46
  doi: 10.1074/jbc.273.29.18165
– ident: 2022061623201863800_B17
  doi: 10.1016/S0960-9822(99)80164-X
– ident: 2022061623201863800_B30
  doi: 10.1158/1078-0432.CCR-06-2019
– ident: 2022061623201863800_B7
  doi: 10.1126/science.1072682
– ident: 2022061623201863800_B45
  doi: 10.1038/sj.onc.1210198
– ident: 2022061623201863800_B24
  doi: 10.1016/S0014-5793(99)01502-1
– ident: 2022061623201863800_B31
  doi: 10.1006/prep.2000.1208
– ident: 2022061623201863800_B35
  doi: 10.1016/S0955-0674(99)00045-9
SSID ssj0005105
Score 2.3977175
Snippet The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the...
Abstract The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also...
SourceID proquest
crossref
pubmed
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 81
SubjectTerms Animals
Antigens, Bacterial - pharmacology
Antineoplastic agents
Antineoplastic Agents - pharmacology
Bacterial Toxins - pharmacology
Biological and medical sciences
Carcinoma, Renal Cell - blood supply
Carcinoma, Renal Cell - enzymology
Carcinoma, Renal Cell - pathology
Cell Line, Tumor
Cell Proliferation - drug effects
Humans
Kidney Neoplasms - blood supply
Kidney Neoplasms - enzymology
Kidney Neoplasms - pathology
Kidneys
Medical sciences
Mice
Mice, Inbred Strains
Mitogen-Activated Protein Kinase Kinases - antagonists & inhibitors
Mitogen-Activated Protein Kinase Kinases - metabolism
Neovascularization, Pathologic - enzymology
Nephrology. Urinary tract diseases
Pharmacology. Drug treatments
Phosphorylation - drug effects
Signal Transduction - drug effects
Tumors
Tumors of the urinary system
Xenograft Model Antitumor Assays
Title Inhibition of MAPK Kinase Signaling Pathways Suppressed Renal Cell Carcinoma Growth and Angiogenesis In vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/18172299
https://search.proquest.com/docview/20448672
https://search.proquest.com/docview/70177541
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbKIiEkhLgpx-IH3qKUpmvneAztopbSgkQrLU-RnThtpOKstu2u4HfxA5mJc7TQFcdLlFppbHm-zIzHn2cIee2kKWb1Dmyvx2ObeZ6ywQjGtuDCSwIngW8dDwpPpu5wzt6f8bNW68cOa2m7kZ34-8FzJf8jVWgDueIp2X-QbP1SaIB7kC9cQcJw_SsZj_Qyk1nl803CT2NrnGmwS9bnbIEetl5gDv7llfi2trB-Z5EpHA8kog_ax7BdH2sJ6fyrwCjUVXnOLdSLLF-gFszWoEGsy-wy3_Vi-wiVC6tMFLQsdoINpaNQOatVZyfAMAin1nAeTusiXl-gYTBqfr8dTa0Zkglnp_W-1Yf5x4L9J_TCnqhsLzbhNziqtpt2QFbwJssBVrTCPdXs25yZOj4d1Whjj5l8k5W6dv3fYGl0ryn9Ullx_7B94L4hVJq-OjBEDNSCInIag1iRAH6xkzV7EQkEgRvwG-RmD9QbEkkHo3FDLCqJs1Un5bkx6PrNwY73PKI752INH2dqqqpcv-wp3J_ZPXK3XLfQ0IDwPmkp_YDcmpTMjIdk1WCR5ilFLFKDRVpjkVZYpA0WaYFFilikNRapwSIFLNJdLNKRpojFR2T-7nTWH9plJQ87dh13Y4OPLQK3JwIWdAV4kEnCBPj1qVRcxKAaklQ4Xhr7iaeEI2XMmIy7krNUChknbnzymBzpXKunhGKCRudEcM9JXKbAO-bSEUxJ31cSXu22SaeazejcJGyJioUu95Fo4Uc4_VE_nEZdL8Lpb5PjvTmv_1WJuU1eVUKIQPfihprQKt-u4QmGCSt71z_hgcHzOINOnhjpNWPyYekAvuCzP3X_nNw2HCUM-70gR5uLrXoJjvBGHhe4-wmNFLG9
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+MAPK+Kinase+Signaling+Pathways+Suppressed+Renal+Cell+Carcinoma+Growth+and+Angiogenesis+In+vivo&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=DAN+HUANG&rft.au=YAN+DING&rft.au=BIN+TEAN+TEH&rft.au=LUO%2C+Wang-Mei&rft.date=2008&rft.pub=American+Association+for+Cancer+Research&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=68&rft.issue=1&rft.spage=81&rft.epage=88&rft_id=info:doi/10.1158%2F0008-5472.can-07-5311&rft.externalDBID=n%2Fa&rft.externalDocID=20109695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon