Model Lipid Membranes Assembled from Natural Plant Thylakoids into 2D Microarray Patterns as a Platform to Assess the Organization and Photophysics of Light‐Harvesting Proteins
Natural photosynthetic “thylakoid” membranes found in green plants contain a large network of light‐harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called “grana”, alters protein–protein interactions leading to changes in the ener...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 14; pp. e2006608 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Natural photosynthetic “thylakoid” membranes found in green plants contain a large network of light‐harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called “grana”, alters protein–protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro‐ and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high‐quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false‐positive results.
A polymerized lipid bilayer (purple) templates the self‐assembly of “hybrid membranes” from thylakoid membranes (green) and synthetic lipids (colorless). During membrane formation, transmembrane proteins migrate from thylakoids into underlying lipid bilayers, decreasing the protein concentration and uncoupling protein‐protein interactions (manifested as increased fluorescent lifetimes). These hybrid membranes are used to delineate the relationship between photophysics and structure of light‐harvesting complexes. |
---|---|
AbstractList | Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results. Natural photosynthetic “thylakoid” membranes found in green plants contain a large network of light‐harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called “grana”, alters protein–protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro‐ and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high‐quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false‐positive results. A polymerized lipid bilayer (purple) templates the self‐assembly of “hybrid membranes” from thylakoid membranes (green) and synthetic lipids (colorless). During membrane formation, transmembrane proteins migrate from thylakoids into underlying lipid bilayers, decreasing the protein concentration and uncoupling protein‐protein interactions (manifested as increased fluorescent lifetimes). These hybrid membranes are used to delineate the relationship between photophysics and structure of light‐harvesting complexes. Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results.Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results. |
Author | Connell, Simon D. Evans, Stephen D. Yoneda, Takuro Adams, Peter G. Meredith, Sophie A. Hancock, Ashley M. Morigaki, Kenichi |
AuthorAffiliation | 2 Graduate School of Agricultural Science and Biosignal Research Center Kobe University Rokkodaicho 1‐1, Nada Kobe 657‐8501 Japan 1 School of Physics and Astronomy and The Astbury Centre for Structural Molecular Biology University of Leeds Leeds LS2 9JT UK |
AuthorAffiliation_xml | – name: 1 School of Physics and Astronomy and The Astbury Centre for Structural Molecular Biology University of Leeds Leeds LS2 9JT UK – name: 2 Graduate School of Agricultural Science and Biosignal Research Center Kobe University Rokkodaicho 1‐1, Nada Kobe 657‐8501 Japan |
Author_xml | – sequence: 1 givenname: Sophie A. orcidid: 0000-0003-2550-9092 surname: Meredith fullname: Meredith, Sophie A. organization: University of Leeds – sequence: 2 givenname: Takuro surname: Yoneda fullname: Yoneda, Takuro organization: Kobe University – sequence: 3 givenname: Ashley M. orcidid: 0000-0003-2069-5105 surname: Hancock fullname: Hancock, Ashley M. organization: University of Leeds – sequence: 4 givenname: Simon D. orcidid: 0000-0003-2500-5724 surname: Connell fullname: Connell, Simon D. organization: University of Leeds – sequence: 5 givenname: Stephen D. orcidid: 0000-0001-8342-5335 surname: Evans fullname: Evans, Stephen D. organization: University of Leeds – sequence: 6 givenname: Kenichi orcidid: 0000-0002-2454-6513 surname: Morigaki fullname: Morigaki, Kenichi email: morigaki@port.kobe-u.ac.jp organization: Kobe University – sequence: 7 givenname: Peter G. orcidid: 0000-0002-3940-8770 surname: Adams fullname: Adams, Peter G. email: p.g.adams@leeds.ac.uk organization: University of Leeds |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33690933$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhiNURC-wZYkssWEzgy8TO1mhqlyKlKEjUdbWSexMXBJ7sJ2isOIReBYeiSfB0ZThskGy5CP5O7_Of_yfZkfWWZ1ljwleEozp8zD0_ZJiijHnuLiXnRBO2IIXtDw61AQfZ6ch3GDMCF2JB9kxY7zEJWMn2fe1U7pHldkZhdZ6qD1YHdB5CKnutUKtdwN6B3H00KNNDzai627q4aMzKiBjo0P0JVqbxjvwHia0gRi1twFBOnNHbJ0fUOJm0RBQ7DS68luw5gtE4ywCq9Cmc9HtuimYJiDXpoG2Xfzx9dsl-FsdorFbtPEuamPDw-x-C33Qj-7us-zD61fXF5eL6urN24vzatFwwouFKJtcFILyluYC8qLEpC2pKrESFCvAQhdANW8x1CzXhCmhGiFST5uDquuGnWUv9rq7sR60arSNaQdy580AfpIOjPz7xZpObt2tJGQlOFuxpPDsTsG7T2OyIQcTGt2nLWo3Bknz9CUFJrRM6NN_0Bs3epv8zVS5KhjmeaKWeyptOwSv28M0BMs5D3LOgzzkITU8-dPDAf8VgASUe-Cz6fX0Hzn5fl1Vv8V_Aq0KyPY |
CitedBy_id | crossref_primary_10_1002_admi_202100257 crossref_primary_10_35848_1347_4065_ad2fdf crossref_primary_10_1088_2050_6120_acda7b crossref_primary_10_1016_j_jphotobiol_2022_112585 crossref_primary_10_1021_acs_jpcb_2c07652 crossref_primary_10_1039_D1CP01628H |
Cites_doi | 10.3390/ijms14023514 10.1016/j.bbabio.2004.09.009 10.1021/acs.biochem.8b00118 10.1039/b613605b 10.1007/s11120-015-0176-z 10.1016/j.chemphys.2012.12.039 10.1038/s41570-019-0149-4 10.5935/1806-6690.20160021 10.1105/tpc.17.00071 10.1021/la0157420 10.1016/j.bbamem.2016.10.010 10.1093/jxb/err034 10.1016/j.bbabio.2013.11.018 10.1007/s11120-008-9388-9 10.1021/acs.langmuir.9b02685 10.1007/s100510050862 10.1016/j.bbamem.2018.03.010 10.1104/pp.50.1.87 10.1002/adfm.201606265 10.1016/j.bioelechem.2009.10.008 10.1016/j.bpj.2014.04.016 10.1016/0014-5793(83)80154-9 10.1038/sj.emboj.7600585 10.1021/la0017577 10.1007/s11120-018-0607-8 10.1088/0957-4484/20/34/345701 10.1088/1361-6455/aa7583 10.1105/tpc.110.081646 10.1016/j.plantsci.2017.09.021 10.1016/j.jphotobiol.2015.09.011 10.1021/bi00399a040 10.1016/j.ijnonlinmec.2015.06.001 10.1126/science.1110879 10.1007/s11099-018-0768-x 10.1074/jbc.M116.730101 10.1016/j.febslet.2007.06.070 10.1016/j.bbabio.2014.02.003 10.2174/1389203715666140327102757 10.1039/D0LC00156B 10.1101/2020.09.15.296665 10.1038/srep10331 10.1016/j.bpc.2015.05.003 10.1016/j.bbamem.2009.12.029 10.7554/eLife.09541 10.3390/nano8040189 10.1021/acs.biomac.5b01434 10.1016/1011-1344(92)87006-U 10.1038/s41477-018-0163-4 10.1039/C5CP01905B 10.1016/j.bbabio.2018.06.011 10.1039/C9NR04653D 10.1021/ac102979b 10.1073/pnas.1205561110 10.1016/j.jphotochem.2015.06.009 10.1016/j.bbabio.2011.05.024 10.1021/ja02242a004 10.1021/acs.langmuir.0c00613 10.1002/1521-3773(20010105)40:1<172::AID-ANIE172>3.0.CO;2-G 10.1021/acs.chemrev.9b00105 10.1021/la103281q 10.1006/jmbi.2000.4404 10.3389/fpls.2018.00357 10.1096/fj.13-247395 10.1021/acsnano.5b05579 10.1016/j.ccr.2007.04.002 10.1021/nl901262h 10.1007/s11120-009-9431-5 10.1038/33116 10.1021/nl062528t 10.1021/acs.chemrev.6b00002 10.1016/j.bbabio.2014.02.014 10.1039/C7CC01023K 10.1111/j.1365-313X.2011.04790.x 10.1021/la501483s 10.1038/s41477-018-0127-8 10.1105/tpc.114.127233 10.1529/biophysj.105.080507 10.1021/acs.langmuir.8b02307 10.1021/nl1003569 10.1016/j.bbabio.2010.12.017 10.1007/978-0-387-46312-4_13 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Small published by Wiley‐VCH GmbH 2021 The Authors. Small published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Small published by Wiley‐VCH GmbH – notice: 2021 The Authors. Small published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
DOI | 10.1002/smll.202006608 |
DatabaseName | Wiley Open Access Journals Wiley Online Library Free Content Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202006608 33690933 SMLL202006608 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council funderid: 1807029 – fundername: EPSRC funderid: EP/P023266/1 – fundername: BBSRC funderid: BB/R000174/1 – fundername: EPSRC funderid: EP/J017566/1 – fundername: EPSRC funderid: EP/T013958/1 – fundername: University Academic Fellowship (University of Leeds) – fundername: Biotechnology and Biological Sciences Research Council funderid: BB/M011151/1) – fundername: EPSRC funderid: EP/ J017566/1 – fundername: Royal Society UK funderid: IEC/R3/183029 – fundername: Japan Society for the Promotion of Science – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M011151/1) – fundername: Medical Research Council grantid: MR/M009084/1 – fundername: BBSRC grantid: BB/R000174/1 – fundername: Royal Society UK grantid: IEC/R3/183029 – fundername: Japan‐UK Research Cooperative Program grantid: JPJSBP120195707; 19H04725 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WIN WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AASGY AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF CGR CUY CVF ECM EIF EJD FEDTE GODZA HVGLF NPM AAMNL AAYXX ACRPL CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
ID | FETCH-LOGICAL-c6168-79c578726f257a58901f92d90d720da07e8a2e6f0ab35e13d7dc77c57f5adbbc3 |
IEDL.DBID | 24P |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Oct 17 05:36:17 EDT 2024 Thu Dec 05 20:29:13 EST 2024 Thu Oct 10 17:16:36 EDT 2024 Fri Dec 06 01:58:20 EST 2024 Sat Nov 02 12:29:17 EDT 2024 Sat Aug 24 01:03:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | artificial photosynthesis biohybrids supported lipid bilayers atomic force microscopy (AFM) chlorophyll fluorescence fluorescence lifetime imaging microscopy (FLIM) light-harvesting |
Language | English |
License | Attribution 2021 The Authors. Small published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6168-79c578726f257a58901f92d90d720da07e8a2e6f0ab35e13d7dc77c57f5adbbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2550-9092 0000-0003-2069-5105 0000-0003-2500-5724 0000-0001-8342-5335 0000-0002-2454-6513 0000-0002-3940-8770 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202006608 |
PMID | 33690933 |
PQID | 2509483065 |
PQPubID | 1046358 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11476343 proquest_miscellaneous_2500380129 proquest_journals_2509483065 crossref_primary_10_1002_smll_202006608 pubmed_primary_33690933 wiley_primary_10_1002_smll_202006608_SMLL202006608 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2009 2018 2019; 100 4 140 2018 2018 2009 2016 2013 2019; 34 57 99 127 110 11 1983; 153 2016 2014 2017; 5 1837 29 2014 2010 2020; 30 10 20 2009 2009; 20 9 2017; 27 2011 2012 2005 2011; 23 69 1706 62 1972 1987 2007; 50 26 6 2018; 266 2013 2015 2011; 419 313 27 2015 2015 2007 2018 2014 2019 2016; 152 17 581 1859 1837 119 291 2020; 36 2006 2020 2018; 4 8 2001; 306 2016; 17 2007 2007 2010; 251 7 79 1998; 392 2001 2002 2018 2015; 40 18 1860 76 2017; 50 2005 2018 2017; 24 9 117 2014; 1837 2006 2019; 91 35 2014; 106 2013; 14 2020 2011 2014 2016; 1807 28 10 2014; 15 2017; 1859 1999; 10 2014 2001 2010 2015; 17 1798 5 2012; 1817 1918; 40 2016; 47 2005 2014 2018 2020; 309 26 4 6 2018 2015 1992; 56 205 15 2017 2011; 53 83 e_1_2_8_28_1 e_1_2_8_22_3 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_9_5 e_1_2_8_9_4 e_1_2_8_9_7 e_1_2_8_9_6 e_1_2_8_3_1 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_20_3 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_11_4 e_1_2_8_13_2 e_1_2_8_13_3 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_36_2 e_1_2_8_19_3 Zhao L. S. (e_1_2_8_12_4) 2020; 6 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_32_3 e_1_2_8_34_1 Blankenship R. E. (e_1_2_8_1_1) 2014 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_14_4 e_1_2_8_16_2 e_1_2_8_14_5 e_1_2_8_16_3 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_6 e_1_2_8_18_2 e_1_2_8_18_3 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_14_3 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_18_4 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_10_3 e_1_2_8_12_1 e_1_2_8_31_3 e_1_2_8_33_1 |
References_xml | – volume: 1807 28 10 start-page: 326 3373 556 year: 2011 2014 2016 publication-title: Biochim. Biophys. Acta, Bioenerg. FASEB J. ACS Nano – volume: 419 313 27 start-page: 200 60 1092 year: 2013 2015 2011 publication-title: Chem. Phys. J. Photochem. Photobiol., A Langmuir – volume: 4 8 start-page: 6 189 year: 2020 2018 publication-title: Nat. Rev. Chem. Nanomaterials – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 335 year: 1999 publication-title: Eur. Phys. J. B – volume: 306 start-page: 1139 year: 2001 publication-title: J. Mol. Biol. – volume: 91 35 start-page: 1757 year: 2006 2019 publication-title: Biophys. J. Langmuir – volume: 5 1837 29 start-page: 1769 1119 year: 2016 2014 2017 publication-title: eLife Biochim. Biophys. Acta, Bioenerg. Plant Cell – volume: 56 205 15 start-page: 150 1 63 year: 2018 2015 1992 publication-title: Photosynthetica Biophys. Chem. J. Photochem. Photobiol., B – volume: 153 start-page: 231 year: 1983 publication-title: FEBS Lett. – volume: 14 start-page: 3514 year: 2013 publication-title: Int. J. Mol. Sci. – volume: 1817 start-page: 2 year: 2012 publication-title: Biochim. Biophys. Acta, Bioenerg. – volume: 100 4 140 start-page: 89 225 355 year: 2009 2018 2019 publication-title: Photosynth. Res. Nat. Plants Photosynth. Res. – volume: 40 start-page: 1361 year: 1918 publication-title: J. Am. Chem. Soc. – volume: 251 7 79 start-page: 2674 620 43 year: 2007 2007 2010 publication-title: Coord. Chem. Rev. Nano Lett. Bioelectrochemistry – volume: 106 start-page: 2395 year: 2014 publication-title: Biophys. J. – volume: 53 83 start-page: 4250 604 year: 2017 2011 publication-title: Chem. Commun. Anal. Chem. – volume: 24 9 117 start-page: 919 357 249 year: 2005 2018 2017 publication-title: EMBO J. Front. Plant Sci. Chem. Rev. – volume: 17 1798 5 start-page: 3400 839 year: 2001 2010 2015 publication-title: Langmuir Biochim. Biophys. Acta, Biomembr. Sci. Rep. – volume: 34 57 99 127 110 11 start-page: 2278 185 109 5452 year: 2018 2018 2009 2016 2013 2019 publication-title: Langmuir Biochemistry Photosynth. Res. Photosynth. Res. Proc. Natl. Acad. Sci. USA Nanoscale – volume: 47 start-page: 178 year: 2016 publication-title: Rev. Cienc. Agron. – volume: 309 26 4 6 start-page: 484 3051 391 882 year: 2005 2014 2018 2020 publication-title: Science Plant Cell Nat. Plants Nat. Plants – volume: 1837 start-page: 1533 year: 2014 publication-title: Biochim. Biophys. Acta, Bioenerg. – volume: 50 26 6 start-page: 87 8285 532 year: 1972 1987 2007 publication-title: Plant Physiol. Biochemistry Photochem. Photobiol. Sci. – year: 2014 – start-page: 443 year: 2006 end-page: 475 – volume: 152 17 581 1859 1837 119 291 start-page: 215 3528 1075 1027 4817 year: 2015 2015 2007 2018 2014 2019 2016 publication-title: J. Photochem. Photobiol., B Phys. Chem. Chem. Phys. FEBS Lett. Biochim. Biophys. Acta, Bioenerg. Biochim. Biophys. Acta, Bioenerg. Chem. Rev. J. Biol. Chem. – volume: 15 start-page: 363 year: 2014 publication-title: Curr. Protein Pept. Sci. – volume: 36 start-page: 5863 year: 2020 publication-title: Langmuir – year: 2020 – volume: 40 18 1860 76 start-page: 172 4082 2012 135 year: 2001 2002 2018 2015 publication-title: Angew. Chem., Int. Ed. Langmuir Biochim. Biophys. Acta, Biomembr. Int. J. Non‐linear Mech. – volume: 266 start-page: 76 year: 2018 publication-title: Plant Sci. – volume: 30 10 20 start-page: 8481 1450 2529 year: 2014 2010 2020 publication-title: Langmuir Nano Lett. Lab Chip – volume: 20 9 start-page: 2751 year: 2009 2009 publication-title: Nanotechnology Nano Lett. – volume: 1859 start-page: 40 year: 2017 publication-title: Biochim. Biophys. Acta, Biomembr. – volume: 17 start-page: 324 year: 2016 publication-title: Biomacromolecules – volume: 23 69 1706 62 start-page: 1468 289 12 2393 year: 2011 2012 2005 2011 publication-title: Plant Cell Plant J. Biochim. Biophys. Acta, Bioenerg. J. Exp. Bot. – volume: 392 start-page: 479 year: 1998 publication-title: Nature – volume: 50 year: 2017 publication-title: J. Phys. B: At., Mol. Opt. Phys. – ident: e_1_2_8_23_1 doi: 10.3390/ijms14023514 – ident: e_1_2_8_11_3 doi: 10.1016/j.bbabio.2004.09.009 – ident: e_1_2_8_14_2 doi: 10.1021/acs.biochem.8b00118 – ident: e_1_2_8_32_3 doi: 10.1039/b613605b – ident: e_1_2_8_14_4 doi: 10.1007/s11120-015-0176-z – ident: e_1_2_8_20_1 doi: 10.1016/j.chemphys.2012.12.039 – ident: e_1_2_8_29_1 doi: 10.1038/s41570-019-0149-4 – ident: e_1_2_8_30_1 doi: 10.5935/1806-6690.20160021 – ident: e_1_2_8_10_3 doi: 10.1105/tpc.17.00071 – ident: e_1_2_8_18_2 doi: 10.1021/la0157420 – ident: e_1_2_8_15_1 doi: 10.1016/j.bbamem.2016.10.010 – ident: e_1_2_8_11_4 doi: 10.1093/jxb/err034 – ident: e_1_2_8_25_1 doi: 10.1016/j.bbabio.2013.11.018 – ident: e_1_2_8_14_3 doi: 10.1007/s11120-008-9388-9 – ident: e_1_2_8_36_2 doi: 10.1021/acs.langmuir.9b02685 – ident: e_1_2_8_24_1 doi: 10.1007/s100510050862 – ident: e_1_2_8_18_3 doi: 10.1016/j.bbamem.2018.03.010 – ident: e_1_2_8_32_1 doi: 10.1104/pp.50.1.87 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201606265 – ident: e_1_2_8_3_3 doi: 10.1016/j.bioelechem.2009.10.008 – ident: e_1_2_8_38_1 doi: 10.1016/j.bpj.2014.04.016 – volume: 6 start-page: 882 year: 2020 ident: e_1_2_8_12_4 publication-title: Nat. Plants contributor: fullname: Zhao L. S. – ident: e_1_2_8_33_1 doi: 10.1016/0014-5793(83)80154-9 – ident: e_1_2_8_5_1 doi: 10.1038/sj.emboj.7600585 – ident: e_1_2_8_19_1 doi: 10.1021/la0017577 – ident: e_1_2_8_22_3 doi: 10.1007/s11120-018-0607-8 – ident: e_1_2_8_4_1 doi: 10.1088/0957-4484/20/34/345701 – ident: e_1_2_8_34_1 doi: 10.1088/1361-6455/aa7583 – ident: e_1_2_8_11_1 doi: 10.1105/tpc.110.081646 – ident: e_1_2_8_7_1 doi: 10.1016/j.plantsci.2017.09.021 – ident: e_1_2_8_9_1 doi: 10.1016/j.jphotobiol.2015.09.011 – ident: e_1_2_8_32_2 doi: 10.1021/bi00399a040 – ident: e_1_2_8_18_4 doi: 10.1016/j.ijnonlinmec.2015.06.001 – ident: e_1_2_8_12_1 doi: 10.1126/science.1110879 – ident: e_1_2_8_31_1 doi: 10.1007/s11099-018-0768-x – volume-title: Molecular Mechanisms of Photosynthesis year: 2014 ident: e_1_2_8_1_1 contributor: fullname: Blankenship R. E. – ident: e_1_2_8_9_7 doi: 10.1074/jbc.M116.730101 – ident: e_1_2_8_9_3 doi: 10.1016/j.febslet.2007.06.070 – ident: e_1_2_8_10_2 doi: 10.1016/j.bbabio.2014.02.003 – ident: e_1_2_8_2_1 doi: 10.2174/1389203715666140327102757 – ident: e_1_2_8_13_3 doi: 10.1039/D0LC00156B – ident: e_1_2_8_39_1 doi: 10.1101/2020.09.15.296665 – ident: e_1_2_8_19_3 doi: 10.1038/srep10331 – ident: e_1_2_8_31_2 doi: 10.1016/j.bpc.2015.05.003 – ident: e_1_2_8_19_2 doi: 10.1016/j.bbamem.2009.12.029 – ident: e_1_2_8_10_1 doi: 10.7554/eLife.09541 – ident: e_1_2_8_29_2 doi: 10.3390/nano8040189 – ident: e_1_2_8_37_1 doi: 10.1021/acs.biomac.5b01434 – ident: e_1_2_8_31_3 doi: 10.1016/1011-1344(92)87006-U – ident: e_1_2_8_12_3 doi: 10.1038/s41477-018-0163-4 – ident: e_1_2_8_9_2 doi: 10.1039/C5CP01905B – ident: e_1_2_8_9_4 doi: 10.1016/j.bbabio.2018.06.011 – ident: e_1_2_8_14_6 doi: 10.1039/C9NR04653D – ident: e_1_2_8_35_2 doi: 10.1021/ac102979b – ident: e_1_2_8_14_5 doi: 10.1073/pnas.1205561110 – ident: e_1_2_8_20_2 doi: 10.1016/j.jphotochem.2015.06.009 – ident: e_1_2_8_8_1 doi: 10.1016/j.bbabio.2011.05.024 – ident: e_1_2_8_26_1 doi: 10.1021/ja02242a004 – ident: e_1_2_8_17_1 doi: 10.1021/acs.langmuir.0c00613 – ident: e_1_2_8_18_1 doi: 10.1002/1521-3773(20010105)40:1<172::AID-ANIE172>3.0.CO;2-G – ident: e_1_2_8_9_6 doi: 10.1021/acs.chemrev.9b00105 – ident: e_1_2_8_20_3 doi: 10.1021/la103281q – ident: e_1_2_8_27_1 doi: 10.1006/jmbi.2000.4404 – ident: e_1_2_8_5_2 doi: 10.3389/fpls.2018.00357 – ident: e_1_2_8_16_2 doi: 10.1096/fj.13-247395 – ident: e_1_2_8_16_3 doi: 10.1021/acsnano.5b05579 – ident: e_1_2_8_3_1 doi: 10.1016/j.ccr.2007.04.002 – ident: e_1_2_8_4_2 doi: 10.1021/nl901262h – ident: e_1_2_8_22_1 doi: 10.1007/s11120-009-9431-5 – ident: e_1_2_8_6_1 doi: 10.1038/33116 – ident: e_1_2_8_3_2 doi: 10.1021/nl062528t – ident: e_1_2_8_5_3 doi: 10.1021/acs.chemrev.6b00002 – ident: e_1_2_8_9_5 doi: 10.1016/j.bbabio.2014.02.014 – ident: e_1_2_8_35_1 doi: 10.1039/C7CC01023K – ident: e_1_2_8_11_2 doi: 10.1111/j.1365-313X.2011.04790.x – ident: e_1_2_8_13_1 doi: 10.1021/la501483s – ident: e_1_2_8_22_2 doi: 10.1038/s41477-018-0127-8 – ident: e_1_2_8_12_2 doi: 10.1105/tpc.114.127233 – ident: e_1_2_8_36_1 doi: 10.1529/biophysj.105.080507 – ident: e_1_2_8_14_1 doi: 10.1021/acs.langmuir.8b02307 – ident: e_1_2_8_13_2 doi: 10.1021/nl1003569 – ident: e_1_2_8_16_1 doi: 10.1016/j.bbabio.2010.12.017 – ident: e_1_2_8_21_1 doi: 10.1007/978-0-387-46312-4_13 |
SSID | ssj0031247 |
Score | 2.4426508 |
Snippet | Natural photosynthetic “thylakoid” membranes found in green plants contain a large network of light‐harvesting (LH) protein complexes. Rearrangement of this... Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2006608 |
SubjectTerms | artificial photosynthesis Atomic force microscopy atomic force microscopy (AFM) biohybrids chlorophyll fluorescence Electron transfer Fluorescence fluorescence lifetime imaging microscopy (FLIM) Light-Harvesting Protein Complexes - metabolism light‐harvesting Lipids Membranes Nanotechnology Photosynthesis Photosystem II Protein Complex - metabolism Plant Proteins - metabolism Proteins supported lipid bilayers Thylakoids - metabolism Tumor Necrosis Factor Ligand Superfamily Member 14 - metabolism Two dimensional models |
Title | Model Lipid Membranes Assembled from Natural Plant Thylakoids into 2D Microarray Patterns as a Platform to Assess the Organization and Photophysics of Light‐Harvesting Proteins |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202006608 https://www.ncbi.nlm.nih.gov/pubmed/33690933 https://www.proquest.com/docview/2509483065 https://www.proquest.com/docview/2500380129 https://pubmed.ncbi.nlm.nih.gov/PMC11476343 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYlubSH0vTXTVqmUOjJxCvZsnwMTUMo2bC0CeRmJEvOLt2Vy9o55JZH6LP0kfIknZF33V1yKBSMwUiDf0aj-azRfMPYR4QIhhtlYlNldZyKPIuVlTw2hUts5nQx4pTgPD6Xp5fp16vsaiOLv-eHGBbcyDLCfE0Grk17-Jc0tF3MKXQQggeU7buL2EZSDQOeTtZzsUDvFcqroNOKiXlrTduY8MNt-W239ABrPtwyuQllgy86ecaerkAkHPVa32OPnH_OnmxQC75gv6nI2RyoNLWFsVvgm-KkBhTjXZi5s0B5JXCuA-0GUOmiDi6mt3P9o5nZFma-a4Afw5j26-nlUt_CJDBx-hY0HiTREd4F7NcHjgGhJGymdoL2FibThqgLaDC00NT4QNfT7v7uF9UkIoIPfw0TooqY-fYluzz5cvH5NF7VZ4grOZIqzouK7J3LGu1eZwqhRV1wWyQ254nVSe6U5k7WiTYicyNhc1vlOcrUmbbGVOIV2_GNd28YOAozyKqSkrsUQY1RVaqsrUUxstLZPGKf1uopf_Y0HGVPuMxLUmQ5KDJiB2vtlStzbEtONIEK_46yiH0YmtGQKDqCn7-5CX0SQf66iNjrXtnDrYSQBS39RExtDYOhA5F0b7f42TSQdeP_Jk7hKYryMGL-8fjl9_HZ2XD19n-E9tljThtvwvaiA7bTLW_cO0ROnXkfjAPPx9_4H--RFw0 |
link.rule.ids | 230,314,780,784,885,1375,11562,27924,27925,46052,46294,46476,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6hcgAOlH9cCgwSEie39tpe20dEqQLEUQSpxM3a9a6bqImNYudQTjwCz8Ij8STMrBOT0AMSSL5Y3pH_Zna-3Zn5hrGXCBEUV4lyVRGVbhjEkZtowV2VGk9HRqY-pwLnbCQGZ-H7z9Emm5BqYTp-iH7DjSzDztdk4LQhffybNbRZzCl2YKMHVO57HW3ep6yuk489g1SA7sv2V0Gv5RL11oa30ePHu_K7fukK2LyaM7mNZa0zOt1navMaXQ7KxdGqVUfF1z8YHv_rPe-w22uoCq873brLrpnqHru1RWB4n_2gVmpzoAbYGjKzwPvg1AkUSV6oudFA1SswkpbcA6hBUguT6eVcXtQz3cCsamvgJ5BRVqBcLuUljC3fZ9WAxIMkWkLVgOO68DQgYIXtAlKQlYbxtCaCBFK5BuoSH-h82v789p06HxGNSHUOYyKkmFXNA3Z2-nbyZuCuu0C4hfBF4sZpQbMKFyXOLjJKEMCUKdepp2PuaenFJpHciNKTKoiMH-hYF3GMMmUktVJF8JDtVXVlHjMwFMwQRSEENyFCJ5UUYaJ1GaS-FkbHDnu10YH8S0f2kXe0zjynv5D3f8FhhxsVyddG3-ScyAgTXINFDnvRX0ZzpRgMfv56Zcd4AaGC1GGPOo3qbxUEIqUNJoclO7rWDyAq8N0r1WxqKcFxVYuOIkRRbnXpL4-ff8qGw_7s4F-EnrMbg0k2zIfvRh-esJucUn1sQtMh22uXK_MUsVqrnllr_AWMsjuR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQIiE48P8TWGCQkDhlN3USJz4iSrVAW1WwK-0tsmNnW22brJr0sJx4BJ6FR-JJmHHa0LIHJJByieKRnWTG8yUz8w1jrxEiaK5T7es8LvwoTGI_NYL7WtrAxFbJHqcC59FYHJ1EH0_j060q_pYfovvhRpbh9msy8AtTHP4mDa0XcwoduOABVftejwSXxJ7f_9wRSIXovVx7FXRaPjFvbWgbA364K7_rlq5gzaspk9tQ1vmiwR2mNnfRpqCcH6wafZB__YPg8X9u8y67vQaq8LbVrHvsmi3vs1tb9IUP2A9qpDYHan9tYGQXOA1unEBx5IWeWwNUuwJj5ag9gNojNXA8vZyr82pmapiVTQW8DyPKCVTLpbqEiWP7LGtQeJBEQ5gacFwbnAaEq7BdPgqqNDCZVkSPQApXQ1Xggs6mzc9v36nvEZGIlGcwITqKWVk_ZCeD98fvjvx1Dwg_Fz2R-onMaU_hosC9RcUpwpdCciMDk_DAqCCxqeJWFIHSYWx7oUlMniQoU8TKaJ2Hj9heWZX2CQNLoQyR50JwGyFw0mkepcYUoewZYU3isTcbFcguWqqPrCV15hm9hax7Cx7b32hItjb5OuNERZjiF1jssVfdZTRWisDg469WbkwQEiaQHnvcKlQ3VRgKSb-XPJbuqFo3gIjAd6-Us6kjBMdvWnQTEYpyp0p_WX72ZTQcdmdP_0XoJbsx6Q-y4Yfxp2fsJqc8H5fNtM_2muXKPkeg1ugXzhZ_AbZdOkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Lipid+Membranes+Assembled+from+Natural+Plant+Thylakoids+into+2D+Microarray+Patterns+as+a+Platform+to+Assess+the+Organization+and+Photophysics+of+Light-Harvesting+Proteins&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Meredith%2C+Sophie+A&rft.au=Yoneda%2C+Takuro&rft.au=Hancock%2C+Ashley+M&rft.au=Connell%2C+Simon+D&rft.date=2021-04-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=17&rft.issue=14&rft.spage=e2006608&rft_id=info:doi/10.1002%2Fsmll.202006608&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |