Enhanced arsenite removal through surface-catalyzed oxidative coagulation treatment

Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 150; pp. 650 - 658
Main Authors Li, Yue, Bland, Garret D., Yan, Weile
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III)) than arsenate (As(V)). In this study, the feasibility of in situ oxidation of As(III) during coagulation was investigated in two systems: Fe(II) or H2O2-assisted oxidative coagulation treatment using ferric chloride as the coagulant. This setup exploits the catalytic property of the fresh formed Fe(III) hydroxide colloids in coagulation suspension to mediate the production of reactive oxidants capable of As(III) oxidation. Fe(II)-assisted coagulation brought about small improvements in As(III) removal compared to treatment with Fe(III) coagulant alone, however, its arsenic removal efficiency is strongly dependent on pH (observed optimal pH = 7–9). Addition of H2O2 together with ferric chloride led to a significant enhancement in arsenic retention at pH 6–8, with final arsenic concentrations well below the U.S.EPA regulatory limit (10 μg/L). H2O2-assisted oxidative coagulation can attain reliable As(III) removal over a broad pH range of 4–9. Radical quenching experiments reveal the participation of superoxide radical in As(III) removal in the oxidative coagulation systems. Phosphate (at > 0.1 mM) strongly suppresses As(III) removal efficiency, whereas carbonate and humic acid pose a minor impact. Overall, the results suggest that a low dose addition of H2O2 along with ferric coagulant is a feasible method for the existing water treatment facilities to achieve improved As(III) removal efficiency. •The addition of Fe(II) or H2O2 during Fe(III)-based conventional coagulation was evaluated for enhanced As(III) removal.•H2O2-amended coagulation can significantly enhance As(III) removal than the conventional or Fe(II)-amended coagulation systems.•H2O2-amended coagulation holds a reliable As(III) removal performance over pH 4–9.•Among common background solutes examined, phosphate poses the greatest impact on As(III) removal during H2O2-amended coagulation.•Overall, addition of a small dose of H2O2 can be a viable method to enhance As(III) removal in drinking water treatment processes.
AbstractList Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III)) than arsenate (As(V)). In this study, the feasibility of in situ oxidation of As(III) during coagulation was investigated in two systems: Fe(II) or H2O2-assisted oxidative coagulation treatment using ferric chloride as the coagulant. This setup exploits the catalytic property of the fresh formed Fe(III) hydroxide colloids in coagulation suspension to mediate the production of reactive oxidants capable of As(III) oxidation. Fe(II)-assisted coagulation brought about small improvements in As(III) removal compared to treatment with Fe(III) coagulant alone, however, its arsenic removal efficiency is strongly dependent on pH (observed optimal pH = 7–9). Addition of H2O2 together with ferric chloride led to a significant enhancement in arsenic retention at pH 6–8, with final arsenic concentrations well below the U.S.EPA regulatory limit (10 μg/L). H2O2-assisted oxidative coagulation can attain reliable As(III) removal over a broad pH range of 4–9. Radical quenching experiments reveal the participation of superoxide radical in As(III) removal in the oxidative coagulation systems. Phosphate (at > 0.1 mM) strongly suppresses As(III) removal efficiency, whereas carbonate and humic acid pose a minor impact. Overall, the results suggest that a low dose addition of H2O2 along with ferric coagulant is a feasible method for the existing water treatment facilities to achieve improved As(III) removal efficiency. •The addition of Fe(II) or H2O2 during Fe(III)-based conventional coagulation was evaluated for enhanced As(III) removal.•H2O2-amended coagulation can significantly enhance As(III) removal than the conventional or Fe(II)-amended coagulation systems.•H2O2-amended coagulation holds a reliable As(III) removal performance over pH 4–9.•Among common background solutes examined, phosphate poses the greatest impact on As(III) removal during H2O2-amended coagulation.•Overall, addition of a small dose of H2O2 can be a viable method to enhance As(III) removal in drinking water treatment processes.
Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III)) than arsenate (As(V)). In this study, the feasibility of in situ oxidation of As(III) during coagulation was investigated in two systems: Fe(II) or H2O2-assisted oxidative coagulation treatment using ferric chloride as the coagulant. This setup exploits the catalytic property of the fresh formed Fe(III) hydroxide colloids in coagulation suspension to mediate the production of reactive oxidants capable of As(III) oxidation. Fe(II)-assisted coagulation brought about small improvements in As(III) removal compared to treatment with Fe(III) coagulant alone, however, its arsenic removal efficiency is strongly dependent on pH (observed optimal pH = 7-9). Addition of H2O2 together with ferric chloride led to a significant enhancement in arsenic retention at pH 6-8, with final arsenic concentrations well below the U.S.EPA regulatory limit (10 mu g/L). H2O2-assisted oxidative coagulation can attain reliable As(III) removal over a broad pH range of 4-9. Radical quenching experiments reveal the participation of superoxide radical in As(III) removal in the oxidative coagulation systems. Phosphate (at > 0.1 mM) strongly suppresses As(III) removal efficiency, whereas carbonate and humic acid pose a minor impact. Overall, the results suggest that a low dose addition of H2O2 along with ferric coagulant is a feasible method for the existing water treatment facilities to achieve improved As(III) removal efficiency.
Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III)) than arsenate (As(V)). In this study, the feasibility of in situ oxidation of As(III) during coagulation was investigated in two systems: Fe(II) or H2O2-assisted oxidative coagulation treatment using ferric chloride as the coagulant. This setup exploits the catalytic property of the fresh formed Fe(III) hydroxide colloids in coagulation suspension to mediate the production of reactive oxidants capable of As(III) oxidation. Fe(II)-assisted coagulation brought about small improvements in As(III) removal compared to treatment with Fe(III) coagulant alone, however, its arsenic removal efficiency is strongly dependent on pH (observed optimal pH = 7-9). Addition of H2O2 together with ferric chloride led to a significant enhancement in arsenic retention at pH 6-8, with final arsenic concentrations well below the U.S.EPA regulatory limit (10 μg/L). H2O2-assisted oxidative coagulation can attain reliable As(III) removal over a broad pH range of 4-9. Radical quenching experiments reveal the participation of superoxide radical in As(III) removal in the oxidative coagulation systems. Phosphate (at > 0.1 mM) strongly suppresses As(III) removal efficiency, whereas carbonate and humic acid pose a minor impact. Overall, the results suggest that a low dose addition of H2O2 along with ferric coagulant is a feasible method for the existing water treatment facilities to achieve improved As(III) removal efficiency.
Author Yan, Weile
Li, Yue
Bland, Garret D.
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0002-2374-8252
  surname: Li
  fullname: Li, Yue
– sequence: 2
  givenname: Garret D.
  surname: Bland
  fullname: Bland, Garret D.
– sequence: 3
  givenname: Weile
  surname: Yan
  fullname: Yan, Weile
  email: weile.yan@ttu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26897520$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v3CAQhlGVqNmk_QuVe-vF7sCCDaeqWqUfUqQckp4RxuOYlW22gFdJf33ZbiJVvXRPoNEzL8M8l-Rs9jMS8p5CRYHWH7eVHXDycTdgwIrlUgWsAqhfkRWVjSopU_KMrAC4KGuxFhfkMsYtQCaFek0uWC1VIxisyN31PJjZYleYEHF2CYuQo_dmLNIQ_PIwFHEJvbFYWpPM-PQro_7RdSa5PRbWm4dlzHc_FymgSRPO6Q05780Y8e3zeUV-fLm-33wrb26_ft98viltTetUchSUQdNii0qi4l0nZN03lufKurU9lchbgR0XbcsYN4Aoem5M_oJS7Vqsr8iHY-4u-J8LxqQnFy2Oo5nRL1FTyQSnkrPmBBQkCBCc_x9tpGCcKzgM8O4ZXdoJO70LbjLhSb-sNwOfjoANPsaAvbYu_dlWCsaNmoI-CNVb_ZdQfRCqgeksNCeofxJeHjmld3PsxSxh7zDoaB0eZLuANunOuxNSfgMsmcPs
CitedBy_id crossref_primary_10_1016_j_envres_2023_116750
crossref_primary_10_1002_vjch_201800033
crossref_primary_10_1016_j_watres_2024_121200
crossref_primary_10_1016_j_watres_2016_11_054
crossref_primary_10_1039_D1EW00946J
crossref_primary_10_1016_j_chemosphere_2018_01_116
crossref_primary_10_1016_j_electacta_2016_05_064
crossref_primary_10_1016_j_matchemphys_2017_03_023
crossref_primary_10_1016_j_watres_2022_119007
crossref_primary_10_1016_j_jhazmat_2024_134482
crossref_primary_10_1021_acsestwater_1c00194
crossref_primary_10_1002_vjch_201800080
crossref_primary_10_1016_j_seppur_2024_129081
crossref_primary_10_1021_acs_energyfuels_1c03032
crossref_primary_10_5004_dwt_2023_30093
crossref_primary_10_1007_s00128_022_03536_0
crossref_primary_10_1016_j_cej_2019_122075
crossref_primary_10_1016_j_cej_2022_139915
crossref_primary_10_1007_s11356_023_28604_8
crossref_primary_10_3390_su142316306
crossref_primary_10_2139_ssrn_4183992
crossref_primary_10_3390_chemengineering8040078
crossref_primary_10_1016_j_jiec_2019_01_026
crossref_primary_10_1007_s11356_022_20931_6
Cites_doi 10.1016/j.chemosphere.2014.04.097
10.1021/es970421p
10.1021/es1010225
10.1039/c0cc02311f
10.1021/es030309t
10.1021/es010130n
10.1021/es026208x
10.1021/es7028284
10.1021/es901274s
10.1016/j.watres.2004.12.022
10.1021/es025845k
10.1016/j.chemosphere.2007.03.036
10.1016/j.chemosphere.2003.12.025
10.1016/j.jhazmat.2007.01.006
10.1021/es60165a006
10.1016/S0043-1354(99)00272-9
10.1061/(ASCE)0733-9372(1997)123:8(800)
10.1021/es980969b
10.1002/j.1551-8833.1996.tb06541.x
10.1021/es902296k
10.1016/j.watres.2005.02.012
10.1021/es0343205
10.1016/j.gca.2014.09.020
10.1038/ngeo685
10.1016/j.seppur.2015.05.002
10.2166/wst.1993.0261
10.1002/j.1551-8833.1994.tb06247.x
10.1016/0010-938X(80)90077-3
10.1021/es7025664
10.1021/es102401d
10.1021/es903117r
10.1016/S0883-2927(02)00018-5
10.1002/aheh.200300485
10.1016/j.jhazmat.2013.06.017
10.1021/es9608104
10.2113/gselements.2.2.71
10.1021/es103793y
10.1016/j.watres.2010.06.018
10.1021/es1000616
10.1080/10643380500326564
10.1021/es902011h
10.1021/es300988p
10.1021/es001551s
10.1006/jcis.2000.7295
10.1021/es0516817
10.1021/jp208600n
10.1021/es010768z
10.1021/es034203+
10.1016/j.memsci.2010.02.063
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7TV
7UA
C1K
F1W
H97
L.G
SOI
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.chemosphere.2016.02.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Environment Abstracts
Pollution Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Technology Research Database
MEDLINE
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 658
ExternalDocumentID 26897520
10_1016_j_chemosphere_2016_02_006
S0045653516301576
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QH
7ST
7TV
7UA
C1K
F1W
H97
L.G
SOI
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-c616t-4e51207bebe98e94dd586f7c4beb3bcf18e4b5ed45bb224a0ee5f4aa65999b353
IEDL.DBID .~1
ISSN 0045-6535
IngestDate Thu Jul 10 18:41:03 EDT 2025
Sun Aug 24 03:34:36 EDT 2025
Fri Jul 11 10:09:07 EDT 2025
Mon Jul 21 06:02:26 EDT 2025
Tue Jul 01 00:45:20 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Fri Feb 23 02:20:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Drinking water treatment
Fe(III) hydroxide
Surface-mediated oxidation
Arsenite
Coagulation
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c616t-4e51207bebe98e94dd586f7c4beb3bcf18e4b5ed45bb224a0ee5f4aa65999b353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2374-8252
PMID 26897520
PQID 1785244905
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_1825418427
proquest_miscellaneous_1808050544
proquest_miscellaneous_1785244905
pubmed_primary_26897520
crossref_citationtrail_10_1016_j_chemosphere_2016_02_006
crossref_primary_10_1016_j_chemosphere_2016_02_006
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2016_02_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Su, Puls (bib51) 2001; 35
Lakshmanan, Clifford, Samanta (bib30) 2010; 44
Bhandari, Reeder, Strongin (bib5) 2011; 45
Appelo, Van der Weiden, Tournassat, Charlet (bib2) 2002; 36
Voegelin, Hug (bib56) 2003; 37
Yan, Ramos, Koel, Zhang (bib57) 2012; 116
Pang, Jiang, Ma (bib40) 2011; 45
Neumann, Ashfaque, Badruzzaman, Ali, Shoemaker, Harvey (bib37) 2010; 3
Smedley, Kinniburgh (bib49) 2002; 17
Johnston, Singer (bib24) 2007; 69
Meng, Bang, Korfiatis (bib34) 2000; 34
Mohan, Pittman (bib36) 2007; 142
Yan, Ramos, Koel, Zhang (bib58) 2010; 46
Keenan, Sedlak (bib26) 2008; 42
Metcalf (bib35) 2003
Hug, Leupin, Berg (bib23) 2008; 42
Bang, Johnson, Korfiatis, Meng (bib3) 2005; 39
Leupin, Hug (bib32) 2005; 39
Dixit, Hering (bib11) 2003; 37
Hug, Leupin (bib22) 2003; 37
Pignatello, Oliveros, MacKay (bib43) 2006; 36
Tamura, Kawamura, Hagayama (bib53) 1980; 20
Önnby, Kumar, Sigfridsson, Wendt, Carlson, Kirsebom (bib39) 2014; 113
Goldberg, Johnston (bib16) 2001; 234
Hering, Chen, Wilkie, Elimelech (bib18) 1997; 123
Bhandari, Reeder, Strongin (bib7) 2012; 46
Amstaetter, Borch, Larese-Casanova, Kappler (bib1) 2010; 44
Kim, Korshin, Frenkel, Velichenko (bib28) 2006; 40
Yin, Li, Kou, Zou (bib59) 2009; 43
Grebel, Pignatello, Mitch (bib17) 2010; 44
Pio, Scarlino, Bloise, Mele, Santoro, Pastore, Santoro (bib45) 2015; 147
Sung, Morgan (bib52) 1980; 14
Roberts, Hug, Ruettimann, Billah, Khan, Rahman (bib47) 2004; 38
Benjamin (bib4) 2014
Lee, Um, Yoon (bib31) 2003; 37
Kumar, Chaudhari, Khilar, Mahajan (bib29) 2004; 55
Pignatello, Liu, Huston (bib42) 1999; 33
Edwards (bib13) 1994; 86
Sen, Manna, Pal (bib48) 2010; 354
Khandaker, Brady, Krumhansl (bib27) 2009
Bordoloi, Nath, Gogoi, Dutta (bib9) 2013; 260
Dittmar, Voegelin, Roberts, Hug, Saha, Ali, Badruzzaman, Kretzschmar (bib10) 2010; 44
Manning, Goldberg (bib33) 1997; 31
Raven, Jain, Loeppert (bib46) 1998; 32
Vaughan (bib55) 2006; 2
Hug, Canonica, Wegelin, Gechter, Von Gunten (bib21) 2001; 35
Elimelech, Hering, Pen-Yuan, Sun, Wilkie (bib15) 1996; 88
Jones, Griffin, Collins, Waite (bib25) 2014; 145
Edzwald (bib14) 1993; 27
Bissen, Frimmel (bib8) 2003; 31
Ona-Nguema, Morin, Wang, Foster, Juillot, Galas, Brown (bib38) 2010; 44
Pham, Lee, Doyle, Sedlak (bib41) 2009; 43
Hering, Chen, Wilkie, Elimelech, Liang (bib20) 1996; 88
Snoeyink, Jenkins (bib50) 1980
Hering (10.1016/j.chemosphere.2016.02.006_bib18) 1997; 123
Pignatello (10.1016/j.chemosphere.2016.02.006_bib42) 1999; 33
Vaughan (10.1016/j.chemosphere.2016.02.006_bib55) 2006; 2
Lakshmanan (10.1016/j.chemosphere.2016.02.006_bib30) 2010; 44
Pang (10.1016/j.chemosphere.2016.02.006_bib40) 2011; 45
Dittmar (10.1016/j.chemosphere.2016.02.006_bib10) 2010; 44
Manning (10.1016/j.chemosphere.2016.02.006_bib33) 1997; 31
Mohan (10.1016/j.chemosphere.2016.02.006_bib36) 2007; 142
Hug (10.1016/j.chemosphere.2016.02.006_bib23) 2008; 42
Meng (10.1016/j.chemosphere.2016.02.006_bib34) 2000; 34
Amstaetter (10.1016/j.chemosphere.2016.02.006_bib1) 2010; 44
Khandaker (10.1016/j.chemosphere.2016.02.006_bib27) 2009
Kumar (10.1016/j.chemosphere.2016.02.006_bib29) 2004; 55
Benjamin (10.1016/j.chemosphere.2016.02.006_bib4) 2014
Smedley (10.1016/j.chemosphere.2016.02.006_bib49) 2002; 17
Hug (10.1016/j.chemosphere.2016.02.006_bib22) 2003; 37
Keenan (10.1016/j.chemosphere.2016.02.006_bib26) 2008; 42
Grebel (10.1016/j.chemosphere.2016.02.006_bib17) 2010; 44
Roberts (10.1016/j.chemosphere.2016.02.006_bib47) 2004; 38
Elimelech (10.1016/j.chemosphere.2016.02.006_bib15) 1996; 88
Leupin (10.1016/j.chemosphere.2016.02.006_bib32) 2005; 39
Bhandari (10.1016/j.chemosphere.2016.02.006_bib7) 2012; 46
Johnston (10.1016/j.chemosphere.2016.02.006_bib24) 2007; 69
Pignatello (10.1016/j.chemosphere.2016.02.006_bib43) 2006; 36
Bang (10.1016/j.chemosphere.2016.02.006_bib3) 2005; 39
Lee (10.1016/j.chemosphere.2016.02.006_bib31) 2003; 37
Pio (10.1016/j.chemosphere.2016.02.006_bib45) 2015; 147
Goldberg (10.1016/j.chemosphere.2016.02.006_bib16) 2001; 234
Sen (10.1016/j.chemosphere.2016.02.006_bib48) 2010; 354
Edwards (10.1016/j.chemosphere.2016.02.006_bib13) 1994; 86
Pham (10.1016/j.chemosphere.2016.02.006_bib41) 2009; 43
Bordoloi (10.1016/j.chemosphere.2016.02.006_bib9) 2013; 260
Yin (10.1016/j.chemosphere.2016.02.006_bib59) 2009; 43
Kim (10.1016/j.chemosphere.2016.02.006_bib28) 2006; 40
Tamura (10.1016/j.chemosphere.2016.02.006_bib53) 1980; 20
Bissen (10.1016/j.chemosphere.2016.02.006_bib8) 2003; 31
Bhandari (10.1016/j.chemosphere.2016.02.006_bib5) 2011; 45
Snoeyink (10.1016/j.chemosphere.2016.02.006_bib50) 1980
Sung (10.1016/j.chemosphere.2016.02.006_bib52) 1980; 14
Neumann (10.1016/j.chemosphere.2016.02.006_bib37) 2010; 3
Su (10.1016/j.chemosphere.2016.02.006_bib51) 2001; 35
Hering (10.1016/j.chemosphere.2016.02.006_bib20) 1996; 88
Yan (10.1016/j.chemosphere.2016.02.006_bib58) 2010; 46
Yan (10.1016/j.chemosphere.2016.02.006_bib57) 2012; 116
Raven (10.1016/j.chemosphere.2016.02.006_bib46) 1998; 32
Ona-Nguema (10.1016/j.chemosphere.2016.02.006_bib38) 2010; 44
Önnby (10.1016/j.chemosphere.2016.02.006_bib39) 2014; 113
Metcalf (10.1016/j.chemosphere.2016.02.006_bib35) 2003
Appelo (10.1016/j.chemosphere.2016.02.006_bib2) 2002; 36
Voegelin (10.1016/j.chemosphere.2016.02.006_bib56) 2003; 37
Hug (10.1016/j.chemosphere.2016.02.006_bib21) 2001; 35
Jones (10.1016/j.chemosphere.2016.02.006_bib25) 2014; 145
Edzwald (10.1016/j.chemosphere.2016.02.006_bib14) 1993; 27
Dixit (10.1016/j.chemosphere.2016.02.006_bib11) 2003; 37
References_xml – volume: 36
  start-page: 3096
  year: 2002
  end-page: 3103
  ident: bib2
  article-title: Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 6318
  year: 2008
  end-page: 6323
  ident: bib23
  article-title: Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation
  publication-title: Environ. Sci. Technol.
– volume: 35
  start-page: 2114
  year: 2001
  end-page: 2121
  ident: bib21
  article-title: Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters
  publication-title: Environ. Sci. Technol.
– volume: 88
  start-page: 155
  year: 1996
  end-page: 167
  ident: bib15
  article-title: Arsenic removal by ferric chloride
  publication-title: J. Am. Water Works Assoc.
– volume: 27
  start-page: 21
  year: 1993
  end-page: 35
  ident: bib14
  article-title: Coagulation in drinking water treatment: particles, organics and coagulants
  publication-title: Water Sci. Technol.
– year: 2009
  ident: bib27
  article-title: Arsenic Removal from Drinking Water: a Handbook for Communities
– volume: 43
  year: 2009
  ident: bib41
  article-title: A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 2783
  year: 2011
  end-page: 2789
  ident: bib5
  article-title: Photoinduced oxidation of arsenite to arsenate on ferrihydrite
  publication-title: Environ. Sci. Technol.
– year: 2003
  ident: bib35
  article-title: Inc., Wastewater Engineering, Treatment and Reuse
– volume: 354
  start-page: 108
  year: 2010
  end-page: 113
  ident: bib48
  article-title: Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system
  publication-title: J. Membr. Sci.
– volume: 116
  year: 2012
  ident: bib57
  article-title: As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy
  publication-title: J. Phys. Chem. C
– volume: 37
  start-page: 972
  year: 2003
  end-page: 978
  ident: bib56
  article-title: Catalyzed oxidation of arsenic(III) by hydrogen peroxide on the surface of ferrihydrite: an in situ ATR-FTIR study
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 2925
  year: 2010
  end-page: 2931
  ident: bib10
  article-title: Arsenic accumulation in a paddy field in bangladesh: seasonal dynamics and trends over a three-year monitoring period
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 6822
  year: 2010
  end-page: 6828
  ident: bib17
  article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 8044
  year: 2012
  end-page: 8051
  ident: bib7
  article-title: Photoinduced oxidation of arsenite to arsenate in the presence of goethite
  publication-title: Environ. Sci. Technol.
– volume: 37
  start-page: 5750
  year: 2003
  end-page: 5756
  ident: bib31
  article-title: Arsenic (III) oxidation by iron (VI)(ferrate) and subsequent removal of arsenic (V) by iron (III) coagulation
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 5641
  year: 2010
  end-page: 5652
  ident: bib30
  article-title: Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation
  publication-title: Water. Res.
– volume: 45
  start-page: 307
  year: 2011
  end-page: 312
  ident: bib40
  article-title: Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in fenton reaction
  publication-title: Environ. Sci. Technol.
– volume: 123
  start-page: 800
  year: 1997
  end-page: 807
  ident: bib18
  article-title: Arsenic removal from drinking water during coagulation
  publication-title: J. Environ. Eng.
– volume: 39
  start-page: 763
  year: 2005
  end-page: 770
  ident: bib3
  article-title: Chemical reactions between arsenic and zero-valent iron in water
  publication-title: Water Res.
– volume: 147
  start-page: 284
  year: 2015
  end-page: 291
  ident: bib45
  article-title: Efficient removal of low-arsenic concentrations from drinking water by combined coagulation and adsorption processes
  publication-title: Sep. Purif. Technol.
– volume: 69
  start-page: 517
  year: 2007
  end-page: 525
  ident: bib24
  article-title: Redox reactions in the Fe-AS-O-2 system
  publication-title: Chemosphere
– volume: 145
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib25
  article-title: Ferrous iron oxidation under acidic conditions – the effect of ferric oxide surfaces
  publication-title: Geochim. Cosmochim. Acta
– volume: 260
  start-page: 618
  year: 2013
  end-page: 626
  ident: bib9
  article-title: Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: laboratory and field studies
  publication-title: J. Hazard. Mater.
– volume: 14
  start-page: 561
  year: 1980
  end-page: 568
  ident: bib52
  article-title: “Kinetics and product of ferrous iron oxygenation in aqueous systems
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 8361
  year: 2009
  end-page: 8366
  ident: bib59
  article-title: “Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system.”
  publication-title: Environ. Sci. Technol.
– volume: 37
  start-page: 4182
  year: 2003
  end-page: 4189
  ident: bib11
  article-title: Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 2005
  year: 1997
  end-page: 2011
  ident: bib33
  article-title: Adsorption and stability of arsenic(III) at the clay mineral-water interface
  publication-title: E Environ. Sci. Technol.
– volume: 42
  start-page: 1262
  year: 2008
  end-page: 1267
  ident: bib26
  article-title: Factors affecting the yield of oxidants from the reaction of manoparticulate zero-valent iron and oxygen
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 228
  year: 2006
  end-page: 234
  ident: bib28
  article-title: Electrochemical and XAES studies of effects of carbonate on the oxidation of arsenite
  publication-title: Environ. Sci. Technol.
– year: 2014
  ident: bib4
  article-title: Water Chemistry
– volume: 35
  start-page: 4562
  year: 2001
  end-page: 4568
  ident: bib51
  article-title: Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 6995
  year: 2010
  end-page: 6997
  ident: bib58
  article-title: Multi-tiered distributions of arsenic in iron nanoparticles: observation of dual redox functionality enabled by a core-shell structure
  publication-title: Chem. Comm.
– volume: 33
  start-page: 1832
  year: 1999
  end-page: 1839
  ident: bib42
  article-title: Evidence for an additional oxidant in the photoassisted Fenton reaction
  publication-title: Environ. Sci. Technol.
– volume: 234
  start-page: 204
  year: 2001
  end-page: 216
  ident: bib16
  article-title: Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling
  publication-title: J. Colloid Interf. Sci.
– volume: 32
  start-page: 344
  year: 1998
  end-page: 349
  ident: bib46
  article-title: Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes
  publication-title: Environ. Sci. Technol.
– volume: 86
  start-page: 64
  year: 1994
  end-page: 78
  ident: bib13
  article-title: “Chemistry of arsenic removal during coagulation and Fe-Mn oxidation.”
  publication-title: J. Am. Water Works Assoc.
– year: 1980
  ident: bib50
  article-title: Water Chemistry
– volume: 37
  start-page: 2734
  year: 2003
  end-page: 2742
  ident: bib22
  article-title: Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the fenton reaction
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 97
  year: 2003
  end-page: 107
  ident: bib8
  article-title: Arsenic—a review. Part II: oxidation of arsenic and its removal in water treatment
  publication-title: Acta Hydroch. Hydrob.
– volume: 44
  start-page: 102
  year: 2010
  end-page: 108
  ident: bib1
  article-title: Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH)
  publication-title: Environ. Sci. Technol.
– volume: 17
  start-page: 517
  year: 2002
  end-page: 568
  ident: bib49
  article-title: A review of the source, behaviour and distribution of arsenic in natural waters
  publication-title: Appl. Geochem.
– volume: 88
  start-page: 155
  year: 1996
  end-page: 167
  ident: bib20
  article-title: Arsenic removal by ferric chloride
  publication-title: J. Am. Water Works Assoc.
– volume: 36
  start-page: 1
  year: 2006
  end-page: 84
  ident: bib43
  article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Tec.
– volume: 142
  start-page: 1
  year: 2007
  end-page: 53
  ident: bib36
  article-title: Arsenic removal from water/wastewater using adsorbents—a critical review
  publication-title: J. Hazard. Mater.
– volume: 3
  start-page: 46
  year: 2010
  end-page: 52
  ident: bib37
  article-title: Anthropogenic influences on groundwater arsenic concentrations in Bangladesh
  publication-title: Nat. Geosci.
– volume: 55
  start-page: 1245
  year: 2004
  end-page: 1252
  ident: bib29
  article-title: Removal of arsenic from water by electrocoagulation
  publication-title: Chemosphere
– volume: 20
  start-page: 963
  year: 1980
  ident: bib53
  article-title: Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides
  publication-title: Corros. Sci.
– volume: 2
  start-page: 71
  year: 2006
  end-page: 75
  ident: bib55
  article-title: Arsenic
  publication-title: Elements
– volume: 38
  start-page: 307
  year: 2004
  end-page: 315
  ident: bib47
  article-title: Arsenic removal with iron(II) and iron(III) waters with high silicate and phosphate concentrations
  publication-title: Environ. Sci. Technol.
– volume: 113
  start-page: 151
  year: 2014
  end-page: 157
  ident: bib39
  article-title: Improved arsenic (III) adsorption by Al 2 O 3 nanoparticles and H 2 O 2: evidence of oxidation to arsenic (V) from X-ray absorption spectroscopy
  publication-title: Chemosphere
– volume: 39
  start-page: 1729
  year: 2005
  end-page: 1740
  ident: bib32
  article-title: Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron
  publication-title: Water Res.
– volume: 34
  start-page: 1255
  year: 2000
  end-page: 1261
  ident: bib34
  article-title: Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride
  publication-title: Water Res.
– volume: 44
  start-page: 5416
  year: 2010
  end-page: 5422
  ident: bib38
  article-title: XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O-2 via Fe2+-mediated reactions
  publication-title: Environ. Sci. Technol.
– volume: 113
  start-page: 151
  year: 2014
  ident: 10.1016/j.chemosphere.2016.02.006_bib39
  article-title: Improved arsenic (III) adsorption by Al 2 O 3 nanoparticles and H 2 O 2: evidence of oxidation to arsenic (V) from X-ray absorption spectroscopy
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.04.097
– volume: 32
  start-page: 344
  year: 1998
  ident: 10.1016/j.chemosphere.2016.02.006_bib46
  article-title: Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es970421p
– volume: 44
  start-page: 6822
  year: 2010
  ident: 10.1016/j.chemosphere.2016.02.006_bib17
  article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1010225
– volume: 46
  start-page: 6995
  year: 2010
  ident: 10.1016/j.chemosphere.2016.02.006_bib58
  article-title: Multi-tiered distributions of arsenic in iron nanoparticles: observation of dual redox functionality enabled by a core-shell structure
  publication-title: Chem. Comm.
  doi: 10.1039/c0cc02311f
– volume: 37
  start-page: 4182
  year: 2003
  ident: 10.1016/j.chemosphere.2016.02.006_bib11
  article-title: Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es030309t
– volume: 36
  start-page: 3096
  year: 2002
  ident: 10.1016/j.chemosphere.2016.02.006_bib2
  article-title: Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010130n
– volume: 37
  start-page: 2734
  year: 2003
  ident: 10.1016/j.chemosphere.2016.02.006_bib22
  article-title: Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the fenton reaction
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es026208x
– volume: 42
  start-page: 6318
  year: 2008
  ident: 10.1016/j.chemosphere.2016.02.006_bib23
  article-title: Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es7028284
– volume: 44
  start-page: 102
  year: 2010
  ident: 10.1016/j.chemosphere.2016.02.006_bib1
  article-title: Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es901274s
– volume: 39
  start-page: 763
  year: 2005
  ident: 10.1016/j.chemosphere.2016.02.006_bib3
  article-title: Chemical reactions between arsenic and zero-valent iron in water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.12.022
– volume: 37
  start-page: 972
  year: 2003
  ident: 10.1016/j.chemosphere.2016.02.006_bib56
  article-title: Catalyzed oxidation of arsenic(III) by hydrogen peroxide on the surface of ferrihydrite: an in situ ATR-FTIR study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es025845k
– volume: 69
  start-page: 517
  year: 2007
  ident: 10.1016/j.chemosphere.2016.02.006_bib24
  article-title: Redox reactions in the Fe-AS-O-2 system
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.03.036
– volume: 55
  start-page: 1245
  year: 2004
  ident: 10.1016/j.chemosphere.2016.02.006_bib29
  article-title: Removal of arsenic from water by electrocoagulation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2003.12.025
– volume: 142
  start-page: 1
  year: 2007
  ident: 10.1016/j.chemosphere.2016.02.006_bib36
  article-title: Arsenic removal from water/wastewater using adsorbents—a critical review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.01.006
– year: 2003
  ident: 10.1016/j.chemosphere.2016.02.006_bib35
– volume: 14
  start-page: 561
  year: 1980
  ident: 10.1016/j.chemosphere.2016.02.006_bib52
  article-title: “Kinetics and product of ferrous iron oxygenation in aqueous systems
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es60165a006
– volume: 34
  start-page: 1255
  year: 2000
  ident: 10.1016/j.chemosphere.2016.02.006_bib34
  article-title: Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(99)00272-9
– volume: 123
  start-page: 800
  year: 1997
  ident: 10.1016/j.chemosphere.2016.02.006_bib18
  article-title: Arsenic removal from drinking water during coagulation
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(1997)123:8(800)
– year: 2009
  ident: 10.1016/j.chemosphere.2016.02.006_bib27
– volume: 33
  start-page: 1832
  year: 1999
  ident: 10.1016/j.chemosphere.2016.02.006_bib42
  article-title: Evidence for an additional oxidant in the photoassisted Fenton reaction
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980969b
– volume: 88
  start-page: 155
  year: 1996
  ident: 10.1016/j.chemosphere.2016.02.006_bib20
  article-title: Arsenic removal by ferric chloride
  publication-title: J. Am. Water Works Assoc.
  doi: 10.1002/j.1551-8833.1996.tb06541.x
– volume: 43
  year: 2009
  ident: 10.1016/j.chemosphere.2016.02.006_bib41
  article-title: A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902296k
– volume: 39
  start-page: 1729
  year: 2005
  ident: 10.1016/j.chemosphere.2016.02.006_bib32
  article-title: Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.02.012
– volume: 38
  start-page: 307
  year: 2004
  ident: 10.1016/j.chemosphere.2016.02.006_bib47
  article-title: Arsenic removal with iron(II) and iron(III) waters with high silicate and phosphate concentrations
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0343205
– volume: 145
  start-page: 1
  year: 2014
  ident: 10.1016/j.chemosphere.2016.02.006_bib25
  article-title: Ferrous iron oxidation under acidic conditions – the effect of ferric oxide surfaces
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2014.09.020
– volume: 3
  start-page: 46
  year: 2010
  ident: 10.1016/j.chemosphere.2016.02.006_bib37
  article-title: Anthropogenic influences on groundwater arsenic concentrations in Bangladesh
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo685
– volume: 147
  start-page: 284
  year: 2015
  ident: 10.1016/j.chemosphere.2016.02.006_bib45
  article-title: Efficient removal of low-arsenic concentrations from drinking water by combined coagulation and adsorption processes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.05.002
– volume: 27
  start-page: 21
  year: 1993
  ident: 10.1016/j.chemosphere.2016.02.006_bib14
  article-title: Coagulation in drinking water treatment: particles, organics and coagulants
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1993.0261
– volume: 86
  start-page: 64
  year: 1994
  ident: 10.1016/j.chemosphere.2016.02.006_bib13
  article-title: “Chemistry of arsenic removal during coagulation and Fe-Mn oxidation.”
  publication-title: J. Am. Water Works Assoc.
  doi: 10.1002/j.1551-8833.1994.tb06247.x
– volume: 20
  start-page: 963
  year: 1980
  ident: 10.1016/j.chemosphere.2016.02.006_bib53
  article-title: Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938X(80)90077-3
– volume: 42
  start-page: 1262
  year: 2008
  ident: 10.1016/j.chemosphere.2016.02.006_bib26
  article-title: Factors affecting the yield of oxidants from the reaction of manoparticulate zero-valent iron and oxygen
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es7025664
– volume: 45
  start-page: 307
  year: 2011
  ident: 10.1016/j.chemosphere.2016.02.006_bib40
  article-title: Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in fenton reaction
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102401d
– volume: 44
  start-page: 2925
  year: 2010
  ident: 10.1016/j.chemosphere.2016.02.006_bib10
  article-title: Arsenic accumulation in a paddy field in bangladesh: seasonal dynamics and trends over a three-year monitoring period
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903117r
– volume: 17
  start-page: 517
  year: 2002
  ident: 10.1016/j.chemosphere.2016.02.006_bib49
  article-title: A review of the source, behaviour and distribution of arsenic in natural waters
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(02)00018-5
– volume: 31
  start-page: 97
  year: 2003
  ident: 10.1016/j.chemosphere.2016.02.006_bib8
  article-title: Arsenic—a review. Part II: oxidation of arsenic and its removal in water treatment
  publication-title: Acta Hydroch. Hydrob.
  doi: 10.1002/aheh.200300485
– volume: 260
  start-page: 618
  year: 2013
  ident: 10.1016/j.chemosphere.2016.02.006_bib9
  article-title: Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: laboratory and field studies
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.06.017
– volume: 31
  start-page: 2005
  year: 1997
  ident: 10.1016/j.chemosphere.2016.02.006_bib33
  article-title: Adsorption and stability of arsenic(III) at the clay mineral-water interface
  publication-title: E Environ. Sci. Technol.
  doi: 10.1021/es9608104
– volume: 88
  start-page: 155
  year: 1996
  ident: 10.1016/j.chemosphere.2016.02.006_bib15
  article-title: Arsenic removal by ferric chloride
  publication-title: J. Am. Water Works Assoc.
  doi: 10.1002/j.1551-8833.1996.tb06541.x
– volume: 2
  start-page: 71
  year: 2006
  ident: 10.1016/j.chemosphere.2016.02.006_bib55
  article-title: Arsenic
  publication-title: Elements
  doi: 10.2113/gselements.2.2.71
– volume: 45
  start-page: 2783
  year: 2011
  ident: 10.1016/j.chemosphere.2016.02.006_bib5
  article-title: Photoinduced oxidation of arsenite to arsenate on ferrihydrite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103793y
– year: 1980
  ident: 10.1016/j.chemosphere.2016.02.006_bib50
– volume: 44
  start-page: 5641
  year: 2010
  ident: 10.1016/j.chemosphere.2016.02.006_bib30
  article-title: Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation
  publication-title: Water. Res.
  doi: 10.1016/j.watres.2010.06.018
– volume: 44
  start-page: 5416
  year: 2010
  ident: 10.1016/j.chemosphere.2016.02.006_bib38
  article-title: XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O-2 via Fe2+-mediated reactions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1000616
– volume: 36
  start-page: 1
  year: 2006
  ident: 10.1016/j.chemosphere.2016.02.006_bib43
  article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Tec.
  doi: 10.1080/10643380500326564
– volume: 43
  start-page: 8361
  year: 2009
  ident: 10.1016/j.chemosphere.2016.02.006_bib59
  article-title: “Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system.”
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902011h
– volume: 46
  start-page: 8044
  year: 2012
  ident: 10.1016/j.chemosphere.2016.02.006_bib7
  article-title: Photoinduced oxidation of arsenite to arsenate in the presence of goethite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300988p
– volume: 35
  start-page: 2114
  year: 2001
  ident: 10.1016/j.chemosphere.2016.02.006_bib21
  article-title: Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es001551s
– volume: 234
  start-page: 204
  year: 2001
  ident: 10.1016/j.chemosphere.2016.02.006_bib16
  article-title: Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1006/jcis.2000.7295
– year: 2014
  ident: 10.1016/j.chemosphere.2016.02.006_bib4
– volume: 40
  start-page: 228
  year: 2006
  ident: 10.1016/j.chemosphere.2016.02.006_bib28
  article-title: Electrochemical and XAES studies of effects of carbonate on the oxidation of arsenite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0516817
– volume: 116
  year: 2012
  ident: 10.1016/j.chemosphere.2016.02.006_bib57
  article-title: As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp208600n
– volume: 35
  start-page: 4562
  year: 2001
  ident: 10.1016/j.chemosphere.2016.02.006_bib51
  article-title: Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010768z
– volume: 37
  start-page: 5750
  year: 2003
  ident: 10.1016/j.chemosphere.2016.02.006_bib31
  article-title: Arsenic (III) oxidation by iron (VI)(ferrate) and subsequent removal of arsenic (V) by iron (III) coagulation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034203+
– volume: 354
  start-page: 108
  year: 2010
  ident: 10.1016/j.chemosphere.2016.02.006_bib48
  article-title: Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.02.063
SSID ssj0001659
Score 2.335198
Snippet Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 650
SubjectTerms Adsorption
arsenates
Arsenic
Arsenite
arsenites
Arsenites - analysis
Arsenites - chemistry
Catalysis
Coagulants
Coagulation
colloids
Drinking water treatment
Fe(III) hydroxide
Ferric chloride
Ferric Compounds - chemistry
Ferrous Compounds - chemistry
Flocculation
groundwater contamination
humic acids
Humic Substances - analysis
hydrogen peroxide
Hydrogen Peroxide - chemistry
iron
oxidants
Oxidation
Oxidation-Reduction
phosphates
Radicals
superoxide anion
Surface Properties
Surface-mediated oxidation
United States Environmental Protection Agency
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - chemistry
Water Purification - methods
Water quality
water treatment
Title Enhanced arsenite removal through surface-catalyzed oxidative coagulation treatment
URI https://dx.doi.org/10.1016/j.chemosphere.2016.02.006
https://www.ncbi.nlm.nih.gov/pubmed/26897520
https://www.proquest.com/docview/1785244905
https://www.proquest.com/docview/1808050544
https://www.proquest.com/docview/1825418427
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEC5EifEiRhNfiYzgdeI8-gleZFnZJOAlCt6a7pnqZCWZkX2AevC3Wz2PNR4UIcdpqqHn656ur6ervgI48phaOhvzWDrhY-a4ihX56ThxOnXoZK7KRu3zXIwu2fcrfrUEgz4XJoRVdnt_u6c3u3XXctyheXwzHocc38BGck6MgnyaDLLbjMmwyr8-PIV5pIK3FJjGE6xX4fApxotw-VtPQ_5-UMxMRSvfKV7yUS9x0MYXnW3Aekcio9N2nB9gCatNeD_oa7dtwrthI0Z9twU_h9Xv5pI_ohMsBoIZTWg0tL6irkRPNJ1PvC0wbv7k3N2TaX07LhtB8Kio7a-uwFe0iEn_CJdnw4vBKO4KKcSFSMUsZkhuPZGEPWqFmpUlV8LLglFL7gqfKqRZwpJx58il2wSRe2YtQae1y3n-CZarusIdiGwmkEiNs15p5nPufMimR1lolxRJKXdB9dCZolMZD8Uu_pg-nOza_IO6CaibJDOE-i5ki643rdTGWzqd9PNjnq0bQy7hLd0P-zk1NEXhssRWWM-nJpWKE_XRCX_FJohyEoVk7DUbAoiO0RlBs90umsXbZUJpybNk7_9eYh_WwlMbhvkZlmeTOX4hqjRzB823cAArp99-jM4fAaMBFr8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VraBcEJRXeaYS16h5-ClxqVZbbWnZC63Um2Un47IIkmofEuXXM06cBQ6tKnFNbMn-xpn5HI-_AfjgMbe0N-apdMKnzHGVKorTaeZ07tDJUtWd2udMTM_Zpwt-sQXj4S5MSKuMvr_36Z23jk8OIpoHV_N5uOMb2EjJiVFQTJPiHmwHdSo-gu3D45PpbOOQc8F7FkxDCh0ewP6fNC-C5ke7DFf4g2hmLnoFT3FTmLqJhnbh6OgxPIo8Mjnsh_oEtrDZhZ3xUL5tF-5POj3q66fwZdJ87c75E9rEYuCYyYJGQ0ssiVV6kuV64W2Fafcz5_oXNW1_zutOEzypWnsZa3wlm7T0Z3B-NDkbT9NYSyGtRC5WKUOK7Jkk-FEr1KyuuRJeVoyelK7yuUIyFNaMO0dR3WaI3DNrCTqtXcnL5zBq2gZfQmILgcRrnPVKM19y58OFepSVdlmV1XIP1ACdqaLQeKh38d0MGWXfzF-om4C6yQpDqO9Bsel61att3KXTx8E-5p-lYygq3KX7_mBTQyYK5yW2wXa9NLlUnNiPzvgtbYIuJ7FIxm5rQwDRTrogaF70i2Yzu0IoLXmRvfq_SbyHnenZ51Nzejw7eQ0Pw5s-K_MNjFaLNb4l5rRy7-KX8RsXnRlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+arsenite+removal+through+surface-catalyzed+oxidative+coagulation+treatment&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Li%2C+Yue&rft.au=Bland%2C+Garret+D&rft.au=Yan%2C+Weile&rft.date=2016-05-01&rft.issn=0045-6535&rft.volume=150&rft.spage=650&rft.epage=658&rft_id=info:doi/10.1016%2Fj.chemosphere.2016.02.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon