Enhanced arsenite removal through surface-catalyzed oxidative coagulation treatment
Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III...
Saved in:
Published in | Chemosphere (Oxford) Vol. 150; pp. 650 - 658 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III)) than arsenate (As(V)). In this study, the feasibility of in situ oxidation of As(III) during coagulation was investigated in two systems: Fe(II) or H2O2-assisted oxidative coagulation treatment using ferric chloride as the coagulant. This setup exploits the catalytic property of the fresh formed Fe(III) hydroxide colloids in coagulation suspension to mediate the production of reactive oxidants capable of As(III) oxidation. Fe(II)-assisted coagulation brought about small improvements in As(III) removal compared to treatment with Fe(III) coagulant alone, however, its arsenic removal efficiency is strongly dependent on pH (observed optimal pH = 7–9). Addition of H2O2 together with ferric chloride led to a significant enhancement in arsenic retention at pH 6–8, with final arsenic concentrations well below the U.S.EPA regulatory limit (10 μg/L). H2O2-assisted oxidative coagulation can attain reliable As(III) removal over a broad pH range of 4–9. Radical quenching experiments reveal the participation of superoxide radical in As(III) removal in the oxidative coagulation systems. Phosphate (at > 0.1 mM) strongly suppresses As(III) removal efficiency, whereas carbonate and humic acid pose a minor impact. Overall, the results suggest that a low dose addition of H2O2 along with ferric coagulant is a feasible method for the existing water treatment facilities to achieve improved As(III) removal efficiency.
•The addition of Fe(II) or H2O2 during Fe(III)-based conventional coagulation was evaluated for enhanced As(III) removal.•H2O2-amended coagulation can significantly enhance As(III) removal than the conventional or Fe(II)-amended coagulation systems.•H2O2-amended coagulation holds a reliable As(III) removal performance over pH 4–9.•Among common background solutes examined, phosphate poses the greatest impact on As(III) removal during H2O2-amended coagulation.•Overall, addition of a small dose of H2O2 can be a viable method to enhance As(III) removal in drinking water treatment processes. |
---|---|
AbstractList | Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III)) than arsenate (As(V)). In this study, the feasibility of in situ oxidation of As(III) during coagulation was investigated in two systems: Fe(II) or H2O2-assisted oxidative coagulation treatment using ferric chloride as the coagulant. This setup exploits the catalytic property of the fresh formed Fe(III) hydroxide colloids in coagulation suspension to mediate the production of reactive oxidants capable of As(III) oxidation. Fe(II)-assisted coagulation brought about small improvements in As(III) removal compared to treatment with Fe(III) coagulant alone, however, its arsenic removal efficiency is strongly dependent on pH (observed optimal pH = 7–9). Addition of H2O2 together with ferric chloride led to a significant enhancement in arsenic retention at pH 6–8, with final arsenic concentrations well below the U.S.EPA regulatory limit (10 μg/L). H2O2-assisted oxidative coagulation can attain reliable As(III) removal over a broad pH range of 4–9. Radical quenching experiments reveal the participation of superoxide radical in As(III) removal in the oxidative coagulation systems. Phosphate (at > 0.1 mM) strongly suppresses As(III) removal efficiency, whereas carbonate and humic acid pose a minor impact. Overall, the results suggest that a low dose addition of H2O2 along with ferric coagulant is a feasible method for the existing water treatment facilities to achieve improved As(III) removal efficiency.
•The addition of Fe(II) or H2O2 during Fe(III)-based conventional coagulation was evaluated for enhanced As(III) removal.•H2O2-amended coagulation can significantly enhance As(III) removal than the conventional or Fe(II)-amended coagulation systems.•H2O2-amended coagulation holds a reliable As(III) removal performance over pH 4–9.•Among common background solutes examined, phosphate poses the greatest impact on As(III) removal during H2O2-amended coagulation.•Overall, addition of a small dose of H2O2 can be a viable method to enhance As(III) removal in drinking water treatment processes. Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III)) than arsenate (As(V)). In this study, the feasibility of in situ oxidation of As(III) during coagulation was investigated in two systems: Fe(II) or H2O2-assisted oxidative coagulation treatment using ferric chloride as the coagulant. This setup exploits the catalytic property of the fresh formed Fe(III) hydroxide colloids in coagulation suspension to mediate the production of reactive oxidants capable of As(III) oxidation. Fe(II)-assisted coagulation brought about small improvements in As(III) removal compared to treatment with Fe(III) coagulant alone, however, its arsenic removal efficiency is strongly dependent on pH (observed optimal pH = 7-9). Addition of H2O2 together with ferric chloride led to a significant enhancement in arsenic retention at pH 6-8, with final arsenic concentrations well below the U.S.EPA regulatory limit (10 mu g/L). H2O2-assisted oxidative coagulation can attain reliable As(III) removal over a broad pH range of 4-9. Radical quenching experiments reveal the participation of superoxide radical in As(III) removal in the oxidative coagulation systems. Phosphate (at > 0.1 mM) strongly suppresses As(III) removal efficiency, whereas carbonate and humic acid pose a minor impact. Overall, the results suggest that a low dose addition of H2O2 along with ferric coagulant is a feasible method for the existing water treatment facilities to achieve improved As(III) removal efficiency. Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III)) than arsenate (As(V)). In this study, the feasibility of in situ oxidation of As(III) during coagulation was investigated in two systems: Fe(II) or H2O2-assisted oxidative coagulation treatment using ferric chloride as the coagulant. This setup exploits the catalytic property of the fresh formed Fe(III) hydroxide colloids in coagulation suspension to mediate the production of reactive oxidants capable of As(III) oxidation. Fe(II)-assisted coagulation brought about small improvements in As(III) removal compared to treatment with Fe(III) coagulant alone, however, its arsenic removal efficiency is strongly dependent on pH (observed optimal pH = 7-9). Addition of H2O2 together with ferric chloride led to a significant enhancement in arsenic retention at pH 6-8, with final arsenic concentrations well below the U.S.EPA regulatory limit (10 μg/L). H2O2-assisted oxidative coagulation can attain reliable As(III) removal over a broad pH range of 4-9. Radical quenching experiments reveal the participation of superoxide radical in As(III) removal in the oxidative coagulation systems. Phosphate (at > 0.1 mM) strongly suppresses As(III) removal efficiency, whereas carbonate and humic acid pose a minor impact. Overall, the results suggest that a low dose addition of H2O2 along with ferric coagulant is a feasible method for the existing water treatment facilities to achieve improved As(III) removal efficiency. |
Author | Yan, Weile Li, Yue Bland, Garret D. |
Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0002-2374-8252 surname: Li fullname: Li, Yue – sequence: 2 givenname: Garret D. surname: Bland fullname: Bland, Garret D. – sequence: 3 givenname: Weile surname: Yan fullname: Yan, Weile email: weile.yan@ttu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26897520$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v3CAQhlGVqNmk_QuVe-vF7sCCDaeqWqUfUqQckp4RxuOYlW22gFdJf33ZbiJVvXRPoNEzL8M8l-Rs9jMS8p5CRYHWH7eVHXDycTdgwIrlUgWsAqhfkRWVjSopU_KMrAC4KGuxFhfkMsYtQCaFek0uWC1VIxisyN31PJjZYleYEHF2CYuQo_dmLNIQ_PIwFHEJvbFYWpPM-PQro_7RdSa5PRbWm4dlzHc_FymgSRPO6Q05780Y8e3zeUV-fLm-33wrb26_ft98viltTetUchSUQdNii0qi4l0nZN03lufKurU9lchbgR0XbcsYN4Aoem5M_oJS7Vqsr8iHY-4u-J8LxqQnFy2Oo5nRL1FTyQSnkrPmBBQkCBCc_x9tpGCcKzgM8O4ZXdoJO70LbjLhSb-sNwOfjoANPsaAvbYu_dlWCsaNmoI-CNVb_ZdQfRCqgeksNCeofxJeHjmld3PsxSxh7zDoaB0eZLuANunOuxNSfgMsmcPs |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_116750 crossref_primary_10_1002_vjch_201800033 crossref_primary_10_1016_j_watres_2024_121200 crossref_primary_10_1016_j_watres_2016_11_054 crossref_primary_10_1039_D1EW00946J crossref_primary_10_1016_j_chemosphere_2018_01_116 crossref_primary_10_1016_j_electacta_2016_05_064 crossref_primary_10_1016_j_matchemphys_2017_03_023 crossref_primary_10_1016_j_watres_2022_119007 crossref_primary_10_1016_j_jhazmat_2024_134482 crossref_primary_10_1021_acsestwater_1c00194 crossref_primary_10_1002_vjch_201800080 crossref_primary_10_1016_j_seppur_2024_129081 crossref_primary_10_1021_acs_energyfuels_1c03032 crossref_primary_10_5004_dwt_2023_30093 crossref_primary_10_1007_s00128_022_03536_0 crossref_primary_10_1016_j_cej_2019_122075 crossref_primary_10_1016_j_cej_2022_139915 crossref_primary_10_1007_s11356_023_28604_8 crossref_primary_10_3390_su142316306 crossref_primary_10_2139_ssrn_4183992 crossref_primary_10_3390_chemengineering8040078 crossref_primary_10_1016_j_jiec_2019_01_026 crossref_primary_10_1007_s11356_022_20931_6 |
Cites_doi | 10.1016/j.chemosphere.2014.04.097 10.1021/es970421p 10.1021/es1010225 10.1039/c0cc02311f 10.1021/es030309t 10.1021/es010130n 10.1021/es026208x 10.1021/es7028284 10.1021/es901274s 10.1016/j.watres.2004.12.022 10.1021/es025845k 10.1016/j.chemosphere.2007.03.036 10.1016/j.chemosphere.2003.12.025 10.1016/j.jhazmat.2007.01.006 10.1021/es60165a006 10.1016/S0043-1354(99)00272-9 10.1061/(ASCE)0733-9372(1997)123:8(800) 10.1021/es980969b 10.1002/j.1551-8833.1996.tb06541.x 10.1021/es902296k 10.1016/j.watres.2005.02.012 10.1021/es0343205 10.1016/j.gca.2014.09.020 10.1038/ngeo685 10.1016/j.seppur.2015.05.002 10.2166/wst.1993.0261 10.1002/j.1551-8833.1994.tb06247.x 10.1016/0010-938X(80)90077-3 10.1021/es7025664 10.1021/es102401d 10.1021/es903117r 10.1016/S0883-2927(02)00018-5 10.1002/aheh.200300485 10.1016/j.jhazmat.2013.06.017 10.1021/es9608104 10.2113/gselements.2.2.71 10.1021/es103793y 10.1016/j.watres.2010.06.018 10.1021/es1000616 10.1080/10643380500326564 10.1021/es902011h 10.1021/es300988p 10.1021/es001551s 10.1006/jcis.2000.7295 10.1021/es0516817 10.1021/jp208600n 10.1021/es010768z 10.1021/es034203+ 10.1016/j.memsci.2010.02.063 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7ST 7TV 7UA C1K F1W H97 L.G SOI 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2016.02.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Environment Abstracts Pollution Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database MEDLINE AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 658 |
ExternalDocumentID | 26897520 10_1016_j_chemosphere_2016_02_006 S0045653516301576 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7QH 7ST 7TV 7UA C1K F1W H97 L.G SOI 8FD FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c616t-4e51207bebe98e94dd586f7c4beb3bcf18e4b5ed45bb224a0ee5f4aa65999b353 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 |
IngestDate | Thu Jul 10 18:41:03 EDT 2025 Sun Aug 24 03:34:36 EDT 2025 Fri Jul 11 10:09:07 EDT 2025 Mon Jul 21 06:02:26 EDT 2025 Tue Jul 01 00:45:20 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Fri Feb 23 02:20:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Drinking water treatment Fe(III) hydroxide Surface-mediated oxidation Arsenite Coagulation |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c616t-4e51207bebe98e94dd586f7c4beb3bcf18e4b5ed45bb224a0ee5f4aa65999b353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2374-8252 |
PMID | 26897520 |
PQID | 1785244905 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1825418427 proquest_miscellaneous_1808050544 proquest_miscellaneous_1785244905 pubmed_primary_26897520 crossref_citationtrail_10_1016_j_chemosphere_2016_02_006 crossref_primary_10_1016_j_chemosphere_2016_02_006 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2016_02_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Su, Puls (bib51) 2001; 35 Lakshmanan, Clifford, Samanta (bib30) 2010; 44 Bhandari, Reeder, Strongin (bib5) 2011; 45 Appelo, Van der Weiden, Tournassat, Charlet (bib2) 2002; 36 Voegelin, Hug (bib56) 2003; 37 Yan, Ramos, Koel, Zhang (bib57) 2012; 116 Pang, Jiang, Ma (bib40) 2011; 45 Neumann, Ashfaque, Badruzzaman, Ali, Shoemaker, Harvey (bib37) 2010; 3 Smedley, Kinniburgh (bib49) 2002; 17 Johnston, Singer (bib24) 2007; 69 Meng, Bang, Korfiatis (bib34) 2000; 34 Mohan, Pittman (bib36) 2007; 142 Yan, Ramos, Koel, Zhang (bib58) 2010; 46 Keenan, Sedlak (bib26) 2008; 42 Metcalf (bib35) 2003 Hug, Leupin, Berg (bib23) 2008; 42 Bang, Johnson, Korfiatis, Meng (bib3) 2005; 39 Leupin, Hug (bib32) 2005; 39 Dixit, Hering (bib11) 2003; 37 Hug, Leupin (bib22) 2003; 37 Pignatello, Oliveros, MacKay (bib43) 2006; 36 Tamura, Kawamura, Hagayama (bib53) 1980; 20 Önnby, Kumar, Sigfridsson, Wendt, Carlson, Kirsebom (bib39) 2014; 113 Goldberg, Johnston (bib16) 2001; 234 Hering, Chen, Wilkie, Elimelech (bib18) 1997; 123 Bhandari, Reeder, Strongin (bib7) 2012; 46 Amstaetter, Borch, Larese-Casanova, Kappler (bib1) 2010; 44 Kim, Korshin, Frenkel, Velichenko (bib28) 2006; 40 Yin, Li, Kou, Zou (bib59) 2009; 43 Grebel, Pignatello, Mitch (bib17) 2010; 44 Pio, Scarlino, Bloise, Mele, Santoro, Pastore, Santoro (bib45) 2015; 147 Sung, Morgan (bib52) 1980; 14 Roberts, Hug, Ruettimann, Billah, Khan, Rahman (bib47) 2004; 38 Benjamin (bib4) 2014 Lee, Um, Yoon (bib31) 2003; 37 Kumar, Chaudhari, Khilar, Mahajan (bib29) 2004; 55 Pignatello, Liu, Huston (bib42) 1999; 33 Edwards (bib13) 1994; 86 Sen, Manna, Pal (bib48) 2010; 354 Khandaker, Brady, Krumhansl (bib27) 2009 Bordoloi, Nath, Gogoi, Dutta (bib9) 2013; 260 Dittmar, Voegelin, Roberts, Hug, Saha, Ali, Badruzzaman, Kretzschmar (bib10) 2010; 44 Manning, Goldberg (bib33) 1997; 31 Raven, Jain, Loeppert (bib46) 1998; 32 Vaughan (bib55) 2006; 2 Hug, Canonica, Wegelin, Gechter, Von Gunten (bib21) 2001; 35 Elimelech, Hering, Pen-Yuan, Sun, Wilkie (bib15) 1996; 88 Jones, Griffin, Collins, Waite (bib25) 2014; 145 Edzwald (bib14) 1993; 27 Bissen, Frimmel (bib8) 2003; 31 Ona-Nguema, Morin, Wang, Foster, Juillot, Galas, Brown (bib38) 2010; 44 Pham, Lee, Doyle, Sedlak (bib41) 2009; 43 Hering, Chen, Wilkie, Elimelech, Liang (bib20) 1996; 88 Snoeyink, Jenkins (bib50) 1980 Hering (10.1016/j.chemosphere.2016.02.006_bib18) 1997; 123 Pignatello (10.1016/j.chemosphere.2016.02.006_bib42) 1999; 33 Vaughan (10.1016/j.chemosphere.2016.02.006_bib55) 2006; 2 Lakshmanan (10.1016/j.chemosphere.2016.02.006_bib30) 2010; 44 Pang (10.1016/j.chemosphere.2016.02.006_bib40) 2011; 45 Dittmar (10.1016/j.chemosphere.2016.02.006_bib10) 2010; 44 Manning (10.1016/j.chemosphere.2016.02.006_bib33) 1997; 31 Mohan (10.1016/j.chemosphere.2016.02.006_bib36) 2007; 142 Hug (10.1016/j.chemosphere.2016.02.006_bib23) 2008; 42 Meng (10.1016/j.chemosphere.2016.02.006_bib34) 2000; 34 Amstaetter (10.1016/j.chemosphere.2016.02.006_bib1) 2010; 44 Khandaker (10.1016/j.chemosphere.2016.02.006_bib27) 2009 Kumar (10.1016/j.chemosphere.2016.02.006_bib29) 2004; 55 Benjamin (10.1016/j.chemosphere.2016.02.006_bib4) 2014 Smedley (10.1016/j.chemosphere.2016.02.006_bib49) 2002; 17 Hug (10.1016/j.chemosphere.2016.02.006_bib22) 2003; 37 Keenan (10.1016/j.chemosphere.2016.02.006_bib26) 2008; 42 Grebel (10.1016/j.chemosphere.2016.02.006_bib17) 2010; 44 Roberts (10.1016/j.chemosphere.2016.02.006_bib47) 2004; 38 Elimelech (10.1016/j.chemosphere.2016.02.006_bib15) 1996; 88 Leupin (10.1016/j.chemosphere.2016.02.006_bib32) 2005; 39 Bhandari (10.1016/j.chemosphere.2016.02.006_bib7) 2012; 46 Johnston (10.1016/j.chemosphere.2016.02.006_bib24) 2007; 69 Pignatello (10.1016/j.chemosphere.2016.02.006_bib43) 2006; 36 Bang (10.1016/j.chemosphere.2016.02.006_bib3) 2005; 39 Lee (10.1016/j.chemosphere.2016.02.006_bib31) 2003; 37 Pio (10.1016/j.chemosphere.2016.02.006_bib45) 2015; 147 Goldberg (10.1016/j.chemosphere.2016.02.006_bib16) 2001; 234 Sen (10.1016/j.chemosphere.2016.02.006_bib48) 2010; 354 Edwards (10.1016/j.chemosphere.2016.02.006_bib13) 1994; 86 Pham (10.1016/j.chemosphere.2016.02.006_bib41) 2009; 43 Bordoloi (10.1016/j.chemosphere.2016.02.006_bib9) 2013; 260 Yin (10.1016/j.chemosphere.2016.02.006_bib59) 2009; 43 Kim (10.1016/j.chemosphere.2016.02.006_bib28) 2006; 40 Tamura (10.1016/j.chemosphere.2016.02.006_bib53) 1980; 20 Bissen (10.1016/j.chemosphere.2016.02.006_bib8) 2003; 31 Bhandari (10.1016/j.chemosphere.2016.02.006_bib5) 2011; 45 Snoeyink (10.1016/j.chemosphere.2016.02.006_bib50) 1980 Sung (10.1016/j.chemosphere.2016.02.006_bib52) 1980; 14 Neumann (10.1016/j.chemosphere.2016.02.006_bib37) 2010; 3 Su (10.1016/j.chemosphere.2016.02.006_bib51) 2001; 35 Hering (10.1016/j.chemosphere.2016.02.006_bib20) 1996; 88 Yan (10.1016/j.chemosphere.2016.02.006_bib58) 2010; 46 Yan (10.1016/j.chemosphere.2016.02.006_bib57) 2012; 116 Raven (10.1016/j.chemosphere.2016.02.006_bib46) 1998; 32 Ona-Nguema (10.1016/j.chemosphere.2016.02.006_bib38) 2010; 44 Önnby (10.1016/j.chemosphere.2016.02.006_bib39) 2014; 113 Metcalf (10.1016/j.chemosphere.2016.02.006_bib35) 2003 Appelo (10.1016/j.chemosphere.2016.02.006_bib2) 2002; 36 Voegelin (10.1016/j.chemosphere.2016.02.006_bib56) 2003; 37 Hug (10.1016/j.chemosphere.2016.02.006_bib21) 2001; 35 Jones (10.1016/j.chemosphere.2016.02.006_bib25) 2014; 145 Edzwald (10.1016/j.chemosphere.2016.02.006_bib14) 1993; 27 Dixit (10.1016/j.chemosphere.2016.02.006_bib11) 2003; 37 |
References_xml | – volume: 36 start-page: 3096 year: 2002 end-page: 3103 ident: bib2 article-title: Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic publication-title: Environ. Sci. Technol. – volume: 42 start-page: 6318 year: 2008 end-page: 6323 ident: bib23 article-title: Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation publication-title: Environ. Sci. Technol. – volume: 35 start-page: 2114 year: 2001 end-page: 2121 ident: bib21 article-title: Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters publication-title: Environ. Sci. Technol. – volume: 88 start-page: 155 year: 1996 end-page: 167 ident: bib15 article-title: Arsenic removal by ferric chloride publication-title: J. Am. Water Works Assoc. – volume: 27 start-page: 21 year: 1993 end-page: 35 ident: bib14 article-title: Coagulation in drinking water treatment: particles, organics and coagulants publication-title: Water Sci. Technol. – year: 2009 ident: bib27 article-title: Arsenic Removal from Drinking Water: a Handbook for Communities – volume: 43 year: 2009 ident: bib41 article-title: A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values publication-title: Environ. Sci. Technol. – volume: 45 start-page: 2783 year: 2011 end-page: 2789 ident: bib5 article-title: Photoinduced oxidation of arsenite to arsenate on ferrihydrite publication-title: Environ. Sci. Technol. – year: 2003 ident: bib35 article-title: Inc., Wastewater Engineering, Treatment and Reuse – volume: 354 start-page: 108 year: 2010 end-page: 113 ident: bib48 article-title: Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system publication-title: J. Membr. Sci. – volume: 116 year: 2012 ident: bib57 article-title: As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy publication-title: J. Phys. Chem. C – volume: 37 start-page: 972 year: 2003 end-page: 978 ident: bib56 article-title: Catalyzed oxidation of arsenic(III) by hydrogen peroxide on the surface of ferrihydrite: an in situ ATR-FTIR study publication-title: Environ. Sci. Technol. – volume: 44 start-page: 2925 year: 2010 end-page: 2931 ident: bib10 article-title: Arsenic accumulation in a paddy field in bangladesh: seasonal dynamics and trends over a three-year monitoring period publication-title: Environ. Sci. Technol. – volume: 44 start-page: 6822 year: 2010 end-page: 6828 ident: bib17 article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters publication-title: Environ. Sci. Technol. – volume: 46 start-page: 8044 year: 2012 end-page: 8051 ident: bib7 article-title: Photoinduced oxidation of arsenite to arsenate in the presence of goethite publication-title: Environ. Sci. Technol. – volume: 37 start-page: 5750 year: 2003 end-page: 5756 ident: bib31 article-title: Arsenic (III) oxidation by iron (VI)(ferrate) and subsequent removal of arsenic (V) by iron (III) coagulation publication-title: Environ. Sci. Technol. – volume: 44 start-page: 5641 year: 2010 end-page: 5652 ident: bib30 article-title: Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation publication-title: Water. Res. – volume: 45 start-page: 307 year: 2011 end-page: 312 ident: bib40 article-title: Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in fenton reaction publication-title: Environ. Sci. Technol. – volume: 123 start-page: 800 year: 1997 end-page: 807 ident: bib18 article-title: Arsenic removal from drinking water during coagulation publication-title: J. Environ. Eng. – volume: 39 start-page: 763 year: 2005 end-page: 770 ident: bib3 article-title: Chemical reactions between arsenic and zero-valent iron in water publication-title: Water Res. – volume: 147 start-page: 284 year: 2015 end-page: 291 ident: bib45 article-title: Efficient removal of low-arsenic concentrations from drinking water by combined coagulation and adsorption processes publication-title: Sep. Purif. Technol. – volume: 69 start-page: 517 year: 2007 end-page: 525 ident: bib24 article-title: Redox reactions in the Fe-AS-O-2 system publication-title: Chemosphere – volume: 145 start-page: 1 year: 2014 end-page: 12 ident: bib25 article-title: Ferrous iron oxidation under acidic conditions – the effect of ferric oxide surfaces publication-title: Geochim. Cosmochim. Acta – volume: 260 start-page: 618 year: 2013 end-page: 626 ident: bib9 article-title: Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: laboratory and field studies publication-title: J. Hazard. Mater. – volume: 14 start-page: 561 year: 1980 end-page: 568 ident: bib52 article-title: “Kinetics and product of ferrous iron oxygenation in aqueous systems publication-title: Environ. Sci. Technol. – volume: 43 start-page: 8361 year: 2009 end-page: 8366 ident: bib59 article-title: “Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system.” publication-title: Environ. Sci. Technol. – volume: 37 start-page: 4182 year: 2003 end-page: 4189 ident: bib11 article-title: Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility publication-title: Environ. Sci. Technol. – volume: 31 start-page: 2005 year: 1997 end-page: 2011 ident: bib33 article-title: Adsorption and stability of arsenic(III) at the clay mineral-water interface publication-title: E Environ. Sci. Technol. – volume: 42 start-page: 1262 year: 2008 end-page: 1267 ident: bib26 article-title: Factors affecting the yield of oxidants from the reaction of manoparticulate zero-valent iron and oxygen publication-title: Environ. Sci. Technol. – volume: 40 start-page: 228 year: 2006 end-page: 234 ident: bib28 article-title: Electrochemical and XAES studies of effects of carbonate on the oxidation of arsenite publication-title: Environ. Sci. Technol. – year: 2014 ident: bib4 article-title: Water Chemistry – volume: 35 start-page: 4562 year: 2001 end-page: 4568 ident: bib51 article-title: Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride publication-title: Environ. Sci. Technol. – volume: 46 start-page: 6995 year: 2010 end-page: 6997 ident: bib58 article-title: Multi-tiered distributions of arsenic in iron nanoparticles: observation of dual redox functionality enabled by a core-shell structure publication-title: Chem. Comm. – volume: 33 start-page: 1832 year: 1999 end-page: 1839 ident: bib42 article-title: Evidence for an additional oxidant in the photoassisted Fenton reaction publication-title: Environ. Sci. Technol. – volume: 234 start-page: 204 year: 2001 end-page: 216 ident: bib16 article-title: Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling publication-title: J. Colloid Interf. Sci. – volume: 32 start-page: 344 year: 1998 end-page: 349 ident: bib46 article-title: Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes publication-title: Environ. Sci. Technol. – volume: 86 start-page: 64 year: 1994 end-page: 78 ident: bib13 article-title: “Chemistry of arsenic removal during coagulation and Fe-Mn oxidation.” publication-title: J. Am. Water Works Assoc. – year: 1980 ident: bib50 article-title: Water Chemistry – volume: 37 start-page: 2734 year: 2003 end-page: 2742 ident: bib22 article-title: Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the fenton reaction publication-title: Environ. Sci. Technol. – volume: 31 start-page: 97 year: 2003 end-page: 107 ident: bib8 article-title: Arsenic—a review. Part II: oxidation of arsenic and its removal in water treatment publication-title: Acta Hydroch. Hydrob. – volume: 44 start-page: 102 year: 2010 end-page: 108 ident: bib1 article-title: Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH) publication-title: Environ. Sci. Technol. – volume: 17 start-page: 517 year: 2002 end-page: 568 ident: bib49 article-title: A review of the source, behaviour and distribution of arsenic in natural waters publication-title: Appl. Geochem. – volume: 88 start-page: 155 year: 1996 end-page: 167 ident: bib20 article-title: Arsenic removal by ferric chloride publication-title: J. Am. Water Works Assoc. – volume: 36 start-page: 1 year: 2006 end-page: 84 ident: bib43 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Tec. – volume: 142 start-page: 1 year: 2007 end-page: 53 ident: bib36 article-title: Arsenic removal from water/wastewater using adsorbents—a critical review publication-title: J. Hazard. Mater. – volume: 3 start-page: 46 year: 2010 end-page: 52 ident: bib37 article-title: Anthropogenic influences on groundwater arsenic concentrations in Bangladesh publication-title: Nat. Geosci. – volume: 55 start-page: 1245 year: 2004 end-page: 1252 ident: bib29 article-title: Removal of arsenic from water by electrocoagulation publication-title: Chemosphere – volume: 20 start-page: 963 year: 1980 ident: bib53 article-title: Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides publication-title: Corros. Sci. – volume: 2 start-page: 71 year: 2006 end-page: 75 ident: bib55 article-title: Arsenic publication-title: Elements – volume: 38 start-page: 307 year: 2004 end-page: 315 ident: bib47 article-title: Arsenic removal with iron(II) and iron(III) waters with high silicate and phosphate concentrations publication-title: Environ. Sci. Technol. – volume: 113 start-page: 151 year: 2014 end-page: 157 ident: bib39 article-title: Improved arsenic (III) adsorption by Al 2 O 3 nanoparticles and H 2 O 2: evidence of oxidation to arsenic (V) from X-ray absorption spectroscopy publication-title: Chemosphere – volume: 39 start-page: 1729 year: 2005 end-page: 1740 ident: bib32 article-title: Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron publication-title: Water Res. – volume: 34 start-page: 1255 year: 2000 end-page: 1261 ident: bib34 article-title: Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride publication-title: Water Res. – volume: 44 start-page: 5416 year: 2010 end-page: 5422 ident: bib38 article-title: XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O-2 via Fe2+-mediated reactions publication-title: Environ. Sci. Technol. – volume: 113 start-page: 151 year: 2014 ident: 10.1016/j.chemosphere.2016.02.006_bib39 article-title: Improved arsenic (III) adsorption by Al 2 O 3 nanoparticles and H 2 O 2: evidence of oxidation to arsenic (V) from X-ray absorption spectroscopy publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.04.097 – volume: 32 start-page: 344 year: 1998 ident: 10.1016/j.chemosphere.2016.02.006_bib46 article-title: Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes publication-title: Environ. Sci. Technol. doi: 10.1021/es970421p – volume: 44 start-page: 6822 year: 2010 ident: 10.1016/j.chemosphere.2016.02.006_bib17 article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters publication-title: Environ. Sci. Technol. doi: 10.1021/es1010225 – volume: 46 start-page: 6995 year: 2010 ident: 10.1016/j.chemosphere.2016.02.006_bib58 article-title: Multi-tiered distributions of arsenic in iron nanoparticles: observation of dual redox functionality enabled by a core-shell structure publication-title: Chem. Comm. doi: 10.1039/c0cc02311f – volume: 37 start-page: 4182 year: 2003 ident: 10.1016/j.chemosphere.2016.02.006_bib11 article-title: Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility publication-title: Environ. Sci. Technol. doi: 10.1021/es030309t – volume: 36 start-page: 3096 year: 2002 ident: 10.1016/j.chemosphere.2016.02.006_bib2 article-title: Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic publication-title: Environ. Sci. Technol. doi: 10.1021/es010130n – volume: 37 start-page: 2734 year: 2003 ident: 10.1016/j.chemosphere.2016.02.006_bib22 article-title: Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the fenton reaction publication-title: Environ. Sci. Technol. doi: 10.1021/es026208x – volume: 42 start-page: 6318 year: 2008 ident: 10.1016/j.chemosphere.2016.02.006_bib23 article-title: Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation publication-title: Environ. Sci. Technol. doi: 10.1021/es7028284 – volume: 44 start-page: 102 year: 2010 ident: 10.1016/j.chemosphere.2016.02.006_bib1 article-title: Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH) publication-title: Environ. Sci. Technol. doi: 10.1021/es901274s – volume: 39 start-page: 763 year: 2005 ident: 10.1016/j.chemosphere.2016.02.006_bib3 article-title: Chemical reactions between arsenic and zero-valent iron in water publication-title: Water Res. doi: 10.1016/j.watres.2004.12.022 – volume: 37 start-page: 972 year: 2003 ident: 10.1016/j.chemosphere.2016.02.006_bib56 article-title: Catalyzed oxidation of arsenic(III) by hydrogen peroxide on the surface of ferrihydrite: an in situ ATR-FTIR study publication-title: Environ. Sci. Technol. doi: 10.1021/es025845k – volume: 69 start-page: 517 year: 2007 ident: 10.1016/j.chemosphere.2016.02.006_bib24 article-title: Redox reactions in the Fe-AS-O-2 system publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.03.036 – volume: 55 start-page: 1245 year: 2004 ident: 10.1016/j.chemosphere.2016.02.006_bib29 article-title: Removal of arsenic from water by electrocoagulation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2003.12.025 – volume: 142 start-page: 1 year: 2007 ident: 10.1016/j.chemosphere.2016.02.006_bib36 article-title: Arsenic removal from water/wastewater using adsorbents—a critical review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.01.006 – year: 2003 ident: 10.1016/j.chemosphere.2016.02.006_bib35 – volume: 14 start-page: 561 year: 1980 ident: 10.1016/j.chemosphere.2016.02.006_bib52 article-title: “Kinetics and product of ferrous iron oxygenation in aqueous systems publication-title: Environ. Sci. Technol. doi: 10.1021/es60165a006 – volume: 34 start-page: 1255 year: 2000 ident: 10.1016/j.chemosphere.2016.02.006_bib34 article-title: Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride publication-title: Water Res. doi: 10.1016/S0043-1354(99)00272-9 – volume: 123 start-page: 800 year: 1997 ident: 10.1016/j.chemosphere.2016.02.006_bib18 article-title: Arsenic removal from drinking water during coagulation publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(1997)123:8(800) – year: 2009 ident: 10.1016/j.chemosphere.2016.02.006_bib27 – volume: 33 start-page: 1832 year: 1999 ident: 10.1016/j.chemosphere.2016.02.006_bib42 article-title: Evidence for an additional oxidant in the photoassisted Fenton reaction publication-title: Environ. Sci. Technol. doi: 10.1021/es980969b – volume: 88 start-page: 155 year: 1996 ident: 10.1016/j.chemosphere.2016.02.006_bib20 article-title: Arsenic removal by ferric chloride publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1996.tb06541.x – volume: 43 year: 2009 ident: 10.1016/j.chemosphere.2016.02.006_bib41 article-title: A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values publication-title: Environ. Sci. Technol. doi: 10.1021/es902296k – volume: 39 start-page: 1729 year: 2005 ident: 10.1016/j.chemosphere.2016.02.006_bib32 article-title: Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron publication-title: Water Res. doi: 10.1016/j.watres.2005.02.012 – volume: 38 start-page: 307 year: 2004 ident: 10.1016/j.chemosphere.2016.02.006_bib47 article-title: Arsenic removal with iron(II) and iron(III) waters with high silicate and phosphate concentrations publication-title: Environ. Sci. Technol. doi: 10.1021/es0343205 – volume: 145 start-page: 1 year: 2014 ident: 10.1016/j.chemosphere.2016.02.006_bib25 article-title: Ferrous iron oxidation under acidic conditions – the effect of ferric oxide surfaces publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2014.09.020 – volume: 3 start-page: 46 year: 2010 ident: 10.1016/j.chemosphere.2016.02.006_bib37 article-title: Anthropogenic influences on groundwater arsenic concentrations in Bangladesh publication-title: Nat. Geosci. doi: 10.1038/ngeo685 – volume: 147 start-page: 284 year: 2015 ident: 10.1016/j.chemosphere.2016.02.006_bib45 article-title: Efficient removal of low-arsenic concentrations from drinking water by combined coagulation and adsorption processes publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.05.002 – volume: 27 start-page: 21 year: 1993 ident: 10.1016/j.chemosphere.2016.02.006_bib14 article-title: Coagulation in drinking water treatment: particles, organics and coagulants publication-title: Water Sci. Technol. doi: 10.2166/wst.1993.0261 – volume: 86 start-page: 64 year: 1994 ident: 10.1016/j.chemosphere.2016.02.006_bib13 article-title: “Chemistry of arsenic removal during coagulation and Fe-Mn oxidation.” publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1994.tb06247.x – volume: 20 start-page: 963 year: 1980 ident: 10.1016/j.chemosphere.2016.02.006_bib53 article-title: Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides publication-title: Corros. Sci. doi: 10.1016/0010-938X(80)90077-3 – volume: 42 start-page: 1262 year: 2008 ident: 10.1016/j.chemosphere.2016.02.006_bib26 article-title: Factors affecting the yield of oxidants from the reaction of manoparticulate zero-valent iron and oxygen publication-title: Environ. Sci. Technol. doi: 10.1021/es7025664 – volume: 45 start-page: 307 year: 2011 ident: 10.1016/j.chemosphere.2016.02.006_bib40 article-title: Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in fenton reaction publication-title: Environ. Sci. Technol. doi: 10.1021/es102401d – volume: 44 start-page: 2925 year: 2010 ident: 10.1016/j.chemosphere.2016.02.006_bib10 article-title: Arsenic accumulation in a paddy field in bangladesh: seasonal dynamics and trends over a three-year monitoring period publication-title: Environ. Sci. Technol. doi: 10.1021/es903117r – volume: 17 start-page: 517 year: 2002 ident: 10.1016/j.chemosphere.2016.02.006_bib49 article-title: A review of the source, behaviour and distribution of arsenic in natural waters publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(02)00018-5 – volume: 31 start-page: 97 year: 2003 ident: 10.1016/j.chemosphere.2016.02.006_bib8 article-title: Arsenic—a review. Part II: oxidation of arsenic and its removal in water treatment publication-title: Acta Hydroch. Hydrob. doi: 10.1002/aheh.200300485 – volume: 260 start-page: 618 year: 2013 ident: 10.1016/j.chemosphere.2016.02.006_bib9 article-title: Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: laboratory and field studies publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.06.017 – volume: 31 start-page: 2005 year: 1997 ident: 10.1016/j.chemosphere.2016.02.006_bib33 article-title: Adsorption and stability of arsenic(III) at the clay mineral-water interface publication-title: E Environ. Sci. Technol. doi: 10.1021/es9608104 – volume: 88 start-page: 155 year: 1996 ident: 10.1016/j.chemosphere.2016.02.006_bib15 article-title: Arsenic removal by ferric chloride publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1996.tb06541.x – volume: 2 start-page: 71 year: 2006 ident: 10.1016/j.chemosphere.2016.02.006_bib55 article-title: Arsenic publication-title: Elements doi: 10.2113/gselements.2.2.71 – volume: 45 start-page: 2783 year: 2011 ident: 10.1016/j.chemosphere.2016.02.006_bib5 article-title: Photoinduced oxidation of arsenite to arsenate on ferrihydrite publication-title: Environ. Sci. Technol. doi: 10.1021/es103793y – year: 1980 ident: 10.1016/j.chemosphere.2016.02.006_bib50 – volume: 44 start-page: 5641 year: 2010 ident: 10.1016/j.chemosphere.2016.02.006_bib30 article-title: Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation publication-title: Water. Res. doi: 10.1016/j.watres.2010.06.018 – volume: 44 start-page: 5416 year: 2010 ident: 10.1016/j.chemosphere.2016.02.006_bib38 article-title: XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O-2 via Fe2+-mediated reactions publication-title: Environ. Sci. Technol. doi: 10.1021/es1000616 – volume: 36 start-page: 1 year: 2006 ident: 10.1016/j.chemosphere.2016.02.006_bib43 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Tec. doi: 10.1080/10643380500326564 – volume: 43 start-page: 8361 year: 2009 ident: 10.1016/j.chemosphere.2016.02.006_bib59 article-title: “Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system.” publication-title: Environ. Sci. Technol. doi: 10.1021/es902011h – volume: 46 start-page: 8044 year: 2012 ident: 10.1016/j.chemosphere.2016.02.006_bib7 article-title: Photoinduced oxidation of arsenite to arsenate in the presence of goethite publication-title: Environ. Sci. Technol. doi: 10.1021/es300988p – volume: 35 start-page: 2114 year: 2001 ident: 10.1016/j.chemosphere.2016.02.006_bib21 article-title: Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters publication-title: Environ. Sci. Technol. doi: 10.1021/es001551s – volume: 234 start-page: 204 year: 2001 ident: 10.1016/j.chemosphere.2016.02.006_bib16 article-title: Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling publication-title: J. Colloid Interf. Sci. doi: 10.1006/jcis.2000.7295 – year: 2014 ident: 10.1016/j.chemosphere.2016.02.006_bib4 – volume: 40 start-page: 228 year: 2006 ident: 10.1016/j.chemosphere.2016.02.006_bib28 article-title: Electrochemical and XAES studies of effects of carbonate on the oxidation of arsenite publication-title: Environ. Sci. Technol. doi: 10.1021/es0516817 – volume: 116 year: 2012 ident: 10.1016/j.chemosphere.2016.02.006_bib57 article-title: As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy publication-title: J. Phys. Chem. C doi: 10.1021/jp208600n – volume: 35 start-page: 4562 year: 2001 ident: 10.1016/j.chemosphere.2016.02.006_bib51 article-title: Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride publication-title: Environ. Sci. Technol. doi: 10.1021/es010768z – volume: 37 start-page: 5750 year: 2003 ident: 10.1016/j.chemosphere.2016.02.006_bib31 article-title: Arsenic (III) oxidation by iron (VI)(ferrate) and subsequent removal of arsenic (V) by iron (III) coagulation publication-title: Environ. Sci. Technol. doi: 10.1021/es034203+ – volume: 354 start-page: 108 year: 2010 ident: 10.1016/j.chemosphere.2016.02.006_bib48 article-title: Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.02.063 |
SSID | ssj0001659 |
Score | 2.335198 |
Snippet | Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 650 |
SubjectTerms | Adsorption arsenates Arsenic Arsenite arsenites Arsenites - analysis Arsenites - chemistry Catalysis Coagulants Coagulation colloids Drinking water treatment Fe(III) hydroxide Ferric chloride Ferric Compounds - chemistry Ferrous Compounds - chemistry Flocculation groundwater contamination humic acids Humic Substances - analysis hydrogen peroxide Hydrogen Peroxide - chemistry iron oxidants Oxidation Oxidation-Reduction phosphates Radicals superoxide anion Surface Properties Surface-mediated oxidation United States Environmental Protection Agency Water Pollutants, Chemical - analysis Water Pollutants, Chemical - chemistry Water Purification - methods Water quality water treatment |
Title | Enhanced arsenite removal through surface-catalyzed oxidative coagulation treatment |
URI | https://dx.doi.org/10.1016/j.chemosphere.2016.02.006 https://www.ncbi.nlm.nih.gov/pubmed/26897520 https://www.proquest.com/docview/1785244905 https://www.proquest.com/docview/1808050544 https://www.proquest.com/docview/1825418427 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEC5EifEiRhNfiYzgdeI8-gleZFnZJOAlCt6a7pnqZCWZkX2AevC3Wz2PNR4UIcdpqqHn656ur6ervgI48phaOhvzWDrhY-a4ihX56ThxOnXoZK7KRu3zXIwu2fcrfrUEgz4XJoRVdnt_u6c3u3XXctyheXwzHocc38BGck6MgnyaDLLbjMmwyr8-PIV5pIK3FJjGE6xX4fApxotw-VtPQ_5-UMxMRSvfKV7yUS9x0MYXnW3Aekcio9N2nB9gCatNeD_oa7dtwrthI0Z9twU_h9Xv5pI_ohMsBoIZTWg0tL6irkRPNJ1PvC0wbv7k3N2TaX07LhtB8Kio7a-uwFe0iEn_CJdnw4vBKO4KKcSFSMUsZkhuPZGEPWqFmpUlV8LLglFL7gqfKqRZwpJx58il2wSRe2YtQae1y3n-CZarusIdiGwmkEiNs15p5nPufMimR1lolxRJKXdB9dCZolMZD8Uu_pg-nOza_IO6CaibJDOE-i5ki643rdTGWzqd9PNjnq0bQy7hLd0P-zk1NEXhssRWWM-nJpWKE_XRCX_FJohyEoVk7DUbAoiO0RlBs90umsXbZUJpybNk7_9eYh_WwlMbhvkZlmeTOX4hqjRzB823cAArp99-jM4fAaMBFr8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VraBcEJRXeaYS16h5-ClxqVZbbWnZC63Um2Un47IIkmofEuXXM06cBQ6tKnFNbMn-xpn5HI-_AfjgMbe0N-apdMKnzHGVKorTaeZ07tDJUtWd2udMTM_Zpwt-sQXj4S5MSKuMvr_36Z23jk8OIpoHV_N5uOMb2EjJiVFQTJPiHmwHdSo-gu3D45PpbOOQc8F7FkxDCh0ewP6fNC-C5ke7DFf4g2hmLnoFT3FTmLqJhnbh6OgxPIo8Mjnsh_oEtrDZhZ3xUL5tF-5POj3q66fwZdJ87c75E9rEYuCYyYJGQ0ssiVV6kuV64W2Fafcz5_oXNW1_zutOEzypWnsZa3wlm7T0Z3B-NDkbT9NYSyGtRC5WKUOK7Jkk-FEr1KyuuRJeVoyelK7yuUIyFNaMO0dR3WaI3DNrCTqtXcnL5zBq2gZfQmILgcRrnPVKM19y58OFepSVdlmV1XIP1ACdqaLQeKh38d0MGWXfzF-om4C6yQpDqO9Bsel61att3KXTx8E-5p-lYygq3KX7_mBTQyYK5yW2wXa9NLlUnNiPzvgtbYIuJ7FIxm5rQwDRTrogaF70i2Yzu0IoLXmRvfq_SbyHnenZ51Nzejw7eQ0Pw5s-K_MNjFaLNb4l5rRy7-KX8RsXnRlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+arsenite+removal+through+surface-catalyzed+oxidative+coagulation+treatment&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Li%2C+Yue&rft.au=Bland%2C+Garret+D&rft.au=Yan%2C+Weile&rft.date=2016-05-01&rft.issn=0045-6535&rft.volume=150&rft.spage=650&rft.epage=658&rft_id=info:doi/10.1016%2Fj.chemosphere.2016.02.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |