Model Lipid Membranes Assembled from Natural Plant Thylakoids into 2D Microarray Patterns as a Platform to Assess the Organization and Photophysics of Light‐Harvesting Proteins

Natural photosynthetic “thylakoid” membranes found in green plants contain a large network of light‐harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called “grana”, alters protein–protein interactions leading to changes in the ener...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 14; pp. e2006608 - n/a
Main Authors Meredith, Sophie A., Yoneda, Takuro, Hancock, Ashley M., Connell, Simon D., Evans, Stephen D., Morigaki, Kenichi, Adams, Peter G.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Natural photosynthetic “thylakoid” membranes found in green plants contain a large network of light‐harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called “grana”, alters protein–protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro‐ and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high‐quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false‐positive results. A polymerized lipid bilayer (purple) templates the self‐assembly of “hybrid membranes” from thylakoid membranes (green) and synthetic lipids (colorless). During membrane formation, transmembrane proteins migrate from thylakoids into underlying lipid bilayers, decreasing the protein concentration and uncoupling protein‐protein interactions (manifested as increased fluorescent lifetimes). These hybrid membranes are used to delineate the relationship between photophysics and structure of light‐harvesting complexes.
AbstractList Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results.
Natural photosynthetic “thylakoid” membranes found in green plants contain a large network of light‐harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called “grana”, alters protein–protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro‐ and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high‐quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false‐positive results. A polymerized lipid bilayer (purple) templates the self‐assembly of “hybrid membranes” from thylakoid membranes (green) and synthetic lipids (colorless). During membrane formation, transmembrane proteins migrate from thylakoids into underlying lipid bilayers, decreasing the protein concentration and uncoupling protein‐protein interactions (manifested as increased fluorescent lifetimes). These hybrid membranes are used to delineate the relationship between photophysics and structure of light‐harvesting complexes.
Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results.Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results.
Author Connell, Simon D.
Evans, Stephen D.
Yoneda, Takuro
Adams, Peter G.
Meredith, Sophie A.
Hancock, Ashley M.
Morigaki, Kenichi
AuthorAffiliation 2 Graduate School of Agricultural Science and Biosignal Research Center Kobe University Rokkodaicho 1‐1, Nada Kobe 657‐8501 Japan
1 School of Physics and Astronomy and The Astbury Centre for Structural Molecular Biology University of Leeds Leeds LS2 9JT UK
AuthorAffiliation_xml – name: 1 School of Physics and Astronomy and The Astbury Centre for Structural Molecular Biology University of Leeds Leeds LS2 9JT UK
– name: 2 Graduate School of Agricultural Science and Biosignal Research Center Kobe University Rokkodaicho 1‐1, Nada Kobe 657‐8501 Japan
Author_xml – sequence: 1
  givenname: Sophie A.
  orcidid: 0000-0003-2550-9092
  surname: Meredith
  fullname: Meredith, Sophie A.
  organization: University of Leeds
– sequence: 2
  givenname: Takuro
  surname: Yoneda
  fullname: Yoneda, Takuro
  organization: Kobe University
– sequence: 3
  givenname: Ashley M.
  orcidid: 0000-0003-2069-5105
  surname: Hancock
  fullname: Hancock, Ashley M.
  organization: University of Leeds
– sequence: 4
  givenname: Simon D.
  orcidid: 0000-0003-2500-5724
  surname: Connell
  fullname: Connell, Simon D.
  organization: University of Leeds
– sequence: 5
  givenname: Stephen D.
  orcidid: 0000-0001-8342-5335
  surname: Evans
  fullname: Evans, Stephen D.
  organization: University of Leeds
– sequence: 6
  givenname: Kenichi
  orcidid: 0000-0002-2454-6513
  surname: Morigaki
  fullname: Morigaki, Kenichi
  email: morigaki@port.kobe-u.ac.jp
  organization: Kobe University
– sequence: 7
  givenname: Peter G.
  orcidid: 0000-0002-3940-8770
  surname: Adams
  fullname: Adams, Peter G.
  email: p.g.adams@leeds.ac.uk
  organization: University of Leeds
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33690933$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNURC-wZYkssWEzgy8TO1mhqlyKlKEjUdbWSexMXBJ7sJ2isOIReBYeiSfB0ZThskGy5CP5O7_Of_yfZkfWWZ1ljwleEozp8zD0_ZJiijHnuLiXnRBO2IIXtDw61AQfZ6ch3GDMCF2JB9kxY7zEJWMn2fe1U7pHldkZhdZ6qD1YHdB5CKnutUKtdwN6B3H00KNNDzai627q4aMzKiBjo0P0JVqbxjvwHia0gRi1twFBOnNHbJ0fUOJm0RBQ7DS68luw5gtE4ywCq9Cmc9HtuimYJiDXpoG2Xfzx9dsl-FsdorFbtPEuamPDw-x-C33Qj-7us-zD61fXF5eL6urN24vzatFwwouFKJtcFILyluYC8qLEpC2pKrESFCvAQhdANW8x1CzXhCmhGiFST5uDquuGnWUv9rq7sR60arSNaQdy580AfpIOjPz7xZpObt2tJGQlOFuxpPDsTsG7T2OyIQcTGt2nLWo3Bknz9CUFJrRM6NN_0Bs3epv8zVS5KhjmeaKWeyptOwSv28M0BMs5D3LOgzzkITU8-dPDAf8VgASUe-Cz6fX0Hzn5fl1Vv8V_Aq0KyPY
CitedBy_id crossref_primary_10_1002_admi_202100257
crossref_primary_10_35848_1347_4065_ad2fdf
crossref_primary_10_1088_2050_6120_acda7b
crossref_primary_10_1016_j_jphotobiol_2022_112585
crossref_primary_10_1021_acs_jpcb_2c07652
crossref_primary_10_1039_D1CP01628H
Cites_doi 10.3390/ijms14023514
10.1016/j.bbabio.2004.09.009
10.1021/acs.biochem.8b00118
10.1039/b613605b
10.1007/s11120-015-0176-z
10.1016/j.chemphys.2012.12.039
10.1038/s41570-019-0149-4
10.5935/1806-6690.20160021
10.1105/tpc.17.00071
10.1021/la0157420
10.1016/j.bbamem.2016.10.010
10.1093/jxb/err034
10.1016/j.bbabio.2013.11.018
10.1007/s11120-008-9388-9
10.1021/acs.langmuir.9b02685
10.1007/s100510050862
10.1016/j.bbamem.2018.03.010
10.1104/pp.50.1.87
10.1002/adfm.201606265
10.1016/j.bioelechem.2009.10.008
10.1016/j.bpj.2014.04.016
10.1016/0014-5793(83)80154-9
10.1038/sj.emboj.7600585
10.1021/la0017577
10.1007/s11120-018-0607-8
10.1088/0957-4484/20/34/345701
10.1088/1361-6455/aa7583
10.1105/tpc.110.081646
10.1016/j.plantsci.2017.09.021
10.1016/j.jphotobiol.2015.09.011
10.1021/bi00399a040
10.1016/j.ijnonlinmec.2015.06.001
10.1126/science.1110879
10.1007/s11099-018-0768-x
10.1074/jbc.M116.730101
10.1016/j.febslet.2007.06.070
10.1016/j.bbabio.2014.02.003
10.2174/1389203715666140327102757
10.1039/D0LC00156B
10.1101/2020.09.15.296665
10.1038/srep10331
10.1016/j.bpc.2015.05.003
10.1016/j.bbamem.2009.12.029
10.7554/eLife.09541
10.3390/nano8040189
10.1021/acs.biomac.5b01434
10.1016/1011-1344(92)87006-U
10.1038/s41477-018-0163-4
10.1039/C5CP01905B
10.1016/j.bbabio.2018.06.011
10.1039/C9NR04653D
10.1021/ac102979b
10.1073/pnas.1205561110
10.1016/j.jphotochem.2015.06.009
10.1016/j.bbabio.2011.05.024
10.1021/ja02242a004
10.1021/acs.langmuir.0c00613
10.1002/1521-3773(20010105)40:1<172::AID-ANIE172>3.0.CO;2-G
10.1021/acs.chemrev.9b00105
10.1021/la103281q
10.1006/jmbi.2000.4404
10.3389/fpls.2018.00357
10.1096/fj.13-247395
10.1021/acsnano.5b05579
10.1016/j.ccr.2007.04.002
10.1021/nl901262h
10.1007/s11120-009-9431-5
10.1038/33116
10.1021/nl062528t
10.1021/acs.chemrev.6b00002
10.1016/j.bbabio.2014.02.014
10.1039/C7CC01023K
10.1111/j.1365-313X.2011.04790.x
10.1021/la501483s
10.1038/s41477-018-0127-8
10.1105/tpc.114.127233
10.1529/biophysj.105.080507
10.1021/acs.langmuir.8b02307
10.1021/nl1003569
10.1016/j.bbabio.2010.12.017
10.1007/978-0-387-46312-4_13
ContentType Journal Article
Copyright 2021 The Authors. Small published by Wiley‐VCH GmbH
2021 The Authors. Small published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Small published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
DOI 10.1002/smll.202006608
DatabaseName Wiley Open Access Journals
Wiley Online Library Free Content
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202006608
33690933
SMLL202006608
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: 1807029
– fundername: EPSRC
  funderid: EP/P023266/1
– fundername: BBSRC
  funderid: BB/R000174/1
– fundername: EPSRC
  funderid: EP/J017566/1
– fundername: EPSRC
  funderid: EP/T013958/1
– fundername: University Academic Fellowship (University of Leeds)
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/M011151/1)
– fundername: EPSRC
  funderid: EP/ J017566/1
– fundername: Royal Society UK
  funderid: IEC/R3/183029
– fundername: Japan Society for the Promotion of Science
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M011151/1)
– fundername: Medical Research Council
  grantid: MR/M009084/1
– fundername: BBSRC
  grantid: BB/R000174/1
– fundername: Royal Society UK
  grantid: IEC/R3/183029
– fundername: Japan‐UK Research Cooperative Program
  grantid: JPJSBP120195707; 19H04725
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WIN
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
CGR
CUY
CVF
ECM
EIF
EJD
FEDTE
GODZA
HVGLF
NPM
AAMNL
AAYXX
ACRPL
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c6168-79c578726f257a58901f92d90d720da07e8a2e6f0ab35e13d7dc77c57f5adbbc3
IEDL.DBID 24P
ISSN 1613-6810
1613-6829
IngestDate Thu Oct 17 05:36:17 EDT 2024
Thu Dec 05 20:29:13 EST 2024
Thu Oct 10 17:16:36 EDT 2024
Fri Dec 06 01:58:20 EST 2024
Sat Nov 02 12:29:17 EDT 2024
Sat Aug 24 01:03:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords artificial photosynthesis
biohybrids
supported lipid bilayers
atomic force microscopy (AFM)
chlorophyll fluorescence
fluorescence lifetime imaging microscopy (FLIM)
light-harvesting
Language English
License Attribution
2021 The Authors. Small published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6168-79c578726f257a58901f92d90d720da07e8a2e6f0ab35e13d7dc77c57f5adbbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2550-9092
0000-0003-2069-5105
0000-0003-2500-5724
0000-0001-8342-5335
0000-0002-2454-6513
0000-0002-3940-8770
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202006608
PMID 33690933
PQID 2509483065
PQPubID 1046358
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11476343
proquest_miscellaneous_2500380129
proquest_journals_2509483065
crossref_primary_10_1002_smll_202006608
pubmed_primary_33690933
wiley_primary_10_1002_smll_202006608_SMLL202006608
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2009 2018 2019; 100 4 140
2018 2018 2009 2016 2013 2019; 34 57 99 127 110 11
1983; 153
2016 2014 2017; 5 1837 29
2014 2010 2020; 30 10 20
2009 2009; 20 9
2017; 27
2011 2012 2005 2011; 23 69 1706 62
1972 1987 2007; 50 26 6
2018; 266
2013 2015 2011; 419 313 27
2015 2015 2007 2018 2014 2019 2016; 152 17 581 1859 1837 119 291
2020; 36
2006
2020 2018; 4 8
2001; 306
2016; 17
2007 2007 2010; 251 7 79
1998; 392
2001 2002 2018 2015; 40 18 1860 76
2017; 50
2005 2018 2017; 24 9 117
2014; 1837
2006 2019; 91 35
2014; 106
2013; 14
2020
2011 2014 2016; 1807 28 10
2014; 15
2017; 1859
1999; 10
2014
2001 2010 2015; 17 1798 5
2012; 1817
1918; 40
2016; 47
2005 2014 2018 2020; 309 26 4 6
2018 2015 1992; 56 205 15
2017 2011; 53 83
e_1_2_8_28_1
e_1_2_8_22_3
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_9_5
e_1_2_8_9_4
e_1_2_8_9_7
e_1_2_8_9_6
e_1_2_8_3_1
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_5_3
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_20_3
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_11_3
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_11_4
e_1_2_8_13_2
e_1_2_8_13_3
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_36_2
e_1_2_8_19_3
Zhao L. S. (e_1_2_8_12_4) 2020; 6
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_32_3
e_1_2_8_34_1
Blankenship R. E. (e_1_2_8_1_1) 2014
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_14_4
e_1_2_8_16_2
e_1_2_8_14_5
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_6
e_1_2_8_18_2
e_1_2_8_18_3
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_14_3
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_18_4
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_10_3
e_1_2_8_12_1
e_1_2_8_31_3
e_1_2_8_33_1
References_xml – volume: 1807 28 10
  start-page: 326 3373 556
  year: 2011 2014 2016
  publication-title: Biochim. Biophys. Acta, Bioenerg. FASEB J. ACS Nano
– volume: 419 313 27
  start-page: 200 60 1092
  year: 2013 2015 2011
  publication-title: Chem. Phys. J. Photochem. Photobiol., A Langmuir
– volume: 4 8
  start-page: 6 189
  year: 2020 2018
  publication-title: Nat. Rev. Chem. Nanomaterials
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 335
  year: 1999
  publication-title: Eur. Phys. J. B
– volume: 306
  start-page: 1139
  year: 2001
  publication-title: J. Mol. Biol.
– volume: 91 35
  start-page: 1757
  year: 2006 2019
  publication-title: Biophys. J. Langmuir
– volume: 5 1837 29
  start-page: 1769 1119
  year: 2016 2014 2017
  publication-title: eLife Biochim. Biophys. Acta, Bioenerg. Plant Cell
– volume: 56 205 15
  start-page: 150 1 63
  year: 2018 2015 1992
  publication-title: Photosynthetica Biophys. Chem. J. Photochem. Photobiol., B
– volume: 153
  start-page: 231
  year: 1983
  publication-title: FEBS Lett.
– volume: 14
  start-page: 3514
  year: 2013
  publication-title: Int. J. Mol. Sci.
– volume: 1817
  start-page: 2
  year: 2012
  publication-title: Biochim. Biophys. Acta, Bioenerg.
– volume: 100 4 140
  start-page: 89 225 355
  year: 2009 2018 2019
  publication-title: Photosynth. Res. Nat. Plants Photosynth. Res.
– volume: 40
  start-page: 1361
  year: 1918
  publication-title: J. Am. Chem. Soc.
– volume: 251 7 79
  start-page: 2674 620 43
  year: 2007 2007 2010
  publication-title: Coord. Chem. Rev. Nano Lett. Bioelectrochemistry
– volume: 106
  start-page: 2395
  year: 2014
  publication-title: Biophys. J.
– volume: 53 83
  start-page: 4250 604
  year: 2017 2011
  publication-title: Chem. Commun. Anal. Chem.
– volume: 24 9 117
  start-page: 919 357 249
  year: 2005 2018 2017
  publication-title: EMBO J. Front. Plant Sci. Chem. Rev.
– volume: 17 1798 5
  start-page: 3400 839
  year: 2001 2010 2015
  publication-title: Langmuir Biochim. Biophys. Acta, Biomembr. Sci. Rep.
– volume: 34 57 99 127 110 11
  start-page: 2278 185 109 5452
  year: 2018 2018 2009 2016 2013 2019
  publication-title: Langmuir Biochemistry Photosynth. Res. Photosynth. Res. Proc. Natl. Acad. Sci. USA Nanoscale
– volume: 47
  start-page: 178
  year: 2016
  publication-title: Rev. Cienc. Agron.
– volume: 309 26 4 6
  start-page: 484 3051 391 882
  year: 2005 2014 2018 2020
  publication-title: Science Plant Cell Nat. Plants Nat. Plants
– volume: 1837
  start-page: 1533
  year: 2014
  publication-title: Biochim. Biophys. Acta, Bioenerg.
– volume: 50 26 6
  start-page: 87 8285 532
  year: 1972 1987 2007
  publication-title: Plant Physiol. Biochemistry Photochem. Photobiol. Sci.
– year: 2014
– start-page: 443
  year: 2006
  end-page: 475
– volume: 152 17 581 1859 1837 119 291
  start-page: 215 3528 1075 1027 4817
  year: 2015 2015 2007 2018 2014 2019 2016
  publication-title: J. Photochem. Photobiol., B Phys. Chem. Chem. Phys. FEBS Lett. Biochim. Biophys. Acta, Bioenerg. Biochim. Biophys. Acta, Bioenerg. Chem. Rev. J. Biol. Chem.
– volume: 15
  start-page: 363
  year: 2014
  publication-title: Curr. Protein Pept. Sci.
– volume: 36
  start-page: 5863
  year: 2020
  publication-title: Langmuir
– year: 2020
– volume: 40 18 1860 76
  start-page: 172 4082 2012 135
  year: 2001 2002 2018 2015
  publication-title: Angew. Chem., Int. Ed. Langmuir Biochim. Biophys. Acta, Biomembr. Int. J. Non‐linear Mech.
– volume: 266
  start-page: 76
  year: 2018
  publication-title: Plant Sci.
– volume: 30 10 20
  start-page: 8481 1450 2529
  year: 2014 2010 2020
  publication-title: Langmuir Nano Lett. Lab Chip
– volume: 20 9
  start-page: 2751
  year: 2009 2009
  publication-title: Nanotechnology Nano Lett.
– volume: 1859
  start-page: 40
  year: 2017
  publication-title: Biochim. Biophys. Acta, Biomembr.
– volume: 17
  start-page: 324
  year: 2016
  publication-title: Biomacromolecules
– volume: 23 69 1706 62
  start-page: 1468 289 12 2393
  year: 2011 2012 2005 2011
  publication-title: Plant Cell Plant J. Biochim. Biophys. Acta, Bioenerg. J. Exp. Bot.
– volume: 392
  start-page: 479
  year: 1998
  publication-title: Nature
– volume: 50
  year: 2017
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
– ident: e_1_2_8_23_1
  doi: 10.3390/ijms14023514
– ident: e_1_2_8_11_3
  doi: 10.1016/j.bbabio.2004.09.009
– ident: e_1_2_8_14_2
  doi: 10.1021/acs.biochem.8b00118
– ident: e_1_2_8_32_3
  doi: 10.1039/b613605b
– ident: e_1_2_8_14_4
  doi: 10.1007/s11120-015-0176-z
– ident: e_1_2_8_20_1
  doi: 10.1016/j.chemphys.2012.12.039
– ident: e_1_2_8_29_1
  doi: 10.1038/s41570-019-0149-4
– ident: e_1_2_8_30_1
  doi: 10.5935/1806-6690.20160021
– ident: e_1_2_8_10_3
  doi: 10.1105/tpc.17.00071
– ident: e_1_2_8_18_2
  doi: 10.1021/la0157420
– ident: e_1_2_8_15_1
  doi: 10.1016/j.bbamem.2016.10.010
– ident: e_1_2_8_11_4
  doi: 10.1093/jxb/err034
– ident: e_1_2_8_25_1
  doi: 10.1016/j.bbabio.2013.11.018
– ident: e_1_2_8_14_3
  doi: 10.1007/s11120-008-9388-9
– ident: e_1_2_8_36_2
  doi: 10.1021/acs.langmuir.9b02685
– ident: e_1_2_8_24_1
  doi: 10.1007/s100510050862
– ident: e_1_2_8_18_3
  doi: 10.1016/j.bbamem.2018.03.010
– ident: e_1_2_8_32_1
  doi: 10.1104/pp.50.1.87
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201606265
– ident: e_1_2_8_3_3
  doi: 10.1016/j.bioelechem.2009.10.008
– ident: e_1_2_8_38_1
  doi: 10.1016/j.bpj.2014.04.016
– volume: 6
  start-page: 882
  year: 2020
  ident: e_1_2_8_12_4
  publication-title: Nat. Plants
  contributor:
    fullname: Zhao L. S.
– ident: e_1_2_8_33_1
  doi: 10.1016/0014-5793(83)80154-9
– ident: e_1_2_8_5_1
  doi: 10.1038/sj.emboj.7600585
– ident: e_1_2_8_19_1
  doi: 10.1021/la0017577
– ident: e_1_2_8_22_3
  doi: 10.1007/s11120-018-0607-8
– ident: e_1_2_8_4_1
  doi: 10.1088/0957-4484/20/34/345701
– ident: e_1_2_8_34_1
  doi: 10.1088/1361-6455/aa7583
– ident: e_1_2_8_11_1
  doi: 10.1105/tpc.110.081646
– ident: e_1_2_8_7_1
  doi: 10.1016/j.plantsci.2017.09.021
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jphotobiol.2015.09.011
– ident: e_1_2_8_32_2
  doi: 10.1021/bi00399a040
– ident: e_1_2_8_18_4
  doi: 10.1016/j.ijnonlinmec.2015.06.001
– ident: e_1_2_8_12_1
  doi: 10.1126/science.1110879
– ident: e_1_2_8_31_1
  doi: 10.1007/s11099-018-0768-x
– volume-title: Molecular Mechanisms of Photosynthesis
  year: 2014
  ident: e_1_2_8_1_1
  contributor:
    fullname: Blankenship R. E.
– ident: e_1_2_8_9_7
  doi: 10.1074/jbc.M116.730101
– ident: e_1_2_8_9_3
  doi: 10.1016/j.febslet.2007.06.070
– ident: e_1_2_8_10_2
  doi: 10.1016/j.bbabio.2014.02.003
– ident: e_1_2_8_2_1
  doi: 10.2174/1389203715666140327102757
– ident: e_1_2_8_13_3
  doi: 10.1039/D0LC00156B
– ident: e_1_2_8_39_1
  doi: 10.1101/2020.09.15.296665
– ident: e_1_2_8_19_3
  doi: 10.1038/srep10331
– ident: e_1_2_8_31_2
  doi: 10.1016/j.bpc.2015.05.003
– ident: e_1_2_8_19_2
  doi: 10.1016/j.bbamem.2009.12.029
– ident: e_1_2_8_10_1
  doi: 10.7554/eLife.09541
– ident: e_1_2_8_29_2
  doi: 10.3390/nano8040189
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.biomac.5b01434
– ident: e_1_2_8_31_3
  doi: 10.1016/1011-1344(92)87006-U
– ident: e_1_2_8_12_3
  doi: 10.1038/s41477-018-0163-4
– ident: e_1_2_8_9_2
  doi: 10.1039/C5CP01905B
– ident: e_1_2_8_9_4
  doi: 10.1016/j.bbabio.2018.06.011
– ident: e_1_2_8_14_6
  doi: 10.1039/C9NR04653D
– ident: e_1_2_8_35_2
  doi: 10.1021/ac102979b
– ident: e_1_2_8_14_5
  doi: 10.1073/pnas.1205561110
– ident: e_1_2_8_20_2
  doi: 10.1016/j.jphotochem.2015.06.009
– ident: e_1_2_8_8_1
  doi: 10.1016/j.bbabio.2011.05.024
– ident: e_1_2_8_26_1
  doi: 10.1021/ja02242a004
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.langmuir.0c00613
– ident: e_1_2_8_18_1
  doi: 10.1002/1521-3773(20010105)40:1<172::AID-ANIE172>3.0.CO;2-G
– ident: e_1_2_8_9_6
  doi: 10.1021/acs.chemrev.9b00105
– ident: e_1_2_8_20_3
  doi: 10.1021/la103281q
– ident: e_1_2_8_27_1
  doi: 10.1006/jmbi.2000.4404
– ident: e_1_2_8_5_2
  doi: 10.3389/fpls.2018.00357
– ident: e_1_2_8_16_2
  doi: 10.1096/fj.13-247395
– ident: e_1_2_8_16_3
  doi: 10.1021/acsnano.5b05579
– ident: e_1_2_8_3_1
  doi: 10.1016/j.ccr.2007.04.002
– ident: e_1_2_8_4_2
  doi: 10.1021/nl901262h
– ident: e_1_2_8_22_1
  doi: 10.1007/s11120-009-9431-5
– ident: e_1_2_8_6_1
  doi: 10.1038/33116
– ident: e_1_2_8_3_2
  doi: 10.1021/nl062528t
– ident: e_1_2_8_5_3
  doi: 10.1021/acs.chemrev.6b00002
– ident: e_1_2_8_9_5
  doi: 10.1016/j.bbabio.2014.02.014
– ident: e_1_2_8_35_1
  doi: 10.1039/C7CC01023K
– ident: e_1_2_8_11_2
  doi: 10.1111/j.1365-313X.2011.04790.x
– ident: e_1_2_8_13_1
  doi: 10.1021/la501483s
– ident: e_1_2_8_22_2
  doi: 10.1038/s41477-018-0127-8
– ident: e_1_2_8_12_2
  doi: 10.1105/tpc.114.127233
– ident: e_1_2_8_36_1
  doi: 10.1529/biophysj.105.080507
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.langmuir.8b02307
– ident: e_1_2_8_13_2
  doi: 10.1021/nl1003569
– ident: e_1_2_8_16_1
  doi: 10.1016/j.bbabio.2010.12.017
– ident: e_1_2_8_21_1
  doi: 10.1007/978-0-387-46312-4_13
SSID ssj0031247
Score 2.4426508
Snippet Natural photosynthetic “thylakoid” membranes found in green plants contain a large network of light‐harvesting (LH) protein complexes. Rearrangement of this...
Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2006608
SubjectTerms artificial photosynthesis
Atomic force microscopy
atomic force microscopy (AFM)
biohybrids
chlorophyll fluorescence
Electron transfer
Fluorescence
fluorescence lifetime imaging microscopy (FLIM)
Light-Harvesting Protein Complexes - metabolism
light‐harvesting
Lipids
Membranes
Nanotechnology
Photosynthesis
Photosystem II Protein Complex - metabolism
Plant Proteins - metabolism
Proteins
supported lipid bilayers
Thylakoids - metabolism
Tumor Necrosis Factor Ligand Superfamily Member 14 - metabolism
Two dimensional models
Title Model Lipid Membranes Assembled from Natural Plant Thylakoids into 2D Microarray Patterns as a Platform to Assess the Organization and Photophysics of Light‐Harvesting Proteins
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202006608
https://www.ncbi.nlm.nih.gov/pubmed/33690933
https://www.proquest.com/docview/2509483065
https://www.proquest.com/docview/2500380129
https://pubmed.ncbi.nlm.nih.gov/PMC11476343
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYlubSH0vTXTVqmUOjJxCvZsnwMTUMo2bC0CeRmJEvOLt2Vy9o55JZH6LP0kfIknZF33V1yKBSMwUiDf0aj-azRfMPYR4QIhhtlYlNldZyKPIuVlTw2hUts5nQx4pTgPD6Xp5fp16vsaiOLv-eHGBbcyDLCfE0Grk17-Jc0tF3MKXQQggeU7buL2EZSDQOeTtZzsUDvFcqroNOKiXlrTduY8MNt-W239ABrPtwyuQllgy86ecaerkAkHPVa32OPnH_OnmxQC75gv6nI2RyoNLWFsVvgm-KkBhTjXZi5s0B5JXCuA-0GUOmiDi6mt3P9o5nZFma-a4Afw5j26-nlUt_CJDBx-hY0HiTREd4F7NcHjgGhJGymdoL2FibThqgLaDC00NT4QNfT7v7uF9UkIoIPfw0TooqY-fYluzz5cvH5NF7VZ4grOZIqzouK7J3LGu1eZwqhRV1wWyQ254nVSe6U5k7WiTYicyNhc1vlOcrUmbbGVOIV2_GNd28YOAozyKqSkrsUQY1RVaqsrUUxstLZPGKf1uopf_Y0HGVPuMxLUmQ5KDJiB2vtlStzbEtONIEK_46yiH0YmtGQKDqCn7-5CX0SQf66iNjrXtnDrYSQBS39RExtDYOhA5F0b7f42TSQdeP_Jk7hKYryMGL-8fjl9_HZ2XD19n-E9tljThtvwvaiA7bTLW_cO0ROnXkfjAPPx9_4H--RFw0
link.rule.ids 230,314,780,784,885,1375,11562,27924,27925,46052,46294,46476,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6hcgAOlH9cCgwSEie39tpe20dEqQLEUQSpxM3a9a6bqImNYudQTjwCz8Ij8STMrBOT0AMSSL5Y3pH_Zna-3Zn5hrGXCBEUV4lyVRGVbhjEkZtowV2VGk9HRqY-pwLnbCQGZ-H7z9Emm5BqYTp-iH7DjSzDztdk4LQhffybNbRZzCl2YKMHVO57HW3ep6yuk489g1SA7sv2V0Gv5RL11oa30ePHu_K7fukK2LyaM7mNZa0zOt1navMaXQ7KxdGqVUfF1z8YHv_rPe-w22uoCq873brLrpnqHru1RWB4n_2gVmpzoAbYGjKzwPvg1AkUSV6oudFA1SswkpbcA6hBUguT6eVcXtQz3cCsamvgJ5BRVqBcLuUljC3fZ9WAxIMkWkLVgOO68DQgYIXtAlKQlYbxtCaCBFK5BuoSH-h82v789p06HxGNSHUOYyKkmFXNA3Z2-nbyZuCuu0C4hfBF4sZpQbMKFyXOLjJKEMCUKdepp2PuaenFJpHciNKTKoiMH-hYF3GMMmUktVJF8JDtVXVlHjMwFMwQRSEENyFCJ5UUYaJ1GaS-FkbHDnu10YH8S0f2kXe0zjynv5D3f8FhhxsVyddG3-ScyAgTXINFDnvRX0ZzpRgMfv56Zcd4AaGC1GGPOo3qbxUEIqUNJoclO7rWDyAq8N0r1WxqKcFxVYuOIkRRbnXpL4-ff8qGw_7s4F-EnrMbg0k2zIfvRh-esJucUn1sQtMh22uXK_MUsVqrnllr_AWMsjuR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQIiE48P8TWGCQkDhlN3USJz4iSrVAW1WwK-0tsmNnW22brJr0sJx4BJ6FR-JJmHHa0LIHJJByieKRnWTG8yUz8w1jrxEiaK5T7es8LvwoTGI_NYL7WtrAxFbJHqcC59FYHJ1EH0_j060q_pYfovvhRpbh9msy8AtTHP4mDa0XcwoduOABVftejwSXxJ7f_9wRSIXovVx7FXRaPjFvbWgbA364K7_rlq5gzaspk9tQ1vmiwR2mNnfRpqCcH6wafZB__YPg8X9u8y67vQaq8LbVrHvsmi3vs1tb9IUP2A9qpDYHan9tYGQXOA1unEBx5IWeWwNUuwJj5ag9gNojNXA8vZyr82pmapiVTQW8DyPKCVTLpbqEiWP7LGtQeJBEQ5gacFwbnAaEq7BdPgqqNDCZVkSPQApXQ1Xggs6mzc9v36nvEZGIlGcwITqKWVk_ZCeD98fvjvx1Dwg_Fz2R-onMaU_hosC9RcUpwpdCciMDk_DAqCCxqeJWFIHSYWx7oUlMniQoU8TKaJ2Hj9heWZX2CQNLoQyR50JwGyFw0mkepcYUoewZYU3isTcbFcguWqqPrCV15hm9hax7Cx7b32hItjb5OuNERZjiF1jssVfdZTRWisDg469WbkwQEiaQHnvcKlQ3VRgKSb-XPJbuqFo3gIjAd6-Us6kjBMdvWnQTEYpyp0p_WX72ZTQcdmdP_0XoJbsx6Q-y4Yfxp2fsJqc8H5fNtM_2muXKPkeg1ugXzhZ_AbZdOkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Lipid+Membranes+Assembled+from+Natural+Plant+Thylakoids+into+2D+Microarray+Patterns+as+a+Platform+to+Assess+the+Organization+and+Photophysics+of+Light-Harvesting+Proteins&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Meredith%2C+Sophie+A&rft.au=Yoneda%2C+Takuro&rft.au=Hancock%2C+Ashley+M&rft.au=Connell%2C+Simon+D&rft.date=2021-04-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=17&rft.issue=14&rft.spage=e2006608&rft_id=info:doi/10.1002%2Fsmll.202006608&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon